perf_event.c 116.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
T
Thomas Gleixner 已提交
31

32 33
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
34
/*
35
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
36 37 38
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

39
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
40 41 42
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

43 44 45 46
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
47

48
/*
49
 * perf event paranoia level:
50 51
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
52
 *   1 - disallow cpu events for unpriv
53
 *   2 - disallow kernel profiling for unpriv
54
 */
55
int sysctl_perf_event_paranoid __read_mostly = 1;
56

57 58
static inline bool perf_paranoid_tracepoint_raw(void)
{
59
	return sysctl_perf_event_paranoid > -1;
60 61
}

62 63
static inline bool perf_paranoid_cpu(void)
{
64
	return sysctl_perf_event_paranoid > 0;
65 66 67 68
}

static inline bool perf_paranoid_kernel(void)
{
69
	return sysctl_perf_event_paranoid > 1;
70 71
}

72
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
73 74

/*
75
 * max perf event sample rate
76
 */
77
int sysctl_perf_event_sample_rate __read_mostly = 100000;
78

79
static atomic64_t perf_event_id;
80

T
Thomas Gleixner 已提交
81
/*
82
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
83
 */
84
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
85 86 87 88

/*
 * Architecture provided APIs - weak aliases:
 */
89
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
90
{
91
	return NULL;
T
Thomas Gleixner 已提交
92 93
}

94 95 96
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

97 98
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
99 100

int __weak
101
hw_perf_group_sched_in(struct perf_event *group_leader,
102
	       struct perf_cpu_context *cpuctx,
103
	       struct perf_event_context *ctx, int cpu)
104 105 106
{
	return 0;
}
T
Thomas Gleixner 已提交
107

108
void __weak perf_event_print_debug(void)	{ }
109

110
static DEFINE_PER_CPU(int, perf_disable_count);
111 112 113

void __perf_disable(void)
{
114
	__get_cpu_var(perf_disable_count)++;
115 116 117 118
}

bool __perf_enable(void)
{
119
	return !--__get_cpu_var(perf_disable_count);
120 121 122 123 124 125 126 127 128 129 130 131 132 133
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

134
static void get_ctx(struct perf_event_context *ctx)
135
{
136
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
137 138
}

139 140
static void free_ctx(struct rcu_head *head)
{
141
	struct perf_event_context *ctx;
142

143
	ctx = container_of(head, struct perf_event_context, rcu_head);
144 145 146
	kfree(ctx);
}

147
static void put_ctx(struct perf_event_context *ctx)
148
{
149 150 151
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
152 153 154
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
155
	}
156 157
}

158
static void unclone_ctx(struct perf_event_context *ctx)
159 160 161 162 163 164 165
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

166
/*
167
 * If we inherit events we want to return the parent event id
168 169
 * to userspace.
 */
170
static u64 primary_event_id(struct perf_event *event)
171
{
172
	u64 id = event->id;
173

174 175
	if (event->parent)
		id = event->parent->id;
176 177 178 179

	return id;
}

180
/*
181
 * Get the perf_event_context for a task and lock it.
182 183 184
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
185
static struct perf_event_context *
186
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
187
{
188
	struct perf_event_context *ctx;
189 190 191

	rcu_read_lock();
 retry:
192
	ctx = rcu_dereference(task->perf_event_ctxp);
193 194 195 196
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
197
		 * perf_event_task_sched_out, though the
198 199 200 201 202 203 204
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
205
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
206 207 208
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
209 210 211 212 213

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
214 215 216 217 218 219 220 221 222 223
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
224
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
225
{
226
	struct perf_event_context *ctx;
227 228 229 230 231 232 233 234 235 236
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

237
static void perf_unpin_context(struct perf_event_context *ctx)
238 239 240 241 242 243 244 245 246
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

247
/*
248
 * Add a event from the lists for its context.
249 250
 * Must be called with ctx->mutex and ctx->lock held.
 */
251
static void
252
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
253
{
254
	struct perf_event *group_leader = event->group_leader;
255 256

	/*
257 258
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
259 260
	 * leader's sibling list:
	 */
261 262
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
263
	else {
264
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
265 266
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
267

268 269 270
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
271
		ctx->nr_stat++;
272 273
}

274
/*
275
 * Remove a event from the lists for its context.
276
 * Must be called with ctx->mutex and ctx->lock held.
277
 */
278
static void
279
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
280
{
281
	struct perf_event *sibling, *tmp;
282

283
	if (list_empty(&event->group_entry))
284
		return;
285 286
	ctx->nr_events--;
	if (event->attr.inherit_stat)
287
		ctx->nr_stat--;
288

289 290
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
291

292 293
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
294

295
	/*
296 297
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
298 299
	 * to the context list directly:
	 */
300
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
301

302
		list_move_tail(&sibling->group_entry, &ctx->group_list);
303 304 305 306
		sibling->group_leader = sibling;
	}
}

307
static void
308
event_sched_out(struct perf_event *event,
309
		  struct perf_cpu_context *cpuctx,
310
		  struct perf_event_context *ctx)
311
{
312
	if (event->state != PERF_EVENT_STATE_ACTIVE)
313 314
		return;

315 316 317 318
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
319
	}
320 321 322
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
323

324
	if (!is_software_event(event))
325 326
		cpuctx->active_oncpu--;
	ctx->nr_active--;
327
	if (event->attr.exclusive || !cpuctx->active_oncpu)
328 329 330
		cpuctx->exclusive = 0;
}

331
static void
332
group_sched_out(struct perf_event *group_event,
333
		struct perf_cpu_context *cpuctx,
334
		struct perf_event_context *ctx)
335
{
336
	struct perf_event *event;
337

338
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
339 340
		return;

341
	event_sched_out(group_event, cpuctx, ctx);
342 343 344 345

	/*
	 * Schedule out siblings (if any):
	 */
346 347
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
348

349
	if (group_event->attr.exclusive)
350 351 352
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
353
/*
354
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
355
 *
356
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
357 358
 * remove it from the context list.
 */
359
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
360 361
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 363
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
364 365 366 367 368 369

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
370
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
371 372
		return;

373
	spin_lock(&ctx->lock);
374 375
	/*
	 * Protect the list operation against NMI by disabling the
376
	 * events on a global level.
377 378
	 */
	perf_disable();
T
Thomas Gleixner 已提交
379

380
	event_sched_out(event, cpuctx, ctx);
381

382
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
383 384 385

	if (!ctx->task) {
		/*
386
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
387 388 389
		 * reservation:
		 */
		cpuctx->max_pertask =
390 391
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
392 393
	}

394
	perf_enable();
395
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
396 397 398 399
}


/*
400
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
401
 *
402
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
403
 *
404
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
405
 * call when the task is on a CPU.
406
 *
407 408
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
409 410
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
411
 * When called from perf_event_exit_task, it's OK because the
412
 * context has been detached from its task.
T
Thomas Gleixner 已提交
413
 */
414
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
415
{
416
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
417 418 419 420
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
421
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
422 423
		 * the removal is always sucessful.
		 */
424 425 426
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
427 428 429 430
		return;
	}

retry:
431 432
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
433 434 435 436 437

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
438
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
439 440 441 442 443 444
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
445
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
446 447
	 * succeed.
	 */
448 449
	if (!list_empty(&event->group_entry)) {
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
450 451 452 453
	}
	spin_unlock_irq(&ctx->lock);
}

454
static inline u64 perf_clock(void)
455
{
456
	return cpu_clock(smp_processor_id());
457 458 459 460 461
}

/*
 * Update the record of the current time in a context.
 */
462
static void update_context_time(struct perf_event_context *ctx)
463
{
464 465 466 467
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
468 469 470
}

/*
471
 * Update the total_time_enabled and total_time_running fields for a event.
472
 */
473
static void update_event_times(struct perf_event *event)
474
{
475
	struct perf_event_context *ctx = event->ctx;
476 477
	u64 run_end;

478 479
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
480 481
		return;

482
	event->total_time_enabled = ctx->time - event->tstamp_enabled;
483

484 485
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
486 487 488
	else
		run_end = ctx->time;

489
	event->total_time_running = run_end - event->tstamp_running;
490 491 492
}

/*
493
 * Update total_time_enabled and total_time_running for all events in a group.
494
 */
495
static void update_group_times(struct perf_event *leader)
496
{
497
	struct perf_event *event;
498

499 500 501
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
502 503
}

504
/*
505
 * Cross CPU call to disable a performance event
506
 */
507
static void __perf_event_disable(void *info)
508
{
509
	struct perf_event *event = info;
510
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511
	struct perf_event_context *ctx = event->ctx;
512 513

	/*
514 515
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
516
	 */
517
	if (ctx->task && cpuctx->task_ctx != ctx)
518 519
		return;

520
	spin_lock(&ctx->lock);
521 522

	/*
523
	 * If the event is on, turn it off.
524 525
	 * If it is in error state, leave it in error state.
	 */
526
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
527
		update_context_time(ctx);
528 529 530
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
531
		else
532 533
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
534 535
	}

536
	spin_unlock(&ctx->lock);
537 538 539
}

/*
540
 * Disable a event.
541
 *
542 543
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
544
 * remains valid.  This condition is satisifed when called through
545 546 547 548
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
549
 * is the current context on this CPU and preemption is disabled,
550
 * hence we can't get into perf_event_task_sched_out for this context.
551
 */
552
static void perf_event_disable(struct perf_event *event)
553
{
554
	struct perf_event_context *ctx = event->ctx;
555 556 557 558
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
559
		 * Disable the event on the cpu that it's on
560
		 */
561 562
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
563 564 565 566
		return;
	}

 retry:
567
	task_oncpu_function_call(task, __perf_event_disable, event);
568 569 570

	spin_lock_irq(&ctx->lock);
	/*
571
	 * If the event is still active, we need to retry the cross-call.
572
	 */
573
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
574 575 576 577 578 579 580 581
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
582 583 584
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
585
	}
586 587 588 589

	spin_unlock_irq(&ctx->lock);
}

590
static int
591
event_sched_in(struct perf_event *event,
592
		 struct perf_cpu_context *cpuctx,
593
		 struct perf_event_context *ctx,
594 595
		 int cpu)
{
596
	if (event->state <= PERF_EVENT_STATE_OFF)
597 598
		return 0;

599 600
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
601 602 603 604 605
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

606 607 608
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
609 610 611
		return -EAGAIN;
	}

612
	event->tstamp_running += ctx->time - event->tstamp_stopped;
613

614
	if (!is_software_event(event))
615
		cpuctx->active_oncpu++;
616 617
	ctx->nr_active++;

618
	if (event->attr.exclusive)
619 620
		cpuctx->exclusive = 1;

621 622 623
	return 0;
}

624
static int
625
group_sched_in(struct perf_event *group_event,
626
	       struct perf_cpu_context *cpuctx,
627
	       struct perf_event_context *ctx,
628 629
	       int cpu)
{
630
	struct perf_event *event, *partial_group;
631 632
	int ret;

633
	if (group_event->state == PERF_EVENT_STATE_OFF)
634 635
		return 0;

636
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
637 638 639
	if (ret)
		return ret < 0 ? ret : 0;

640
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
641 642 643 644 645
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
646 647 648
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
649 650 651 652 653 654 655 656 657 658 659
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
660 661
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
662
			break;
663
		event_sched_out(event, cpuctx, ctx);
664
	}
665
	event_sched_out(group_event, cpuctx, ctx);
666 667 668 669

	return -EAGAIN;
}

670
/*
671 672
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
673
 */
674
static int is_software_only_group(struct perf_event *leader)
675
{
676
	struct perf_event *event;
677

678
	if (!is_software_event(leader))
679
		return 0;
P
Peter Zijlstra 已提交
680

681 682
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
683
			return 0;
P
Peter Zijlstra 已提交
684

685 686 687 688
	return 1;
}

/*
689
 * Work out whether we can put this event group on the CPU now.
690
 */
691
static int group_can_go_on(struct perf_event *event,
692 693 694 695
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
696
	 * Groups consisting entirely of software events can always go on.
697
	 */
698
	if (is_software_only_group(event))
699 700 701
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
702
	 * events can go on.
703 704 705 706 707
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
708
	 * events on the CPU, it can't go on.
709
	 */
710
	if (event->attr.exclusive && cpuctx->active_oncpu)
711 712 713 714 715 716 717 718
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

719 720
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
721
{
722 723 724 725
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
726 727
}

T
Thomas Gleixner 已提交
728
/*
729
 * Cross CPU call to install and enable a performance event
730 731
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
732 733 734 735
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 737 738
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
739
	int cpu = smp_processor_id();
740
	int err;
T
Thomas Gleixner 已提交
741 742 743 744 745

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
746
	 * Or possibly this is the right context but it isn't
747
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
748
	 */
749
	if (ctx->task && cpuctx->task_ctx != ctx) {
750
		if (cpuctx->task_ctx || ctx->task != current)
751 752 753
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
754

755
	spin_lock(&ctx->lock);
756
	ctx->is_active = 1;
757
	update_context_time(ctx);
T
Thomas Gleixner 已提交
758 759 760

	/*
	 * Protect the list operation against NMI by disabling the
761
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
762
	 */
763
	perf_disable();
T
Thomas Gleixner 已提交
764

765
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
766

767
	/*
768
	 * Don't put the event on if it is disabled or if
769 770
	 * it is in a group and the group isn't on.
	 */
771 772
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773 774
		goto unlock;

775
	/*
776 777 778
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
779
	 */
780
	if (!group_can_go_on(event, cpuctx, 1))
781 782
		err = -EEXIST;
	else
783
		err = event_sched_in(event, cpuctx, ctx, cpu);
784

785 786
	if (err) {
		/*
787
		 * This event couldn't go on.  If it is in a group
788
		 * then we have to pull the whole group off.
789
		 * If the event group is pinned then put it in error state.
790
		 */
791
		if (leader != event)
792
			group_sched_out(leader, cpuctx, ctx);
793
		if (leader->attr.pinned) {
794
			update_group_times(leader);
795
			leader->state = PERF_EVENT_STATE_ERROR;
796
		}
797
	}
T
Thomas Gleixner 已提交
798

799
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
800 801
		cpuctx->max_pertask--;

802
 unlock:
803
	perf_enable();
804

805
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
806 807 808
}

/*
809
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
810
 *
811 812
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
813
 *
814
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
815 816
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
817 818
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
819 820
 */
static void
821 822
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
823 824 825 826 827 828
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
829
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
830 831 832
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
833
					 event, 1);
T
Thomas Gleixner 已提交
834 835 836 837 838
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
839
				 event);
T
Thomas Gleixner 已提交
840 841 842 843 844

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
845
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
846 847 848 849 850 851
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
852
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
853 854
	 * succeed.
	 */
855 856
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
857 858 859
	spin_unlock_irq(&ctx->lock);
}

860
/*
861
 * Put a event into inactive state and update time fields.
862 863 864 865 866 867
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
868 869
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
870
{
871
	struct perf_event *sub;
872

873 874 875 876
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877 878 879 880
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

881
/*
882
 * Cross CPU call to enable a performance event
883
 */
884
static void __perf_event_enable(void *info)
885
{
886
	struct perf_event *event = info;
887
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 889
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
890
	int err;
891

892
	/*
893 894
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
895
	 */
896
	if (ctx->task && cpuctx->task_ctx != ctx) {
897
		if (cpuctx->task_ctx || ctx->task != current)
898 899 900
			return;
		cpuctx->task_ctx = ctx;
	}
901

902
	spin_lock(&ctx->lock);
903
	ctx->is_active = 1;
904
	update_context_time(ctx);
905

906
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
907
		goto unlock;
908
	__perf_event_mark_enabled(event, ctx);
909 910

	/*
911
	 * If the event is in a group and isn't the group leader,
912
	 * then don't put it on unless the group is on.
913
	 */
914
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915
		goto unlock;
916

917
	if (!group_can_go_on(event, cpuctx, 1)) {
918
		err = -EEXIST;
919
	} else {
920
		perf_disable();
921 922
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
923 924
					     smp_processor_id());
		else
925
			err = event_sched_in(event, cpuctx, ctx,
926
					       smp_processor_id());
927
		perf_enable();
928
	}
929 930 931

	if (err) {
		/*
932
		 * If this event can't go on and it's part of a
933 934
		 * group, then the whole group has to come off.
		 */
935
		if (leader != event)
936
			group_sched_out(leader, cpuctx, ctx);
937
		if (leader->attr.pinned) {
938
			update_group_times(leader);
939
			leader->state = PERF_EVENT_STATE_ERROR;
940
		}
941 942 943
	}

 unlock:
944
	spin_unlock(&ctx->lock);
945 946 947
}

/*
948
 * Enable a event.
949
 *
950 951
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
952
 * remains valid.  This condition is satisfied when called through
953 954
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
955
 */
956
static void perf_event_enable(struct perf_event *event)
957
{
958
	struct perf_event_context *ctx = event->ctx;
959 960 961 962
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
963
		 * Enable the event on the cpu that it's on
964
		 */
965 966
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
967 968 969 970
		return;
	}

	spin_lock_irq(&ctx->lock);
971
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
972 973 974
		goto out;

	/*
975 976
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
977 978 979 980
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
981 982
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
983 984 985

 retry:
	spin_unlock_irq(&ctx->lock);
986
	task_oncpu_function_call(task, __perf_event_enable, event);
987 988 989 990

	spin_lock_irq(&ctx->lock);

	/*
991
	 * If the context is active and the event is still off,
992 993
	 * we need to retry the cross-call.
	 */
994
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
995 996 997 998 999 1000
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1001 1002
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1003

1004 1005 1006 1007
 out:
	spin_unlock_irq(&ctx->lock);
}

1008
static int perf_event_refresh(struct perf_event *event, int refresh)
1009
{
1010
	/*
1011
	 * not supported on inherited events
1012
	 */
1013
	if (event->attr.inherit)
1014 1015
		return -EINVAL;

1016 1017
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1018 1019

	return 0;
1020 1021
}

1022
void __perf_event_sched_out(struct perf_event_context *ctx,
1023 1024
			      struct perf_cpu_context *cpuctx)
{
1025
	struct perf_event *event;
1026

1027 1028
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1029
	if (likely(!ctx->nr_events))
1030
		goto out;
1031
	update_context_time(ctx);
1032

1033
	perf_disable();
1034 1035 1036 1037
	if (ctx->nr_active)
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);

1038
	perf_enable();
1039
 out:
1040 1041 1042
	spin_unlock(&ctx->lock);
}

1043 1044 1045
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1046 1047 1048 1049
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1050
 * in them directly with an fd; we can only enable/disable all
1051
 * events via prctl, or enable/disable all events in a family
1052 1053
 * via ioctl, which will have the same effect on both contexts.
 */
1054 1055
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1056 1057
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1058
		&& ctx1->parent_gen == ctx2->parent_gen
1059
		&& !ctx1->pin_count && !ctx2->pin_count;
1060 1061
}

1062
static void __perf_event_read(void *event);
1063

1064 1065
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1066 1067 1068
{
	u64 value;

1069
	if (!event->attr.inherit_stat)
1070 1071 1072
		return;

	/*
1073
	 * Update the event value, we cannot use perf_event_read()
1074 1075
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1076
	 * we know the event must be on the current CPU, therefore we
1077 1078
	 * don't need to use it.
	 */
1079 1080 1081
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
		__perf_event_read(event);
1082 1083
		break;

1084 1085
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1086 1087 1088 1089 1090 1091 1092
		break;

	default:
		break;
	}

	/*
1093
	 * In order to keep per-task stats reliable we need to flip the event
1094 1095
	 * values when we flip the contexts.
	 */
1096 1097 1098
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1099

1100 1101
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1102

1103
	/*
1104
	 * Since we swizzled the values, update the user visible data too.
1105
	 */
1106 1107
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1108 1109 1110 1111 1112
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1113 1114
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1115
{
1116
	struct perf_event *event, *next_event;
1117 1118 1119 1120

	if (!ctx->nr_stat)
		return;

1121 1122
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1123

1124 1125
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1126

1127 1128
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1129

1130
		__perf_event_sync_stat(event, next_event);
1131

1132 1133
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1134 1135 1136
	}
}

T
Thomas Gleixner 已提交
1137
/*
1138
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1139 1140
 * with interrupts disabled.
 *
1141
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1142
 *
I
Ingo Molnar 已提交
1143
 * This does not protect us against NMI, but disable()
1144 1145 1146
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1147
 */
1148
void perf_event_task_sched_out(struct task_struct *task,
1149
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1150 1151
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1152 1153 1154
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1155
	struct pt_regs *regs;
1156
	int do_switch = 1;
T
Thomas Gleixner 已提交
1157

1158
	regs = task_pt_regs(task);
1159
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1160

1161
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1162 1163
		return;

1164
	update_context_time(ctx);
1165 1166 1167

	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1168
	next_ctx = next->perf_event_ctxp;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1183 1184
			/*
			 * XXX do we need a memory barrier of sorts
1185
			 * wrt to rcu_dereference() of perf_event_ctxp
1186
			 */
1187 1188
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1189 1190 1191
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1192

1193
			perf_event_sync_stat(ctx, next_ctx);
1194 1195 1196
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1197
	}
1198
	rcu_read_unlock();
1199

1200
	if (do_switch) {
1201
		__perf_event_sched_out(ctx, cpuctx);
1202 1203
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1204 1205
}

1206 1207 1208
/*
 * Called with IRQs disabled
 */
1209
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 1211 1212
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1213 1214
	if (!cpuctx->task_ctx)
		return;
1215 1216 1217 1218

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1219
	__perf_event_sched_out(ctx, cpuctx);
1220 1221 1222
	cpuctx->task_ctx = NULL;
}

1223 1224 1225
/*
 * Called with IRQs disabled
 */
1226
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227
{
1228
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 1230
}

1231
static void
1232
__perf_event_sched_in(struct perf_event_context *ctx,
1233
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1234
{
1235
	struct perf_event *event;
1236
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1237

1238 1239
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1240
	if (likely(!ctx->nr_events))
1241
		goto out;
T
Thomas Gleixner 已提交
1242

1243
	ctx->timestamp = perf_clock();
1244

1245
	perf_disable();
1246 1247 1248 1249 1250

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1251 1252 1253
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1254
			continue;
1255
		if (event->cpu != -1 && event->cpu != cpu)
1256 1257
			continue;

1258 1259
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1260 1261 1262 1263 1264

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1265 1266 1267
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1268
		}
1269 1270
	}

1271
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1272
		/*
1273 1274
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1275
		 */
1276 1277
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1278 1279
			continue;

1280 1281
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1282
		 * of events:
1283
		 */
1284
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1285 1286
			continue;

1287 1288
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1289
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1290
	}
1291
	perf_enable();
1292
 out:
T
Thomas Gleixner 已提交
1293
	spin_unlock(&ctx->lock);
1294 1295 1296
}

/*
1297
 * Called from scheduler to add the events of the current task
1298 1299
 * with interrupts disabled.
 *
1300
 * We restore the event value and then enable it.
1301 1302
 *
 * This does not protect us against NMI, but enable()
1303 1304 1305
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1306
 */
1307
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 1309
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310
	struct perf_event_context *ctx = task->perf_event_ctxp;
1311

1312 1313
	if (likely(!ctx))
		return;
1314 1315
	if (cpuctx->task_ctx == ctx)
		return;
1316
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1317 1318 1319
	cpuctx->task_ctx = ctx;
}

1320
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321
{
1322
	struct perf_event_context *ctx = &cpuctx->ctx;
1323

1324
	__perf_event_sched_in(ctx, cpuctx, cpu);
1325 1326
}

1327 1328
#define MAX_INTERRUPTS (~0ULL)

1329
static void perf_log_throttle(struct perf_event *event, int enable);
1330

1331
static void perf_adjust_period(struct perf_event *event, u64 events)
1332
{
1333
	struct hw_perf_event *hwc = &event->hw;
1334 1335 1336 1337
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1338
	period = div64_u64(events, event->attr.sample_freq);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1351
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352
{
1353 1354
	struct perf_event *event;
	struct hw_perf_event *hwc;
1355
	u64 interrupts, freq;
1356 1357

	spin_lock(&ctx->lock);
1358
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 1361
			continue;

1362
		hwc = &event->hw;
1363 1364 1365

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1366

1367
		/*
1368
		 * unthrottle events on the tick
1369
		 */
1370
		if (interrupts == MAX_INTERRUPTS) {
1371 1372 1373
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374 1375
		}

1376
		if (!event->attr.freq || !event->attr.sample_freq)
1377 1378
			continue;

1379 1380 1381
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1382 1383
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1397
		perf_adjust_period(event, freq * interrupts);
1398

1399 1400 1401 1402 1403 1404 1405
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1406
			event->pmu->disable(event);
1407
			atomic64_set(&hwc->period_left, 0);
1408
			event->pmu->enable(event);
1409 1410
			perf_enable();
		}
1411 1412 1413 1414
	}
	spin_unlock(&ctx->lock);
}

1415
/*
1416
 * Round-robin a context's events:
1417
 */
1418
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1419
{
1420
	struct perf_event *event;
T
Thomas Gleixner 已提交
1421

1422
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1423 1424 1425 1426
		return;

	spin_lock(&ctx->lock);
	/*
1427
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1428
	 */
1429
	perf_disable();
1430 1431
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1432 1433
		break;
	}
1434
	perf_enable();
T
Thomas Gleixner 已提交
1435 1436

	spin_unlock(&ctx->lock);
1437 1438
}

1439
void perf_event_task_tick(struct task_struct *curr, int cpu)
1440
{
1441
	struct perf_cpu_context *cpuctx;
1442
	struct perf_event_context *ctx;
1443

1444
	if (!atomic_read(&nr_events))
1445 1446 1447
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1448
	ctx = curr->perf_event_ctxp;
1449

1450
	perf_ctx_adjust_freq(&cpuctx->ctx);
1451
	if (ctx)
1452
		perf_ctx_adjust_freq(ctx);
1453

1454
	perf_event_cpu_sched_out(cpuctx);
1455
	if (ctx)
1456
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1457

1458
	rotate_ctx(&cpuctx->ctx);
1459 1460
	if (ctx)
		rotate_ctx(ctx);
1461

1462
	perf_event_cpu_sched_in(cpuctx, cpu);
1463
	if (ctx)
1464
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1465 1466
}

1467
/*
1468
 * Enable all of a task's events that have been marked enable-on-exec.
1469 1470
 * This expects task == current.
 */
1471
static void perf_event_enable_on_exec(struct task_struct *task)
1472
{
1473 1474
	struct perf_event_context *ctx;
	struct perf_event *event;
1475 1476 1477 1478
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1479 1480
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1481 1482
		goto out;

1483
	__perf_event_task_sched_out(ctx);
1484 1485 1486

	spin_lock(&ctx->lock);

1487 1488
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1489
			continue;
1490 1491
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492
			continue;
1493
		__perf_event_mark_enabled(event, ctx);
1494 1495 1496 1497
		enabled = 1;
	}

	/*
1498
	 * Unclone this context if we enabled any event.
1499
	 */
1500 1501
	if (enabled)
		unclone_ctx(ctx);
1502 1503 1504

	spin_unlock(&ctx->lock);

1505
	perf_event_task_sched_in(task, smp_processor_id());
1506 1507 1508 1509
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1510
/*
1511
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1512
 */
1513
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1514
{
1515
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 1517
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1518
	unsigned long flags;
I
Ingo Molnar 已提交
1519

1520 1521 1522 1523
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1524 1525
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1526 1527 1528 1529
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1530
	local_irq_save(flags);
1531
	if (ctx->is_active)
1532
		update_context_time(ctx);
1533 1534
	event->pmu->read(event);
	update_event_times(event);
1535
	local_irq_restore(flags);
T
Thomas Gleixner 已提交
1536 1537
}

1538
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1539 1540
{
	/*
1541 1542
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1543
	 */
1544 1545 1546 1547 1548
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_event_times(event);
T
Thomas Gleixner 已提交
1549 1550
	}

1551
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1552 1553
}

1554
/*
1555
 * Initialize the perf_event context in a task_struct:
1556 1557
 */
static void
1558
__perf_event_init_context(struct perf_event_context *ctx,
1559 1560 1561 1562 1563
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1564
	INIT_LIST_HEAD(&ctx->group_list);
1565 1566 1567 1568 1569
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1570
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1571
{
1572
	struct perf_event_context *ctx;
1573
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1574
	struct task_struct *task;
1575
	unsigned long flags;
1576
	int err;
T
Thomas Gleixner 已提交
1577 1578

	/*
1579
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1580 1581
	 */
	if (cpu != -1) {
1582
		/* Must be root to operate on a CPU event: */
1583
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1584 1585 1586 1587 1588 1589
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1590
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1591 1592 1593 1594 1595 1596 1597 1598
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1599
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1616
	/*
1617
	 * Can't attach events to a dying task.
1618 1619 1620 1621 1622
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1623
	/* Reuse ptrace permission checks for now. */
1624 1625 1626 1627 1628
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1629
	ctx = perf_lock_task_context(task, &flags);
1630
	if (ctx) {
1631
		unclone_ctx(ctx);
1632
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1633 1634
	}

1635
	if (!ctx) {
1636
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1637 1638 1639
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1640
		__perf_event_init_context(ctx, task);
1641
		get_ctx(ctx);
1642
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1643 1644 1645 1646 1647
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1648
			goto retry;
1649
		}
1650
		get_task_struct(task);
1651 1652
	}

1653
	put_task_struct(task);
T
Thomas Gleixner 已提交
1654
	return ctx;
1655 1656 1657 1658

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1659 1660
}

1661
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1662
{
1663
	struct perf_event *event;
P
Peter Zijlstra 已提交
1664

1665 1666 1667 1668
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);
P
Peter Zijlstra 已提交
1669 1670
}

1671
static void perf_pending_sync(struct perf_event *event);
1672

1673
static void free_event(struct perf_event *event)
1674
{
1675
	perf_pending_sync(event);
1676

1677 1678 1679 1680 1681 1682 1683 1684
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1685
	}
1686

1687 1688 1689
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1690 1691
	}

1692 1693
	if (event->destroy)
		event->destroy(event);
1694

1695 1696
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1697 1698
}

T
Thomas Gleixner 已提交
1699 1700 1701 1702 1703
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
1704 1705
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1706 1707 1708

	file->private_data = NULL;

1709
	WARN_ON_ONCE(ctx->parent_ctx);
1710
	mutex_lock(&ctx->mutex);
1711
	perf_event_remove_from_context(event);
1712
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1713

1714 1715 1716 1717
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1718

1719
	free_event(event);
T
Thomas Gleixner 已提交
1720 1721 1722 1723

	return 0;
}

1724
static int perf_event_read_size(struct perf_event *event)
1725 1726 1727 1728 1729
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1730
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1731 1732
		size += sizeof(u64);

1733
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1734 1735
		size += sizeof(u64);

1736
	if (event->attr.read_format & PERF_FORMAT_ID)
1737 1738
		entry += sizeof(u64);

1739 1740
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1741 1742 1743 1744 1745 1746 1747 1748
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1749
static u64 perf_event_read_value(struct perf_event *event)
1750
{
1751
	struct perf_event *child;
1752 1753
	u64 total = 0;

1754 1755 1756
	total += perf_event_read(event);
	list_for_each_entry(child, &event->child_list, child_list)
		total += perf_event_read(child);
1757 1758 1759 1760

	return total;
}

1761
static int perf_event_read_entry(struct perf_event *event,
1762 1763 1764 1765 1766
				   u64 read_format, char __user *buf)
{
	int n = 0, count = 0;
	u64 values[2];

1767
	values[n++] = perf_event_read_value(event);
1768
	if (read_format & PERF_FORMAT_ID)
1769
		values[n++] = primary_event_id(event);
1770 1771 1772 1773 1774 1775 1776 1777 1778

	count = n * sizeof(u64);

	if (copy_to_user(buf, values, count))
		return -EFAULT;

	return count;
}

1779
static int perf_event_read_group(struct perf_event *event,
1780 1781
				   u64 read_format, char __user *buf)
{
1782
	struct perf_event *leader = event->group_leader, *sub;
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	int n = 0, size = 0, err = -EFAULT;
	u64 values[3];

	values[n++] = 1 + leader->nr_siblings;
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

1801
	err = perf_event_read_entry(leader, read_format, buf + size);
1802 1803 1804 1805 1806
	if (err < 0)
		return err;

	size += err;

1807
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1808
		err = perf_event_read_entry(sub, read_format,
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
				buf + size);
		if (err < 0)
			return err;

		size += err;
	}

	return size;
}

1819
static int perf_event_read_one(struct perf_event *event,
1820 1821 1822 1823 1824
				 u64 read_format, char __user *buf)
{
	u64 values[4];
	int n = 0;

1825
	values[n++] = perf_event_read_value(event);
1826
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1827 1828
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
1829 1830
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1831 1832
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
1833 1834
	}
	if (read_format & PERF_FORMAT_ID)
1835
		values[n++] = primary_event_id(event);
1836 1837 1838 1839 1840 1841 1842

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1843
/*
1844
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1845 1846
 */
static ssize_t
1847
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1848
{
1849
	u64 read_format = event->attr.read_format;
1850
	int ret;
T
Thomas Gleixner 已提交
1851

1852
	/*
1853
	 * Return end-of-file for a read on a event that is in
1854 1855 1856
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1857
	if (event->state == PERF_EVENT_STATE_ERROR)
1858 1859
		return 0;

1860
	if (count < perf_event_read_size(event))
1861 1862
		return -ENOSPC;

1863 1864
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
1865
	if (read_format & PERF_FORMAT_GROUP)
1866
		ret = perf_event_read_group(event, read_format, buf);
1867
	else
1868 1869
		ret = perf_event_read_one(event, read_format, buf);
	mutex_unlock(&event->child_mutex);
T
Thomas Gleixner 已提交
1870

1871
	return ret;
T
Thomas Gleixner 已提交
1872 1873 1874 1875 1876
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1877
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1878

1879
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1880 1881 1882 1883
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1884
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1885
	struct perf_mmap_data *data;
1886
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1887 1888

	rcu_read_lock();
1889
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1890
	if (data)
1891
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1892
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1893

1894
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1895 1896 1897 1898

	return events;
}

1899
static void perf_event_reset(struct perf_event *event)
1900
{
1901 1902 1903
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1904 1905
}

1906
/*
1907 1908 1909 1910
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1911
 */
1912 1913
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1914
{
1915
	struct perf_event *child;
P
Peter Zijlstra 已提交
1916

1917 1918 1919 1920
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1921
		func(child);
1922
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1923 1924
}

1925 1926
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1927
{
1928 1929
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1930

1931 1932
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1933
	event = event->group_leader;
1934

1935 1936 1937 1938
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1939
	mutex_unlock(&ctx->mutex);
1940 1941
}

1942
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1943
{
1944
	struct perf_event_context *ctx = event->ctx;
1945 1946 1947 1948
	unsigned long size;
	int ret = 0;
	u64 value;

1949
	if (!event->attr.sample_period)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1960 1961
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1962 1963 1964 1965
			ret = -EINVAL;
			goto unlock;
		}

1966
		event->attr.sample_freq = value;
1967
	} else {
1968 1969
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1970 1971 1972 1973 1974 1975 1976
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

1977
int perf_event_set_output(struct perf_event *event, int output_fd);
1978

1979 1980
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
1981 1982
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
1983
	u32 flags = arg;
1984 1985

	switch (cmd) {
1986 1987
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
1988
		break;
1989 1990
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
1991
		break;
1992 1993
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
1994
		break;
P
Peter Zijlstra 已提交
1995

1996 1997
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
1998

1999 2000
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2001

2002 2003
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2004

2005
	default:
P
Peter Zijlstra 已提交
2006
		return -ENOTTY;
2007
	}
P
Peter Zijlstra 已提交
2008 2009

	if (flags & PERF_IOC_FLAG_GROUP)
2010
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2011
	else
2012
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2013 2014

	return 0;
2015 2016
}

2017
int perf_event_task_enable(void)
2018
{
2019
	struct perf_event *event;
2020

2021 2022 2023 2024
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2025 2026 2027 2028

	return 0;
}

2029
int perf_event_task_disable(void)
2030
{
2031
	struct perf_event *event;
2032

2033 2034 2035 2036
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2037 2038 2039 2040

	return 0;
}

2041 2042
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2043 2044
#endif

2045
static int perf_event_index(struct perf_event *event)
2046
{
2047
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2048 2049
		return 0;

2050
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2051 2052
}

2053 2054 2055 2056 2057
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2058
void perf_event_update_userpage(struct perf_event *event)
2059
{
2060
	struct perf_event_mmap_page *userpg;
2061
	struct perf_mmap_data *data;
2062 2063

	rcu_read_lock();
2064
	data = rcu_dereference(event->data);
2065 2066 2067 2068
	if (!data)
		goto unlock;

	userpg = data->user_page;
2069

2070 2071 2072 2073 2074
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2075
	++userpg->lock;
2076
	barrier();
2077 2078 2079 2080
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2081

2082 2083
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2084

2085 2086
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2087

2088
	barrier();
2089
	++userpg->lock;
2090
	preempt_enable();
2091
unlock:
2092
	rcu_read_unlock();
2093 2094
}

2095
static unsigned long perf_data_size(struct perf_mmap_data *data)
2096
{
2097 2098
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2099

2100
#ifndef CONFIG_PERF_USE_VMALLOC
2101

2102 2103 2104
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2105

2106 2107 2108 2109 2110
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2111

2112 2113
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2114

2115
	return virt_to_page(data->data_pages[pgoff - 1]);
2116 2117
}

2118 2119
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2120 2121 2122 2123 2124
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2125
	WARN_ON(atomic_read(&event->mmap_count));
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2144
	data->data_order = 0;
2145 2146
	data->nr_pages = nr_pages;

2147
	return data;
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2159
	return NULL;
2160 2161
}

2162 2163
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2164
	struct page *page = virt_to_page((void *)addr);
2165 2166 2167 2168 2169

	page->mapping = NULL;
	__free_page(page);
}

2170
static void perf_mmap_data_free(struct perf_mmap_data *data)
2171 2172 2173
{
	int i;

2174
	perf_mmap_free_page((unsigned long)data->user_page);
2175
	for (i = 0; i < data->nr_pages; i++)
2176
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2232

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2322 2323 2324
	kfree(data);
}

2325
static void perf_mmap_data_release(struct perf_event *event)
2326
{
2327
	struct perf_mmap_data *data = event->data;
2328

2329
	WARN_ON(atomic_read(&event->mmap_count));
2330

2331
	rcu_assign_pointer(event->data, NULL);
2332
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2333 2334 2335 2336
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2337
	struct perf_event *event = vma->vm_file->private_data;
2338

2339
	atomic_inc(&event->mmap_count);
2340 2341 2342 2343
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2344
	struct perf_event *event = vma->vm_file->private_data;
2345

2346 2347
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2348
		unsigned long size = perf_data_size(event->data);
2349 2350
		struct user_struct *user = current_user();

2351
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2352
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2353
		perf_mmap_data_release(event);
2354
		mutex_unlock(&event->mmap_mutex);
2355
	}
2356 2357
}

2358
static const struct vm_operations_struct perf_mmap_vmops = {
2359 2360 2361 2362
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2363 2364 2365 2366
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2367
	struct perf_event *event = file->private_data;
2368
	unsigned long user_locked, user_lock_limit;
2369
	struct user_struct *user = current_user();
2370
	unsigned long locked, lock_limit;
2371
	struct perf_mmap_data *data;
2372 2373
	unsigned long vma_size;
	unsigned long nr_pages;
2374
	long user_extra, extra;
2375
	int ret = 0;
2376

2377
	if (!(vma->vm_flags & VM_SHARED))
2378
		return -EINVAL;
2379 2380 2381 2382

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2383 2384 2385 2386 2387
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2388 2389
		return -EINVAL;

2390
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2391 2392
		return -EINVAL;

2393 2394
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2395

2396 2397 2398
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2399 2400 2401 2402
		ret = -EINVAL;
		goto unlock;
	}

2403 2404
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2405 2406 2407 2408
			ret = -EINVAL;
		goto unlock;
	}

2409
	user_extra = nr_pages + 1;
2410
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2411 2412 2413 2414 2415 2416

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2417
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2418

2419 2420 2421
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2422 2423 2424

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2425
	locked = vma->vm_mm->locked_vm + extra;
2426

2427 2428
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2429 2430 2431
		ret = -EPERM;
		goto unlock;
	}
2432

2433
	WARN_ON(event->data);
2434 2435 2436 2437

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2438 2439
		goto unlock;

2440 2441 2442
	ret = 0;
	perf_mmap_data_init(event, data);

2443
	atomic_set(&event->mmap_count, 1);
2444
	atomic_long_add(user_extra, &user->locked_vm);
2445
	vma->vm_mm->locked_vm += extra;
2446
	event->data->nr_locked = extra;
2447
	if (vma->vm_flags & VM_WRITE)
2448
		event->data->writable = 1;
2449

2450
unlock:
2451
	mutex_unlock(&event->mmap_mutex);
2452 2453 2454

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2455 2456

	return ret;
2457 2458
}

P
Peter Zijlstra 已提交
2459 2460 2461
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2462
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2463 2464 2465
	int retval;

	mutex_lock(&inode->i_mutex);
2466
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2467 2468 2469 2470 2471 2472 2473 2474
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2475 2476 2477 2478
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2479 2480
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2481
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2482
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2483 2484
};

2485
/*
2486
 * Perf event wakeup
2487 2488 2489 2490 2491
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2492
void perf_event_wakeup(struct perf_event *event)
2493
{
2494
	wake_up_all(&event->waitq);
2495

2496 2497 2498
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2499
	}
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2511
static void perf_pending_event(struct perf_pending_entry *entry)
2512
{
2513 2514
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2515

2516 2517 2518
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2519 2520
	}

2521 2522 2523
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2524 2525 2526
	}
}

2527
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2528

2529
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2530 2531 2532
	PENDING_TAIL,
};

2533 2534
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2535
{
2536
	struct perf_pending_entry **head;
2537

2538
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2539 2540
		return;

2541 2542 2543
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2544 2545

	do {
2546 2547
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2548

2549
	set_perf_event_pending();
2550

2551
	put_cpu_var(perf_pending_head);
2552 2553 2554 2555
}

static int __perf_pending_run(void)
{
2556
	struct perf_pending_entry *list;
2557 2558
	int nr = 0;

2559
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2560
	while (list != PENDING_TAIL) {
2561 2562
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2563 2564 2565

		list = list->next;

2566 2567
		func = entry->func;
		entry->next = NULL;
2568 2569 2570 2571 2572 2573 2574
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2575
		func(entry);
2576 2577 2578 2579 2580 2581
		nr++;
	}

	return nr;
}

2582
static inline int perf_not_pending(struct perf_event *event)
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2597
	return event->pending.next == NULL;
2598 2599
}

2600
static void perf_pending_sync(struct perf_event *event)
2601
{
2602
	wait_event(event->waitq, perf_not_pending(event));
2603 2604
}

2605
void perf_event_do_pending(void)
2606 2607 2608 2609
{
	__perf_pending_run();
}

2610 2611 2612 2613
/*
 * Callchain support -- arch specific
 */

2614
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2615 2616 2617 2618
{
	return NULL;
}

2619 2620 2621
/*
 * Output
 */
2622 2623
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2624 2625 2626 2627 2628 2629
{
	unsigned long mask;

	if (!data->writable)
		return true;

2630
	mask = perf_data_size(data) - 1;
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2641
static void perf_output_wakeup(struct perf_output_handle *handle)
2642
{
2643 2644
	atomic_set(&handle->data->poll, POLL_IN);

2645
	if (handle->nmi) {
2646 2647 2648
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2649
	} else
2650
		perf_event_wakeup(handle->event);
2651 2652
}

2653 2654 2655
/*
 * Curious locking construct.
 *
2656 2657
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2658 2659 2660 2661 2662 2663
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2664
 * event_id completes.
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
	int cpu;

	handle->locked = 0;

	local_irq_save(handle->flags);
	cpu = smp_processor_id();

	if (in_nmi() && atomic_read(&data->lock) == cpu)
		return;

2679
	while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2680 2681 2682 2683 2684 2685 2686 2687
		cpu_relax();

	handle->locked = 1;
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2688 2689
	unsigned long head;
	int cpu;
2690

2691
	data->done_head = data->head;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2702
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2703 2704 2705
		data->user_page->data_head = head;

	/*
2706
	 * NMI can happen here, which means we can miss a done_head update.
2707 2708
	 */

2709
	cpu = atomic_xchg(&data->lock, -1);
2710 2711 2712 2713 2714
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2715
	if (unlikely(atomic_long_read(&data->done_head))) {
2716 2717 2718
		/*
		 * Since we had it locked, we can lock it again.
		 */
2719
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2720 2721 2722 2723 2724
			cpu_relax();

		goto again;
	}

2725
	if (atomic_xchg(&data->wakeup, 0))
2726 2727 2728 2729 2730
		perf_output_wakeup(handle);
out:
	local_irq_restore(handle->flags);
}

2731 2732
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2733 2734
{
	unsigned int pages_mask;
2735
	unsigned long offset;
2736 2737 2738 2739 2740 2741 2742 2743
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2744 2745
		unsigned long page_offset;
		unsigned long page_size;
2746 2747 2748
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2749 2750 2751
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2769
int perf_output_begin(struct perf_output_handle *handle,
2770
		      struct perf_event *event, unsigned int size,
2771
		      int nmi, int sample)
2772
{
2773
	struct perf_event *output_event;
2774
	struct perf_mmap_data *data;
2775
	unsigned long tail, offset, head;
2776 2777 2778 2779 2780 2781
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2782

2783
	rcu_read_lock();
2784
	/*
2785
	 * For inherited events we send all the output towards the parent.
2786
	 */
2787 2788
	if (event->parent)
		event = event->parent;
2789

2790 2791 2792
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2793

2794
	data = rcu_dereference(event->data);
2795 2796 2797
	if (!data)
		goto out;

2798
	handle->data	= data;
2799
	handle->event	= event;
2800 2801
	handle->nmi	= nmi;
	handle->sample	= sample;
2802

2803
	if (!data->nr_pages)
2804
		goto fail;
2805

2806 2807 2808 2809
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2810 2811
	perf_output_lock(handle);

2812
	do {
2813 2814 2815 2816 2817 2818 2819
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2820
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2821
		head += size;
2822
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2823
			goto fail;
2824
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2825

2826
	handle->offset	= offset;
2827
	handle->head	= head;
2828

2829
	if (head - tail > data->watermark)
2830
		atomic_set(&data->wakeup, 1);
2831

2832
	if (have_lost) {
2833
		lost_event.header.type = PERF_RECORD_LOST;
2834 2835
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2836
		lost_event.id          = event->id;
2837 2838 2839 2840 2841
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2842
	return 0;
2843

2844
fail:
2845 2846
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2847 2848
out:
	rcu_read_unlock();
2849

2850 2851
	return -ENOSPC;
}
2852

2853
void perf_output_end(struct perf_output_handle *handle)
2854
{
2855
	struct perf_event *event = handle->event;
2856 2857
	struct perf_mmap_data *data = handle->data;

2858
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2859

2860
	if (handle->sample && wakeup_events) {
2861
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2862
		if (events >= wakeup_events) {
2863
			atomic_sub(wakeup_events, &data->events);
2864
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2865
		}
2866 2867 2868
	}

	perf_output_unlock(handle);
2869
	rcu_read_unlock();
2870 2871
}

2872
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2873 2874
{
	/*
2875
	 * only top level events have the pid namespace they were created in
2876
	 */
2877 2878
	if (event->parent)
		event = event->parent;
2879

2880
	return task_tgid_nr_ns(p, event->ns);
2881 2882
}

2883
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2884 2885
{
	/*
2886
	 * only top level events have the pid namespace they were created in
2887
	 */
2888 2889
	if (event->parent)
		event = event->parent;
2890

2891
	return task_pid_nr_ns(p, event->ns);
2892 2893
}

2894
static void perf_output_read_one(struct perf_output_handle *handle,
2895
				 struct perf_event *event)
2896
{
2897
	u64 read_format = event->attr.read_format;
2898 2899 2900
	u64 values[4];
	int n = 0;

2901
	values[n++] = atomic64_read(&event->count);
2902
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2903 2904
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2905 2906
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2907 2908
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2909 2910
	}
	if (read_format & PERF_FORMAT_ID)
2911
		values[n++] = primary_event_id(event);
2912 2913 2914 2915 2916

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2917
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2918 2919
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2920
			    struct perf_event *event)
2921
{
2922 2923
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2935
	if (leader != event)
2936 2937 2938 2939
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2940
		values[n++] = primary_event_id(leader);
2941 2942 2943

	perf_output_copy(handle, values, n * sizeof(u64));

2944
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2945 2946
		n = 0;

2947
		if (sub != event)
2948 2949 2950 2951
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2952
			values[n++] = primary_event_id(sub);
2953 2954 2955 2956 2957 2958

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2959
			     struct perf_event *event)
2960
{
2961 2962
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2963
	else
2964
		perf_output_read_one(handle, event);
2965 2966
}

2967 2968 2969
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2970
			struct perf_event *event)
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3001
		perf_output_read(handle, event);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3039
			 struct perf_event *event,
3040
			 struct pt_regs *regs)
3041
{
3042
	u64 sample_type = event->attr.sample_type;
3043

3044
	data->type = sample_type;
3045

3046
	header->type = PERF_RECORD_SAMPLE;
3047 3048 3049 3050
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3051

3052
	if (sample_type & PERF_SAMPLE_IP) {
3053 3054 3055
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3056
	}
3057

3058
	if (sample_type & PERF_SAMPLE_TID) {
3059
		/* namespace issues */
3060 3061
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3062

3063
		header->size += sizeof(data->tid_entry);
3064 3065
	}

3066
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3067
		data->time = perf_clock();
3068

3069
		header->size += sizeof(data->time);
3070 3071
	}

3072
	if (sample_type & PERF_SAMPLE_ADDR)
3073
		header->size += sizeof(data->addr);
3074

3075
	if (sample_type & PERF_SAMPLE_ID) {
3076
		data->id = primary_event_id(event);
3077

3078 3079 3080 3081
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3082
		data->stream_id = event->id;
3083 3084 3085

		header->size += sizeof(data->stream_id);
	}
3086

3087
	if (sample_type & PERF_SAMPLE_CPU) {
3088 3089
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3090

3091
		header->size += sizeof(data->cpu_entry);
3092 3093
	}

3094
	if (sample_type & PERF_SAMPLE_PERIOD)
3095
		header->size += sizeof(data->period);
3096

3097
	if (sample_type & PERF_SAMPLE_READ)
3098
		header->size += perf_event_read_size(event);
3099

3100
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3101
		int size = 1;
3102

3103 3104 3105 3106 3107 3108
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3109 3110
	}

3111
	if (sample_type & PERF_SAMPLE_RAW) {
3112 3113 3114 3115 3116 3117 3118 3119
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3120
		header->size += size;
3121
	}
3122
}
3123

3124
static void perf_event_output(struct perf_event *event, int nmi,
3125 3126 3127 3128 3129
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3130

3131
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3132

3133
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3134
		return;
3135

3136
	perf_output_sample(&handle, &header, data, event);
3137

3138
	perf_output_end(&handle);
3139 3140
}

3141
/*
3142
 * read event_id
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3153
perf_event_read_event(struct perf_event *event,
3154 3155 3156
			struct task_struct *task)
{
	struct perf_output_handle handle;
3157
	struct perf_read_event read_event = {
3158
		.header = {
3159
			.type = PERF_RECORD_READ,
3160
			.misc = 0,
3161
			.size = sizeof(read_event) + perf_event_read_size(event),
3162
		},
3163 3164
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3165
	};
3166
	int ret;
3167

3168
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3169 3170 3171
	if (ret)
		return;

3172
	perf_output_put(&handle, read_event);
3173
	perf_output_read(&handle, event);
3174

3175 3176 3177
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3178
/*
P
Peter Zijlstra 已提交
3179 3180 3181
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3182 3183
 */

P
Peter Zijlstra 已提交
3184
struct perf_task_event {
3185
	struct task_struct		*task;
3186
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3187 3188 3189 3190 3191 3192

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3193 3194
		u32				tid;
		u32				ptid;
3195
		u64				time;
3196
	} event_id;
P
Peter Zijlstra 已提交
3197 3198
};

3199
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3200
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3201 3202
{
	struct perf_output_handle handle;
3203
	int size;
P
Peter Zijlstra 已提交
3204
	struct task_struct *task = task_event->task;
3205 3206
	int ret;

3207 3208
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3209 3210 3211 3212

	if (ret)
		return;

3213 3214
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3215

3216 3217
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3218

3219
	task_event->event_id.time = perf_clock();
3220

3221
	perf_output_put(&handle, task_event->event_id);
3222

P
Peter Zijlstra 已提交
3223 3224 3225
	perf_output_end(&handle);
}

3226
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3227
{
3228
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3229 3230 3231 3232 3233
		return 1;

	return 0;
}

3234
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3235
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3236
{
3237
	struct perf_event *event;
P
Peter Zijlstra 已提交
3238 3239 3240 3241 3242

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
3243 3244 3245
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3246 3247 3248 3249
	}
	rcu_read_unlock();
}

3250
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3251 3252
{
	struct perf_cpu_context *cpuctx;
3253
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3254 3255

	cpuctx = &get_cpu_var(perf_cpu_context);
3256
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3257 3258 3259
	put_cpu_var(perf_cpu_context);

	rcu_read_lock();
3260
	if (!ctx)
3261
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3262
	if (ctx)
3263
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3264 3265 3266
	rcu_read_unlock();
}

3267 3268
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3269
			      int new)
P
Peter Zijlstra 已提交
3270
{
P
Peter Zijlstra 已提交
3271
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3272

3273 3274 3275
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3276 3277
		return;

P
Peter Zijlstra 已提交
3278
	task_event = (struct perf_task_event){
3279 3280
		.task	  = task,
		.task_ctx = task_ctx,
3281
		.event_id    = {
P
Peter Zijlstra 已提交
3282
			.header = {
3283
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3284
				.misc = 0,
3285
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3286
			},
3287 3288
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3289 3290
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3291 3292 3293
		},
	};

3294
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3295 3296
}

3297
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3298
{
3299
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3300 3301
}

3302 3303 3304 3305 3306
/*
 * comm tracking
 */

struct perf_comm_event {
3307 3308
	struct task_struct	*task;
	char			*comm;
3309 3310 3311 3312 3313 3314 3315
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3316
	} event_id;
3317 3318
};

3319
static void perf_event_comm_output(struct perf_event *event,
3320 3321 3322
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3323 3324
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3325 3326 3327 3328

	if (ret)
		return;

3329 3330
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3331

3332
	perf_output_put(&handle, comm_event->event_id);
3333 3334 3335 3336 3337
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3338
static int perf_event_comm_match(struct perf_event *event)
3339
{
3340
	if (event->attr.comm)
3341 3342 3343 3344 3345
		return 1;

	return 0;
}

3346
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3347 3348
				  struct perf_comm_event *comm_event)
{
3349
	struct perf_event *event;
3350 3351 3352 3353 3354

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
3355 3356 3357
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3358 3359 3360 3361
	}
	rcu_read_unlock();
}

3362
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3363 3364
{
	struct perf_cpu_context *cpuctx;
3365
	struct perf_event_context *ctx;
3366
	unsigned int size;
3367
	char comm[TASK_COMM_LEN];
3368

3369 3370
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3371
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3372 3373 3374 3375

	comm_event->comm = comm;
	comm_event->comm_size = size;

3376
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3377 3378

	cpuctx = &get_cpu_var(perf_cpu_context);
3379
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3380
	put_cpu_var(perf_cpu_context);
3381 3382 3383 3384 3385 3386

	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3387
	ctx = rcu_dereference(current->perf_event_ctxp);
3388
	if (ctx)
3389
		perf_event_comm_ctx(ctx, comm_event);
3390
	rcu_read_unlock();
3391 3392
}

3393
void perf_event_comm(struct task_struct *task)
3394
{
3395 3396
	struct perf_comm_event comm_event;

3397 3398
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3399

3400
	if (!atomic_read(&nr_comm_events))
3401
		return;
3402

3403
	comm_event = (struct perf_comm_event){
3404
		.task	= task,
3405 3406
		/* .comm      */
		/* .comm_size */
3407
		.event_id  = {
3408
			.header = {
3409
				.type = PERF_RECORD_COMM,
3410 3411 3412 3413 3414
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3415 3416 3417
		},
	};

3418
	perf_event_comm_event(&comm_event);
3419 3420
}

3421 3422 3423 3424 3425
/*
 * mmap tracking
 */

struct perf_mmap_event {
3426 3427 3428 3429
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3430 3431 3432 3433 3434 3435 3436 3437 3438

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3439
	} event_id;
3440 3441
};

3442
static void perf_event_mmap_output(struct perf_event *event,
3443 3444 3445
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3446 3447
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3448 3449 3450 3451

	if (ret)
		return;

3452 3453
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3454

3455
	perf_output_put(&handle, mmap_event->event_id);
3456 3457
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3458
	perf_output_end(&handle);
3459 3460
}

3461
static int perf_event_mmap_match(struct perf_event *event,
3462 3463
				   struct perf_mmap_event *mmap_event)
{
3464
	if (event->attr.mmap)
3465 3466 3467 3468 3469
		return 1;

	return 0;
}

3470
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3471 3472
				  struct perf_mmap_event *mmap_event)
{
3473
	struct perf_event *event;
3474 3475 3476 3477 3478

	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
		return;

	rcu_read_lock();
3479 3480 3481
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3482 3483 3484 3485
	}
	rcu_read_unlock();
}

3486
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3487 3488
{
	struct perf_cpu_context *cpuctx;
3489
	struct perf_event_context *ctx;
3490 3491
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3492 3493 3494
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3495
	const char *name;
3496

3497 3498
	memset(tmp, 0, sizeof(tmp));

3499
	if (file) {
3500 3501 3502 3503 3504 3505
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3506 3507 3508 3509
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3510
		name = d_path(&file->f_path, buf, PATH_MAX);
3511 3512 3513 3514 3515
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3516 3517 3518
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3519
			goto got_name;
3520
		}
3521 3522 3523 3524 3525 3526

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3527 3528 3529 3530 3531
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3532
	size = ALIGN(strlen(name)+1, sizeof(u64));
3533 3534 3535 3536

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3537
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3538 3539

	cpuctx = &get_cpu_var(perf_cpu_context);
3540
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3541 3542
	put_cpu_var(perf_cpu_context);

3543 3544 3545 3546 3547
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3548
	ctx = rcu_dereference(current->perf_event_ctxp);
3549
	if (ctx)
3550
		perf_event_mmap_ctx(ctx, mmap_event);
3551 3552
	rcu_read_unlock();

3553 3554 3555
	kfree(buf);
}

3556
void __perf_event_mmap(struct vm_area_struct *vma)
3557
{
3558 3559
	struct perf_mmap_event mmap_event;

3560
	if (!atomic_read(&nr_mmap_events))
3561 3562 3563
		return;

	mmap_event = (struct perf_mmap_event){
3564
		.vma	= vma,
3565 3566
		/* .file_name */
		/* .file_size */
3567
		.event_id  = {
3568
			.header = {
3569
				.type = PERF_RECORD_MMAP,
3570 3571 3572 3573 3574
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3575 3576 3577
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3578 3579 3580
		},
	};

3581
	perf_event_mmap_event(&mmap_event);
3582 3583
}

3584 3585 3586 3587
/*
 * IRQ throttle logging
 */

3588
static void perf_log_throttle(struct perf_event *event, int enable)
3589 3590 3591 3592 3593 3594 3595
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3596
		u64				id;
3597
		u64				stream_id;
3598 3599
	} throttle_event = {
		.header = {
3600
			.type = PERF_RECORD_THROTTLE,
3601 3602 3603
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3604
		.time		= perf_clock(),
3605 3606
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3607 3608
	};

3609
	if (enable)
3610
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3611

3612
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3613 3614 3615 3616 3617 3618 3619
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3620
/*
3621
 * Generic event overflow handling, sampling.
3622 3623
 */

3624
static int __perf_event_overflow(struct perf_event *event, int nmi,
3625 3626
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3627
{
3628 3629
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3630 3631
	int ret = 0;

3632
	throttle = (throttle && event->pmu->unthrottle != NULL);
3633

3634
	if (!throttle) {
3635
		hwc->interrupts++;
3636
	} else {
3637 3638
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3639
			if (HZ * hwc->interrupts >
3640
					(u64)sysctl_perf_event_sample_rate) {
3641
				hwc->interrupts = MAX_INTERRUPTS;
3642
				perf_log_throttle(event, 0);
3643 3644 3645 3646
				ret = 1;
			}
		} else {
			/*
3647
			 * Keep re-disabling events even though on the previous
3648
			 * pass we disabled it - just in case we raced with a
3649
			 * sched-in and the event got enabled again:
3650
			 */
3651 3652 3653
			ret = 1;
		}
	}
3654

3655
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3656
		u64 now = perf_clock();
3657 3658 3659 3660 3661
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3662
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3663 3664
	}

3665 3666
	/*
	 * XXX event_limit might not quite work as expected on inherited
3667
	 * events
3668 3669
	 */

3670 3671
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3672
		ret = 1;
3673
		event->pending_kill = POLL_HUP;
3674
		if (nmi) {
3675 3676 3677
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3678
		} else
3679
			perf_event_disable(event);
3680 3681
	}

3682
	perf_event_output(event, nmi, data, regs);
3683
	return ret;
3684 3685
}

3686
int perf_event_overflow(struct perf_event *event, int nmi,
3687 3688
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3689
{
3690
	return __perf_event_overflow(event, nmi, 1, data, regs);
3691 3692
}

3693
/*
3694
 * Generic software event infrastructure
3695 3696
 */

3697
/*
3698 3699
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3700 3701 3702 3703
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3704
static u64 perf_swevent_set_period(struct perf_event *event)
3705
{
3706
	struct hw_perf_event *hwc = &event->hw;
3707 3708 3709 3710 3711
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3712 3713

again:
3714 3715 3716
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3717

3718 3719 3720 3721 3722
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3723

3724
	return nr;
3725 3726
}

3727
static void perf_swevent_overflow(struct perf_event *event,
3728 3729
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3730
{
3731
	struct hw_perf_event *hwc = &event->hw;
3732
	int throttle = 0;
3733
	u64 overflow;
3734

3735 3736
	data->period = event->hw.last_period;
	overflow = perf_swevent_set_period(event);
3737

3738 3739
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3740

3741
	for (; overflow; overflow--) {
3742
		if (__perf_event_overflow(event, nmi, throttle,
3743
					    data, regs)) {
3744 3745 3746 3747 3748 3749
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3750
		throttle = 1;
3751
	}
3752 3753
}

3754
static void perf_swevent_unthrottle(struct perf_event *event)
3755 3756
{
	/*
3757
	 * Nothing to do, we already reset hwc->interrupts.
3758
	 */
3759
}
3760

3761
static void perf_swevent_add(struct perf_event *event, u64 nr,
3762 3763
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3764
{
3765
	struct hw_perf_event *hwc = &event->hw;
3766

3767
	atomic64_add(nr, &event->count);
3768

3769 3770
	if (!hwc->sample_period)
		return;
3771

3772
	if (!regs)
3773
		return;
3774

3775
	if (!atomic64_add_negative(nr, &hwc->period_left))
3776
		perf_swevent_overflow(event, nmi, data, regs);
3777 3778
}

3779
static int perf_swevent_is_counting(struct perf_event *event)
3780
{
3781
	/*
3782
	 * The event is active, we're good!
3783
	 */
3784
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3785 3786
		return 1;

3787
	/*
3788
	 * The event is off/error, not counting.
3789
	 */
3790
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3791 3792 3793
		return 0;

	/*
3794
	 * The event is inactive, if the context is active
3795 3796
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3797
	 */
3798
	if (event->ctx->is_active)
3799 3800 3801 3802 3803 3804 3805 3806
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3807 3808
}

3809
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3810
				enum perf_type_id type,
3811
				u32 event_id, struct pt_regs *regs)
3812
{
3813
	if (!perf_swevent_is_counting(event))
3814 3815
		return 0;

3816
	if (event->attr.type != type)
3817
		return 0;
3818
	if (event->attr.config != event_id)
3819 3820
		return 0;

3821
	if (regs) {
3822
		if (event->attr.exclude_user && user_mode(regs))
3823
			return 0;
3824

3825
		if (event->attr.exclude_kernel && !user_mode(regs))
3826 3827
			return 0;
	}
3828 3829 3830 3831

	return 1;
}

3832
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3833
				     enum perf_type_id type,
3834
				     u32 event_id, u64 nr, int nmi,
3835 3836
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3837
{
3838
	struct perf_event *event;
3839

3840
	if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3841 3842
		return;

P
Peter Zijlstra 已提交
3843
	rcu_read_lock();
3844 3845 3846
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_swevent_match(event, type, event_id, regs))
			perf_swevent_add(event, nr, nmi, data, regs);
3847
	}
P
Peter Zijlstra 已提交
3848
	rcu_read_unlock();
3849 3850
}

3851
static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
P
Peter Zijlstra 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3865
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3866
				    u64 nr, int nmi,
3867 3868
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3869 3870
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3871 3872
	int *recursion = perf_swevent_recursion_context(cpuctx);
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3873 3874 3875 3876 3877 3878

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3879

3880
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3881
				 nr, nmi, data, regs);
3882 3883 3884 3885 3886
	rcu_read_lock();
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3887
	ctx = rcu_dereference(current->perf_event_ctxp);
3888
	if (ctx)
3889
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3890
	rcu_read_unlock();
3891

P
Peter Zijlstra 已提交
3892 3893 3894 3895
	barrier();
	(*recursion)--;

out:
3896 3897 3898
	put_cpu_var(perf_cpu_context);
}

3899
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3900
			    struct pt_regs *regs, u64 addr)
3901
{
3902 3903 3904 3905
	struct perf_sample_data data = {
		.addr = addr,
	};

3906
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3907
				&data, regs);
3908 3909
}

3910
static void perf_swevent_read(struct perf_event *event)
3911 3912 3913
{
}

3914
static int perf_swevent_enable(struct perf_event *event)
3915
{
3916
	struct hw_perf_event *hwc = &event->hw;
3917 3918 3919

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3920
		perf_swevent_set_period(event);
3921
	}
3922 3923 3924
	return 0;
}

3925
static void perf_swevent_disable(struct perf_event *event)
3926 3927 3928
{
}

3929
static const struct pmu perf_ops_generic = {
3930 3931 3932 3933
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3934 3935
};

3936
/*
3937
 * hrtimer based swevent callback
3938 3939
 */

3940
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3941 3942 3943
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3944
	struct pt_regs *regs;
3945
	struct perf_event *event;
3946 3947
	u64 period;

3948 3949
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
3950 3951

	data.addr = 0;
3952
	regs = get_irq_regs();
3953 3954 3955 3956
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3957 3958
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
3959
		regs = task_pt_regs(current);
3960

3961
	if (regs) {
3962
		if (perf_event_overflow(event, 0, &data, regs))
3963 3964 3965
			ret = HRTIMER_NORESTART;
	}

3966
	period = max_t(u64, 10000, event->hw.sample_period);
3967 3968 3969 3970 3971
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4008
/*
4009
 * Software event: cpu wall time clock
4010 4011
 */

4012
static void cpu_clock_perf_event_update(struct perf_event *event)
4013 4014 4015 4016 4017 4018
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4019 4020 4021
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4022 4023
}

4024
static int cpu_clock_perf_event_enable(struct perf_event *event)
4025
{
4026
	struct hw_perf_event *hwc = &event->hw;
4027 4028 4029
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4030
	perf_swevent_start_hrtimer(event);
4031 4032 4033 4034

	return 0;
}

4035
static void cpu_clock_perf_event_disable(struct perf_event *event)
4036
{
4037
	perf_swevent_cancel_hrtimer(event);
4038
	cpu_clock_perf_event_update(event);
4039 4040
}

4041
static void cpu_clock_perf_event_read(struct perf_event *event)
4042
{
4043
	cpu_clock_perf_event_update(event);
4044 4045
}

4046
static const struct pmu perf_ops_cpu_clock = {
4047 4048 4049
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4050 4051
};

4052
/*
4053
 * Software event: task time clock
4054 4055
 */

4056
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4057
{
4058
	u64 prev;
I
Ingo Molnar 已提交
4059 4060
	s64 delta;

4061
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4062
	delta = now - prev;
4063
	atomic64_add(delta, &event->count);
4064 4065
}

4066
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4067
{
4068
	struct hw_perf_event *hwc = &event->hw;
4069 4070
	u64 now;

4071
	now = event->ctx->time;
4072

4073
	atomic64_set(&hwc->prev_count, now);
4074 4075

	perf_swevent_start_hrtimer(event);
4076 4077

	return 0;
I
Ingo Molnar 已提交
4078 4079
}

4080
static void task_clock_perf_event_disable(struct perf_event *event)
4081
{
4082
	perf_swevent_cancel_hrtimer(event);
4083
	task_clock_perf_event_update(event, event->ctx->time);
4084

4085
}
I
Ingo Molnar 已提交
4086

4087
static void task_clock_perf_event_read(struct perf_event *event)
4088
{
4089 4090 4091
	u64 time;

	if (!in_nmi()) {
4092 4093
		update_context_time(event->ctx);
		time = event->ctx->time;
4094 4095
	} else {
		u64 now = perf_clock();
4096 4097
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4098 4099
	}

4100
	task_clock_perf_event_update(event, time);
4101 4102
}

4103
static const struct pmu perf_ops_task_clock = {
4104 4105 4106
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4107 4108
};

4109
#ifdef CONFIG_EVENT_PROFILE
4110
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4111
			  int entry_size)
4112
{
4113
	struct perf_raw_record raw = {
4114
		.size = entry_size,
4115
		.data = record,
4116 4117
	};

4118
	struct perf_sample_data data = {
4119
		.addr = addr,
4120
		.raw = &raw,
4121
	};
4122

4123 4124 4125 4126
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4127

4128
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4129
				&data, regs);
4130
}
4131
EXPORT_SYMBOL_GPL(perf_tp_event);
4132 4133 4134 4135

extern int ftrace_profile_enable(int);
extern void ftrace_profile_disable(int);

4136
static void tp_perf_event_destroy(struct perf_event *event)
4137
{
4138
	ftrace_profile_disable(event->attr.config);
4139 4140
}

4141
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4142
{
4143 4144 4145 4146
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4147
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4148
			perf_paranoid_tracepoint_raw() &&
4149 4150 4151
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4152
	if (ftrace_profile_enable(event->attr.config))
4153 4154
		return NULL;

4155
	event->destroy = tp_perf_event_destroy;
4156 4157 4158 4159

	return &perf_ops_generic;
}
#else
4160
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4161 4162 4163 4164 4165
{
	return NULL;
}
#endif

4166
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4167

4168
static void sw_perf_event_destroy(struct perf_event *event)
4169
{
4170
	u64 event_id = event->attr.config;
4171

4172
	WARN_ON(event->parent);
4173

4174
	atomic_dec(&perf_swevent_enabled[event_id]);
4175 4176
}

4177
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4178
{
4179
	const struct pmu *pmu = NULL;
4180
	u64 event_id = event->attr.config;
4181

4182
	/*
4183
	 * Software events (currently) can't in general distinguish
4184 4185 4186 4187 4188
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4189
	switch (event_id) {
4190
	case PERF_COUNT_SW_CPU_CLOCK:
4191
		pmu = &perf_ops_cpu_clock;
4192

4193
		break;
4194
	case PERF_COUNT_SW_TASK_CLOCK:
4195
		/*
4196 4197
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4198
		 */
4199
		if (event->ctx->task)
4200
			pmu = &perf_ops_task_clock;
4201
		else
4202
			pmu = &perf_ops_cpu_clock;
4203

4204
		break;
4205 4206 4207 4208 4209
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4210 4211 4212
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4213
		}
4214
		pmu = &perf_ops_generic;
4215
		break;
4216
	}
4217

4218
	return pmu;
4219 4220
}

T
Thomas Gleixner 已提交
4221
/*
4222
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4223
 */
4224 4225
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4226
		   int cpu,
4227 4228 4229
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4230
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4231
{
4232
	const struct pmu *pmu;
4233 4234
	struct perf_event *event;
	struct hw_perf_event *hwc;
4235
	long err;
T
Thomas Gleixner 已提交
4236

4237 4238
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4239
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4240

4241
	/*
4242
	 * Single events are their own group leaders, with an
4243 4244 4245
	 * empty sibling list:
	 */
	if (!group_leader)
4246
		group_leader = event;
4247

4248 4249
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4250

4251 4252 4253 4254
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4255

4256
	mutex_init(&event->mmap_mutex);
4257

4258 4259 4260 4261 4262 4263
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4264

4265
	event->parent		= parent_event;
4266

4267 4268
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4269

4270
	event->state		= PERF_EVENT_STATE_INACTIVE;
4271

4272
	if (attr->disabled)
4273
		event->state = PERF_EVENT_STATE_OFF;
4274

4275
	pmu = NULL;
4276

4277
	hwc = &event->hw;
4278
	hwc->sample_period = attr->sample_period;
4279
	if (attr->freq && attr->sample_freq)
4280
		hwc->sample_period = 1;
4281
	hwc->last_period = hwc->sample_period;
4282 4283

	atomic64_set(&hwc->period_left, hwc->sample_period);
4284

4285
	/*
4286
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4287
	 */
4288
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4289 4290
		goto done;

4291
	switch (attr->type) {
4292
	case PERF_TYPE_RAW:
4293
	case PERF_TYPE_HARDWARE:
4294
	case PERF_TYPE_HW_CACHE:
4295
		pmu = hw_perf_event_init(event);
4296 4297 4298
		break;

	case PERF_TYPE_SOFTWARE:
4299
		pmu = sw_perf_event_init(event);
4300 4301 4302
		break;

	case PERF_TYPE_TRACEPOINT:
4303
		pmu = tp_perf_event_init(event);
4304
		break;
4305 4306 4307

	default:
		break;
4308
	}
4309 4310
done:
	err = 0;
4311
	if (!pmu)
4312
		err = -EINVAL;
4313 4314
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4315

4316
	if (err) {
4317 4318 4319
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4320
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4321
	}
4322

4323
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4324

4325 4326 4327 4328 4329 4330 4331 4332
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4333
	}
4334

4335
	return event;
T
Thomas Gleixner 已提交
4336 4337
}

4338 4339
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4340 4341
{
	u32 size;
4342
	int ret;
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4367 4368 4369
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4370 4371
	 */
	if (size > sizeof(*attr)) {
4372 4373 4374
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4375

4376 4377
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4378

4379
		for (; addr < end; addr++) {
4380 4381 4382 4383 4384 4385
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4386
		size = sizeof(*attr);
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

4418
int perf_event_set_output(struct perf_event *event, int output_fd)
4419
{
4420
	struct perf_event *output_event = NULL;
4421
	struct file *output_file = NULL;
4422
	struct perf_event *old_output;
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4436
	output_event = output_file->private_data;
4437 4438

	/* Don't chain output fds */
4439
	if (output_event->output)
4440 4441 4442
		goto out;

	/* Don't set an output fd when we already have an output channel */
4443
	if (event->data)
4444 4445 4446 4447 4448
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4449 4450 4451 4452
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4453 4454 4455 4456

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4457
		 * is still referencing this event.
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4469
/**
4470
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4471
 *
4472
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4473
 * @pid:		target pid
I
Ingo Molnar 已提交
4474
 * @cpu:		target cpu
4475
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4476
 */
4477 4478
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4479
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4480
{
4481 4482 4483 4484
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4485 4486
	struct file *group_file = NULL;
	int fput_needed = 0;
4487
	int fput_needed2 = 0;
4488
	int err;
T
Thomas Gleixner 已提交
4489

4490
	/* for future expandability... */
4491
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4492 4493
		return -EINVAL;

4494 4495 4496
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4497

4498 4499 4500 4501 4502
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4503
	if (attr.freq) {
4504
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4505 4506 4507
			return -EINVAL;
	}

4508
	/*
I
Ingo Molnar 已提交
4509 4510 4511 4512 4513 4514 4515
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4516
	 * Look up the group leader (we will attach this event to it):
4517 4518
	 */
	group_leader = NULL;
4519
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4520
		err = -EINVAL;
4521 4522
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4523
			goto err_put_context;
4524
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4525
			goto err_put_context;
4526 4527 4528

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4529 4530 4531 4532 4533 4534 4535 4536
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4537
		 */
I
Ingo Molnar 已提交
4538 4539
		if (group_leader->ctx != ctx)
			goto err_put_context;
4540 4541 4542
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4543
		if (attr.exclusive || attr.pinned)
4544
			goto err_put_context;
4545 4546
	}

4547
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4548
				     NULL, GFP_KERNEL);
4549 4550
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4551 4552
		goto err_put_context;

4553
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4554
	if (err < 0)
4555 4556
		goto err_free_put_context;

4557 4558
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4559 4560
		goto err_free_put_context;

4561
	if (flags & PERF_FLAG_FD_OUTPUT) {
4562
		err = perf_event_set_output(event, group_fd);
4563 4564
		if (err)
			goto err_fput_free_put_context;
4565 4566
	}

4567
	event->filp = event_file;
4568
	WARN_ON_ONCE(ctx->parent_ctx);
4569
	mutex_lock(&ctx->mutex);
4570
	perf_install_in_context(ctx, event, cpu);
4571
	++ctx->generation;
4572
	mutex_unlock(&ctx->mutex);
4573

4574
	event->owner = current;
4575
	get_task_struct(current);
4576 4577 4578
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4579

4580
err_fput_free_put_context:
4581
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4582

4583
err_free_put_context:
4584
	if (err < 0)
4585
		kfree(event);
T
Thomas Gleixner 已提交
4586 4587

err_put_context:
4588 4589 4590 4591
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4592

4593
	return err;
T
Thomas Gleixner 已提交
4594 4595
}

4596
/*
4597
 * inherit a event from parent task to child task:
4598
 */
4599 4600
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4601
	      struct task_struct *parent,
4602
	      struct perf_event_context *parent_ctx,
4603
	      struct task_struct *child,
4604 4605
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4606
{
4607
	struct perf_event *child_event;
4608

4609
	/*
4610 4611
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4612 4613 4614
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4615 4616
	if (parent_event->parent)
		parent_event = parent_event->parent;
4617

4618 4619 4620
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4621
					   GFP_KERNEL);
4622 4623
	if (IS_ERR(child_event))
		return child_event;
4624
	get_ctx(child_ctx);
4625

4626
	/*
4627
	 * Make the child state follow the state of the parent event,
4628
	 * not its attr.disabled bit.  We hold the parent's mutex,
4629
	 * so we won't race with perf_event_{en, dis}able_family.
4630
	 */
4631 4632
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4633
	else
4634
		child_event->state = PERF_EVENT_STATE_OFF;
4635

4636 4637
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4638

4639 4640 4641
	/*
	 * Link it up in the child's context:
	 */
4642
	add_event_to_ctx(child_event, child_ctx);
4643 4644 4645

	/*
	 * Get a reference to the parent filp - we will fput it
4646
	 * when the child event exits. This is safe to do because
4647 4648 4649
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4650
	atomic_long_inc(&parent_event->filp->f_count);
4651

4652
	/*
4653
	 * Link this into the parent event's child list
4654
	 */
4655 4656 4657 4658
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4659

4660
	return child_event;
4661 4662
}

4663
static int inherit_group(struct perf_event *parent_event,
4664
	      struct task_struct *parent,
4665
	      struct perf_event_context *parent_ctx,
4666
	      struct task_struct *child,
4667
	      struct perf_event_context *child_ctx)
4668
{
4669 4670 4671
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4672

4673
	leader = inherit_event(parent_event, parent, parent_ctx,
4674
				 child, NULL, child_ctx);
4675 4676
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4677 4678
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4679 4680 4681
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4682
	}
4683 4684 4685
	return 0;
}

4686
static void sync_child_event(struct perf_event *child_event,
4687
			       struct task_struct *child)
4688
{
4689
	struct perf_event *parent_event = child_event->parent;
4690
	u64 child_val;
4691

4692 4693
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4694

4695
	child_val = atomic64_read(&child_event->count);
4696 4697 4698 4699

	/*
	 * Add back the child's count to the parent's count:
	 */
4700 4701 4702 4703 4704
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4705 4706

	/*
4707
	 * Remove this event from the parent's list
4708
	 */
4709 4710 4711 4712
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4713 4714

	/*
4715
	 * Release the parent event, if this was the last
4716 4717
	 * reference to it.
	 */
4718
	fput(parent_event->filp);
4719 4720
}

4721
static void
4722 4723
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4724
			 struct task_struct *child)
4725
{
4726
	struct perf_event *parent_event;
4727

4728 4729
	update_event_times(child_event);
	perf_event_remove_from_context(child_event);
4730

4731
	parent_event = child_event->parent;
4732
	/*
4733
	 * It can happen that parent exits first, and has events
4734
	 * that are still around due to the child reference. These
4735
	 * events need to be zapped - but otherwise linger.
4736
	 */
4737 4738 4739
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4740
	}
4741 4742 4743
}

/*
4744
 * When a child task exits, feed back event values to parent events.
4745
 */
4746
void perf_event_exit_task(struct task_struct *child)
4747
{
4748 4749
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4750
	unsigned long flags;
4751

4752 4753
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4754
		return;
P
Peter Zijlstra 已提交
4755
	}
4756

4757
	local_irq_save(flags);
4758 4759 4760 4761 4762 4763
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4764 4765
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4766 4767 4768

	/*
	 * Take the context lock here so that if find_get_context is
4769
	 * reading child->perf_event_ctxp, we wait until it has
4770 4771 4772
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4773
	child->perf_event_ctxp = NULL;
4774 4775 4776
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4777
	 * the events from it.
4778 4779
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4780 4781 4782
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
4783 4784 4785
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
4786
	 */
4787
	perf_event_task(child, child_ctx, 0);
4788

4789 4790 4791
	/*
	 * We can recurse on the same lock type through:
	 *
4792 4793 4794
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
4795 4796 4797 4798 4799 4800
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4801

4802
again:
4803
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4804
				 group_entry)
4805
		__perf_event_exit_task(child_event, child_ctx, child);
4806 4807

	/*
4808
	 * If the last event was a group event, it will have appended all
4809 4810 4811
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
4812
	if (!list_empty(&child_ctx->group_list))
4813
		goto again;
4814 4815 4816 4817

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4818 4819
}

4820 4821 4822 4823
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
4824
void perf_event_free_task(struct task_struct *task)
4825
{
4826 4827
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
4828 4829 4830 4831 4832 4833

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
4834 4835
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
4836 4837 4838 4839 4840

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
4841
		list_del_init(&event->child_list);
4842 4843 4844 4845
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

4846 4847
		list_del_event(event, ctx);
		free_event(event);
4848 4849
	}

4850
	if (!list_empty(&ctx->group_list))
4851 4852 4853 4854 4855 4856 4857
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

4858
/*
4859
 * Initialize the perf_event context in task_struct
4860
 */
4861
int perf_event_init_task(struct task_struct *child)
4862
{
4863 4864 4865
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
4866
	struct task_struct *parent = current;
4867
	int inherited_all = 1;
4868
	int ret = 0;
4869

4870
	child->perf_event_ctxp = NULL;
4871

4872 4873
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
4874

4875
	if (likely(!parent->perf_event_ctxp))
4876 4877
		return 0;

4878 4879
	/*
	 * This is executed from the parent task context, so inherit
4880
	 * events that have been marked for cloning.
4881
	 * First allocate and initialize a context for the child.
4882 4883
	 */

4884
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4885
	if (!child_ctx)
4886
		return -ENOMEM;
4887

4888 4889
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
4890
	get_task_struct(child);
4891

4892
	/*
4893 4894
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
4895
	 */
4896 4897
	parent_ctx = perf_pin_task_context(parent);

4898 4899 4900 4901 4902 4903 4904
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

4905 4906 4907 4908
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
4909
	mutex_lock(&parent_ctx->mutex);
4910 4911 4912 4913 4914

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
4915
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
4916

4917
		if (!event->attr.inherit) {
4918
			inherited_all = 0;
4919
			continue;
4920
		}
4921

4922
		ret = inherit_group(event, parent, parent_ctx,
4923 4924
					     child, child_ctx);
		if (ret) {
4925
			inherited_all = 0;
4926
			break;
4927 4928 4929 4930 4931 4932 4933
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
4934 4935
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
4936
		 * because the list of events and the generation
4937
		 * count can't have changed since we took the mutex.
4938
		 */
4939 4940 4941
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
4942
			child_ctx->parent_gen = parent_ctx->parent_gen;
4943 4944 4945 4946 4947
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
4948 4949
	}

4950
	mutex_unlock(&parent_ctx->mutex);
4951

4952
	perf_unpin_context(parent_ctx);
4953

4954
	return ret;
4955 4956
}

4957
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
4958
{
4959
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
4960

4961
	cpuctx = &per_cpu(perf_cpu_context, cpu);
4962
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
4963

4964
	spin_lock(&perf_resource_lock);
4965
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
4966
	spin_unlock(&perf_resource_lock);
4967

4968
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
4969 4970 4971
}

#ifdef CONFIG_HOTPLUG_CPU
4972
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
4973 4974
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4975 4976
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
4977

4978 4979
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
4980
}
4981
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
4982
{
4983
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4984
	struct perf_event_context *ctx = &cpuctx->ctx;
4985 4986

	mutex_lock(&ctx->mutex);
4987
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
4988
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
4989 4990
}
#else
4991
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5003
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5004 5005
		break;

5006 5007
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5008
		hw_perf_event_setup_online(cpu);
5009 5010
		break;

T
Thomas Gleixner 已提交
5011 5012
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5013
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5023 5024 5025
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5026 5027
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5028
	.priority		= 20,
T
Thomas Gleixner 已提交
5029 5030
};

5031
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5032 5033 5034
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5035 5036
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5057
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5058 5059
		return -EINVAL;

5060
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5061 5062 5063 5064
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5065 5066
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5067 5068 5069
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5070
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5092
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5093
	perf_overcommit = val;
5094
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5121
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5122 5123
};

5124
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5125 5126 5127 5128
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5129
device_initcall(perf_event_sysfs_init);