efx.c 68.7 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28

29
#include "mcdi.h"
30
#include "workarounds.h"
31

32 33 34 35 36 37 38 39 40
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41
const char *const efx_loopback_mode_names[] = {
42
	[LOOPBACK_NONE]		= "NONE",
43
	[LOOPBACK_DATA]		= "DATAPATH",
44 45 46
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
47 48 49
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
50 51 52 53 54 55
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 57
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
58 59
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 61
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 64
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65
	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 67
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 70 71
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72
const char *const efx_reset_type_names[] = {
73 74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84 85
};

86 87
#define EFX_MAX_MTU (9 * 1024)

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108
static unsigned int separate_tx_channels;
109
module_param(separate_tx_channels, uint, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120 121
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
122
 */
S
stephen hemminger 已提交
123
static unsigned int efx_monitor_interval = 1 * HZ;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156
 * The default (0) means to assign an interrupt to each core.
157 158 159 160 161
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

162 163 164 165
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

166 167 168 169 170 171 172 173 174 175
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

176 177 178 179 180 181 182
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

183 184 185 186 187
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
188

189 190
static void efx_start_interrupts(struct efx_nic *efx);
static void efx_stop_interrupts(struct efx_nic *efx);
191
static void efx_remove_channels(struct efx_nic *efx);
192
static void efx_remove_port(struct efx_nic *efx);
193
static void efx_init_napi(struct efx_nic *efx);
194
static void efx_fini_napi(struct efx_nic *efx);
195
static void efx_fini_napi_channel(struct efx_channel *channel);
196 197 198
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
199 200 201

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
202 203
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
220
static int efx_process_channel(struct efx_channel *channel, int budget)
221
{
222
	int spent;
223

224
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
225
		return 0;
226

227
	spent = efx_nic_process_eventq(channel, budget);
228 229 230 231 232 233 234 235 236
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
237 238 239 240
		if (rx_queue->enabled) {
			efx_rx_strategy(channel);
			efx_fast_push_rx_descriptors(rx_queue);
		}
241 242
	}

243
	return spent;
244 245 246 247 248 249 250 251 252 253
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
254 255 256
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
257
	channel->work_pending = false;
258 259
	smp_wmb();

260
	efx_nic_eventq_read_ack(channel);
261 262 263 264 265 266 267 268 269 270 271
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
272
	struct efx_nic *efx = channel->efx;
273
	int spent;
274

275 276 277
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
278

279
	spent = efx_process_channel(channel, budget);
280

281
	if (spent < budget) {
282
		if (efx_channel_has_rx_queue(channel) &&
283 284 285 286
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
287 288
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
289
					efx->type->push_irq_moderation(channel);
290
				}
291 292
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
293 294 295
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
296
					efx->type->push_irq_moderation(channel);
297
				}
298 299 300 301 302
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

303 304
		efx_filter_rfs_expire(channel);

305
		/* There is no race here; although napi_disable() will
306
		 * only wait for napi_complete(), this isn't a problem
307 308 309
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
310
		napi_complete(napi);
311 312 313
		efx_channel_processed(channel);
	}

314
	return spent;
315 316 317 318 319 320 321 322
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
323 324
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
325 326 327 328 329
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

330
	BUG_ON(channel->channel >= efx->n_channels);
331
	BUG_ON(!channel->enabled);
332
	BUG_ON(!efx->loopback_selftest);
333 334

	/* Disable interrupts and wait for ISRs to complete */
335
	efx_nic_disable_interrupts(efx);
336
	if (efx->legacy_irq) {
337
		synchronize_irq(efx->legacy_irq);
338 339
		efx->legacy_irq_enabled = false;
	}
340
	if (channel->irq)
341 342 343 344 345 346
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
347
	efx_process_channel(channel, channel->eventq_mask + 1);
348 349 350 351 352 353

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
354 355
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
356
	efx_nic_enable_interrupts(efx);
357 358 359 360 361 362 363 364 365
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
366 367 368
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

369
	netif_dbg(efx, probe, efx->net_dev,
370
		  "chan %d create event queue\n", channel->channel);
371

372 373 374 375 376 377
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

378
	return efx_nic_probe_eventq(channel);
379 380 381
}

/* Prepare channel's event queue */
382
static void efx_init_eventq(struct efx_channel *channel)
383
{
384 385
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
386 387 388

	channel->eventq_read_ptr = 0;

389
	efx_nic_init_eventq(channel);
390 391
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

420 421
static void efx_fini_eventq(struct efx_channel *channel)
{
422 423
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
424

425
	efx_nic_fini_eventq(channel);
426 427 428 429
}

static void efx_remove_eventq(struct efx_channel *channel)
{
430 431
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
432

433
	efx_nic_remove_eventq(channel);
434 435 436 437 438 439 440 441
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/* Allocate and initialise a channel structure, optionally copying
 * parameters (but not resources) from an old channel structure. */
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

	if (old_channel) {
		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		*channel = *old_channel;

459
		channel->napi_dev = NULL;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		memset(&channel->eventq, 0, sizeof(channel->eventq));

		rx_queue = &channel->rx_queue;
		rx_queue->buffer = NULL;
		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			if (tx_queue->channel)
				tx_queue->channel = channel;
			tx_queue->buffer = NULL;
			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
		}
	} else {
		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		channel->efx = efx;
		channel->channel = i;

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			tx_queue->efx = efx;
			tx_queue->queue = i * EFX_TXQ_TYPES + j;
			tx_queue->channel = channel;
		}
	}

	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

497 498 499 500 501 502
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

503 504
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


537 538 539 540 541 542 543 544
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
B
Ben Hutchings 已提交
545 546
		if (efx->n_channels > efx->n_rx_channels) {
			if (channel->channel < efx->n_rx_channels) {
547 548 549
				type = "-rx";
			} else {
				type = "-tx";
B
Ben Hutchings 已提交
550
				number -= efx->n_rx_channels;
551 552
			}
		}
553 554
		snprintf(efx->channel_name[channel->channel],
			 sizeof(efx->channel_name[0]),
555 556 557 558
			 "%s%s-%d", efx->name, type, number);
	}
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

585 586 587 588
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
589
static void efx_start_datapath(struct efx_nic *efx)
590 591 592 593 594
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

595 596 597 598 599 600
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
601
			      efx->type->rx_buffer_hash_size +
602
			      efx->type->rx_buffer_padding);
603 604
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
605 606 607

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
608 609
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
610 611 612 613

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

614
		efx_for_each_channel_rx_queue(rx_queue, channel) {
615
			efx_init_rx_queue(rx_queue);
616 617
			efx_nic_generate_fill_event(rx_queue);
		}
618 619 620 621 622

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}

623 624
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
625 626
}

627
static void efx_stop_datapath(struct efx_nic *efx)
628 629 630 631
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
632
	int rc;
633 634 635 636

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

637
	rc = efx_nic_flush_queues(efx);
638 639 640 641 642
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
643 644
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
645 646
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
647
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
648
	} else {
649 650
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
651
	}
652

653
	efx_for_each_channel(channel, efx) {
654 655 656 657 658 659 660 661 662 663
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
664 665 666

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
667
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
668 669 670 671 672 673 674 675 676
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

677 678
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
679 680 681

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
682
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
683 684 685 686
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
	unsigned i;
	int rc;

	efx_stop_all(efx);
704
	efx_stop_interrupts(efx);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

	/* Clone channels */
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx_alloc_channel(efx, i, efx->channel[i]);
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

	rc = efx_probe_channels(efx);
	if (rc)
		goto rollback;

732 733
	efx_init_napi(efx);

734
	/* Destroy old channels */
735 736
	for (i = 0; i < efx->n_channels; i++) {
		efx_fini_napi_channel(other_channel[i]);
737
		efx_remove_channel(other_channel[i]);
738
	}
739 740 741 742 743
out:
	/* Free unused channel structures */
	for (i = 0; i < efx->n_channels; i++)
		kfree(other_channel[i]);

744
	efx_start_interrupts(efx);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

760
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
761
{
762
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
763 764 765 766 767 768 769 770 771 772 773 774
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
775
void efx_link_status_changed(struct efx_nic *efx)
776
{
777 778
	struct efx_link_state *link_state = &efx->link_state;

779 780 781 782 783 784 785
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

786
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
787 788
		efx->n_link_state_changes++;

789
		if (link_state->up)
790 791 792 793 794 795
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
796
	if (link_state->up)
797 798 799 800 801
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
802
	else
803
		netif_info(efx, link, efx->net_dev, "link down\n");
804 805
}

B
Ben Hutchings 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

819
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

834 835
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
836 837 838 839 840 841 842 843
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
844
{
B
Ben Hutchings 已提交
845 846
	enum efx_phy_mode phy_mode;
	int rc;
847

B
Ben Hutchings 已提交
848
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
849

850
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
851 852
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
853

B
Ben Hutchings 已提交
854 855
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
856 857 858 859 860
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
861
	rc = efx->type->reconfigure_port(efx);
862

B
Ben Hutchings 已提交
863 864
	if (rc)
		efx->phy_mode = phy_mode;
865

B
Ben Hutchings 已提交
866
	return rc;
867 868 869 870
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
871
int efx_reconfigure_port(struct efx_nic *efx)
872
{
B
Ben Hutchings 已提交
873 874
	int rc;

875 876 877
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
878
	rc = __efx_reconfigure_port(efx);
879
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
880 881

	return rc;
882 883
}

884 885 886
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
887 888 889 890 891
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
892
	if (efx->port_enabled)
893
		efx->type->reconfigure_mac(efx);
894 895 896
	mutex_unlock(&efx->mac_lock);
}

897 898 899 900
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

901
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
902

903 904 905
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

906 907
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
908
	if (rc)
909
		return rc;
910

911 912
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
913 914 915 916 917 918 919 920

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

921
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
922

923 924
	mutex_lock(&efx->mac_lock);

925
	rc = efx->phy_op->init(efx);
926
	if (rc)
927
		goto fail1;
928

929
	efx->port_initialized = true;
930

B
Ben Hutchings 已提交
931 932
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
933
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
934 935 936 937 938 939

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

940
	mutex_unlock(&efx->mac_lock);
941
	return 0;
942

943
fail2:
944
	efx->phy_op->fini(efx);
945 946
fail1:
	mutex_unlock(&efx->mac_lock);
947
	return rc;
948 949 950 951
}

static void efx_start_port(struct efx_nic *efx)
{
952
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
953 954 955
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
956
	efx->port_enabled = true;
957 958 959

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
960
	efx->type->reconfigure_mac(efx);
961

962 963 964
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
965
/* Prevent efx_mac_work() and efx_monitor() from working */
966 967
static void efx_stop_port(struct efx_nic *efx)
{
968
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
969 970

	mutex_lock(&efx->mac_lock);
971
	efx->port_enabled = false;
972 973 974
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
975 976
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
977 978 979 980
}

static void efx_fini_port(struct efx_nic *efx)
{
981
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
982 983 984 985

	if (!efx->port_initialized)
		return;

986
	efx->phy_op->fini(efx);
987
	efx->port_initialized = false;
988

989
	efx->link_state.up = false;
990 991 992 993 994
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
995
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
996

997
	efx->type->remove_port(efx);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1013
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1014 1015 1016

	rc = pci_enable_device(pci_dev);
	if (rc) {
1017 1018
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1030 1031 1032 1033 1034
		if (pci_dma_supported(pci_dev, dma_mask)) {
			rc = pci_set_dma_mask(pci_dev, dma_mask);
			if (rc == 0)
				break;
		}
1035 1036 1037
		dma_mask >>= 1;
	}
	if (rc) {
1038 1039
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1040 1041
		goto fail2;
	}
1042 1043
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1044 1045 1046 1047 1048 1049
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1050 1051
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1052 1053 1054
		goto fail2;
	}

1055 1056
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1057
	if (rc) {
1058 1059
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1060 1061 1062
		rc = -EIO;
		goto fail3;
	}
1063 1064
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1065
	if (!efx->membase) {
1066 1067 1068 1069
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1070 1071 1072
		rc = -ENOMEM;
		goto fail4;
	}
1073 1074 1075 1076
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1077 1078 1079 1080

	return 0;

 fail4:
1081
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1082
 fail3:
1083
	efx->membase_phys = 0;
1084 1085 1086 1087 1088 1089 1090 1091
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1092
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1093 1094 1095 1096 1097 1098 1099

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1100
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1101
		efx->membase_phys = 0;
1102 1103 1104 1105 1106
	}

	pci_disable_device(efx->pci_dev);
}

1107
static int efx_wanted_parallelism(void)
1108
{
1109
	cpumask_var_t thread_mask;
1110 1111
	int count;
	int cpu;
1112 1113 1114

	if (rss_cpus)
		return rss_cpus;
1115

1116
	if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
1117
		printk(KERN_WARNING
1118
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
1119 1120 1121
		return 1;
	}

1122 1123
	count = 0;
	for_each_online_cpu(cpu) {
1124
		if (!cpumask_test_cpu(cpu, thread_mask)) {
1125
			++count;
1126 1127
			cpumask_or(thread_mask, thread_mask,
				   topology_thread_cpumask(cpu));
1128 1129 1130
		}
	}

1131
	free_cpumask_var(thread_mask);
1132 1133 1134
	return count;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
	int i, rc;

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1157 1158 1159
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1160
static int efx_probe_interrupts(struct efx_nic *efx)
1161
{
1162 1163
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1164 1165 1166
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1167
		struct msix_entry xentries[EFX_MAX_CHANNELS];
B
Ben Hutchings 已提交
1168
		int n_channels;
1169

1170
		n_channels = efx_wanted_parallelism();
B
Ben Hutchings 已提交
1171 1172 1173
		if (separate_tx_channels)
			n_channels *= 2;
		n_channels = min(n_channels, max_channels);
1174

B
Ben Hutchings 已提交
1175
		for (i = 0; i < n_channels; i++)
1176
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1177
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1178
		if (rc > 0) {
1179 1180 1181 1182 1183
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
				  " available (%d < %d).\n", rc, n_channels);
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1184 1185
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1186
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1187
					     n_channels);
1188 1189 1190
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
			efx->n_channels = n_channels;
			if (separate_tx_channels) {
				efx->n_tx_channels =
					max(efx->n_channels / 2, 1U);
				efx->n_rx_channels =
					max(efx->n_channels -
					    efx->n_tx_channels, 1U);
			} else {
				efx->n_tx_channels = efx->n_channels;
				efx->n_rx_channels = efx->n_channels;
			}
1202 1203 1204 1205 1206
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
B
Ben Hutchings 已提交
1207
			for (i = 0; i < n_channels; i++)
1208 1209
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1210 1211 1212
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1213 1214
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1215 1216 1217 1218 1219
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1220
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1221 1222
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1223 1224
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1225
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1226
		} else {
1227 1228
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1229 1230 1231 1232 1233 1234
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1235
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1236 1237
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1238 1239
		efx->legacy_irq = efx->pci_dev->irq;
	}
1240 1241

	return 0;
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/* Enable interrupts, then probe and start the event queues */
static void efx_start_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		efx_init_eventq(channel);
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

static void efx_stop_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
		efx_fini_eventq(channel);
	}
}

1282 1283 1284 1285 1286
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1287
	efx_for_each_channel(channel, efx)
1288 1289 1290 1291 1292 1293 1294 1295
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1296
static void efx_set_channels(struct efx_nic *efx)
1297
{
1298 1299 1300
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1301
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1302
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1303 1304 1305 1306 1307 1308 1309 1310 1311

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1312 1313 1314 1315
}

static int efx_probe_nic(struct efx_nic *efx)
{
1316
	size_t i;
1317 1318
	int rc;

1319
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1320 1321

	/* Carry out hardware-type specific initialisation */
1322
	rc = efx->type->probe(efx);
1323 1324 1325
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1326
	/* Determine the number of channels and queues by trying to hook
1327
	 * in MSI-X interrupts. */
1328 1329 1330
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1331

1332 1333
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1334
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1335 1336
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1337

1338
	efx_set_channels(efx);
1339 1340
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1341 1342

	/* Initialise the interrupt moderation settings */
1343 1344
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1345 1346

	return 0;
1347 1348 1349 1350

fail:
	efx->type->remove(efx);
	return rc;
1351 1352 1353 1354
}

static void efx_remove_nic(struct efx_nic *efx)
{
1355
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1356 1357

	efx_remove_interrupts(efx);
1358
	efx->type->remove(efx);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1373
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1374 1375 1376 1377 1378
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1379
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1380 1381 1382
		goto fail2;
	}

1383
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1384 1385 1386
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail3;
1387

B
Ben Hutchings 已提交
1388 1389 1390 1391 1392 1393 1394
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
		goto fail4;
	}

1395 1396
	return 0;

B
Ben Hutchings 已提交
1397 1398
 fail4:
	efx_remove_channels(efx);
1399 1400 1401 1402 1403 1404 1405 1406
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1407 1408 1409 1410 1411
/* Called after previous invocation(s) of efx_stop_all, restarts the port,
 * kernel transmit queues and NAPI processing, and ensures that the port is
 * scheduled to be reconfigured. This function is safe to call multiple
 * times when the NIC is in any state.
 */
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1422
	if (!netif_running(efx->net_dev))
1423 1424 1425
		return;

	efx_start_port(efx);
1426
	efx_start_datapath(efx);
1427

1428 1429 1430 1431
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1432 1433
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1434 1435 1436 1437 1438 1439
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1440

1441
	efx->type->start_stats(efx);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1452
	cancel_work_sync(&efx->mac_work);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1468
	efx->type->stop_stats(efx);
1469 1470
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1471
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1472 1473 1474 1475
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1476 1477 1478
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1479 1480 1481 1482
}

static void efx_remove_all(struct efx_nic *efx)
{
B
Ben Hutchings 已提交
1483
	efx_remove_filters(efx);
1484
	efx_remove_channels(efx);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1495
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1496
{
1497 1498
	if (usecs == 0)
		return 0;
1499
	if (usecs * 1000 < quantum_ns)
1500
		return 1; /* never round down to 0 */
1501
	return usecs * 1000 / quantum_ns;
1502 1503
}

1504
/* Set interrupt moderation parameters */
1505 1506 1507
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1508
{
1509
	struct efx_channel *channel;
1510 1511 1512 1513 1514
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1515 1516 1517

	EFX_ASSERT_RESET_SERIALISED(efx);

1518
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1519 1520
		return -EINVAL;

1521 1522 1523
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1524 1525 1526 1527 1528 1529 1530
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1531
	efx->irq_rx_adaptive = rx_adaptive;
1532
	efx->irq_rx_moderation = rx_ticks;
1533
	efx_for_each_channel(channel, efx) {
1534
		if (efx_channel_has_rx_queue(channel))
1535
			channel->irq_moderation = rx_ticks;
1536
		else if (efx_channel_has_tx_queues(channel))
1537 1538
			channel->irq_moderation = tx_ticks;
	}
1539 1540

	return 0;
1541 1542
}

1543 1544 1545
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1546 1547 1548 1549
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1550
	*rx_adaptive = efx->irq_rx_adaptive;
1551 1552 1553
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1554 1555 1556 1557 1558 1559 1560 1561

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1562
		*tx_usecs = DIV_ROUND_UP(
1563
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1564 1565
			efx->timer_quantum_ns,
			1000);
1566 1567
}

1568 1569 1570 1571 1572 1573
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1574
/* Run periodically off the general workqueue */
1575 1576 1577 1578 1579
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1580 1581 1582
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1583
	BUG_ON(efx->type->monitor == NULL);
1584 1585 1586

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1587 1588 1589 1590 1591 1592
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1609
	struct efx_nic *efx = netdev_priv(net_dev);
1610
	struct mii_ioctl_data *data = if_mii(ifr);
1611 1612 1613

	EFX_ASSERT_RESET_SERIALISED(efx);

1614 1615 1616 1617 1618 1619
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1620 1621 1622 1623 1624 1625 1626 1627
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1628
static void efx_init_napi(struct efx_nic *efx)
1629 1630 1631 1632 1633
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1634 1635
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1636
	}
1637 1638 1639 1640 1641 1642 1643
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1644 1645 1646 1647 1648 1649
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1650 1651
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1668
	struct efx_nic *efx = netdev_priv(net_dev);
1669 1670
	struct efx_channel *channel;

1671
	efx_for_each_channel(channel, efx)
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1686
	struct efx_nic *efx = netdev_priv(net_dev);
1687 1688
	EFX_ASSERT_RESET_SERIALISED(efx);

1689 1690
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1691

1692 1693
	if (efx->state == STATE_DISABLED)
		return -EIO;
1694 1695
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1696 1697
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1698

1699 1700 1701 1702
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1713
	struct efx_nic *efx = netdev_priv(net_dev);
1714

1715 1716
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1717

1718 1719 1720 1721
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
	}
1722 1723 1724 1725

	return 0;
}

1726
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1727 1728
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1729
{
1730
	struct efx_nic *efx = netdev_priv(net_dev);
1731 1732
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1733
	spin_lock_bh(&efx->stats_lock);
1734

1735
	efx->type->update_stats(efx);
1736 1737 1738 1739 1740

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1741
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1759 1760
	spin_unlock_bh(&efx->stats_lock);

1761 1762 1763 1764 1765 1766
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1767
	struct efx_nic *efx = netdev_priv(net_dev);
1768

1769 1770 1771
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1772

1773
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1774 1775 1776 1777 1778 1779
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1780
	struct efx_nic *efx = netdev_priv(net_dev);
1781 1782 1783 1784 1785 1786 1787 1788

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1789
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1790

B
Ben Hutchings 已提交
1791 1792 1793
	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1794
	net_dev->mtu = new_mtu;
1795
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1796 1797
	mutex_unlock(&efx->mac_lock);

1798
	efx_start_all(efx);
1799
	return 0;
1800 1801 1802 1803
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1804
	struct efx_nic *efx = netdev_priv(net_dev);
1805 1806 1807 1808 1809 1810
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1811 1812 1813
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1814 1815 1816 1817 1818 1819
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1820
	mutex_lock(&efx->mac_lock);
1821
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1822
	mutex_unlock(&efx->mac_lock);
1823 1824 1825 1826

	return 0;
}

1827
/* Context: netif_addr_lock held, BHs disabled. */
1828
static void efx_set_rx_mode(struct net_device *net_dev)
1829
{
1830
	struct efx_nic *efx = netdev_priv(net_dev);
1831
	struct netdev_hw_addr *ha;
1832 1833 1834 1835
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1836
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1837 1838

	/* Build multicast hash table */
1839
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1840 1841 1842
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1843 1844
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1845 1846 1847 1848
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1849 1850 1851 1852 1853 1854
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1855

1856 1857 1858
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1859 1860
}

1861
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
1872 1873 1874
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1875
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
1876 1877 1878 1879 1880 1881
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
1882
	.ndo_set_rx_mode	= efx_set_rx_mode,
1883
	.ndo_set_features	= efx_set_features,
S
Stephen Hemminger 已提交
1884 1885 1886
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
1887
	.ndo_setup_tc		= efx_setup_tc,
1888 1889 1890
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
1891 1892
};

1893 1894 1895 1896 1897 1898 1899
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1900 1901 1902
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1903
	struct net_device *net_dev = ptr;
1904

1905 1906 1907
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1908 1909 1910 1911 1912 1913 1914 1915

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1916 1917 1918 1919 1920 1921 1922 1923
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1924 1925 1926
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
1927
	struct efx_channel *channel;
1928 1929 1930 1931
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1932
	net_dev->netdev_ops = &efx_netdev_ops;
1933 1934
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

1935
	rtnl_lock();
1936 1937 1938 1939

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1940
	efx_update_name(efx);
1941 1942 1943 1944 1945

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

1946 1947
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
1948 1949
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
1950 1951
	}

1952
	/* Always start with carrier off; PHY events will detect the link */
1953
	netif_carrier_off(net_dev);
1954

1955
	rtnl_unlock();
1956

B
Ben Hutchings 已提交
1957 1958
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
1959 1960
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
1961 1962 1963
		goto fail_registered;
	}

1964
	return 0;
B
Ben Hutchings 已提交
1965

1966 1967
fail_locked:
	rtnl_unlock();
1968
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1969 1970
	return rc;

B
Ben Hutchings 已提交
1971 1972 1973
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1974 1975 1976 1977
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
1978
	struct efx_channel *channel;
1979 1980 1981 1982 1983
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1984
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1985 1986 1987 1988

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
1989 1990 1991 1992
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
1993

1994 1995 1996
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	unregister_netdev(efx->net_dev);
1997 1998 1999 2000 2001 2002 2003 2004
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2005 2006
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2007
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2008 2009 2010
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2011 2012 2013
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2014
	efx_stop_interrupts(efx);
2015 2016
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2017
	efx->type->fini(efx);
2018 2019
}

B
Ben Hutchings 已提交
2020 2021 2022 2023 2024
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2025
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2026 2027 2028
{
	int rc;

B
Ben Hutchings 已提交
2029
	EFX_ASSERT_RESET_SERIALISED(efx);
2030

2031
	rc = efx->type->init(efx);
2032
	if (rc) {
2033
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2034
		goto fail;
2035 2036
	}

2037 2038 2039
	if (!ok)
		goto fail;

2040
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2041 2042 2043 2044
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2045 2046
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2047 2048
	}

2049
	efx->type->reconfigure_mac(efx);
2050

2051
	efx_start_interrupts(efx);
B
Ben Hutchings 已提交
2052
	efx_restore_filters(efx);
2053 2054 2055 2056 2057 2058 2059 2060 2061

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2062 2063 2064

	mutex_unlock(&efx->mac_lock);

2065 2066 2067
	return rc;
}

2068 2069
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2070
 *
2071
 * Caller must hold the rtnl_lock.
2072
 */
2073
int efx_reset(struct efx_nic *efx, enum reset_type method)
2074
{
2075 2076
	int rc, rc2;
	bool disabled;
2077

2078 2079
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2080

2081
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2082
	efx_reset_down(efx, method);
2083

2084
	rc = efx->type->reset(efx, method);
2085
	if (rc) {
2086
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2087
		goto out;
2088 2089
	}

2090 2091 2092 2093
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2094 2095 2096 2097 2098 2099 2100

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2101
out:
2102
	/* Leave device stopped if necessary */
2103 2104 2105 2106 2107 2108
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2109 2110
	}

2111
	if (disabled) {
2112
		dev_close(efx->net_dev);
2113
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2114 2115
		efx->state = STATE_DISABLED;
	} else {
2116
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2117
		netif_device_attach(efx->net_dev);
2118
	}
2119 2120 2121 2122 2123 2124 2125 2126
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2127
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2128
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2129

2130
	if (!pending)
2131 2132
		return;

2133
	/* If we're not RUNNING then don't reset. Leave the reset_pending
2134
	 * flags set so that efx_pci_probe_main will be retried */
2135
	if (efx->state != STATE_RUNNING) {
2136 2137
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2138 2139 2140 2141
		return;
	}

	rtnl_lock();
2142
	(void)efx_reset(efx, fls(pending) - 1);
2143
	rtnl_unlock();
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2156 2157
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2158 2159
		break;
	default:
2160
		method = efx->type->map_reset_reason(type);
2161 2162 2163
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2164 2165
		break;
	}
2166

2167
	set_bit(method, &efx->reset_pending);
2168

2169 2170 2171 2172
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2173
	queue_work(reset_workqueue, &efx->reset_work);
2174 2175 2176 2177 2178 2179 2180 2181 2182
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2183
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2184 2185
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2186
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2187 2188
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2189
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2190
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2191
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2192
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2193
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2194 2195 2196 2197 2198
	{0}			/* end of list */
};

/**************************************************************************
 *
2199
 * Dummy PHY/MAC operations
2200
 *
2201
 * Can be used for some unimplemented operations
2202 2203 2204 2205 2206 2207 2208 2209 2210
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2211 2212

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2213 2214 2215
{
	return false;
}
2216

2217
static const struct efx_phy_operations efx_dummy_phy_operations = {
2218
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2219
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2220
	.poll		 = efx_port_dummy_op_poll,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2233
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2234 2235
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2236
	int i;
2237 2238 2239 2240

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2241 2242 2243
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2244 2245 2246
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2247
	efx->msg_enable = debug;
2248 2249 2250 2251 2252 2253 2254
	efx->state = STATE_INIT;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2255
	efx->mdio.dev = net_dev;
2256
	INIT_WORK(&efx->mac_work, efx_mac_work);
2257
	init_waitqueue_head(&efx->flush_wq);
2258 2259

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2260 2261 2262
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2273 2274 2275 2276
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2277
	if (!efx->workqueue)
2278
		goto fail;
2279

2280
	return 0;
2281 2282 2283 2284

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2285 2286 2287 2288
}

static void efx_fini_struct(struct efx_nic *efx)
{
2289 2290 2291 2292 2293
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2311 2312 2313 2314
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2315
	efx_stop_interrupts(efx);
2316
	efx_nic_fini_interrupt(efx);
2317
	efx_fini_port(efx);
2318
	efx->type->fini(efx);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

2342
	efx_stop_interrupts(efx);
2343 2344
	efx_unregister_netdev(efx);

2345 2346
	efx_mtd_remove(efx);

2347 2348 2349 2350
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2351
	cancel_work_sync(&efx->reset_work);
2352 2353 2354 2355

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2356
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2375
	efx_init_napi(efx);
2376

2377
	rc = efx->type->init(efx);
2378
	if (rc) {
2379 2380
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2381
		goto fail3;
2382 2383 2384 2385
	}

	rc = efx_init_port(efx);
	if (rc) {
2386 2387
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2388
		goto fail4;
2389 2390
	}

2391
	rc = efx_nic_init_interrupt(efx);
2392
	if (rc)
2393
		goto fail5;
2394
	efx_start_interrupts(efx);
2395 2396 2397

	return 0;

2398
 fail5:
2399 2400
	efx_fini_port(efx);
 fail4:
2401
	efx->type->fini(efx);
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2412
 * theoretically).  It sets up PCI mappings, resets the NIC,
2413 2414 2415 2416 2417 2418 2419 2420
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2421
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2422 2423
	struct net_device *net_dev;
	struct efx_nic *efx;
2424
	int rc;
2425 2426

	/* Allocate and initialise a struct net_device and struct efx_nic */
2427 2428
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2429 2430
	if (!net_dev)
		return -ENOMEM;
2431
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2432
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2433
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2434 2435
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2436 2437
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2438 2439 2440 2441
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2442
	efx = netdev_priv(net_dev);
2443
	pci_set_drvdata(pci_dev, efx);
2444
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2445 2446 2447 2448
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2449
	netif_info(efx, probe, efx->net_dev,
2450
		   "Solarflare NIC detected\n");
2451 2452 2453 2454 2455 2456

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2457
	rc = efx_pci_probe_main(efx);
2458

2459 2460 2461 2462 2463
	/* Serialise against efx_reset(). No more resets will be
	 * scheduled since efx_stop_all() has been called, and we have
	 * not and never have been registered.
	 */
	cancel_work_sync(&efx->reset_work);
2464

2465 2466
	if (rc)
		goto fail3;
2467

2468 2469 2470 2471 2472
	/* If there was a scheduled reset during probe, the NIC is
	 * probably hosed anyway.
	 */
	if (efx->reset_pending) {
		rc = -EIO;
2473 2474 2475
		goto fail4;
	}

2476 2477
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2478
	efx->state = STATE_RUNNING;
2479

2480 2481
	rc = efx_register_netdev(efx);
	if (rc)
2482
		goto fail4;
2483

2484
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2485

2486
	/* Try to create MTDs, but allow this to fail */
2487
	rtnl_lock();
2488
	rc = efx_mtd_probe(efx);
2489
	rtnl_unlock();
2490 2491 2492 2493
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2494 2495 2496
	return 0;

 fail4:
2497
	efx_pci_remove_main(efx);
2498 2499 2500 2501 2502
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2503
	WARN_ON(rc > 0);
2504
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2505 2506 2507 2508
	free_netdev(net_dev);
	return rc;
}

2509 2510 2511 2512 2513 2514 2515 2516 2517
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
2518
	efx_stop_interrupts(efx);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

2529
	efx_start_interrupts(efx);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2543 2544 2545
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2556
	efx->reset_pending = 0;
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2598
static const struct dev_pm_ops efx_pm_ops = {
2599 2600 2601 2602 2603 2604 2605 2606
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2607
static struct pci_driver efx_pci_driver = {
2608
	.name		= KBUILD_MODNAME,
2609 2610 2611
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2612
	.driver.pm	= &efx_pm_ops,
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2635 2636 2637 2638 2639
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2640 2641 2642 2643 2644 2645 2646 2647

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2648 2649
	destroy_workqueue(reset_workqueue);
 err_reset:
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2660
	destroy_workqueue(reset_workqueue);
2661 2662 2663 2664 2665 2666 2667
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2668 2669
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2670 2671 2672
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);