efx.c 86.0 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
81 82 83 84
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
85
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
86 87
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

103 104 105 106 107 108 109 110 111
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
112 113
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
114
 *
115
 * This is only used in MSI-X interrupt mode
116
 */
117 118
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
119 120
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
121 122 123 124 125 126 127

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
128 129
 * monitor.
 * On Falcon-based NICs, this will:
130 131
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
132 133
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
134
 */
S
stephen hemminger 已提交
135
static unsigned int efx_monitor_interval = 1 * HZ;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
168
 * The default (0) means to assign an interrupt to each core.
169 170 171 172 173
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

174 175
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
176 177
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

178
static unsigned irq_adapt_low_thresh = 8000;
179 180 181 182
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

183
static unsigned irq_adapt_high_thresh = 16000;
184 185 186 187
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

188 189 190 191 192 193 194
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

195 196 197 198 199
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
200

201
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
202
static void efx_soft_disable_interrupts(struct efx_nic *efx);
203
static void efx_remove_channel(struct efx_channel *channel);
204
static void efx_remove_channels(struct efx_nic *efx);
205
static const struct efx_channel_type efx_default_channel_type;
206
static void efx_remove_port(struct efx_nic *efx);
207
static void efx_init_napi_channel(struct efx_channel *channel);
208
static void efx_fini_napi(struct efx_nic *efx);
209
static void efx_fini_napi_channel(struct efx_channel *channel);
210 211 212
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
213 214 215

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
216
		if ((efx->state == STATE_READY) ||	\
217
		    (efx->state == STATE_RECOVERY) ||	\
218
		    (efx->state == STATE_DISABLED))	\
219 220 221
			ASSERT_RTNL();			\
	} while (0)

222 223
static int efx_check_disabled(struct efx_nic *efx)
{
224
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
225 226 227 228 229 230 231
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
245
static int efx_process_channel(struct efx_channel *channel, int budget)
246
{
247
	int spent;
248

249
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
250
		return 0;
251

252
	spent = efx_nic_process_eventq(channel, budget);
253 254 255 256
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

257
		efx_rx_flush_packet(channel);
258
		efx_fast_push_rx_descriptors(rx_queue, true);
259 260
	}

261
	return spent;
262 263 264 265 266 267 268 269 270 271 272
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
273
	struct efx_nic *efx = channel->efx;
274
	int spent;
275

276 277 278
	if (!efx_channel_lock_napi(channel))
		return budget;

279 280 281
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
282

283
	spent = efx_process_channel(channel, budget);
284

285
	if (spent < budget) {
286
		if (efx_channel_has_rx_queue(channel) &&
287 288 289 290
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
291 292
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
293
					efx->type->push_irq_moderation(channel);
294
				}
295 296
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
297 298 299
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
300
					efx->type->push_irq_moderation(channel);
301
				}
302 303 304 305 306
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

307 308
		efx_filter_rfs_expire(channel);

309
		/* There is no race here; although napi_disable() will
310
		 * only wait for napi_complete(), this isn't a problem
311
		 * since efx_nic_eventq_read_ack() will have no effect if
312 313
		 * interrupts have already been disabled.
		 */
314
		napi_complete(napi);
315
		efx_nic_eventq_read_ack(channel);
316 317
	}

318
	efx_channel_unlock_napi(channel);
319
	return spent;
320 321 322 323 324 325 326 327 328
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
329 330 331
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

332
	netif_dbg(efx, probe, efx->net_dev,
333
		  "chan %d create event queue\n", channel->channel);
334

335 336 337 338 339 340
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

341
	return efx_nic_probe_eventq(channel);
342 343 344
}

/* Prepare channel's event queue */
345
static int efx_init_eventq(struct efx_channel *channel)
346
{
347
	struct efx_nic *efx = channel->efx;
348 349 350 351
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

352
	netif_dbg(efx, drv, efx->net_dev,
353
		  "chan %d init event queue\n", channel->channel);
354

355 356
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
357
		efx->type->push_irq_moderation(channel);
358 359 360 361
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
362 363
}

364
/* Enable event queue processing and NAPI */
365
void efx_start_eventq(struct efx_channel *channel)
366 367 368 369
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

370
	/* Make sure the NAPI handler sees the enabled flag set */
371 372 373
	channel->enabled = true;
	smp_wmb();

374
	efx_channel_enable(channel);
375 376 377 378 379
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
380
void efx_stop_eventq(struct efx_channel *channel)
381 382 383 384 385
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
386 387
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
388 389 390
	channel->enabled = false;
}

391 392
static void efx_fini_eventq(struct efx_channel *channel)
{
393 394 395
	if (!channel->eventq_init)
		return;

396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
398

399
	efx_nic_fini_eventq(channel);
400
	channel->eventq_init = false;
401 402 403 404
}

static void efx_remove_eventq(struct efx_channel *channel)
{
405 406
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
407

408
	efx_nic_remove_eventq(channel);
409 410 411 412 413 414 415 416
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

417
/* Allocate and initialise a channel structure. */
418 419 420 421 422 423 424 425
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

426 427 428
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
429

430 431 432
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
433

434 435 436 437 438 439
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
440

441 442 443 444
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
445

446 447 448 449 450 451 452 453 454 455 456 457 458
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
459

460 461 462 463 464 465 466 467
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
468

469 470 471
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
472
			tx_queue->channel = channel;
473 474
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
475 476 477
	}

	rx_queue = &channel->rx_queue;
478 479
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
480 481 482 483 484 485
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

486 487 488 489 490 491
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

492 493
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
494

495 496 497 498
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

499 500
	rc = efx_probe_eventq(channel);
	if (rc)
501
		goto fail;
502 503 504 505

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
506
			goto fail;
507 508 509 510 511
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
512
			goto fail;
513 514 515 516
	}

	return 0;

517 518
fail:
	efx_remove_channel(channel);
519 520 521
	return rc;
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
540

541 542 543 544
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

545 546
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
547 548
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
549 550
}

551 552 553 554 555 556 557 558
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

559 560 561 562 563 564
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

582 583 584 585
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
586
static void efx_start_datapath(struct efx_nic *efx)
587
{
588
	bool old_rx_scatter = efx->rx_scatter;
589 590 591
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
592
	size_t rx_buf_len;
593

594 595 596 597
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
598
	efx->rx_dma_len = (efx->rx_prefix_size +
599 600
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
601
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
602
		      efx->rx_ip_align + efx->rx_dma_len);
603
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
604
		efx->rx_scatter = efx->type->always_rx_scatter;
605 606
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
607
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
608
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
609 610 611
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
612 613 614 615 616 617 618 619
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

620 621 622 623 624 625 626 627 628 629 630
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
631

J
Jon Cooper 已提交
632
	/* RX filters may also have scatter-enabled flags */
633
	if (efx->rx_scatter != old_rx_scatter)
634
		efx->type->filter_update_rx_scatter(efx);
635

636 637 638 639 640 641 642 643 644 645
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

646 647
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
648
		efx_for_each_channel_tx_queue(tx_queue, channel) {
649
			efx_init_tx_queue(tx_queue);
650 651
			atomic_inc(&efx->active_queues);
		}
652

653
		efx_for_each_channel_rx_queue(rx_queue, channel) {
654
			efx_init_rx_queue(rx_queue);
655
			atomic_inc(&efx->active_queues);
656 657 658
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
659
		}
660

661
		WARN_ON(channel->rx_pkt_n_frags);
662 663
	}

664 665
	efx_ptp_start_datapath(efx);

666 667
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
668 669
}

670
static void efx_stop_datapath(struct efx_nic *efx)
671 672 673 674
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
675
	int rc;
676 677 678 679

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

680 681
	efx_ptp_stop_datapath(efx);

682 683 684 685 686 687
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

688
	efx_for_each_channel(channel, efx) {
689 690 691 692 693 694 695 696 697 698
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
699
	}
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
719 720
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
721
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
722 723 724 725 726 727 728 729 730
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

731 732
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
733 734 735

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
736
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 738
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
739
	channel->type->post_remove(channel);
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
755
	unsigned i, next_buffer_table = 0;
756
	int rc, rc2;
757 758 759 760

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
783

784
	efx_device_detach_sync(efx);
785
	efx_stop_all(efx);
B
Ben Hutchings 已提交
786
	efx_soft_disable_interrupts(efx);
787

788
	/* Clone channels (where possible) */
789 790
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
791 792 793
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

812 813
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
814 815

	for (i = 0; i < efx->n_channels; i++) {
816 817 818 819 820 821 822
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
823
	}
824

825
out:
826 827 828 829 830 831 832 833 834
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
835

836 837 838 839 840 841 842 843 844 845
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

860
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
861
{
862
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
863 864
}

865 866
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
867
	.post_remove		= efx_channel_dummy_op_void,
868 869 870 871 872 873 874 875 876 877
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

878 879 880 881
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

882 883 884 885 886 887 888 889 890 891
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
892
void efx_link_status_changed(struct efx_nic *efx)
893
{
894 895
	struct efx_link_state *link_state = &efx->link_state;

896 897 898 899 900 901 902
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

903
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
904 905
		efx->n_link_state_changes++;

906
		if (link_state->up)
907 908 909 910 911 912
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
913
	if (link_state->up)
914
		netif_info(efx, link, efx->net_dev,
915
			   "link up at %uMbps %s-duplex (MTU %d)\n",
916
			   link_state->speed, link_state->fd ? "full" : "half",
917
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
918
	else
919
		netif_info(efx, link, efx->net_dev, "link down\n");
920 921
}

B
Ben Hutchings 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

935
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

950 951
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
952 953 954 955 956 957 958 959
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
960
{
B
Ben Hutchings 已提交
961 962
	enum efx_phy_mode phy_mode;
	int rc;
963

B
Ben Hutchings 已提交
964
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
965

B
Ben Hutchings 已提交
966 967
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
968 969 970 971 972
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
973
	rc = efx->type->reconfigure_port(efx);
974

B
Ben Hutchings 已提交
975 976
	if (rc)
		efx->phy_mode = phy_mode;
977

B
Ben Hutchings 已提交
978
	return rc;
979 980 981 982
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
983
int efx_reconfigure_port(struct efx_nic *efx)
984
{
B
Ben Hutchings 已提交
985 986
	int rc;

987 988 989
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
990
	rc = __efx_reconfigure_port(efx);
991
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
992 993

	return rc;
994 995
}

996 997 998
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
999 1000 1001 1002 1003
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1004
	if (efx->port_enabled)
1005
		efx->type->reconfigure_mac(efx);
1006 1007 1008
	mutex_unlock(&efx->mac_lock);
}

1009 1010 1011 1012
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1013
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1014

1015 1016 1017
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1018 1019
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1020
	if (rc)
1021
		return rc;
1022

1023
	/* Initialise MAC address to permanent address */
1024
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1025 1026 1027 1028 1029 1030 1031 1032

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1033
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1034

1035 1036
	mutex_lock(&efx->mac_lock);

1037
	rc = efx->phy_op->init(efx);
1038
	if (rc)
1039
		goto fail1;
1040

1041
	efx->port_initialized = true;
1042

B
Ben Hutchings 已提交
1043 1044
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1045
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1046 1047 1048 1049 1050 1051

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1052
	mutex_unlock(&efx->mac_lock);
1053
	return 0;
1054

1055
fail2:
1056
	efx->phy_op->fini(efx);
1057 1058
fail1:
	mutex_unlock(&efx->mac_lock);
1059
	return rc;
1060 1061 1062 1063
}

static void efx_start_port(struct efx_nic *efx)
{
1064
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1065 1066 1067
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1068
	efx->port_enabled = true;
1069

1070
	/* Ensure MAC ingress/egress is enabled */
1071
	efx->type->reconfigure_mac(efx);
1072

1073 1074 1075
	mutex_unlock(&efx->mac_lock);
}

1076 1077 1078 1079 1080
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1081 1082
static void efx_stop_port(struct efx_nic *efx)
{
1083
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1084

1085 1086
	EFX_ASSERT_RESET_SERIALISED(efx);

1087
	mutex_lock(&efx->mac_lock);
1088
	efx->port_enabled = false;
1089 1090 1091
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1092 1093
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1094 1095 1096 1097

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1098 1099 1100 1101
}

static void efx_fini_port(struct efx_nic *efx)
{
1102
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1103 1104 1105 1106

	if (!efx->port_initialized)
		return;

1107
	efx->phy_op->fini(efx);
1108
	efx->port_initialized = false;
1109

1110
	efx->link_state.up = false;
1111 1112 1113 1114 1115
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1116
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1117

1118
	efx->type->remove_port(efx);
1119 1120 1121 1122 1123 1124 1125 1126
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1198 1199 1200 1201 1202
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1203
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1204
	int rc, bar;
1205

1206
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1207

1208 1209
	bar = efx->type->mem_bar;

1210 1211
	rc = pci_enable_device(pci_dev);
	if (rc) {
1212 1213
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1225
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1226
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1227 1228 1229
			if (rc == 0)
				break;
		}
1230 1231 1232
		dma_mask >>= 1;
	}
	if (rc) {
1233 1234
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1235 1236
		goto fail2;
	}
1237 1238
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1239

1240 1241
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1242
	if (rc) {
1243 1244
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1245 1246 1247
		rc = -EIO;
		goto fail3;
	}
1248
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1249
	if (!efx->membase) {
1250 1251
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1252
			  (unsigned long long)efx->membase_phys, mem_map_size);
1253 1254 1255
		rc = -ENOMEM;
		goto fail4;
	}
1256 1257
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1258 1259
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1260 1261 1262 1263

	return 0;

 fail4:
1264
	pci_release_region(efx->pci_dev, bar);
1265
 fail3:
1266
	efx->membase_phys = 0;
1267 1268 1269 1270 1271 1272 1273 1274
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1275 1276
	int bar;

1277
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1278 1279 1280 1281 1282 1283 1284

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1285 1286
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1287
		efx->membase_phys = 0;
1288 1289 1290 1291 1292
	}

	pci_disable_device(efx->pci_dev);
}

1293
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1294
{
1295
	cpumask_var_t thread_mask;
1296
	unsigned int count;
1297
	int cpu;
1298

1299 1300 1301 1302 1303 1304 1305 1306
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1318 1319
	}

1320 1321 1322
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1334
	}
1335
#endif
1336 1337 1338 1339 1340 1341 1342

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1343
static int efx_probe_interrupts(struct efx_nic *efx)
1344
{
1345 1346
	unsigned int extra_channels = 0;
	unsigned int i, j;
1347
	int rc;
1348

1349 1350 1351 1352
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1353
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1354
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1355
		unsigned int n_channels;
1356

1357
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1358 1359
		if (separate_tx_channels)
			n_channels *= 2;
1360
		n_channels += extra_channels;
1361
		n_channels = min(n_channels, efx->max_channels);
1362

B
Ben Hutchings 已提交
1363
		for (i = 0; i < n_channels; i++)
1364
			xentries[i].entry = i;
1365 1366 1367 1368 1369 1370 1371 1372
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1373 1374
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1375
				  " available (%d < %u).\n", rc, n_channels);
1376 1377
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1378
			n_channels = rc;
1379 1380
		}

1381
		if (rc > 0) {
B
Ben Hutchings 已提交
1382
			efx->n_channels = n_channels;
1383 1384
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1385
			if (separate_tx_channels) {
1386 1387 1388 1389
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1390
			} else {
1391 1392
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1393
			}
1394
			for (i = 0; i < efx->n_channels; i++)
1395 1396
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1397 1398 1399 1400 1401
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1402
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1403 1404
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1405 1406
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1407
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1408
		} else {
1409 1410
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1411 1412 1413 1414 1415 1416
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1417
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1418 1419
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1420 1421
		efx->legacy_irq = efx->pci_dev->irq;
	}
1422

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1438
	/* RSS might be usable on VFs even if it is disabled on the PF */
1439 1440 1441 1442 1443 1444 1445 1446 1447
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1448
	return 0;
1449 1450
}

1451
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1452
{
1453 1454
	struct efx_channel *channel, *end_channel;
	int rc;
1455

1456 1457
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1458 1459
	efx->irq_soft_enabled = true;
	smp_wmb();
1460 1461

	efx_for_each_channel(channel, efx) {
1462 1463 1464 1465 1466
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1467 1468 1469 1470
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1484 1485
}

B
Ben Hutchings 已提交
1486
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1487 1488 1489
{
	struct efx_channel *channel;

1490 1491 1492
	if (efx->state == STATE_DISABLED)
		return;

1493 1494
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1495 1496 1497 1498
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1499 1500 1501 1502 1503 1504 1505
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1506
		if (!channel->type->keep_eventq)
1507
			efx_fini_eventq(channel);
1508
	}
1509 1510 1511

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1512 1513
}

1514
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1515
{
1516 1517
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1518 1519 1520 1521 1522 1523 1524 1525

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1526
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1527 1528

	efx_for_each_channel(channel, efx) {
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1547
		if (channel->type->keep_eventq)
1548
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1549 1550
	}

1551 1552 1553
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1567
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1568 1569
}

1570 1571 1572 1573 1574
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1575
	efx_for_each_channel(channel, efx)
1576 1577 1578 1579 1580 1581 1582 1583
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1584
static void efx_set_channels(struct efx_nic *efx)
1585
{
1586 1587 1588
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1589
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1590
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1591

1592 1593
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1594 1595 1596
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1597 1598 1599 1600 1601
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1602 1603 1604 1605
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1606 1607 1608 1609
}

static int efx_probe_nic(struct efx_nic *efx)
{
1610
	size_t i;
1611 1612
	int rc;

1613
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1614 1615

	/* Carry out hardware-type specific initialisation */
1616
	rc = efx->type->probe(efx);
1617 1618 1619
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1620
	/* Determine the number of channels and queues by trying to hook
1621
	 * in MSI-X interrupts. */
1622 1623
	rc = efx_probe_interrupts(efx);
	if (rc)
1624
		goto fail1;
1625

1626 1627
	efx_set_channels(efx);

1628 1629 1630
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1631

1632
	if (efx->n_channels > 1)
1633
		netdev_rss_key_fill(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1634
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1635
		efx->rx_indir_table[i] =
1636
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1637

1638 1639
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1640 1641

	/* Initialise the interrupt moderation settings */
1642 1643
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1644 1645

	return 0;
1646

1647 1648 1649
fail2:
	efx_remove_interrupts(efx);
fail1:
1650 1651
	efx->type->remove(efx);
	return rc;
1652 1653 1654 1655
}

static void efx_remove_nic(struct efx_nic *efx)
{
1656
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1657 1658

	efx_remove_interrupts(efx);
1659
	efx->type->remove(efx);
1660 1661
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1712
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1713 1714 1715 1716 1717
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1718
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1719 1720 1721
		goto fail2;
	}

1722 1723 1724 1725 1726
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1727
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1728

1729 1730 1731 1732 1733 1734 1735 1736
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1737 1738 1739 1740
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1741
		goto fail4;
B
Ben Hutchings 已提交
1742 1743
	}

1744 1745
	rc = efx_probe_channels(efx);
	if (rc)
1746
		goto fail5;
1747

1748 1749
	return 0;

1750
 fail5:
1751
	efx_remove_filters(efx);
1752 1753 1754 1755
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1756 1757 1758 1759 1760 1761 1762 1763
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1764 1765 1766 1767 1768 1769
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1770
 */
1771 1772 1773
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1774
	BUG_ON(efx->state == STATE_DISABLED);
1775 1776 1777

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1778 1779
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1780 1781 1782
		return;

	efx_start_port(efx);
1783
	efx_start_datapath(efx);
1784

1785 1786
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1787 1788
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1789 1790 1791 1792 1793

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1794 1795 1796 1797 1798
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1799

1800
	efx->type->start_stats(efx);
1801 1802 1803 1804
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1805 1806
}

1807 1808 1809 1810 1811
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1812 1813 1814 1815 1816 1817 1818 1819
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1820 1821 1822 1823 1824 1825 1826
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1827
	efx->type->stop_stats(efx);
1828 1829
	efx_stop_port(efx);

1830 1831 1832 1833 1834 1835
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1836 1837 1838
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1839 1840 1841 1842
}

static void efx_remove_all(struct efx_nic *efx)
{
1843
	efx_remove_channels(efx);
1844
	efx_remove_filters(efx);
1845 1846 1847
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1858
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1859
{
1860 1861
	if (usecs == 0)
		return 0;
1862
	if (usecs * 1000 < quantum_ns)
1863
		return 1; /* never round down to 0 */
1864
	return usecs * 1000 / quantum_ns;
1865 1866
}

1867
/* Set interrupt moderation parameters */
1868 1869 1870
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1871
{
1872
	struct efx_channel *channel;
1873 1874 1875 1876 1877
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1878 1879 1880

	EFX_ASSERT_RESET_SERIALISED(efx);

1881
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1882 1883
		return -EINVAL;

1884 1885 1886
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1887 1888 1889 1890 1891 1892 1893
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1894
	efx->irq_rx_adaptive = rx_adaptive;
1895
	efx->irq_rx_moderation = rx_ticks;
1896
	efx_for_each_channel(channel, efx) {
1897
		if (efx_channel_has_rx_queue(channel))
1898
			channel->irq_moderation = rx_ticks;
1899
		else if (efx_channel_has_tx_queues(channel))
1900 1901
			channel->irq_moderation = tx_ticks;
	}
1902 1903

	return 0;
1904 1905
}

1906 1907 1908
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1909 1910 1911 1912
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1913
	*rx_adaptive = efx->irq_rx_adaptive;
1914 1915 1916
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1917 1918 1919 1920 1921 1922 1923 1924

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1925
		*tx_usecs = DIV_ROUND_UP(
1926
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1927 1928
			efx->timer_quantum_ns,
			1000);
1929 1930
}

1931 1932 1933 1934 1935 1936
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1937
/* Run periodically off the general workqueue */
1938 1939 1940 1941 1942
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1943 1944 1945
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1946
	BUG_ON(efx->type->monitor == NULL);
1947 1948 1949

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1950 1951 1952 1953 1954 1955
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1972
	struct efx_nic *efx = netdev_priv(net_dev);
1973
	struct mii_ioctl_data *data = if_mii(ifr);
1974

1975
	if (cmd == SIOCSHWTSTAMP)
1976 1977 1978
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1979

1980 1981 1982 1983 1984 1985
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1986 1987 1988 1989 1990 1991 1992 1993
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1994 1995 1996 1997 1998 1999 2000
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
2001 2002
	napi_hash_add(&channel->napi_str);
	efx_channel_init_lock(channel);
2003 2004
}

2005
static void efx_init_napi(struct efx_nic *efx)
2006 2007 2008
{
	struct efx_channel *channel;

2009 2010
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2011 2012 2013 2014
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
2015
	if (channel->napi_dev) {
2016
		netif_napi_del(&channel->napi_str);
2017 2018
		napi_hash_del(&channel->napi_str);
	}
2019
	channel->napi_dev = NULL;
2020 2021 2022 2023 2024 2025
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2026 2027
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2044
	struct efx_nic *efx = netdev_priv(net_dev);
2045 2046
	struct efx_channel *channel;

2047
	efx_for_each_channel(channel, efx)
2048 2049 2050 2051 2052
		efx_schedule_channel(channel);
}

#endif

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

	if (!efx_channel_lock_poll(channel))
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2084 2085 2086 2087 2088 2089 2090 2091 2092
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2093
	struct efx_nic *efx = netdev_priv(net_dev);
2094 2095
	int rc;

2096 2097
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2098

2099 2100 2101
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2102 2103
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2104 2105
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2106

2107 2108 2109 2110
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2111
	efx_start_all(efx);
2112
	efx_selftest_async_start(efx);
2113 2114 2115 2116 2117 2118 2119 2120 2121
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2122
	struct efx_nic *efx = netdev_priv(net_dev);
2123

2124 2125
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2126

2127 2128
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2129 2130 2131 2132

	return 0;
}

2133
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2134 2135
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2136
{
2137
	struct efx_nic *efx = netdev_priv(net_dev);
2138

2139
	spin_lock_bh(&efx->stats_lock);
2140
	efx->type->update_stats(efx, NULL, stats);
2141 2142
	spin_unlock_bh(&efx->stats_lock);

2143 2144 2145 2146 2147 2148
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2149
	struct efx_nic *efx = netdev_priv(net_dev);
2150

2151 2152 2153
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2154

2155
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2156 2157 2158 2159 2160 2161
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2162
	struct efx_nic *efx = netdev_priv(net_dev);
2163
	int rc;
2164

2165 2166 2167
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2168 2169 2170
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2171
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2172

2173 2174 2175
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2176
	mutex_lock(&efx->mac_lock);
2177
	net_dev->mtu = new_mtu;
2178
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2179 2180
	mutex_unlock(&efx->mac_lock);

2181
	efx_start_all(efx);
2182
	netif_device_attach(efx->net_dev);
2183
	return 0;
2184 2185 2186 2187
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2188
	struct efx_nic *efx = netdev_priv(net_dev);
2189
	struct sockaddr *addr = data;
2190
	u8 *new_addr = addr->sa_data;
2191 2192

	if (!is_valid_ether_addr(new_addr)) {
2193 2194 2195
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2196
		return -EADDRNOTAVAIL;
2197 2198
	}

2199
	ether_addr_copy(net_dev->dev_addr, new_addr);
2200 2201
	if (efx->type->sriov_mac_address_changed)
		efx->type->sriov_mac_address_changed(efx);
2202 2203

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2204
	mutex_lock(&efx->mac_lock);
2205
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2206
	mutex_unlock(&efx->mac_lock);
2207 2208 2209 2210

	return 0;
}

2211
/* Context: netif_addr_lock held, BHs disabled. */
2212
static void efx_set_rx_mode(struct net_device *net_dev)
2213
{
2214
	struct efx_nic *efx = netdev_priv(net_dev);
2215

2216 2217 2218
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2219 2220
}

2221
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2222 2223 2224 2225 2226
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2227
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2228 2229 2230 2231

	return 0;
}

2232
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2233 2234
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2235
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2236 2237 2238 2239 2240 2241
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2242
	.ndo_set_rx_mode	= efx_set_rx_mode,
2243
	.ndo_set_features	= efx_set_features,
2244
#ifdef CONFIG_SFC_SRIOV
2245 2246 2247 2248
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2249
#endif
S
Stephen Hemminger 已提交
2250 2251 2252
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2253
	.ndo_setup_tc		= efx_setup_tc,
2254 2255 2256
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2257 2258 2259
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2260 2261
};

2262 2263 2264 2265 2266 2267 2268
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2269 2270 2271
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2272
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2273

2274
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2275 2276
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2277 2278 2279 2280 2281 2282 2283 2284

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2285 2286 2287 2288 2289 2290
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2291
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2292

2293 2294 2295
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2296
	struct efx_channel *channel;
2297 2298 2299 2300
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2301 2302
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2303
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2304
	net_dev->ethtool_ops = &efx_ethtool_ops;
2305
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2306

2307
	rtnl_lock();
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2322 2323 2324
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2325
	efx_update_name(efx);
2326

2327 2328 2329
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2330 2331 2332 2333
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2334 2335
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2336 2337
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2338 2339
	}

2340 2341
	efx_associate(efx);

2342
	rtnl_unlock();
2343

B
Ben Hutchings 已提交
2344 2345
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2346 2347
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2348 2349 2350
		goto fail_registered;
	}

2351
	return 0;
B
Ben Hutchings 已提交
2352

2353 2354
fail_registered:
	rtnl_lock();
2355
	efx_dissociate(efx);
2356
	unregister_netdevice(net_dev);
2357
fail_locked:
2358
	efx->state = STATE_UNINIT;
2359
	rtnl_unlock();
2360
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2361
	return rc;
2362 2363 2364 2365 2366 2367 2368
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2369
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2370

2371 2372
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2373 2374 2375 2376 2377

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2378 2379 2380 2381 2382 2383 2384 2385
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2386 2387
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2388
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2389 2390 2391
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2392 2393 2394
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2395
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2396
	efx_disable_interrupts(efx);
2397 2398

	mutex_lock(&efx->mac_lock);
2399 2400
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2401
	efx->type->fini(efx);
2402 2403
}

B
Ben Hutchings 已提交
2404 2405 2406 2407 2408
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2409
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2410 2411 2412
{
	int rc;

B
Ben Hutchings 已提交
2413
	EFX_ASSERT_RESET_SERIALISED(efx);
2414

2415 2416 2417 2418
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2419
	rc = efx->type->init(efx);
2420
	if (rc) {
2421
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2422
		goto fail;
2423 2424
	}

2425 2426 2427
	if (!ok)
		goto fail;

2428
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2429 2430 2431 2432
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2433 2434
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2435 2436
	}

2437 2438 2439
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2440 2441 2442 2443 2444 2445 2446 2447 2448

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
2449
	efx_restore_filters(efx);
2450 2451
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2452 2453 2454 2455 2456 2457 2458 2459 2460

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2461 2462 2463

	mutex_unlock(&efx->mac_lock);

2464 2465 2466
	return rc;
}

2467 2468
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2469
 *
2470
 * Caller must hold the rtnl_lock.
2471
 */
2472
int efx_reset(struct efx_nic *efx, enum reset_type method)
2473
{
2474 2475
	int rc, rc2;
	bool disabled;
2476

2477 2478
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2479

2480
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2481
	efx_reset_down(efx, method);
2482

2483
	rc = efx->type->reset(efx, method);
2484
	if (rc) {
2485
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2486
		goto out;
2487 2488
	}

2489 2490 2491
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2492 2493 2494 2495
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2496 2497 2498 2499 2500 2501 2502

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2503
out:
2504
	/* Leave device stopped if necessary */
2505 2506 2507
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2508 2509 2510 2511 2512
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2513 2514
	}

2515
	if (disabled) {
2516
		dev_close(efx->net_dev);
2517
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2518 2519
		efx->state = STATE_DISABLED;
	} else {
2520
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2521
		netif_device_attach(efx->net_dev);
2522
	}
2523 2524 2525
	return rc;
}

2526 2527 2528 2529 2530
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2531
int efx_try_recovery(struct efx_nic *efx)
2532 2533 2534 2535 2536 2537 2538
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2539
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2568 2569 2570 2571 2572
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2573
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2574 2575 2576 2577 2578 2579
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2580 2581 2582
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2583 2584 2585 2586
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2587

2588
	if (!pending)
2589 2590
		return;

2591
	rtnl_lock();
2592 2593 2594 2595 2596 2597

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2598
		(void)efx_reset(efx, method);
2599

2600
	rtnl_unlock();
2601 2602 2603 2604 2605 2606
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2607 2608 2609 2610 2611 2612 2613
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2614 2615 2616
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2617
	case RESET_TYPE_RECOVER_OR_ALL:
2618 2619
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2620
	case RESET_TYPE_RECOVER_OR_DISABLE:
2621
	case RESET_TYPE_MC_BIST:
2622
	case RESET_TYPE_MCDI_TIMEOUT:
2623
		method = type;
2624 2625
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2626 2627
		break;
	default:
2628
		method = efx->type->map_reset_reason(type);
2629 2630 2631
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2632 2633
		break;
	}
2634

2635
	set_bit(method, &efx->reset_pending);
2636 2637 2638 2639 2640 2641 2642
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2643

2644 2645 2646 2647
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2648
	queue_work(reset_workqueue, &efx->reset_work);
2649 2650 2651 2652 2653 2654 2655 2656 2657
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2658
static const struct pci_device_id efx_pci_table[] = {
2659 2660
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2661
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2662 2663
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2664
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2665
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2666
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2667
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2668
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2669 2670
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2671 2672
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2673 2674 2675 2676 2677
	{0}			/* end of list */
};

/**************************************************************************
 *
2678
 * Dummy PHY/MAC operations
2679
 *
2680
 * Can be used for some unimplemented operations
2681 2682 2683 2684 2685 2686 2687 2688 2689
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2690 2691

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2692 2693 2694
{
	return false;
}
2695

2696
static const struct efx_phy_operations efx_dummy_phy_operations = {
2697
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2698
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2699
	.poll		 = efx_port_dummy_op_poll,
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2712
static int efx_init_struct(struct efx_nic *efx,
2713 2714
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2715
	int i;
2716 2717

	/* Initialise common structures */
2718 2719
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2720
	spin_lock_init(&efx->biu_lock);
2721 2722 2723
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2724 2725
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2726
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2727
	efx->pci_dev = pci_dev;
2728
	efx->msg_enable = debug;
2729
	efx->state = STATE_UNINIT;
2730 2731 2732
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2733
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2734 2735
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2736 2737
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2738 2739
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2740 2741 2742
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2743
	efx->mdio.dev = net_dev;
2744
	INIT_WORK(&efx->mac_work, efx_mac_work);
2745
	init_waitqueue_head(&efx->flush_wq);
2746 2747

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2748 2749 2750
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2751 2752
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2753 2754 2755 2756 2757 2758
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2759 2760 2761 2762
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2763
	if (!efx->workqueue)
2764
		goto fail;
2765

2766
	return 0;
2767 2768 2769 2770

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2771 2772 2773 2774
}

static void efx_fini_struct(struct efx_nic *efx)
{
2775 2776 2777 2778 2779
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2780 2781
	kfree(efx->vpd_sn);

2782 2783 2784 2785 2786 2787
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2810 2811 2812 2813 2814 2815
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2816
	efx_disable_interrupts(efx);
2817
	efx_nic_fini_interrupt(efx);
2818
	efx_fini_port(efx);
2819
	efx->type->fini(efx);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2837
	efx_dissociate(efx);
2838
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2839
	efx_disable_interrupts(efx);
2840 2841
	rtnl_unlock();

2842 2843 2844
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

2845 2846
	efx_unregister_netdev(efx);

2847 2848
	efx_mtd_remove(efx);

2849 2850 2851
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2852
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2853 2854 2855

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2856 2857

	pci_disable_pcie_error_reporting(pci_dev);
2858 2859
};

2860 2861 2862 2863 2864 2865
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2866
static void efx_probe_vpd_strings(struct efx_nic *efx)
2867 2868 2869 2870
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2871
	int ro_start, ro_size, i, j;
2872 2873 2874 2875 2876 2877 2878 2879 2880

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2881 2882
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2883 2884 2885 2886
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2887 2888 2889
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2930 2931 2932
}


2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2945
	efx_init_napi(efx);
2946

2947
	rc = efx->type->init(efx);
2948
	if (rc) {
2949 2950
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2951
		goto fail3;
2952 2953 2954 2955
	}

	rc = efx_init_port(efx);
	if (rc) {
2956 2957
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2958
		goto fail4;
2959 2960
	}

2961
	rc = efx_nic_init_interrupt(efx);
2962
	if (rc)
2963
		goto fail5;
2964 2965 2966
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2967 2968 2969

	return 0;

2970 2971
 fail6:
	efx_nic_fini_interrupt(efx);
2972
 fail5:
2973 2974
	efx_fini_port(efx);
 fail4:
2975
	efx->type->fini(efx);
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2986
 * theoretically).  It sets up PCI mappings, resets the NIC,
2987 2988 2989 2990 2991
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2992
static int efx_pci_probe(struct pci_dev *pci_dev,
2993
			 const struct pci_device_id *entry)
2994 2995 2996
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2997
	int rc;
2998 2999

	/* Allocate and initialise a struct net_device and struct efx_nic */
3000 3001
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3002 3003
	if (!net_dev)
		return -ENOMEM;
3004 3005 3006
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
3007
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3008
			      NETIF_F_RXCSUM);
3009
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
3010
		net_dev->features |= NETIF_F_TSO6;
3011 3012
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3013 3014 3015 3016
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3017
	pci_set_drvdata(pci_dev, efx);
3018
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3019
	rc = efx_init_struct(efx, pci_dev, net_dev);
3020 3021 3022
	if (rc)
		goto fail1;

3023
	netif_info(efx, probe, efx->net_dev,
3024
		   "Solarflare NIC detected\n");
3025

3026
	efx_probe_vpd_strings(efx);
3027

3028 3029 3030 3031 3032
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3033 3034 3035
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3036 3037 3038

	rc = efx_register_netdev(efx);
	if (rc)
3039
		goto fail4;
3040

3041 3042 3043 3044 3045 3046
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3047

3048
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3049

3050
	/* Try to create MTDs, but allow this to fail */
3051
	rtnl_lock();
3052
	rc = efx_mtd_probe(efx);
3053
	rtnl_unlock();
3054 3055 3056 3057
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3058 3059 3060 3061 3062
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

3063 3064 3065
	return 0;

 fail4:
3066
	efx_pci_remove_main(efx);
3067 3068 3069 3070 3071
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3072
	WARN_ON(rc > 0);
3073
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3074 3075 3076 3077
	free_netdev(net_dev);
	return rc;
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3098 3099 3100 3101
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3102 3103
	rtnl_lock();

3104 3105
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3106

3107
		efx_device_detach_sync(efx);
3108

3109
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3110
		efx_disable_interrupts(efx);
3111
	}
3112

3113 3114
	rtnl_unlock();

3115 3116 3117 3118 3119
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3120
	int rc;
3121 3122
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3123 3124
	rtnl_lock();

3125
	if (efx->state != STATE_DISABLED) {
3126 3127 3128
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3129

3130 3131 3132
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3133

3134
		efx_start_all(efx);
3135

3136
		netif_device_attach(efx->net_dev);
3137

3138
		efx->state = STATE_READY;
3139

3140 3141
		efx->type->resume_wol(efx);
	}
3142

3143 3144
	rtnl_unlock();

3145 3146 3147
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3148
	return 0;
3149 3150 3151 3152 3153

fail:
	rtnl_unlock();

	return rc;
3154 3155 3156 3157 3158 3159 3160 3161 3162
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3163
	efx->reset_pending = 0;
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3190 3191
	rc = efx_pm_thaw(dev);
	return rc;
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3205
static const struct dev_pm_ops efx_pm_ops = {
3206 3207 3208 3209 3210 3211 3212 3213
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3214 3215 3216 3217
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3218 3219
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3236
		efx_disable_interrupts(efx);
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3253
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3254
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3313
static struct pci_driver efx_pci_driver = {
3314
	.name		= KBUILD_MODNAME,
3315 3316 3317
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3318
	.driver.pm	= &efx_pm_ops,
3319
	.err_handler	= &efx_err_handlers,
3320 3321 3322
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3345
#ifdef CONFIG_SFC_SRIOV
3346 3347 3348
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3349
#endif
3350

3351 3352 3353 3354 3355
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3356 3357 3358 3359 3360 3361 3362 3363

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3364 3365
	destroy_workqueue(reset_workqueue);
 err_reset:
3366
#ifdef CONFIG_SFC_SRIOV
3367 3368
	efx_fini_sriov();
 err_sriov:
3369
#endif
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3380
	destroy_workqueue(reset_workqueue);
3381
#ifdef CONFIG_SFC_SRIOV
3382
	efx_fini_sriov();
3383
#endif
3384 3385 3386 3387 3388 3389 3390
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3391 3392
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3393
MODULE_DESCRIPTION("Solarflare network driver");
3394 3395
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);