hrtimer.c 35.3 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/irq.h>
36 37 38 39 40
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
41
#include <linux/kallsyms.h>
42
#include <linux/interrupt.h>
43
#include <linux/tick.h>
44 45
#include <linux/seq_file.h>
#include <linux/err.h>
46 47 48 49 50 51 52 53

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
54
ktime_t ktime_get(void)
55 56 57 58 59 60 61
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
62
EXPORT_SYMBOL_GPL(ktime_get);
63 64 65 66 67 68

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
69
ktime_t ktime_get_real(void)
70 71 72 73 74 75 76 77 78 79 80 81
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
82 83 84 85 86 87
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
88
 */
89
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90
{
91 92

	.clock_base =
93
	{
94 95 96
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
97
			.resolution = KTIME_LOW_RES,
98 99 100 101
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
102
			.resolution = KTIME_LOW_RES,
103 104
		},
	}
105 106 107 108 109 110 111 112
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
113
 * in normalized timespec format in the variable pointed to by @ts.
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
130
EXPORT_SYMBOL_GPL(ktime_get_ts);
131

132 133 134 135
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
136
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 138
{
	ktime_t xtim, tomono;
139
	struct timespec xts, tom;
140 141 142 143
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
J
john stultz 已提交
144 145 146 147 148
#ifdef CONFIG_NO_HZ
		getnstimeofday(&xts);
#else
		xts = xtime;
#endif
149
		tom = wall_to_monotonic;
150 151
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
152
	xtim = timespec_to_ktime(xts);
153
	tomono = timespec_to_ktime(tom);
154 155 156
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
157 158
}

159 160 161 162 163 164 165 166 167
/*
 * Helper function to check, whether the timer is running the callback
 * function
 */
static inline int hrtimer_callback_running(struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_CALLBACK;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
186 187 188
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
189
{
190
	struct hrtimer_clock_base *base;
191 192 193 194

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
195
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
196 197 198
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
199
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
200 201 202 203 204 205 206 207
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
208 209
static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
210
{
211 212
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
213

214 215
	new_cpu_base = &__get_cpu_var(hrtimer_bases);
	new_base = &new_cpu_base->clock_base[base->index];
216 217 218 219 220 221 222 223 224 225 226

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
227
		if (unlikely(hrtimer_callback_running(timer)))
228 229 230 231
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
232 233
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
234 235 236 237 238 239 240
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

241
static inline struct hrtimer_clock_base *
242 243
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
244
	struct hrtimer_clock_base *base = timer->base;
245

246
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
247 248 249 250

	return base;
}

251
# define switch_hrtimer_base(t, b)	(b)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
282 283

EXPORT_SYMBOL_GPL(ktime_add_ns);
284 285 286 287 288
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
289
unsigned long ktime_divns(const ktime_t kt, s64 div)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
{
	u64 dclc, inc, dns;
	int sft = 0;

	dclc = dns = ktime_to_ns(kt);
	inc = div;
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

	return (unsigned long) dclc;
}
#endif /* BITS_PER_LONG >= 64 */

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
		expires = ktime_sub(timer->expires, base->offset);
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
	ktime_t expires = ktime_sub(timer->expires, base->offset);
	int res;

	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
	 * the callback is executed in the hrtimer_interupt context. The
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 0, 1);
}

464 465 466 467 468 469 470 471 472 473 474 475
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
	WARN_ON_ONCE(num_online_cpus() > 1);

	/* Retrigger the CPU local events: */
	retrigger_next_event(NULL);
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * Check, whether the timer is on the callback pending list
 */
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
	return timer->state & HRTIMER_STATE_PENDING;
}

/*
 * Remove a timer from the callback pending list
 */
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
	list_del_init(&timer->cb_entry);
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
	INIT_LIST_HEAD(&base->cb_pending);
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
	INIT_LIST_HEAD(&timer->cb_entry);
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {

		/* Timer is expired, act upon the callback mode */
		switch(timer->cb_mode) {
		case HRTIMER_CB_IRQSAFE_NO_RESTART:
			/*
			 * We can call the callback from here. No restart
			 * happens, so no danger of recursion
			 */
			BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
			return 1;
		case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
			/*
			 * This is solely for the sched tick emulation with
			 * dynamic tick support to ensure that we do not
			 * restart the tick right on the edge and end up with
			 * the tick timer in the softirq ! The calling site
			 * takes care of this.
			 */
			return 1;
		case HRTIMER_CB_IRQSAFE:
		case HRTIMER_CB_SOFTIRQ:
			/*
			 * Move everything else into the softirq pending list !
			 */
			list_add_tail(&timer->cb_entry,
				      &base->cpu_base->cb_pending);
			timer->state = HRTIMER_STATE_PENDING;
			raise_softirq(HRTIMER_SOFTIRQ);
			return 1;
		default:
			BUG();
		}
	}
	return 0;
}

/*
 * Switch to high resolution mode
 */
559
static int hrtimer_switch_to_hres(void)
560
{
I
Ingo Molnar 已提交
561 562
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
563 564 565
	unsigned long flags;

	if (base->hres_active)
566
		return 1;
567 568 569 570 571

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
572 573
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
574
		return 0;
575 576 577 578 579 580 581 582 583 584 585 586
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
	printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
	       smp_processor_id());
587
	return 1;
588 589 590 591 592 593
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
594
static inline int hrtimer_switch_to_hres(void) { return 0; }
595 596 597 598 599 600 601 602 603 604 605 606 607
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
					    struct hrtimer_clock_base *base)
{
	return 0;
}
static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

608 609 610 611 612 613 614 615 616 617 618 619
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

620 621 622 623 624 625
/*
 * Counterpart to lock_timer_base above:
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
626
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
627 628 629 630 631
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
632
 * @now:	forward past this time
633 634 635
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
636
 * Returns the number of overruns.
637 638
 */
unsigned long
639
hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
640 641
{
	unsigned long orun = 1;
642
	ktime_t delta;
643 644 645 646 647 648

	delta = ktime_sub(now, timer->expires);

	if (delta.tv64 < 0)
		return 0;

649 650 651
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

652
	if (unlikely(delta.tv64 >= interval.tv64)) {
653
		s64 incr = ktime_to_ns(interval);
654 655 656 657 658 659 660 661 662 663 664 665

		orun = ktime_divns(delta, incr);
		timer->expires = ktime_add_ns(timer->expires, incr * orun);
		if (timer->expires.tv64 > now.tv64)
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
	timer->expires = ktime_add(timer->expires, interval);
666 667 668 669 670 671
	/*
	 * Make sure, that the result did not wrap with a very large
	 * interval.
	 */
	if (timer->expires.tv64 < 0)
		timer->expires = ktime_set(KTIME_SEC_MAX, 0);
672 673 674

	return orun;
}
S
Stas Sergeev 已提交
675
EXPORT_SYMBOL_GPL(hrtimer_forward);
676 677 678 679 680 681 682

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
 */
683
static void enqueue_hrtimer(struct hrtimer *timer,
684
			    struct hrtimer_clock_base *base, int reprogram)
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
		if (timer->expires.tv64 < entry->expires.tv64)
			link = &(*link)->rb_left;
702
		else
703 704 705 706
			link = &(*link)->rb_right;
	}

	/*
707 708
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
709
	 */
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	if (!base->first || timer->expires.tv64 <
	    rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
		/*
		 * Reprogram the clock event device. When the timer is already
		 * expired hrtimer_enqueue_reprogram has either called the
		 * callback or added it to the pending list and raised the
		 * softirq.
		 *
		 * This is a NOP for !HIGHRES
		 */
		if (reprogram && hrtimer_enqueue_reprogram(timer, base))
			return;

		base->first = &timer->node;
	}

726 727
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
728 729 730 731 732
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
733
}
734 735 736 737 738

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
739 740 741 742 743
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
744
 */
745
static void __remove_hrtimer(struct hrtimer *timer,
746
			     struct hrtimer_clock_base *base,
747
			     unsigned long newstate, int reprogram)
748
{
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	/* High res. callback list. NOP for !HIGHRES */
	if (hrtimer_cb_pending(timer))
		hrtimer_remove_cb_pending(timer);
	else {
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
765
	timer->state = newstate;
766 767 768 769 770 771
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
772
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
773
{
774
	if (hrtimer_is_queued(timer)) {
775 776 777 778 779 780 781 782 783 784
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
785
		timer_stats_hrtimer_clear_start_info(timer);
786 787 788
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		return 1;
	}
	return 0;
}

/**
 * hrtimer_start - (re)start an relative timer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
807
	struct hrtimer_clock_base *base, *new_base;
808 809 810 811 812 813 814 815 816 817 818
	unsigned long flags;
	int ret;

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base);

819
	if (mode == HRTIMER_MODE_REL) {
820
		tim = ktime_add(tim, new_base->get_time());
821 822 823 824 825 826 827 828 829 830 831
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
		tim = ktime_add(tim, base->resolution);
#endif
	}
832 833
	timer->expires = tim;

834 835
	timer_stats_hrtimer_set_start_info(timer);

836 837 838 839 840 841
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
	 */
	enqueue_hrtimer(timer, new_base,
			new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
842 843 844 845 846

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
847
EXPORT_SYMBOL_GPL(hrtimer_start);
848 849 850 851 852 853 854 855 856

/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
857
 *    cannot be stopped
858 859 860
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
861
	struct hrtimer_clock_base *base;
862 863 864 865 866
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

867
	if (!hrtimer_callback_running(timer))
868 869 870 871 872 873 874
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
875
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
892
		cpu_relax();
893 894
	}
}
895
EXPORT_SYMBOL_GPL(hrtimer_cancel);
896 897 898 899 900 901 902

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
903
	struct hrtimer_clock_base *base;
904 905 906 907
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
908
	rem = ktime_sub(timer->expires, base->get_time());
909 910 911 912
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
913
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
914

915
#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
916 917 918 919 920 921 922 923
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
924 925
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
926 927 928 929
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

930 931
	spin_lock_irqsave(&cpu_base->lock, flags);

932 933 934
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
935

936 937
			if (!base->first)
				continue;
938

939 940 941 942 943 944
			timer = rb_entry(base->first, struct hrtimer, node);
			delta.tv64 = timer->expires.tv64;
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
945
	}
946 947 948

	spin_unlock_irqrestore(&cpu_base->lock, flags);

949 950 951 952 953 954
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

955
/**
956 957
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
958
 * @clock_id:	the clock to be used
959
 * @mode:	timer mode abs/rel
960
 */
961 962
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
963
{
964
	struct hrtimer_cpu_base *cpu_base;
965

966 967
	memset(timer, 0, sizeof(struct hrtimer));

968
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
969

970
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
971 972
		clock_id = CLOCK_MONOTONIC;

973
	timer->base = &cpu_base->clock_base[clock_id];
974
	hrtimer_init_timer_hres(timer);
975 976 977 978 979 980

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
981
}
982
EXPORT_SYMBOL_GPL(hrtimer_init);
983 984 985 986 987 988

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
989 990
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
991 992 993
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
994
	struct hrtimer_cpu_base *cpu_base;
995

996 997
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
998 999 1000

	return 0;
}
1001
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
	int i, raise = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

			if (basenow.tv64 < timer->expires.tv64) {
				ktime_t expires;

				expires = ktime_sub(timer->expires,
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			/* Move softirq callbacks to the pending list */
			if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
				__remove_hrtimer(timer, base,
						 HRTIMER_STATE_PENDING, 0);
				list_add_tail(&timer->cb_entry,
					      &base->cpu_base->cb_pending);
				raise = 1;
				continue;
			}

			__remove_hrtimer(timer, base,
					 HRTIMER_STATE_CALLBACK, 0);
1062
			timer_stats_account_hrtimer(timer);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

			/*
			 * Note: We clear the CALLBACK bit after
			 * enqueue_hrtimer to avoid reprogramming of
			 * the event hardware. This happens at the end
			 * of this function anyway.
			 */
			if (timer->function(timer) != HRTIMER_NORESTART) {
				BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
				enqueue_hrtimer(timer, base, 0);
			}
			timer->state &= ~HRTIMER_STATE_CALLBACK;
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
		if (tick_program_event(expires_next, 0))
			goto retry;
	}

	/* Raise softirq ? */
	if (raise)
		raise_softirq(HRTIMER_SOFTIRQ);
}

static void run_hrtimer_softirq(struct softirq_action *h)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);

	spin_lock_irq(&cpu_base->lock);

	while (!list_empty(&cpu_base->cb_pending)) {
		enum hrtimer_restart (*fn)(struct hrtimer *);
		struct hrtimer *timer;
		int restart;

		timer = list_entry(cpu_base->cb_pending.next,
				   struct hrtimer, cb_entry);

1107 1108
		timer_stats_account_hrtimer(timer);

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		fn = timer->function;
		__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
		spin_unlock_irq(&cpu_base->lock);

		restart = fn(timer);

		spin_lock_irq(&cpu_base->lock);

		timer->state &= ~HRTIMER_STATE_CALLBACK;
		if (restart == HRTIMER_RESTART) {
			BUG_ON(hrtimer_active(timer));
			/*
			 * Enqueue the timer, allow reprogramming of the event
			 * device
			 */
			enqueue_hrtimer(timer, timer->base, 1);
		} else if (hrtimer_active(timer)) {
			/*
			 * If the timer was rearmed on another CPU, reprogram
			 * the event device.
			 */
			if (timer->base->first == &timer->node)
				hrtimer_reprogram(timer, timer->base);
		}
	}
	spin_unlock_irq(&cpu_base->lock);
}

#endif	/* CONFIG_HIGH_RES_TIMERS */

1139 1140 1141
/*
 * Expire the per base hrtimer-queue:
 */
1142 1143
static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
				     int index)
1144
{
1145
	struct rb_node *node;
1146
	struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1147

1148 1149 1150
	if (!base->first)
		return;

1151 1152 1153
	if (base->get_softirq_time)
		base->softirq_time = base->get_softirq_time();

1154
	spin_lock_irq(&cpu_base->lock);
1155

1156
	while ((node = base->first)) {
1157
		struct hrtimer *timer;
1158
		enum hrtimer_restart (*fn)(struct hrtimer *);
1159 1160
		int restart;

1161
		timer = rb_entry(node, struct hrtimer, node);
1162
		if (base->softirq_time.tv64 <= timer->expires.tv64)
1163 1164
			break;

1165 1166 1167
#ifdef CONFIG_HIGH_RES_TIMERS
		WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
#endif
1168 1169
		timer_stats_account_hrtimer(timer);

1170
		fn = timer->function;
1171
		__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1172
		spin_unlock_irq(&cpu_base->lock);
1173

1174
		restart = fn(timer);
1175

1176
		spin_lock_irq(&cpu_base->lock);
1177

1178
		timer->state &= ~HRTIMER_STATE_CALLBACK;
1179 1180
		if (restart != HRTIMER_NORESTART) {
			BUG_ON(hrtimer_active(timer));
1181
			enqueue_hrtimer(timer, base, 0);
1182
		}
1183
	}
1184
	spin_unlock_irq(&cpu_base->lock);
1185 1186 1187 1188
}

/*
 * Called from timer softirq every jiffy, expire hrtimers:
1189 1190 1191 1192
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
1193 1194 1195
 */
void hrtimer_run_queues(void)
{
1196
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1197 1198
	int i;

1199 1200 1201
	if (hrtimer_hres_active())
		return;

1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
1210
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1211 1212
		if (hrtimer_switch_to_hres())
			return;
1213

1214
	hrtimer_get_softirq_time(cpu_base);
1215

1216 1217
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		run_hrtimer_queue(cpu_base, i);
1218 1219
}

1220 1221 1222
/*
 * Sleep related functions:
 */
1223
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1236
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1237 1238 1239
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
1240 1241 1242
#ifdef CONFIG_HIGH_RES_TIMERS
	sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
#endif
1243 1244
}

1245
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1246
{
1247
	hrtimer_init_sleeper(t, current);
1248

1249 1250 1251 1252
	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start(&t->timer, t->timer.expires, mode);

1253 1254
		if (likely(t->task))
			schedule();
1255

1256
		hrtimer_cancel(&t->timer);
1257
		mode = HRTIMER_MODE_ABS;
1258 1259

	} while (t->task && !signal_pending(current));
1260

1261
	return t->task == NULL;
1262 1263
}

1264
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1265
{
1266
	struct hrtimer_sleeper t;
1267 1268
	struct timespec __user *rmtp;
	struct timespec tu;
1269
	ktime_t time;
1270 1271 1272

	restart->fn = do_no_restart_syscall;

1273
	hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1274
	t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1275

1276
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1277 1278
		return 0;

1279
	rmtp = (struct timespec __user *) restart->arg1;
1280 1281 1282 1283 1284 1285 1286 1287
	if (rmtp) {
		time = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (time.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(time);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1288

1289
	restart->fn = hrtimer_nanosleep_restart;
1290 1291 1292 1293 1294 1295 1296 1297 1298

	/* The other values in restart are already filled in */
	return -ERESTART_RESTARTBLOCK;
}

long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1299
	struct hrtimer_sleeper t;
1300 1301 1302
	struct timespec tu;
	ktime_t rem;

1303 1304 1305
	hrtimer_init(&t.timer, clockid, mode);
	t.timer.expires = timespec_to_ktime(*rqtp);
	if (do_nanosleep(&t, mode))
1306 1307
		return 0;

1308
	/* Absolute timers do not update the rmtp value and restart: */
1309
	if (mode == HRTIMER_MODE_ABS)
1310 1311
		return -ERESTARTNOHAND;

1312 1313 1314 1315 1316 1317 1318 1319
	if (rmtp) {
		rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
		if (rem.tv64 <= 0)
			return 0;
		tu = ktime_to_timespec(rem);
		if (copy_to_user(rmtp, &tu, sizeof(tu)))
			return -EFAULT;
	}
1320 1321

	restart = &current_thread_info()->restart_block;
1322 1323 1324 1325 1326
	restart->fn = hrtimer_nanosleep_restart;
	restart->arg0 = (unsigned long) t.timer.base->index;
	restart->arg1 = (unsigned long) rmtp;
	restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
	restart->arg3 = t.timer.expires.tv64 >> 32;
1327 1328 1329 1330

	return -ERESTART_RESTARTBLOCK;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
asmlinkage long
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
{
	struct timespec tu;

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1342
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1343 1344
}

1345 1346 1347 1348 1349
/*
 * Functions related to boot-time initialization:
 */
static void __devinit init_hrtimers_cpu(int cpu)
{
1350
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1351 1352
	int i;

1353 1354 1355 1356 1357 1358
	spin_lock_init(&cpu_base->lock);
	lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1359
	hrtimer_init_hres(cpu_base);
1360 1361 1362 1363
}

#ifdef CONFIG_HOTPLUG_CPU

1364 1365
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
				struct hrtimer_clock_base *new_base)
1366 1367 1368 1369 1370 1371
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1372 1373
		BUG_ON(hrtimer_callback_running(timer));
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1374
		timer->base = new_base;
1375 1376 1377 1378
		/*
		 * Enqueue the timer. Allow reprogramming of the event device
		 */
		enqueue_hrtimer(timer, new_base, 1);
1379 1380 1381 1382 1383
	}
}

static void migrate_hrtimers(int cpu)
{
1384
	struct hrtimer_cpu_base *old_base, *new_base;
1385 1386 1387
	int i;

	BUG_ON(cpu_online(cpu));
1388 1389
	old_base = &per_cpu(hrtimer_bases, cpu);
	new_base = &get_cpu_var(hrtimer_bases);
1390

1391 1392
	tick_cancel_sched_timer(cpu);

1393
	local_irq_disable();
1394 1395
	double_spin_lock(&new_base->lock, &old_base->lock,
			 smp_processor_id() < cpu);
1396

1397 1398 1399
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		migrate_hrtimer_list(&old_base->clock_base[i],
				     &new_base->clock_base[i]);
1400 1401
	}

1402 1403
	double_spin_unlock(&new_base->lock, &old_base->lock,
			   smp_processor_id() < cpu);
1404 1405 1406 1407 1408
	local_irq_enable();
	put_cpu_var(hrtimer_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1409
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1410 1411
					unsigned long action, void *hcpu)
{
1412
	unsigned int cpu = (long)hcpu;
1413 1414 1415 1416

	switch (action) {

	case CPU_UP_PREPARE:
1417
	case CPU_UP_PREPARE_FROZEN:
1418 1419 1420 1421 1422
		init_hrtimers_cpu(cpu);
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1423
	case CPU_DEAD_FROZEN:
1424
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		migrate_hrtimers(cpu);
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1436
static struct notifier_block __cpuinitdata hrtimers_nb = {
1437 1438 1439 1440 1441 1442 1443 1444
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1445 1446 1447
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
#endif
1448 1449
}