efx.c 78.6 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86 87
};

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108 109
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120
 * monitor.
 * On Falcon-based NICs, this will:
121 122
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123 124
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
125
 */
S
stephen hemminger 已提交
126
static unsigned int efx_monitor_interval = 1 * HZ;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159
 * The default (0) means to assign an interrupt to each core.
160 161 162 163 164
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

165 166
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
167 168
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

169
static unsigned irq_adapt_low_thresh = 8000;
170 171 172 173
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

174
static unsigned irq_adapt_high_thresh = 16000;
175 176 177 178
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

179 180 181 182 183 184 185
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

186 187 188 189 190
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
191

192
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
193
static void efx_soft_disable_interrupts(struct efx_nic *efx);
194
static void efx_remove_channel(struct efx_channel *channel);
195
static void efx_remove_channels(struct efx_nic *efx);
196
static const struct efx_channel_type efx_default_channel_type;
197
static void efx_remove_port(struct efx_nic *efx);
198
static void efx_init_napi_channel(struct efx_channel *channel);
199
static void efx_fini_napi(struct efx_nic *efx);
200
static void efx_fini_napi_channel(struct efx_channel *channel);
201 202 203
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
204 205 206

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
207
		if ((efx->state == STATE_READY) ||	\
208
		    (efx->state == STATE_RECOVERY) ||	\
209
		    (efx->state == STATE_DISABLED))	\
210 211 212
			ASSERT_RTNL();			\
	} while (0)

213 214
static int efx_check_disabled(struct efx_nic *efx)
{
215
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216 217 218 219 220 221 222
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

223 224 225 226 227 228 229 230 231 232 233 234 235
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
236
static int efx_process_channel(struct efx_channel *channel, int budget)
237
{
238
	int spent;
239

240
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
241
		return 0;
242

243
	spent = efx_nic_process_eventq(channel, budget);
244 245 246 247
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

248
		efx_rx_flush_packet(channel);
249
		efx_fast_push_rx_descriptors(rx_queue);
250 251
	}

252
	return spent;
253 254 255 256 257 258 259 260 261 262 263
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
264
	struct efx_nic *efx = channel->efx;
265
	int spent;
266

267 268 269
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
270

271
	spent = efx_process_channel(channel, budget);
272

273
	if (spent < budget) {
274
		if (efx_channel_has_rx_queue(channel) &&
275 276 277 278
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
279 280
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
281
					efx->type->push_irq_moderation(channel);
282
				}
283 284
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
285 286 287
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291 292 293 294
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

295 296
		efx_filter_rfs_expire(channel);

297
		/* There is no race here; although napi_disable() will
298
		 * only wait for napi_complete(), this isn't a problem
299
		 * since efx_nic_eventq_read_ack() will have no effect if
300 301
		 * interrupts have already been disabled.
		 */
302
		napi_complete(napi);
303
		efx_nic_eventq_read_ack(channel);
304 305
	}

306
	return spent;
307 308 309 310 311 312 313 314 315
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
316 317 318
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

319
	netif_dbg(efx, probe, efx->net_dev,
320
		  "chan %d create event queue\n", channel->channel);
321

322 323 324 325 326 327
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

328
	return efx_nic_probe_eventq(channel);
329 330 331
}

/* Prepare channel's event queue */
332
static int efx_init_eventq(struct efx_channel *channel)
333
{
334 335 336 337
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

338 339
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
340

341 342 343 344 345 346
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
347 348
}

349 350 351 352 353 354
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

355
	/* Make sure the NAPI handler sees the enabled flag set */
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

373 374
static void efx_fini_eventq(struct efx_channel *channel)
{
375 376 377
	if (!channel->eventq_init)
		return;

378 379
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
380

381
	efx_nic_fini_eventq(channel);
382
	channel->eventq_init = false;
383 384 385 386
}

static void efx_remove_eventq(struct efx_channel *channel)
{
387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
389

390
	efx_nic_remove_eventq(channel);
391 392 393 394 395 396 397 398
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

399
/* Allocate and initialise a channel structure. */
400 401 402 403 404 405 406 407
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

408 409 410
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
411

412 413 414
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
415

416 417 418 419 420 421
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
422

423 424 425 426
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
427

428 429 430 431 432 433 434 435 436 437 438 439 440
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
441

442 443 444 445 446 447 448 449
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
450

451 452 453
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
454
			tx_queue->channel = channel;
455 456
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
457 458 459
	}

	rx_queue = &channel->rx_queue;
460 461
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
462 463 464 465 466 467
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

468 469 470 471 472 473
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

474 475
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
476

477 478 479 480
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

481 482
	rc = efx_probe_eventq(channel);
	if (rc)
483
		goto fail;
484 485 486 487

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
488
			goto fail;
489 490 491 492 493
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
494
			goto fail;
495 496 497 498 499 500
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

501 502
fail:
	efx_remove_channel(channel);
503 504 505
	return rc;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
524

525 526 527 528
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

529 530
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
531 532
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
533 534
}

535 536 537 538 539 540 541 542
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

543 544 545 546 547 548
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

566 567 568 569
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
570
static void efx_start_datapath(struct efx_nic *efx)
571
{
572
	bool old_rx_scatter = efx->rx_scatter;
573 574 575
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
576
	size_t rx_buf_len;
577

578 579 580 581
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
582
	efx->rx_dma_len = (efx->rx_prefix_size +
583 584
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
585
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
586
		      NET_IP_ALIGN + efx->rx_dma_len);
587 588 589 590
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
591
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
592
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
593 594 595
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
596 597 598 599 600 601 602 603
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

604 605 606 607 608 609 610 611 612 613 614
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
615

616 617
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
618
		efx->type->filter_update_rx_scatter(efx);
619

620 621 622 623 624 625 626 627 628 629
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

630 631
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
632 633
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
634

635
		efx_for_each_channel_rx_queue(rx_queue, channel) {
636
			efx_init_rx_queue(rx_queue);
637 638
			efx_nic_generate_fill_event(rx_queue);
		}
639

640
		WARN_ON(channel->rx_pkt_n_frags);
641 642
	}

643 644
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
645 646
}

647
static void efx_stop_datapath(struct efx_nic *efx)
648 649 650 651
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
652
	int rc;
653 654 655 656

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

657 658 659 660 661 662
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

663
	efx_for_each_channel(channel, efx) {
664 665 666 667 668 669 670 671 672 673
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
674
	}
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
694 695
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
696
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
697 698 699 700 701 702 703 704 705
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

706 707
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
708 709 710

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
711
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
712 713
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
714
	channel->type->post_remove(channel);
715 716
}

717 718 719 720 721 722 723 724 725 726 727 728 729
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
730
	unsigned i, next_buffer_table = 0;
731
	int rc, rc2;
732 733 734 735

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
758

759
	efx_device_detach_sync(efx);
760
	efx_stop_all(efx);
B
Ben Hutchings 已提交
761
	efx_soft_disable_interrupts(efx);
762

763
	/* Clone channels (where possible) */
764 765
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
766 767 768
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

787 788
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
789 790

	for (i = 0; i < efx->n_channels; i++) {
791 792 793 794 795 796 797
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
798
	}
799

800
out:
801 802 803 804 805 806 807 808 809
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
810

811 812 813 814 815 816 817 818 819 820
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
821 822 823 824 825 826 827 828 829 830 831 832 833 834
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

835
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
836
{
837
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
838 839
}

840 841
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
842
	.post_remove		= efx_channel_dummy_op_void,
843 844 845 846 847 848 849 850 851 852
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

853 854 855 856
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

857 858 859 860 861 862 863 864 865 866
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
867
void efx_link_status_changed(struct efx_nic *efx)
868
{
869 870
	struct efx_link_state *link_state = &efx->link_state;

871 872 873 874 875 876 877
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

878
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
879 880
		efx->n_link_state_changes++;

881
		if (link_state->up)
882 883 884 885 886 887
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
888
	if (link_state->up)
889
		netif_info(efx, link, efx->net_dev,
890
			   "link up at %uMbps %s-duplex (MTU %d)\n",
891
			   link_state->speed, link_state->fd ? "full" : "half",
892
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
893
	else
894
		netif_info(efx, link, efx->net_dev, "link down\n");
895 896
}

B
Ben Hutchings 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

910
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

925 926
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
927 928 929 930 931 932 933 934
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
935
{
B
Ben Hutchings 已提交
936 937
	enum efx_phy_mode phy_mode;
	int rc;
938

B
Ben Hutchings 已提交
939
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
940

B
Ben Hutchings 已提交
941 942
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
943 944 945 946 947
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
948
	rc = efx->type->reconfigure_port(efx);
949

B
Ben Hutchings 已提交
950 951
	if (rc)
		efx->phy_mode = phy_mode;
952

B
Ben Hutchings 已提交
953
	return rc;
954 955 956 957
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
958
int efx_reconfigure_port(struct efx_nic *efx)
959
{
B
Ben Hutchings 已提交
960 961
	int rc;

962 963 964
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
965
	rc = __efx_reconfigure_port(efx);
966
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
967 968

	return rc;
969 970
}

971 972 973
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
974 975 976 977 978
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
979
	if (efx->port_enabled)
980
		efx->type->reconfigure_mac(efx);
981 982 983
	mutex_unlock(&efx->mac_lock);
}

984 985 986 987
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

988
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
989

990 991 992
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

993 994
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
995
	if (rc)
996
		return rc;
997

998 999
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1000 1001 1002 1003 1004 1005 1006 1007

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1008
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1009

1010 1011
	mutex_lock(&efx->mac_lock);

1012
	rc = efx->phy_op->init(efx);
1013
	if (rc)
1014
		goto fail1;
1015

1016
	efx->port_initialized = true;
1017

B
Ben Hutchings 已提交
1018 1019
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1020
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1021 1022 1023 1024 1025 1026

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1027
	mutex_unlock(&efx->mac_lock);
1028
	return 0;
1029

1030
fail2:
1031
	efx->phy_op->fini(efx);
1032 1033
fail1:
	mutex_unlock(&efx->mac_lock);
1034
	return rc;
1035 1036 1037 1038
}

static void efx_start_port(struct efx_nic *efx)
{
1039
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1040 1041 1042
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1043
	efx->port_enabled = true;
1044 1045 1046

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1047
	efx->type->reconfigure_mac(efx);
1048

1049 1050 1051
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1052
/* Prevent efx_mac_work() and efx_monitor() from working */
1053 1054
static void efx_stop_port(struct efx_nic *efx)
{
1055
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1056 1057

	mutex_lock(&efx->mac_lock);
1058
	efx->port_enabled = false;
1059 1060 1061
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1062 1063
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1064 1065 1066 1067
}

static void efx_fini_port(struct efx_nic *efx)
{
1068
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1069 1070 1071 1072

	if (!efx->port_initialized)
		return;

1073
	efx->phy_op->fini(efx);
1074
	efx->port_initialized = false;
1075

1076
	efx->link_state.up = false;
1077 1078 1079 1080 1081
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1082
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1083

1084
	efx->type->remove_port(efx);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1098
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1099 1100
	int rc;

1101
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1102 1103 1104

	rc = pci_enable_device(pci_dev);
	if (rc) {
1105 1106
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1118 1119
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1120 1121 1122
			if (rc == 0)
				break;
		}
1123 1124 1125
		dma_mask >>= 1;
	}
	if (rc) {
1126 1127
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1128 1129
		goto fail2;
	}
1130 1131
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1132
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1133
	if (rc) {
1134 1135
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1136 1137
		 * but just in case...
		 */
1138 1139
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1140 1141 1142
		goto fail2;
	}

1143 1144
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1145
	if (rc) {
1146 1147
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1148 1149 1150
		rc = -EIO;
		goto fail3;
	}
1151
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1152
	if (!efx->membase) {
1153 1154
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1155
			  (unsigned long long)efx->membase_phys, mem_map_size);
1156 1157 1158
		rc = -ENOMEM;
		goto fail4;
	}
1159 1160
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1161 1162
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1163 1164 1165 1166

	return 0;

 fail4:
1167
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1168
 fail3:
1169
	efx->membase_phys = 0;
1170 1171 1172 1173 1174 1175 1176 1177
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1178
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1179 1180 1181 1182 1183 1184 1185

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1186
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1187
		efx->membase_phys = 0;
1188 1189 1190 1191 1192
	}

	pci_disable_device(efx->pci_dev);
}

1193
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1194
{
1195
	cpumask_var_t thread_mask;
1196
	unsigned int count;
1197
	int cpu;
1198

1199 1200 1201 1202 1203 1204 1205 1206
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1218 1219
	}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1231 1232 1233 1234 1235 1236 1237 1238
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1239
static int efx_probe_interrupts(struct efx_nic *efx)
1240
{
1241 1242
	unsigned int extra_channels = 0;
	unsigned int i, j;
1243
	int rc;
1244

1245 1246 1247 1248
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1249
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1250
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1251
		unsigned int n_channels;
1252

1253
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1254 1255
		if (separate_tx_channels)
			n_channels *= 2;
1256
		n_channels += extra_channels;
1257
		n_channels = min(n_channels, efx->max_channels);
1258

B
Ben Hutchings 已提交
1259
		for (i = 0; i < n_channels; i++)
1260
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1261
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1262
		if (rc > 0) {
1263 1264
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1265
				  " available (%d < %u).\n", rc, n_channels);
1266 1267
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1268 1269
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1270
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1271
					     n_channels);
1272 1273 1274
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1275
			efx->n_channels = n_channels;
1276 1277
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1278
			if (separate_tx_channels) {
1279 1280 1281 1282
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1283
			} else {
1284 1285
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1286
			}
1287
			for (i = 0; i < efx->n_channels; i++)
1288 1289
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1290 1291 1292
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1293 1294
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1295 1296 1297 1298 1299
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1300
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1301 1302
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1303 1304
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1305
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1306
		} else {
1307 1308
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1309 1310 1311 1312 1313 1314
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1315
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1316 1317
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1318 1319
		efx->legacy_irq = efx->pci_dev->irq;
	}
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1336
	/* RSS might be usable on VFs even if it is disabled on the PF */
1337
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1338 1339
			   efx->n_rx_channels : efx_vf_size(efx));

1340
	return 0;
1341 1342
}

1343
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1344
{
1345 1346
	struct efx_channel *channel, *end_channel;
	int rc;
1347

1348 1349
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1350 1351
	efx->irq_soft_enabled = true;
	smp_wmb();
1352 1353

	efx_for_each_channel(channel, efx) {
1354 1355 1356 1357 1358
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1359 1360 1361 1362
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1376 1377
}

B
Ben Hutchings 已提交
1378
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1379 1380 1381
{
	struct efx_channel *channel;

1382 1383 1384
	if (efx->state == STATE_DISABLED)
		return;

1385 1386
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1387 1388 1389 1390
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1391 1392 1393 1394 1395 1396 1397
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1398
		if (!channel->type->keep_eventq)
1399
			efx_fini_eventq(channel);
1400
	}
1401 1402 1403

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1404 1405
}

1406
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1407
{
1408 1409
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1410 1411 1412 1413 1414 1415 1416 1417

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1418
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1419 1420

	efx_for_each_channel(channel, efx) {
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1439
		if (channel->type->keep_eventq)
1440
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1441 1442
	}

1443 1444 1445
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1459
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1460 1461
}

1462 1463 1464 1465 1466
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1467
	efx_for_each_channel(channel, efx)
1468 1469 1470 1471 1472 1473 1474 1475
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1476
static void efx_set_channels(struct efx_nic *efx)
1477
{
1478 1479 1480
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1481
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1482
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1483

1484 1485
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1486 1487 1488
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1489 1490 1491 1492 1493
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1494 1495 1496 1497
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1498 1499 1500 1501
}

static int efx_probe_nic(struct efx_nic *efx)
{
1502
	size_t i;
1503 1504
	int rc;

1505
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1506 1507

	/* Carry out hardware-type specific initialisation */
1508
	rc = efx->type->probe(efx);
1509 1510 1511
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1512
	/* Determine the number of channels and queues by trying to hook
1513
	 * in MSI-X interrupts. */
1514 1515
	rc = efx_probe_interrupts(efx);
	if (rc)
1516
		goto fail1;
1517

1518 1519 1520
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1521

1522 1523
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1524
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1525
		efx->rx_indir_table[i] =
1526
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1527

1528
	efx_set_channels(efx);
1529 1530
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1531 1532

	/* Initialise the interrupt moderation settings */
1533 1534
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1535 1536

	return 0;
1537

1538 1539 1540
fail2:
	efx_remove_interrupts(efx);
fail1:
1541 1542
	efx->type->remove(efx);
	return rc;
1543 1544 1545 1546
}

static void efx_remove_nic(struct efx_nic *efx)
{
1547
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1548 1549

	efx_remove_interrupts(efx);
1550
	efx->type->remove(efx);
1551 1552
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1603
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1604 1605 1606 1607 1608
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1609
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1610 1611 1612
		goto fail2;
	}

1613 1614 1615 1616 1617
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1618
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1619

B
Ben Hutchings 已提交
1620 1621 1622 1623
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1624
		goto fail3;
B
Ben Hutchings 已提交
1625 1626
	}

1627 1628 1629 1630
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1631 1632
	return 0;

B
Ben Hutchings 已提交
1633
 fail4:
1634
	efx_remove_filters(efx);
1635 1636 1637 1638 1639 1640 1641 1642
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1643 1644 1645 1646 1647 1648
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1649
 */
1650 1651 1652
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1653
	BUG_ON(efx->state == STATE_DISABLED);
1654 1655 1656

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1657
	if (efx->port_enabled || !netif_running(efx->net_dev))
1658 1659 1660
		return;

	efx_start_port(efx);
1661
	efx_start_datapath(efx);
1662

1663 1664
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1665 1666
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1667 1668 1669 1670 1671

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1672 1673 1674 1675 1676
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1677

1678
	efx->type->start_stats(efx);
1679 1680 1681 1682 1683 1684 1685
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1686
	/* Make sure the hardware monitor and event self-test are stopped */
1687
	cancel_delayed_work_sync(&efx->monitor_work);
1688
	efx_selftest_async_cancel(efx);
1689
	/* Stop scheduled port reconfigurations */
1690
	cancel_work_sync(&efx->mac_work);
1691 1692
}

1693 1694 1695 1696 1697
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1698 1699 1700 1701 1702 1703 1704 1705
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1706
	efx->type->stop_stats(efx);
1707 1708
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1709
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1710 1711
	efx_flush_all(efx);

1712 1713 1714 1715 1716 1717
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1718 1719 1720
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1721 1722 1723 1724
}

static void efx_remove_all(struct efx_nic *efx)
{
1725
	efx_remove_channels(efx);
1726
	efx_remove_filters(efx);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1737
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1738
{
1739 1740
	if (usecs == 0)
		return 0;
1741
	if (usecs * 1000 < quantum_ns)
1742
		return 1; /* never round down to 0 */
1743
	return usecs * 1000 / quantum_ns;
1744 1745
}

1746
/* Set interrupt moderation parameters */
1747 1748 1749
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1750
{
1751
	struct efx_channel *channel;
1752 1753 1754 1755 1756
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1757 1758 1759

	EFX_ASSERT_RESET_SERIALISED(efx);

1760
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1761 1762
		return -EINVAL;

1763 1764 1765
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1766 1767 1768 1769 1770 1771 1772
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1773
	efx->irq_rx_adaptive = rx_adaptive;
1774
	efx->irq_rx_moderation = rx_ticks;
1775
	efx_for_each_channel(channel, efx) {
1776
		if (efx_channel_has_rx_queue(channel))
1777
			channel->irq_moderation = rx_ticks;
1778
		else if (efx_channel_has_tx_queues(channel))
1779 1780
			channel->irq_moderation = tx_ticks;
	}
1781 1782

	return 0;
1783 1784
}

1785 1786 1787
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1788 1789 1790 1791
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1792
	*rx_adaptive = efx->irq_rx_adaptive;
1793 1794 1795
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1796 1797 1798 1799 1800 1801 1802 1803

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1804
		*tx_usecs = DIV_ROUND_UP(
1805
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1806 1807
			efx->timer_quantum_ns,
			1000);
1808 1809
}

1810 1811 1812 1813 1814 1815
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1816
/* Run periodically off the general workqueue */
1817 1818 1819 1820 1821
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1822 1823 1824
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1825
	BUG_ON(efx->type->monitor == NULL);
1826 1827 1828

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1829 1830 1831 1832 1833 1834
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1851
	struct efx_nic *efx = netdev_priv(net_dev);
1852
	struct mii_ioctl_data *data = if_mii(ifr);
1853

1854 1855 1856
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1857 1858 1859 1860 1861 1862
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1863 1864 1865 1866 1867 1868 1869 1870
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1871 1872 1873 1874 1875 1876 1877 1878 1879
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1880
static void efx_init_napi(struct efx_nic *efx)
1881 1882 1883
{
	struct efx_channel *channel;

1884 1885
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1886 1887 1888 1889 1890 1891 1892
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1893 1894 1895 1896 1897 1898
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1899 1900
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1917
	struct efx_nic *efx = netdev_priv(net_dev);
1918 1919
	struct efx_channel *channel;

1920
	efx_for_each_channel(channel, efx)
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1935
	struct efx_nic *efx = netdev_priv(net_dev);
1936 1937
	int rc;

1938 1939
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1940

1941 1942 1943
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1944 1945
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1946 1947
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1948

1949 1950 1951 1952
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1953
	efx_start_all(efx);
1954
	efx_selftest_async_start(efx);
1955 1956 1957 1958 1959 1960 1961 1962 1963
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1964
	struct efx_nic *efx = netdev_priv(net_dev);
1965

1966 1967
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1968

1969 1970
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1971 1972 1973 1974

	return 0;
}

1975
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1976 1977
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1978
{
1979
	struct efx_nic *efx = netdev_priv(net_dev);
1980

1981
	spin_lock_bh(&efx->stats_lock);
1982
	efx->type->update_stats(efx, NULL, stats);
1983 1984
	spin_unlock_bh(&efx->stats_lock);

1985 1986 1987 1988 1989 1990
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1991
	struct efx_nic *efx = netdev_priv(net_dev);
1992

1993 1994 1995
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1996

1997
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1998 1999 2000 2001 2002 2003
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2004
	struct efx_nic *efx = netdev_priv(net_dev);
2005
	int rc;
2006

2007 2008 2009
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2010 2011 2012
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2013
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2014

2015 2016 2017
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2018
	mutex_lock(&efx->mac_lock);
2019
	net_dev->mtu = new_mtu;
2020
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2021 2022
	mutex_unlock(&efx->mac_lock);

2023
	efx_start_all(efx);
2024
	netif_device_attach(efx->net_dev);
2025
	return 0;
2026 2027 2028 2029
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2030
	struct efx_nic *efx = netdev_priv(net_dev);
2031 2032 2033 2034
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2035 2036 2037
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2038
		return -EADDRNOTAVAIL;
2039 2040 2041
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2042
	efx_sriov_mac_address_changed(efx);
2043 2044

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2045
	mutex_lock(&efx->mac_lock);
2046
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2047
	mutex_unlock(&efx->mac_lock);
2048 2049 2050 2051

	return 0;
}

2052
/* Context: netif_addr_lock held, BHs disabled. */
2053
static void efx_set_rx_mode(struct net_device *net_dev)
2054
{
2055
	struct efx_nic *efx = netdev_priv(net_dev);
2056

2057 2058 2059
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2060 2061
}

2062
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2073 2074 2075
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2076
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2077 2078 2079 2080 2081 2082
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2083
	.ndo_set_rx_mode	= efx_set_rx_mode,
2084
	.ndo_set_features	= efx_set_features,
2085 2086 2087 2088 2089 2090
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2091 2092 2093
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2094
	.ndo_setup_tc		= efx_setup_tc,
2095 2096 2097
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2098 2099
};

2100 2101 2102 2103 2104 2105 2106
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2107 2108 2109
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2110
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2111

2112 2113 2114
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2115 2116 2117 2118 2119 2120 2121 2122

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2123 2124 2125 2126 2127 2128
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2129
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2130

2131 2132 2133
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2134
	struct efx_channel *channel;
2135 2136 2137 2138
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2139
	net_dev->netdev_ops = &efx_netdev_ops;
2140
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2141
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2142

2143
	rtnl_lock();
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2158 2159 2160
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2161
	efx_update_name(efx);
2162

2163 2164 2165
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2166 2167 2168 2169
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2170 2171
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2172 2173
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2174 2175
	}

2176
	rtnl_unlock();
2177

B
Ben Hutchings 已提交
2178 2179
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2180 2181
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2182 2183 2184
		goto fail_registered;
	}

2185
	return 0;
B
Ben Hutchings 已提交
2186

2187 2188 2189
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2190
fail_locked:
2191
	efx->state = STATE_UNINIT;
2192
	rtnl_unlock();
2193
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2194
	return rc;
2195 2196 2197 2198 2199 2200 2201
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2202
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2203

2204 2205
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2206 2207 2208 2209 2210

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2211 2212 2213 2214 2215 2216 2217 2218
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2219 2220
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2221
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2222 2223 2224
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2225
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2226
	efx_disable_interrupts(efx);
2227 2228

	mutex_lock(&efx->mac_lock);
2229 2230
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2231
	efx->type->fini(efx);
2232 2233
}

B
Ben Hutchings 已提交
2234 2235 2236 2237 2238
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2239
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2240 2241 2242
{
	int rc;

B
Ben Hutchings 已提交
2243
	EFX_ASSERT_RESET_SERIALISED(efx);
2244

2245
	rc = efx->type->init(efx);
2246
	if (rc) {
2247
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2248
		goto fail;
2249 2250
	}

2251 2252 2253
	if (!ok)
		goto fail;

2254
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2255 2256 2257 2258
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2259 2260
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2261 2262
	}

2263 2264 2265
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2266
	efx_restore_filters(efx);
2267
	efx_sriov_reset(efx);
2268 2269 2270 2271 2272 2273 2274 2275 2276

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2277 2278 2279

	mutex_unlock(&efx->mac_lock);

2280 2281 2282
	return rc;
}

2283 2284
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2285
 *
2286
 * Caller must hold the rtnl_lock.
2287
 */
2288
int efx_reset(struct efx_nic *efx, enum reset_type method)
2289
{
2290 2291
	int rc, rc2;
	bool disabled;
2292

2293 2294
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2295

2296
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2297
	efx_reset_down(efx, method);
2298

2299
	rc = efx->type->reset(efx, method);
2300
	if (rc) {
2301
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2302
		goto out;
2303 2304
	}

2305 2306 2307 2308
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2309 2310 2311 2312 2313 2314 2315

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2316
out:
2317
	/* Leave device stopped if necessary */
2318 2319 2320
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2321 2322 2323 2324 2325
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2326 2327
	}

2328
	if (disabled) {
2329
		dev_close(efx->net_dev);
2330
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2331 2332
		efx->state = STATE_DISABLED;
	} else {
2333
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2334
		netif_device_attach(efx->net_dev);
2335
	}
2336 2337 2338
	return rc;
}

2339 2340 2341 2342 2343
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2344
int efx_try_recovery(struct efx_nic *efx)
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2365 2366 2367 2368 2369
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2370
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2381

2382
	if (!pending)
2383 2384
		return;

2385
	rtnl_lock();
2386 2387 2388 2389 2390 2391

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2392
		(void)efx_reset(efx, method);
2393

2394
	rtnl_unlock();
2395 2396 2397 2398 2399 2400
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2401 2402 2403 2404 2405 2406 2407
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2408 2409 2410
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2411
	case RESET_TYPE_RECOVER_OR_ALL:
2412 2413
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2414
	case RESET_TYPE_RECOVER_OR_DISABLE:
2415
		method = type;
2416 2417
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2418 2419
		break;
	default:
2420
		method = efx->type->map_reset_reason(type);
2421 2422 2423
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2424 2425
		break;
	}
2426

2427
	set_bit(method, &efx->reset_pending);
2428 2429 2430 2431 2432 2433 2434
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2435

2436 2437 2438 2439
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2440
	queue_work(reset_workqueue, &efx->reset_work);
2441 2442 2443 2444 2445 2446 2447 2448 2449
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2450
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2451 2452
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2453
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2454 2455
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2456
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2457
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2458
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2459
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2460
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2461 2462 2463 2464 2465
	{0}			/* end of list */
};

/**************************************************************************
 *
2466
 * Dummy PHY/MAC operations
2467
 *
2468
 * Can be used for some unimplemented operations
2469 2470 2471 2472 2473 2474 2475 2476 2477
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2478 2479

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2480 2481 2482
{
	return false;
}
2483

2484
static const struct efx_phy_operations efx_dummy_phy_operations = {
2485
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2486
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2487
	.poll		 = efx_port_dummy_op_poll,
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2500
static int efx_init_struct(struct efx_nic *efx,
2501 2502
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2503
	int i;
2504 2505 2506

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2507 2508 2509
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2510 2511
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2512
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2513
	efx->pci_dev = pci_dev;
2514
	efx->msg_enable = debug;
2515
	efx->state = STATE_UNINIT;
2516 2517 2518
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2519 2520 2521
	efx->rx_prefix_size = efx->type->rx_prefix_size;
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2522 2523 2524
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2525
	efx->mdio.dev = net_dev;
2526
	INIT_WORK(&efx->mac_work, efx_mac_work);
2527
	init_waitqueue_head(&efx->flush_wq);
2528 2529

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2530 2531 2532
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2533 2534
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2535 2536 2537 2538 2539 2540
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2541 2542 2543 2544
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2545
	if (!efx->workqueue)
2546
		goto fail;
2547

2548
	return 0;
2549 2550 2551 2552

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2553 2554 2555 2556
}

static void efx_fini_struct(struct efx_nic *efx)
{
2557 2558 2559 2560 2561
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2579 2580 2581 2582 2583 2584
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2585
	efx_disable_interrupts(efx);
2586
	efx_nic_fini_interrupt(efx);
2587
	efx_fini_port(efx);
2588
	efx->type->fini(efx);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2607
	efx_disable_interrupts(efx);
2608 2609
	rtnl_unlock();

2610
	efx_sriov_fini(efx);
2611 2612
	efx_unregister_netdev(efx);

2613 2614
	efx_mtd_remove(efx);

2615 2616 2617
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2618
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2619 2620

	efx_fini_struct(efx);
2621
	pci_set_drvdata(pci_dev, NULL);
2622
	free_netdev(efx->net_dev);
2623 2624

	pci_disable_pcie_error_reporting(pci_dev);
2625 2626
};

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2690
	efx_init_napi(efx);
2691

2692
	rc = efx->type->init(efx);
2693
	if (rc) {
2694 2695
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2696
		goto fail3;
2697 2698 2699 2700
	}

	rc = efx_init_port(efx);
	if (rc) {
2701 2702
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2703
		goto fail4;
2704 2705
	}

2706
	rc = efx_nic_init_interrupt(efx);
2707
	if (rc)
2708
		goto fail5;
2709 2710 2711
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2712 2713 2714

	return 0;

2715 2716
 fail6:
	efx_nic_fini_interrupt(efx);
2717
 fail5:
2718 2719
	efx_fini_port(efx);
 fail4:
2720
	efx->type->fini(efx);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2731
 * theoretically).  It sets up PCI mappings, resets the NIC,
2732 2733 2734 2735 2736
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2737
static int efx_pci_probe(struct pci_dev *pci_dev,
2738
			 const struct pci_device_id *entry)
2739 2740 2741
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2742
	int rc;
2743 2744

	/* Allocate and initialise a struct net_device and struct efx_nic */
2745 2746
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2747 2748
	if (!net_dev)
		return -ENOMEM;
2749 2750 2751
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2752
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2753
			      NETIF_F_RXCSUM);
2754
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2755
		net_dev->features |= NETIF_F_TSO6;
2756 2757
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2758 2759 2760 2761
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2762
	pci_set_drvdata(pci_dev, efx);
2763
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2764
	rc = efx_init_struct(efx, pci_dev, net_dev);
2765 2766 2767
	if (rc)
		goto fail1;

2768
	netif_info(efx, probe, efx->net_dev,
2769
		   "Solarflare NIC detected\n");
2770

2771 2772
	efx_print_product_vpd(efx);

2773 2774 2775 2776 2777
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2778 2779 2780
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2781 2782 2783

	rc = efx_register_netdev(efx);
	if (rc)
2784
		goto fail4;
2785

2786 2787 2788 2789 2790
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2791
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2792

2793
	/* Try to create MTDs, but allow this to fail */
2794
	rtnl_lock();
2795
	rc = efx_mtd_probe(efx);
2796
	rtnl_unlock();
2797 2798 2799 2800
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2801 2802 2803 2804 2805
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2806 2807 2808
	return 0;

 fail4:
2809
	efx_pci_remove_main(efx);
2810 2811 2812 2813 2814
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2815
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2816
	WARN_ON(rc > 0);
2817
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2818 2819 2820 2821
	free_netdev(net_dev);
	return rc;
}

2822 2823 2824 2825
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2826 2827
	rtnl_lock();

2828 2829
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2830

2831
		efx_device_detach_sync(efx);
2832

2833
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2834
		efx_disable_interrupts(efx);
2835
	}
2836

2837 2838
	rtnl_unlock();

2839 2840 2841 2842 2843
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
2844
	int rc;
2845 2846
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2847 2848
	rtnl_lock();

2849
	if (efx->state != STATE_DISABLED) {
2850 2851 2852
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
2853

2854 2855 2856
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2857

2858
		efx_start_all(efx);
2859

2860
		netif_device_attach(efx->net_dev);
2861

2862
		efx->state = STATE_READY;
2863

2864 2865
		efx->type->resume_wol(efx);
	}
2866

2867 2868
	rtnl_unlock();

2869 2870 2871
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2872
	return 0;
2873 2874 2875 2876 2877

fail:
	rtnl_unlock();

	return rc;
2878 2879 2880 2881 2882 2883 2884 2885 2886
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2887
	efx->reset_pending = 0;
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
2914 2915
	rc = efx_pm_thaw(dev);
	return rc;
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2929
static const struct dev_pm_ops efx_pm_ops = {
2930 2931 2932 2933 2934 2935 2936 2937
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2938 2939 2940 2941
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2942 2943
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2960
		efx_disable_interrupts(efx);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2978
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3037
static struct pci_driver efx_pci_driver = {
3038
	.name		= KBUILD_MODNAME,
3039 3040 3041
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3042
	.driver.pm	= &efx_pm_ops,
3043
	.err_handler	= &efx_err_handlers,
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3066 3067 3068 3069
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3070 3071 3072 3073 3074
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3075 3076 3077 3078 3079 3080 3081 3082

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3083 3084
	destroy_workqueue(reset_workqueue);
 err_reset:
3085 3086
	efx_fini_sriov();
 err_sriov:
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3097
	destroy_workqueue(reset_workqueue);
3098
	efx_fini_sriov();
3099 3100 3101 3102 3103 3104 3105
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3106 3107
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3108 3109 3110
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);