softfloat.c 266.7 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
E
Emilio G. Cota 已提交
86
#include <math.h>
A
Alex Bennée 已提交
87
#include "qemu/bitops.h"
88
#include "fpu/softfloat.h"
B
bellard 已提交
89

90 91
/* We only need stdlib for abort() */

B
bellard 已提交
92 93 94 95 96
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
97
#include "fpu/softfloat-macros.h"
B
bellard 已提交
98

E
Emilio G. Cota 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * Hardfloat
 *
 * Fast emulation of guest FP instructions is challenging for two reasons.
 * First, FP instruction semantics are similar but not identical, particularly
 * when handling NaNs. Second, emulating at reasonable speed the guest FP
 * exception flags is not trivial: reading the host's flags register with a
 * feclearexcept & fetestexcept pair is slow [slightly slower than soft-fp],
 * and trapping on every FP exception is not fast nor pleasant to work with.
 *
 * We address these challenges by leveraging the host FPU for a subset of the
 * operations. To do this we expand on the idea presented in this paper:
 *
 * Guo, Yu-Chuan, et al. "Translating the ARM Neon and VFP instructions in a
 * binary translator." Software: Practice and Experience 46.12 (2016):1591-1615.
 *
 * The idea is thus to leverage the host FPU to (1) compute FP operations
 * and (2) identify whether FP exceptions occurred while avoiding
 * expensive exception flag register accesses.
 *
 * An important optimization shown in the paper is that given that exception
 * flags are rarely cleared by the guest, we can avoid recomputing some flags.
 * This is particularly useful for the inexact flag, which is very frequently
 * raised in floating-point workloads.
 *
 * We optimize the code further by deferring to soft-fp whenever FP exception
 * detection might get hairy. Two examples: (1) when at least one operand is
 * denormal/inf/NaN; (2) when operands are not guaranteed to lead to a 0 result
 * and the result is < the minimum normal.
 */
#define GEN_INPUT_FLUSH__NOCHECK(name, soft_t)                          \
    static inline void name(soft_t *a, float_status *s)                 \
    {                                                                   \
        if (unlikely(soft_t ## _is_denormal(*a))) {                     \
            *a = soft_t ## _set_sign(soft_t ## _zero,                   \
                                     soft_t ## _is_neg(*a));            \
            s->float_exception_flags |= float_flag_input_denormal;      \
        }                                                               \
    }

GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32)
GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64)
#undef GEN_INPUT_FLUSH__NOCHECK

#define GEN_INPUT_FLUSH1(name, soft_t)                  \
    static inline void name(soft_t *a, float_status *s) \
    {                                                   \
        if (likely(!s->flush_inputs_to_zero)) {         \
            return;                                     \
        }                                               \
        soft_t ## _input_flush__nocheck(a, s);          \
    }

GEN_INPUT_FLUSH1(float32_input_flush1, float32)
GEN_INPUT_FLUSH1(float64_input_flush1, float64)
#undef GEN_INPUT_FLUSH1

#define GEN_INPUT_FLUSH2(name, soft_t)                                  \
    static inline void name(soft_t *a, soft_t *b, float_status *s)      \
    {                                                                   \
        if (likely(!s->flush_inputs_to_zero)) {                         \
            return;                                                     \
        }                                                               \
        soft_t ## _input_flush__nocheck(a, s);                          \
        soft_t ## _input_flush__nocheck(b, s);                          \
    }

GEN_INPUT_FLUSH2(float32_input_flush2, float32)
GEN_INPUT_FLUSH2(float64_input_flush2, float64)
#undef GEN_INPUT_FLUSH2

#define GEN_INPUT_FLUSH3(name, soft_t)                                  \
    static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \
    {                                                                   \
        if (likely(!s->flush_inputs_to_zero)) {                         \
            return;                                                     \
        }                                                               \
        soft_t ## _input_flush__nocheck(a, s);                          \
        soft_t ## _input_flush__nocheck(b, s);                          \
        soft_t ## _input_flush__nocheck(c, s);                          \
    }

GEN_INPUT_FLUSH3(float32_input_flush3, float32)
GEN_INPUT_FLUSH3(float64_input_flush3, float64)
#undef GEN_INPUT_FLUSH3

/*
 * Choose whether to use fpclassify or float32/64_* primitives in the generated
 * hardfloat functions. Each combination of number of inputs and float size
 * gets its own value.
 */
#if defined(__x86_64__)
# define QEMU_HARDFLOAT_1F32_USE_FP 0
# define QEMU_HARDFLOAT_1F64_USE_FP 1
# define QEMU_HARDFLOAT_2F32_USE_FP 0
# define QEMU_HARDFLOAT_2F64_USE_FP 1
# define QEMU_HARDFLOAT_3F32_USE_FP 0
# define QEMU_HARDFLOAT_3F64_USE_FP 1
#else
# define QEMU_HARDFLOAT_1F32_USE_FP 0
# define QEMU_HARDFLOAT_1F64_USE_FP 0
# define QEMU_HARDFLOAT_2F32_USE_FP 0
# define QEMU_HARDFLOAT_2F64_USE_FP 0
# define QEMU_HARDFLOAT_3F32_USE_FP 0
# define QEMU_HARDFLOAT_3F64_USE_FP 0
#endif

/*
 * QEMU_HARDFLOAT_USE_ISINF chooses whether to use isinf() over
 * float{32,64}_is_infinity when !USE_FP.
 * On x86_64/aarch64, using the former over the latter can yield a ~6% speedup.
 * On power64 however, using isinf() reduces fp-bench performance by up to 50%.
 */
#if defined(__x86_64__) || defined(__aarch64__)
# define QEMU_HARDFLOAT_USE_ISINF   1
#else
# define QEMU_HARDFLOAT_USE_ISINF   0
#endif

/*
 * Some targets clear the FP flags before most FP operations. This prevents
 * the use of hardfloat, since hardfloat relies on the inexact flag being
 * already set.
 */
#if defined(TARGET_PPC) || defined(__FAST_MATH__)
# if defined(__FAST_MATH__)
#  warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \
    IEEE implementation
# endif
# define QEMU_NO_HARDFLOAT 1
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN
#else
# define QEMU_NO_HARDFLOAT 0
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline))
#endif

static inline bool can_use_fpu(const float_status *s)
{
    if (QEMU_NO_HARDFLOAT) {
        return false;
    }
    return likely(s->float_exception_flags & float_flag_inexact &&
                  s->float_rounding_mode == float_round_nearest_even);
}

/*
 * Hardfloat generation functions. Each operation can have two flavors:
 * either using softfloat primitives (e.g. float32_is_zero_or_normal) for
 * most condition checks, or native ones (e.g. fpclassify).
 *
 * The flavor is chosen by the callers. Instead of using macros, we rely on the
 * compiler to propagate constants and inline everything into the callers.
 *
 * We only generate functions for operations with two inputs, since only
 * these are common enough to justify consolidating them into common code.
 */

typedef union {
    float32 s;
    float h;
} union_float32;

typedef union {
    float64 s;
    double h;
} union_float64;

typedef bool (*f32_check_fn)(union_float32 a, union_float32 b);
typedef bool (*f64_check_fn)(union_float64 a, union_float64 b);

typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s);
typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s);
typedef float   (*hard_f32_op2_fn)(float a, float b);
typedef double  (*hard_f64_op2_fn)(double a, double b);

/* 2-input is-zero-or-normal */
static inline bool f32_is_zon2(union_float32 a, union_float32 b)
{
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
        /*
         * Not using a temp variable for consecutive fpclassify calls ends up
         * generating faster code.
         */
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
    }
    return float32_is_zero_or_normal(a.s) &&
           float32_is_zero_or_normal(b.s);
}

static inline bool f64_is_zon2(union_float64 a, union_float64 b)
{
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
    }
    return float64_is_zero_or_normal(a.s) &&
           float64_is_zero_or_normal(b.s);
}

/* 3-input is-zero-or-normal */
static inline
bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c)
{
    if (QEMU_HARDFLOAT_3F32_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
    }
    return float32_is_zero_or_normal(a.s) &&
           float32_is_zero_or_normal(b.s) &&
           float32_is_zero_or_normal(c.s);
}

static inline
bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c)
{
    if (QEMU_HARDFLOAT_3F64_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
    }
    return float64_is_zero_or_normal(a.s) &&
           float64_is_zero_or_normal(b.s) &&
           float64_is_zero_or_normal(c.s);
}

static inline bool f32_is_inf(union_float32 a)
{
    if (QEMU_HARDFLOAT_USE_ISINF) {
        return isinf(a.h);
    }
    return float32_is_infinity(a.s);
}

static inline bool f64_is_inf(union_float64 a)
{
    if (QEMU_HARDFLOAT_USE_ISINF) {
        return isinf(a.h);
    }
    return float64_is_infinity(a.s);
}

/* Note: @fast_test and @post can be NULL */
static inline float32
float32_gen2(float32 xa, float32 xb, float_status *s,
             hard_f32_op2_fn hard, soft_f32_op2_fn soft,
             f32_check_fn pre, f32_check_fn post,
             f32_check_fn fast_test, soft_f32_op2_fn fast_op)
{
    union_float32 ua, ub, ur;

    ua.s = xa;
    ub.s = xb;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float32_input_flush2(&ua.s, &ub.s, s);
    if (unlikely(!pre(ua, ub))) {
        goto soft;
    }
    if (fast_test && fast_test(ua, ub)) {
        return fast_op(ua.s, ub.s, s);
    }

    ur.h = hard(ua.h, ub.h);
    if (unlikely(f32_is_inf(ur))) {
        s->float_exception_flags |= float_flag_overflow;
    } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
        if (post == NULL || post(ua, ub)) {
            goto soft;
        }
    }
    return ur.s;

 soft:
    return soft(ua.s, ub.s, s);
}

static inline float64
float64_gen2(float64 xa, float64 xb, float_status *s,
             hard_f64_op2_fn hard, soft_f64_op2_fn soft,
             f64_check_fn pre, f64_check_fn post,
             f64_check_fn fast_test, soft_f64_op2_fn fast_op)
{
    union_float64 ua, ub, ur;

    ua.s = xa;
    ub.s = xb;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float64_input_flush2(&ua.s, &ub.s, s);
    if (unlikely(!pre(ua, ub))) {
        goto soft;
    }
    if (fast_test && fast_test(ua, ub)) {
        return fast_op(ua.s, ub.s, s);
    }

    ur.h = hard(ua.h, ub.h);
    if (unlikely(f64_is_inf(ur))) {
        s->float_exception_flags |= float_flag_overflow;
    } else if (unlikely(fabs(ur.h) <= DBL_MIN)) {
        if (post == NULL || post(ua, ub)) {
            goto soft;
        }
    }
    return ur.s;

 soft:
    return soft(ua.s, ub.s, s);
}

417 418 419 420
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

421
static inline uint32_t extractFloat16Frac(float16 a)
422 423 424 425 426 427 428 429
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

430
static inline int extractFloat16Exp(float16 a)
431 432 433 434
{
    return (float16_val(a) >> 10) & 0x1f;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
} FloatClass;

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/* Simple helpers for checking if, or what kind of, NaN we have */
static inline __attribute__((unused)) bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}

static inline __attribute__((unused)) bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}

static inline __attribute__((unused)) bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
549
 *   frac_lsbm1: the bit below the least significant bit (for rounding)
550
 *   round_mask/roundeven_mask: masks used for rounding
551 552
 * The following optional modifiers are available:
 *   arm_althp: handle ARM Alternative Half Precision
553 554 555 556 557 558 559 560 561 562 563
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
564
    bool arm_althp;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

583 584 585 586 587
static const FloatFmt float16_params_ahp = {
    FLOAT_PARAMS(5, 10),
    .arm_althp = true
};

588 589 590 591 592 593 594 595
static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

647 648 649 650 651 652 653 654 655 656
/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

A
Alex Bennée 已提交
657
/* Canonicalize EXP and FRAC, setting CLS.  */
658 659
static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm,
                                  float_status *status)
A
Alex Bennée 已提交
660
{
661
    if (part.exp == parm->exp_max && !parm->arm_althp) {
A
Alex Bennée 已提交
662 663 664
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
665
            part.frac <<= parm->frac_shift;
666 667
            part.cls = (parts_is_snan_frac(part.frac, status)
                        ? float_class_snan : float_class_qnan);
A
Alex Bennée 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

750 751 752 753 754 755 756 757 758
            if (parm->arm_althp) {
                /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
                if (unlikely(exp > exp_max)) {
                    /* Overflow.  Return the maximum normal.  */
                    flags = float_flag_invalid;
                    exp = exp_max;
                    frac = -1;
                }
            } else if (unlikely(exp >= exp_max)) {
A
Alex Bennée 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
809
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
810 811 812 813 814 815
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
816
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
817
        exp = exp_max;
818
        frac >>= parm->frac_shift;
A
Alex Bennée 已提交
819 820 821 822 823 824 825 826 827 828 829 830
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

831 832 833 834
/* Explicit FloatFmt version */
static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
                                            const FloatFmt *params)
{
835
    return sf_canonicalize(float16_unpack_raw(f), params, s);
836 837
}

A
Alex Bennée 已提交
838 839
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
840 841 842 843 844 845 846
    return float16a_unpack_canonical(f, s, &float16_params);
}

static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
                                             const FloatFmt *params)
{
    return float16_pack_raw(round_canonical(p, s, params));
A
Alex Bennée 已提交
847 848 849 850
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
851
    return float16a_round_pack_canonical(p, s, &float16_params);
A
Alex Bennée 已提交
852 853 854 855
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
856
    return sf_canonicalize(float32_unpack_raw(f), &float32_params, s);
A
Alex Bennée 已提交
857 858 859 860
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
861
    return float32_pack_raw(round_canonical(p, s, &float32_params));
A
Alex Bennée 已提交
862 863 864 865
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
866
    return sf_canonicalize(float64_unpack_raw(f), &float64_params, s);
A
Alex Bennée 已提交
867 868 869 870
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
871
    return float64_pack_raw(round_canonical(p, s, &float64_params));
A
Alex Bennée 已提交
872 873
}

874 875 876 877 878
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
879
        a = parts_silence_nan(a, s);
880 881 882
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
883
            return parts_default_nan(s);
884 885 886 887 888 889 890 891 892
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
893 894 895 896 897 898 899
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
900
        return parts_default_nan(s);
A
Alex Bennée 已提交
901
    } else {
902
        if (pickNaN(a.cls, b.cls,
A
Alex Bennée 已提交
903 904 905 906
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
907 908 909
        if (is_snan(a.cls)) {
            return parts_silence_nan(a, s);
        }
A
Alex Bennée 已提交
910 911 912 913
    }
    return a;
}

A
Alex Bennée 已提交
914 915 916
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
917 918
    int which;

A
Alex Bennée 已提交
919 920 921 922
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

923
    which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
924

A
Alex Bennée 已提交
925
    if (s->default_nan_mode) {
926 927 928
        /* Note that this check is after pickNaNMulAdd so that function
         * has an opportunity to set the Invalid flag.
         */
929
        which = 3;
930
    }
A
Alex Bennée 已提交
931

932 933 934 935 936 937 938 939 940 941
    switch (which) {
    case 0:
        break;
    case 1:
        a = b;
        break;
    case 2:
        a = c;
        break;
    case 3:
942
        return parts_default_nan(s);
943 944
    default:
        g_assert_not_reached();
A
Alex Bennée 已提交
945
    }
946

947 948 949
    if (is_snan(a.cls)) {
        return parts_silence_nan(a, s);
    }
A
Alex Bennée 已提交
950 951 952
    return a;
}

A
Alex Bennée 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
997
                return parts_default_nan(s);
A
Alex Bennée 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
1023
                shift64RightJamming(a.frac, 1, &a.frac);
A
Alex Bennée 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

1048
float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
1049 1050 1051 1052 1053 1054 1055 1056
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

static float32 QEMU_SOFTFLOAT_ATTR
soft_f32_addsub(float32 a, float32 b, bool subtract, float_status *status)
A
Alex Bennée 已提交
1068 1069 1070
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
1071
    FloatParts pr = addsub_floats(pa, pb, subtract, status);
A
Alex Bennée 已提交
1072 1073 1074 1075

    return float32_round_pack_canonical(pr, status);
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static inline float32 soft_f32_add(float32 a, float32 b, float_status *status)
{
    return soft_f32_addsub(a, b, false, status);
}

static inline float32 soft_f32_sub(float32 a, float32 b, float_status *status)
{
    return soft_f32_addsub(a, b, true, status);
}

static float64 QEMU_SOFTFLOAT_ATTR
soft_f64_addsub(float64 a, float64 b, bool subtract, float_status *status)
A
Alex Bennée 已提交
1088 1089 1090
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
1091
    FloatParts pr = addsub_floats(pa, pb, subtract, status);
A
Alex Bennée 已提交
1092 1093 1094 1095

    return float64_round_pack_canonical(pr, status);
}

1096
static inline float64 soft_f64_add(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1097
{
1098 1099
    return soft_f64_addsub(a, b, false, status);
}
A
Alex Bennée 已提交
1100

1101 1102 1103
static inline float64 soft_f64_sub(float64 a, float64 b, float_status *status)
{
    return soft_f64_addsub(a, b, true, status);
A
Alex Bennée 已提交
1104 1105
}

1106
static float hard_f32_add(float a, float b)
A
Alex Bennée 已提交
1107
{
1108 1109
    return a + b;
}
A
Alex Bennée 已提交
1110

1111 1112 1113
static float hard_f32_sub(float a, float b)
{
    return a - b;
A
Alex Bennée 已提交
1114 1115
}

1116
static double hard_f64_add(double a, double b)
A
Alex Bennée 已提交
1117
{
1118 1119
    return a + b;
}
A
Alex Bennée 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static double hard_f64_sub(double a, double b)
{
    return a - b;
}

static bool f32_addsub_post(union_float32 a, union_float32 b)
{
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
        return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
    }
    return !(float32_is_zero(a.s) && float32_is_zero(b.s));
}

static bool f64_addsub_post(union_float64 a, union_float64 b)
{
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
        return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
    } else {
        return !(float64_is_zero(a.s) && float64_is_zero(b.s));
    }
}

static float32 float32_addsub(float32 a, float32 b, float_status *s,
                              hard_f32_op2_fn hard, soft_f32_op2_fn soft)
{
    return float32_gen2(a, b, s, hard, soft,
                        f32_is_zon2, f32_addsub_post, NULL, NULL);
}

static float64 float64_addsub(float64 a, float64 b, float_status *s,
                              hard_f64_op2_fn hard, soft_f64_op2_fn soft)
{
    return float64_gen2(a, b, s, hard, soft,
                        f64_is_zon2, f64_addsub_post, NULL, NULL);
}

float32 QEMU_FLATTEN
float32_add(float32 a, float32 b, float_status *s)
{
    return float32_addsub(a, b, s, hard_f32_add, soft_f32_add);
}

float32 QEMU_FLATTEN
float32_sub(float32 a, float32 b, float_status *s)
{
    return float32_addsub(a, b, s, hard_f32_sub, soft_f32_sub);
}

float64 QEMU_FLATTEN
float64_add(float64 a, float64 b, float_status *s)
{
    return float64_addsub(a, b, s, hard_f64_add, soft_f64_add);
}

float64 QEMU_FLATTEN
float64_sub(float64 a, float64 b, float_status *s)
{
    return float64_addsub(a, b, s, hard_f64_sub, soft_f64_sub);
A
Alex Bennée 已提交
1179 1180
}

A
Alex Bennée 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
1216
        return parts_default_nan(s);
A
Alex Bennée 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

1230
float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
1231 1232 1233 1234 1235 1236 1237 1238
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

1239 1240
static float32 QEMU_SOFTFLOAT_ATTR
soft_f32_mul(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
1241 1242 1243 1244 1245 1246 1247 1248
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

1249 1250
static float64 QEMU_SOFTFLOAT_ATTR
soft_f64_mul(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1251 1252 1253 1254 1255 1256 1257 1258
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static float hard_f32_mul(float a, float b)
{
    return a * b;
}

static double hard_f64_mul(double a, double b)
{
    return a * b;
}

static bool f32_mul_fast_test(union_float32 a, union_float32 b)
{
    return float32_is_zero(a.s) || float32_is_zero(b.s);
}

static bool f64_mul_fast_test(union_float64 a, union_float64 b)
{
    return float64_is_zero(a.s) || float64_is_zero(b.s);
}

static float32 f32_mul_fast_op(float32 a, float32 b, float_status *s)
{
    bool signbit = float32_is_neg(a) ^ float32_is_neg(b);

    return float32_set_sign(float32_zero, signbit);
}

static float64 f64_mul_fast_op(float64 a, float64 b, float_status *s)
{
    bool signbit = float64_is_neg(a) ^ float64_is_neg(b);

    return float64_set_sign(float64_zero, signbit);
}

float32 QEMU_FLATTEN
float32_mul(float32 a, float32 b, float_status *s)
{
    return float32_gen2(a, b, s, hard_f32_mul, soft_f32_mul,
                        f32_is_zon2, NULL, f32_mul_fast_test, f32_mul_fast_op);
}

float64 QEMU_FLATTEN
float64_mul(float64 a, float64 b, float_status *s)
{
    return float64_gen2(a, b, s, hard_f64_mul, soft_f64_mul,
                        f64_is_zon2, NULL, f64_mul_fast_test, f64_mul_fast_op);
}

A
Alex Bennée 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
1341
        return parts_default_nan(s);
A
Alex Bennée 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
1365
            return parts_default_nan(s);
A
Alex Bennée 已提交
1366 1367 1368
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
1369
            return a;
A
Alex Bennée 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        }
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

1510
float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c,
A
Alex Bennée 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

1521 1522 1523
static float32 QEMU_SOFTFLOAT_ATTR
soft_f32_muladd(float32 a, float32 b, float32 c, int flags,
                float_status *status)
A
Alex Bennée 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

1533 1534 1535
static float64 QEMU_SOFTFLOAT_ATTR
soft_f64_muladd(float64 a, float64 b, float64 c, int flags,
                float_status *status)
A
Alex Bennée 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
float32 QEMU_FLATTEN
float32_muladd(float32 xa, float32 xb, float32 xc, int flags, float_status *s)
{
    union_float32 ua, ub, uc, ur;

    ua.s = xa;
    ub.s = xb;
    uc.s = xc;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }
    if (unlikely(flags & float_muladd_halve_result)) {
        goto soft;
    }

    float32_input_flush3(&ua.s, &ub.s, &uc.s, s);
    if (unlikely(!f32_is_zon3(ua, ub, uc))) {
        goto soft;
    }
    /*
     * When (a || b) == 0, there's no need to check for under/over flow,
     * since we know the addend is (normal || 0) and the product is 0.
     */
    if (float32_is_zero(ua.s) || float32_is_zero(ub.s)) {
        union_float32 up;
        bool prod_sign;

        prod_sign = float32_is_neg(ua.s) ^ float32_is_neg(ub.s);
        prod_sign ^= !!(flags & float_muladd_negate_product);
        up.s = float32_set_sign(float32_zero, prod_sign);

        if (flags & float_muladd_negate_c) {
            uc.h = -uc.h;
        }
        ur.h = up.h + uc.h;
    } else {
        if (flags & float_muladd_negate_product) {
            ua.h = -ua.h;
        }
        if (flags & float_muladd_negate_c) {
            uc.h = -uc.h;
        }

        ur.h = fmaf(ua.h, ub.h, uc.h);

        if (unlikely(f32_is_inf(ur))) {
            s->float_exception_flags |= float_flag_overflow;
        } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
            goto soft;
        }
    }
    if (flags & float_muladd_negate_result) {
        return float32_chs(ur.s);
    }
    return ur.s;

 soft:
    return soft_f32_muladd(ua.s, ub.s, uc.s, flags, s);
}

float64 QEMU_FLATTEN
float64_muladd(float64 xa, float64 xb, float64 xc, int flags, float_status *s)
{
    union_float64 ua, ub, uc, ur;

    ua.s = xa;
    ub.s = xb;
    uc.s = xc;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }
    if (unlikely(flags & float_muladd_halve_result)) {
        goto soft;
    }

    float64_input_flush3(&ua.s, &ub.s, &uc.s, s);
    if (unlikely(!f64_is_zon3(ua, ub, uc))) {
        goto soft;
    }
    /*
     * When (a || b) == 0, there's no need to check for under/over flow,
     * since we know the addend is (normal || 0) and the product is 0.
     */
    if (float64_is_zero(ua.s) || float64_is_zero(ub.s)) {
        union_float64 up;
        bool prod_sign;

        prod_sign = float64_is_neg(ua.s) ^ float64_is_neg(ub.s);
        prod_sign ^= !!(flags & float_muladd_negate_product);
        up.s = float64_set_sign(float64_zero, prod_sign);

        if (flags & float_muladd_negate_c) {
            uc.h = -uc.h;
        }
        ur.h = up.h + uc.h;
    } else {
        if (flags & float_muladd_negate_product) {
            ua.h = -ua.h;
        }
        if (flags & float_muladd_negate_c) {
            uc.h = -uc.h;
        }

        ur.h = fma(ua.h, ub.h, uc.h);

        if (unlikely(f64_is_inf(ur))) {
            s->float_exception_flags |= float_flag_overflow;
        } else if (unlikely(fabs(ur.h) <= FLT_MIN)) {
            goto soft;
        }
    }
    if (flags & float_muladd_negate_result) {
        return float64_chs(ur.s);
    }
    return ur.s;

 soft:
    return soft_f64_muladd(ua.s, ub.s, uc.s, flags, s);
}

A
Alex Bennée 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
R
Richard Henderson 已提交
1678
        uint64_t n0, n1, q, r;
A
Alex Bennée 已提交
1679
        int exp = a.exp - b.exp;
R
Richard Henderson 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

        /*
         * We want a 2*N / N-bit division to produce exactly an N-bit
         * result, so that we do not lose any precision and so that we
         * do not have to renormalize afterward.  If A.frac < B.frac,
         * then division would produce an (N-1)-bit result; shift A left
         * by one to produce the an N-bit result, and decrement the
         * exponent to match.
         *
         * The udiv_qrnnd algorithm that we're using requires normalization,
         * i.e. the msb of the denominator must be set.  Since we know that
         * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left
         * by one (more), and the remainder must be shifted right by one.
         */
A
Alex Bennée 已提交
1694 1695
        if (a.frac < b.frac) {
            exp -= 1;
R
Richard Henderson 已提交
1696
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
A
Alex Bennée 已提交
1697
        } else {
R
Richard Henderson 已提交
1698
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
A
Alex Bennée 已提交
1699
        }
R
Richard Henderson 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        q = udiv_qrnnd(&r, n1, n0, b.frac << 1);

        /*
         * Set lsb if there is a remainder, to set inexact.
         * As mentioned above, to find the actual value of the remainder we
         * would need to shift right, but (1) we are only concerned about
         * non-zero-ness, and (2) the remainder will always be even because
         * both inputs to the division primitive are even.
         */
        a.frac = q | (r != 0);
A
Alex Bennée 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
1723
        return parts_default_nan(s);
A
Alex Bennée 已提交
1724
    }
1725 1726 1727 1728 1729
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
A
Alex Bennée 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

1755 1756
static float32 QEMU_SOFTFLOAT_ATTR
soft_f32_div(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
1757 1758 1759 1760 1761 1762 1763 1764
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

1765 1766
static float64 QEMU_SOFTFLOAT_ATTR
soft_f64_div(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1767 1768 1769 1770 1771 1772 1773 1774
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static float hard_f32_div(float a, float b)
{
    return a / b;
}

static double hard_f64_div(double a, double b)
{
    return a / b;
}

static bool f32_div_pre(union_float32 a, union_float32 b)
{
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               fpclassify(b.h) == FP_NORMAL;
    }
    return float32_is_zero_or_normal(a.s) && float32_is_normal(b.s);
}

static bool f64_div_pre(union_float64 a, union_float64 b)
{
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               fpclassify(b.h) == FP_NORMAL;
    }
    return float64_is_zero_or_normal(a.s) && float64_is_normal(b.s);
}

static bool f32_div_post(union_float32 a, union_float32 b)
{
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
        return fpclassify(a.h) != FP_ZERO;
    }
    return !float32_is_zero(a.s);
}

static bool f64_div_post(union_float64 a, union_float64 b)
{
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
        return fpclassify(a.h) != FP_ZERO;
    }
    return !float64_is_zero(a.s);
}

float32 QEMU_FLATTEN
float32_div(float32 a, float32 b, float_status *s)
{
    return float32_gen2(a, b, s, hard_f32_div, soft_f32_div,
                        f32_div_pre, f32_div_post, NULL, NULL);
}

float64 QEMU_FLATTEN
float64_div(float64 a, float64 b, float_status *s)
{
    return float64_gen2(a, b, s, hard_f64_div, soft_f64_div,
                        f64_div_pre, f64_div_post, NULL, NULL);
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
/*
 * Float to Float conversions
 *
 * Returns the result of converting one float format to another. The
 * conversion is performed according to the IEC/IEEE Standard for
 * Binary Floating-Point Arithmetic.
 *
 * The float_to_float helper only needs to take care of raising
 * invalid exceptions and handling the conversion on NaNs.
 */

static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
                                 float_status *s)
{
    if (dstf->arm_althp) {
        switch (a.cls) {
        case float_class_qnan:
        case float_class_snan:
            /* There is no NaN in the destination format.  Raise Invalid
             * and return a zero with the sign of the input NaN.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_zero;
            a.frac = 0;
            a.exp = 0;
            break;

        case float_class_inf:
            /* There is no Inf in the destination format.  Raise Invalid
             * and return the maximum normal with the correct sign.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_normal;
            a.exp = dstf->exp_max;
            a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
            break;

        default:
            break;
        }
    } else if (is_nan(a.cls)) {
        if (is_snan(a.cls)) {
            s->float_exception_flags |= float_flag_invalid;
            a = parts_silence_nan(a, s);
        }
        if (s->default_nan_mode) {
            return parts_default_nan(s);
        }
    }
    return a;
}

float32 float16_to_float32(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float16_to_float64(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float32_to_float16(float32 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float64 float32_to_float64(float32 a, float_status *s)
{
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float64_to_float16(float64 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float32 float64_to_float32(float64 a, float_status *s)
{
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

1931 1932 1933 1934 1935 1936 1937
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

1938 1939
static FloatParts round_to_int(FloatParts a, int rmode,
                               int scale, float_status *s)
1940
{
1941 1942 1943
    switch (a.cls) {
    case float_class_qnan:
    case float_class_snan:
1944 1945 1946 1947 1948 1949
        return return_nan(a, s);

    case float_class_zero:
    case float_class_inf:
        /* already "integral" */
        break;
1950

1951
    case float_class_normal:
1952 1953 1954
        scale = MIN(MAX(scale, -0x10000), 0x10000);
        a.exp += scale;

1955 1956 1957 1958 1959 1960 1961 1962
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
1963
            switch (rmode) {
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

1996
            switch (rmode) {
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
2036
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
2037 2038 2039 2040 2041 2042
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
2043
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
2044 2045 2046 2047 2048 2049
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
2050
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
2051 2052 2053
    return float64_round_pack_canonical(pr, s);
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

2065
static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
2066 2067 2068 2069 2070
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
2071
    FloatParts p = round_to_int(in, rmode, scale, s);
2072 2073 2074 2075

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
2076
        s->float_exception_flags = orig_flags | float_flag_invalid;
2077 2078
        return max;
    case float_class_inf:
2079
        s->float_exception_flags = orig_flags | float_flag_invalid;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
2092
            if (r <= -(uint64_t) min) {
2093 2094 2095 2096 2097 2098
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
2099
            if (r <= max) {
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float16_to_int16(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float16_to_int32(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float16_to_int64(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float32_to_int16(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float32_to_int32(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float32_to_int64(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float64_to_int16(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float64_to_int32(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float64_to_int64(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float16_to_int16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, float_round_to_zero, 0, s);
}

int32_t float16_to_int32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float16_to_int64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, float_round_to_zero, 0, s);
2232 2233
}

2234 2235 2236 2237
int16_t float32_to_int16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
int32_t float32_to_int32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float32_to_int64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, float_round_to_zero, 0, s);
}

int16_t float64_to_int16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
2253

2254 2255 2256 2257
int32_t float64_to_int32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, float_round_to_zero, 0, s);
}
2258

2259 2260 2261 2262
int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, float_round_to_zero, 0, s);
}
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

2277 2278
static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
                                       uint64_t max, float_status *s)
2279 2280
{
    int orig_flags = get_float_exception_flags(s);
2281 2282
    FloatParts p = round_to_int(in, rmode, scale, s);
    uint64_t r;
2283 2284 2285 2286 2287 2288 2289

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
2290
        s->float_exception_flags = orig_flags | float_flag_invalid;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }
2317
        return r;
2318 2319 2320 2321 2322
    default:
        g_assert_not_reached();
    }
}

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float16_to_uint16(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float16_to_uint32(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float16_to_uint64(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float32_to_uint16(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float32_to_uint32(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float32_to_uint64(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float64_to_uint16(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float64_to_uint32(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float64_to_uint64(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}
2475

2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

2484
static FloatParts int_to_float(int64_t a, int scale, float_status *status)
2485
{
2486 2487
    FloatParts r = { .sign = false };

2488 2489 2490
    if (a == 0) {
        r.cls = float_class_zero;
    } else {
2491 2492 2493 2494
        uint64_t f = a;
        int shift;

        r.cls = float_class_normal;
2495
        if (a < 0) {
2496
            f = -f;
2497 2498
            r.sign = true;
        }
2499 2500 2501 2502 2503
        shift = clz64(f) - 1;
        scale = MIN(MAX(scale, -0x10000), 0x10000);

        r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
        r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift);
2504 2505 2506 2507 2508
    }

    return r;
}

2509
float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
2510
{
2511
    FloatParts pa = int_to_float(a, scale, status);
2512 2513 2514
    return float16_round_pack_canonical(pa, status);
}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    return int64_to_float16_scalbn(a, 0, status);
}

2530 2531
float16 int32_to_float16(int32_t a, float_status *status)
{
2532
    return int64_to_float16_scalbn(a, 0, status);
2533 2534 2535 2536
}

float16 int16_to_float16(int16_t a, float_status *status)
{
2537
    return int64_to_float16_scalbn(a, 0, status);
2538 2539
}

2540
float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
2541
{
2542
    FloatParts pa = int_to_float(a, scale, status);
2543 2544 2545
    return float32_round_pack_canonical(pa, status);
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    return int64_to_float32_scalbn(a, 0, status);
}

2561 2562
float32 int32_to_float32(int32_t a, float_status *status)
{
2563
    return int64_to_float32_scalbn(a, 0, status);
2564 2565 2566 2567
}

float32 int16_to_float32(int16_t a, float_status *status)
{
2568
    return int64_to_float32_scalbn(a, 0, status);
2569 2570
}

2571
float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
2572
{
2573
    FloatParts pa = int_to_float(a, scale, status);
2574 2575 2576
    return float64_round_pack_canonical(pa, status);
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    return int64_to_float64_scalbn(a, 0, status);
}

2592 2593
float64 int32_to_float64(int32_t a, float_status *status)
{
2594
    return int64_to_float64_scalbn(a, 0, status);
2595 2596 2597 2598
}

float64 int16_to_float64(int16_t a, float_status *status)
{
2599
    return int64_to_float64_scalbn(a, 0, status);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

2611
static FloatParts uint_to_float(uint64_t a, int scale, float_status *status)
2612
{
2613
    FloatParts r = { .sign = false };
2614 2615 2616 2617

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
2618
        scale = MIN(MAX(scale, -0x10000), 0x10000);
2619
        r.cls = float_class_normal;
2620 2621 2622
        if ((int64_t)a < 0) {
            r.exp = DECOMPOSED_BINARY_POINT + 1 + scale;
            shift64RightJamming(a, 1, &a);
2623 2624
            r.frac = a;
        } else {
2625 2626 2627
            int shift = clz64(a) - 1;
            r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
            r.frac = a << shift;
2628 2629 2630 2631 2632 2633
        }
    }

    return r;
}

2634
float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status)
2635
{
2636
    FloatParts pa = uint_to_float(a, scale, status);
2637 2638 2639
    return float16_round_pack_canonical(pa, status);
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    return uint64_to_float16_scalbn(a, 0, status);
}

2655 2656
float16 uint32_to_float16(uint32_t a, float_status *status)
{
2657
    return uint64_to_float16_scalbn(a, 0, status);
2658 2659 2660 2661
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
2662
    return uint64_to_float16_scalbn(a, 0, status);
2663 2664
}

2665
float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status)
2666
{
2667
    FloatParts pa = uint_to_float(a, scale, status);
2668 2669 2670
    return float32_round_pack_canonical(pa, status);
}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    return uint64_to_float32_scalbn(a, 0, status);
}

2686 2687
float32 uint32_to_float32(uint32_t a, float_status *status)
{
2688
    return uint64_to_float32_scalbn(a, 0, status);
2689 2690 2691 2692
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
2693
    return uint64_to_float32_scalbn(a, 0, status);
2694 2695
}

2696
float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status)
2697
{
2698
    FloatParts pa = uint_to_float(a, scale, status);
2699 2700 2701
    return float64_round_pack_canonical(pa, status);
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    return uint64_to_float64_scalbn(a, 0, status);
}

2717 2718
float64 uint32_to_float64(uint32_t a, float_status *status)
{
2719
    return uint64_to_float64_scalbn(a, 0, status);
2720 2721 2722 2723
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
2724
    return uint64_to_float64_scalbn(a, 0, status);
2725 2726
}

A
Alex Bennée 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

2794 2795 2796 2797 2798 2799
        if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2800 2801
        }

2802
        if (a.sign == b.sign) {
A
Alex Bennée 已提交
2803 2804 2805 2806
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
2807
            return a.sign ^ a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2808
        } else {
2809
            return a.sign ^ ismin ? b : a;
A
Alex Bennée 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
2928 2929 2930 2931 2932 2933 2934
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
2935 2936 2937 2938 2939 2940
        /* The largest float type (even though not supported by FloatParts)
         * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
         * still allows rounding to infinity, without allowing overflow
         * within the int32_t that backs FloatParts.exp.
         */
        n = MIN(MAX(n, -0x10000), 0x10000);
A
Alex Bennée 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
/*
 * Square Root
 *
 * The old softfloat code did an approximation step before zeroing in
 * on the final result. However for simpleness we just compute the
 * square root by iterating down from the implicit bit to enough extra
 * bits to ensure we get a correctly rounded result.
 *
 * This does mean however the calculation is slower than before,
 * especially for 64 bit floats.
 */

static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
{
    uint64_t a_frac, r_frac, s_frac;
    int bit, last_bit;

    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_zero) {
        return a;  /* sqrt(+-0) = +-0 */
    }
    if (a.sign) {
        s->float_exception_flags |= float_flag_invalid;
2992
        return parts_default_nan(s);
A
Alex Bennée 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
    }
    if (a.cls == float_class_inf) {
        return a;  /* sqrt(+inf) = +inf */
    }

    assert(a.cls == float_class_normal);

    /* We need two overflow bits at the top. Adding room for that is a
     * right shift. If the exponent is odd, we can discard the low bit
     * by multiplying the fraction by 2; that's a left shift. Combine
     * those and we shift right if the exponent is even.
     */
    a_frac = a.frac;
    if (!(a.exp & 1)) {
        a_frac >>= 1;
    }
    a.exp >>= 1;

    /* Bit-by-bit computation of sqrt.  */
    r_frac = 0;
    s_frac = 0;

    /* Iterate from implicit bit down to the 3 extra bits to compute a
     * properly rounded result. Remember we've inserted one more bit
     * at the top, so these positions are one less.
     */
    bit = DECOMPOSED_BINARY_POINT - 1;
    last_bit = MAX(p->frac_shift - 4, 0);
    do {
        uint64_t q = 1ULL << bit;
        uint64_t t_frac = s_frac + q;
        if (t_frac <= a_frac) {
            s_frac = t_frac + q;
            a_frac -= t_frac;
            r_frac += q;
        }
        a_frac <<= 1;
    } while (--bit >= last_bit);

    /* Undo the right shift done above. If there is any remaining
     * fraction, the result is inexact. Set the sticky bit.
     */
    a.frac = (r_frac << 1) + (a_frac != 0);

    return a;
}

3040
float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status)
A
Alex Bennée 已提交
3041 3042 3043 3044 3045 3046
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float16_params);
    return float16_round_pack_canonical(pr, status);
}

3047 3048
static float32 QEMU_SOFTFLOAT_ATTR
soft_f32_sqrt(float32 a, float_status *status)
A
Alex Bennée 已提交
3049 3050 3051 3052 3053 3054
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float32_params);
    return float32_round_pack_canonical(pr, status);
}

3055 3056
static float64 QEMU_SOFTFLOAT_ATTR
soft_f64_sqrt(float64 a, float_status *status)
A
Alex Bennée 已提交
3057 3058 3059 3060 3061 3062
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float64_params);
    return float64_round_pack_canonical(pr, status);
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
float32 QEMU_FLATTEN float32_sqrt(float32 xa, float_status *s)
{
    union_float32 ua, ur;

    ua.s = xa;
    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float32_input_flush1(&ua.s, s);
    if (QEMU_HARDFLOAT_1F32_USE_FP) {
        if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
                       fpclassify(ua.h) == FP_ZERO) ||
                     signbit(ua.h))) {
            goto soft;
        }
    } else if (unlikely(!float32_is_zero_or_normal(ua.s) ||
                        float32_is_neg(ua.s))) {
        goto soft;
    }
    ur.h = sqrtf(ua.h);
    return ur.s;

 soft:
    return soft_f32_sqrt(ua.s, s);
}

float64 QEMU_FLATTEN float64_sqrt(float64 xa, float_status *s)
{
    union_float64 ua, ur;

    ua.s = xa;
    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float64_input_flush1(&ua.s, s);
    if (QEMU_HARDFLOAT_1F64_USE_FP) {
        if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
                       fpclassify(ua.h) == FP_ZERO) ||
                     signbit(ua.h))) {
            goto soft;
        }
    } else if (unlikely(!float64_is_zero_or_normal(ua.s) ||
                        float64_is_neg(ua.s))) {
        goto soft;
    }
    ur.h = sqrt(ua.h);
    return ur.s;

 soft:
    return soft_f64_sqrt(ua.s, s);
}

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
/*----------------------------------------------------------------------------
| The pattern for a default generated NaN.
*----------------------------------------------------------------------------*/

float16 float16_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

float128 float128_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    float128 r;

    /* Extrapolate from the choices made by parts_default_nan to fill
     * in the quad-floating format.  If the low bit is set, assume we
     * want to set all non-snan bits.
     */
    r.low = -(p.frac & 1);
    r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
    r.high |= LIT64(0x7FFF000000000000);
    r.high |= (uint64_t)p.sign << 63;

    return r;
}
A
Alex Bennée 已提交
3158

B
bellard 已提交
3159
/*----------------------------------------------------------------------------
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
| Returns a quiet NaN from a signalling NaN for the floating point value `a'.
*----------------------------------------------------------------------------*/

float16 float16_silence_nan(float16 a, float_status *status)
{
    FloatParts p = float16_unpack_raw(a);
    p.frac <<= float16_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_silence_nan(float32 a, float_status *status)
{
    FloatParts p = float32_unpack_raw(a);
    p.frac <<= float32_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_silence_nan(float64 a, float_status *status)
{
    FloatParts p = float64_unpack_raw(a);
    p.frac <<= float64_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

/*----------------------------------------------------------------------------
B
bellard 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

3201
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
3202
{
3203
    int8_t roundingMode;
B
bellard 已提交
3204
    flag roundNearestEven;
3205
    int8_t roundIncrement, roundBits;
3206
    int32_t z;
B
bellard 已提交
3207

3208
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3209
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3210 3211
    switch (roundingMode) {
    case float_round_nearest_even:
3212
    case float_round_ties_away:
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
3226 3227 3228 3229 3230 3231 3232
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
3233
        float_raise(float_flag_invalid, status);
3234
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
3235
    }
3236 3237 3238
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

3255
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
3256
                               float_status *status)
B
bellard 已提交
3257
{
3258
    int8_t roundingMode;
B
bellard 已提交
3259
    flag roundNearestEven, increment;
3260
    int64_t z;
B
bellard 已提交
3261

3262
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3263
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3264 3265
    switch (roundingMode) {
    case float_round_nearest_even:
3266
    case float_round_ties_away:
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
3280 3281 3282 3283
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
3284
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
3285 3286 3287 3288 3289
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
3290
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3291
        return
3292
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
3293 3294
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
3295 3296 3297
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3298 3299 3300 3301
    return z;

}

T
Tom Musta 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

3312
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
3313
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
3314
{
3315
    int8_t roundingMode;
T
Tom Musta 已提交
3316 3317
    flag roundNearestEven, increment;

3318
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
3319
    roundNearestEven = (roundingMode == float_round_nearest_even);
3320 3321
    switch (roundingMode) {
    case float_round_nearest_even:
3322
    case float_round_ties_away:
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
3336 3337 3338 3339
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
3340
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
3341 3342 3343 3344 3345 3346
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
3347
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
3348 3349 3350 3351
        return 0;
    }

    if (absZ1) {
3352
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
3353 3354 3355 3356
    }
    return absZ0;
}

3357 3358 3359 3360
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
3361
float32 float32_squash_input_denormal(float32 a, float_status *status)
3362
{
3363
    if (status->flush_inputs_to_zero) {
3364
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
3365
            float_raise(float_flag_input_denormal, status);
3366 3367 3368 3369 3370 3371
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
3372 3373 3374 3375 3376 3377 3378 3379
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
3380
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
3381
{
3382
    int8_t shiftCount;
B
bellard 已提交
3383

3384
    shiftCount = clz32(aSig) - 8;
B
bellard 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3412
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3413
                                   float_status *status)
B
bellard 已提交
3414
{
3415
    int8_t roundingMode;
B
bellard 已提交
3416
    flag roundNearestEven;
3417
    int8_t roundIncrement, roundBits;
B
bellard 已提交
3418 3419
    flag isTiny;

3420
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3421
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3422 3423
    switch (roundingMode) {
    case float_round_nearest_even:
3424
    case float_round_ties_away:
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
3439 3440
    }
    roundBits = zSig & 0x7F;
3441
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
3442 3443
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
3444
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
3445
           ) {
P
Peter Maydell 已提交
3446
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
3447
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
3448 3449
        }
        if ( zExp < 0 ) {
3450
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3451
                float_raise(float_flag_output_denormal, status);
3452 3453
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
3454
            isTiny =
3455 3456
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
3457 3458 3459 3460 3461
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
3462 3463 3464
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
3465 3466
        }
    }
3467 3468 3469
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
3487
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3488
                              float_status *status)
B
bellard 已提交
3489
{
3490
    int8_t shiftCount;
B
bellard 已提交
3491

3492
    shiftCount = clz32(zSig) - 1;
P
Peter Maydell 已提交
3493 3494
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
3495 3496 3497

}

3498 3499 3500 3501
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
3502
float64 float64_squash_input_denormal(float64 a, float_status *status)
3503
{
3504
    if (status->flush_inputs_to_zero) {
3505
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
3506
            float_raise(float_flag_input_denormal, status);
3507 3508 3509 3510 3511 3512
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
3513 3514 3515 3516 3517 3518 3519 3520
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
3521
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
3522
{
3523
    int8_t shiftCount;
B
bellard 已提交
3524

3525
    shiftCount = clz64(aSig) - 11;
B
bellard 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

3542
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
3543 3544
{

P
pbrook 已提交
3545
    return make_float64(
3546
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
3558 3559 3560
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3572
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3573
                                   float_status *status)
B
bellard 已提交
3574
{
3575
    int8_t roundingMode;
B
bellard 已提交
3576
    flag roundNearestEven;
3577
    int roundIncrement, roundBits;
B
bellard 已提交
3578 3579
    flag isTiny;

3580
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3581
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3582 3583
    switch (roundingMode) {
    case float_round_nearest_even:
3584
    case float_round_ties_away:
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
3596 3597 3598
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
3599 3600
    default:
        abort();
B
bellard 已提交
3601 3602
    }
    roundBits = zSig & 0x3FF;
3603
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
3604 3605
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
3606
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
3607
           ) {
3608 3609
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
3610
            float_raise(float_flag_overflow | float_flag_inexact, status);
3611
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
3612 3613
        }
        if ( zExp < 0 ) {
3614
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3615
                float_raise(float_flag_output_denormal, status);
3616 3617
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
3618
            isTiny =
3619 3620
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3621 3622 3623 3624 3625
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
3626 3627 3628
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
3629 3630 3631 3632 3633 3634 3635
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
3636 3637
        }
    }
3638 3639 3640
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
3658
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3659
                              float_status *status)
B
bellard 已提交
3660
{
3661
    int8_t shiftCount;
B
bellard 已提交
3662

3663
    shiftCount = clz64(zSig) - 1;
P
Peter Maydell 已提交
3664 3665
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

3676 3677
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr)
B
bellard 已提交
3678
{
3679
    int8_t shiftCount;
B
bellard 已提交
3680

3681
    shiftCount = clz64(aSig);
B
bellard 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;
}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3710 3711 3712
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status)
B
bellard 已提交
3713
{
3714
    int8_t roundingMode;
B
bellard 已提交
3715
    flag roundNearestEven, increment, isTiny;
3716
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
3717

3718
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
3733 3734
    switch (roundingMode) {
    case float_round_nearest_even:
3735
    case float_round_ties_away:
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
3748 3749
    }
    roundBits = zSig0 & roundMask;
3750
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3751 3752 3753 3754 3755 3756
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
3757
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3758
                float_raise(float_flag_output_denormal, status);
3759 3760
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
3761
            isTiny =
3762 3763
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3764 3765 3766 3767 3768
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
3769 3770 3771
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
3772 3773 3774
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
3775
            zSig0 += roundIncrement;
3776
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3777 3778 3779 3780 3781 3782 3783 3784
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3785 3786 3787
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
3801 3802
    switch (roundingMode) {
    case float_round_nearest_even:
3803
    case float_round_ties_away:
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
3817
    }
3818
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3819 3820 3821 3822 3823 3824 3825 3826
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
3827
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3828 3829 3830 3831 3832 3833
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
3834 3835 3836
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
3837 3838 3839
        }
        if ( zExp <= 0 ) {
            isTiny =
3840 3841
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3842 3843 3844 3845 3846
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
3847 3848 3849
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
3850 3851 3852
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
3853 3854
            switch (roundingMode) {
            case float_round_nearest_even:
3855
            case float_round_ties_away:
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
3869 3870 3871 3872
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
3873 3874
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3875 3876 3877 3878
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3879 3880 3881
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3882 3883 3884 3885 3886 3887 3888
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
3889
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

3908 3909 3910 3911
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status)
B
bellard 已提交
3912
{
3913
    int8_t shiftCount;
B
bellard 已提交
3914 3915 3916 3917 3918 3919

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
3920
    shiftCount = clz64(zSig0);
B
bellard 已提交
3921 3922
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
3923 3924
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
3925 3926 3927 3928 3929 3930 3931 3932

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3933
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3945
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

3957
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

3968
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
3987 3988
     uint64_t aSig0,
     uint64_t aSig1,
3989
     int32_t *zExpPtr,
3990 3991
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
3992 3993
 )
{
3994
    int8_t shiftCount;
B
bellard 已提交
3995 3996

    if ( aSig0 == 0 ) {
3997
        shiftCount = clz64(aSig1) - 15;
B
bellard 已提交
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
4009
        shiftCount = clz64(aSig0) - 15;
B
bellard 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

4029
static inline float128
4030
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
4031 4032 4033 4034
{
    float128 z;

    z.low = zSig1;
4035
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4061
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
4062 4063
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
4064
{
4065
    int8_t roundingMode;
B
bellard 已提交
4066 4067
    flag roundNearestEven, increment, isTiny;

4068
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
4069
    roundNearestEven = ( roundingMode == float_round_nearest_even );
4070 4071
    switch (roundingMode) {
    case float_round_nearest_even:
4072
    case float_round_ties_away:
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
4084 4085 4086
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
4087 4088
    default:
        abort();
B
bellard 已提交
4089
    }
4090
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
4102
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
4103 4104 4105
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
4106
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
4119
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
4120
                float_raise(float_flag_output_denormal, status);
4121 4122
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
4123
            isTiny =
4124 4125
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
4137 4138 4139
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
4140 4141
            switch (roundingMode) {
            case float_round_nearest_even:
4142
            case float_round_ties_away:
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
4154 4155 4156
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
4157 4158
            default:
                abort();
B
bellard 已提交
4159 4160 4161
            }
        }
    }
4162 4163 4164
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

4186
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
4187 4188
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
4189
{
4190
    int8_t shiftCount;
4191
    uint64_t zSig2;
B
bellard 已提交
4192 4193 4194 4195 4196 4197

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
4198
    shiftCount = clz64(zSig0) - 15;
B
bellard 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
4208
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4220
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
4221 4222
{
    flag zSign;
4223
    uint32_t absA;
4224
    int8_t shiftCount;
4225
    uint64_t zSig;
B
bellard 已提交
4226 4227 4228 4229

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
4230
    shiftCount = clz32(absA) + 32;
B
bellard 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4242
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
4243 4244
{
    flag zSign;
4245
    uint32_t absA;
4246
    int8_t shiftCount;
4247
    uint64_t zSig0;
B
bellard 已提交
4248 4249 4250 4251

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
4252
    shiftCount = clz32(absA) + 17;
B
bellard 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4265
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
4266 4267
{
    flag zSign;
4268
    uint64_t absA;
4269
    int8_t shiftCount;
B
bellard 已提交
4270 4271 4272 4273

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
4274
    shiftCount = clz64(absA);
B
bellard 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4285
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
4286 4287
{
    flag zSign;
4288
    uint64_t absA;
4289
    int8_t shiftCount;
4290
    int32_t zExp;
4291
    uint64_t zSig0, zSig1;
B
bellard 已提交
4292 4293 4294 4295

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
4296
    shiftCount = clz64(absA) + 49;
B
bellard 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

4312 4313 4314 4315 4316 4317
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4318
float128 uint64_to_float128(uint64_t a, float_status *status)
4319 4320 4321 4322
{
    if (a == 0) {
        return float128_zero;
    }
4323
    return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
4324 4325
}

B
bellard 已提交
4326 4327 4328 4329 4330 4331 4332
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4333
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
4334 4335
{
    flag aSign;
4336
    int aExp;
4337
    uint32_t aSig;
B
bellard 已提交
4338

P
Peter Maydell 已提交
4339
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
4340 4341 4342 4343
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4344 4345 4346
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
4347 4348 4349
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4350 4351 4352 4353 4354 4355
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
4356
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4367
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
4368 4369
{
    flag aSign;
4370
    int aExp;
4371
    uint32_t aSig;
B
bellard 已提交
4372

P
Peter Maydell 已提交
4373
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
4374 4375 4376 4377
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4378 4379 4380
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4381 4382 4383 4384 4385 4386 4387
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
4388
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4398
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
4399
{
4400
    flag aSign, zSign;
4401
    int aExp, bExp, expDiff;
4402 4403 4404 4405 4406
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
4407 4408
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4409 4410 4411 4412 4413 4414 4415 4416

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
4417
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
4418
        }
P
Peter Maydell 已提交
4419
        float_raise(float_flag_invalid, status);
4420
        return float32_default_nan(status);
B
bellard 已提交
4421 4422
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
4423 4424 4425
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
4426 4427 4428 4429
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4430
            float_raise(float_flag_invalid, status);
4431
            return float32_default_nan(status);
B
bellard 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
4452
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
4464 4465
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4484
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
4485 4486 4487 4488
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4489
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
4490
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4491
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4492 4493
}

4494

B
bellard 已提交
4495

A
Aurelien Jarno 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
4531 4532
};

4533
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
4534 4535
{
    flag aSign;
4536
    int aExp;
4537
    uint32_t aSig;
A
Aurelien Jarno 已提交
4538 4539
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
4540
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
4541 4542 4543 4544 4545 4546

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
4547 4548 4549
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
4550 4551 4552 4553 4554 4555
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
4556
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
4557 4558 4559 4560

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
4561 4562
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
4563 4564 4565 4566 4567 4568

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
4569 4570
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
4571

P
Peter Maydell 已提交
4572
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
4573 4574 4575 4576 4577
    }

    return float64_to_float32(r, status);
}

4578 4579 4580 4581 4582
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4583
float32 float32_log2(float32 a, float_status *status)
4584 4585
{
    flag aSign, zSign;
4586
    int aExp;
4587
    uint32_t aSig, zSig, i;
4588

P
Peter Maydell 已提交
4589
    a = float32_squash_input_denormal(a, status);
4590 4591 4592 4593 4594 4595 4596 4597 4598
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4599
        float_raise(float_flag_invalid, status);
4600
        return float32_default_nan(status);
4601 4602
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4603 4604 4605
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
4606 4607 4608 4609 4610 4611 4612 4613 4614
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
4615
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
4616 4617 4618 4619 4620 4621 4622 4623 4624
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
4625
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
4626 4627
}

B
bellard 已提交
4628 4629
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
4630 4631
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4632 4633 4634
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4635
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
4636
{
4637
    uint32_t av, bv;
P
Peter Maydell 已提交
4638 4639
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4640 4641 4642 4643

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4644
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4645 4646
        return 0;
    }
4647 4648 4649
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4650 4651 4652 4653
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
4654 4655 4656
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4657 4658
*----------------------------------------------------------------------------*/

4659
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
4660 4661
{
    flag aSign, bSign;
4662
    uint32_t av, bv;
P
Peter Maydell 已提交
4663 4664
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4665 4666 4667 4668

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4669
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4670 4671 4672 4673
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4674 4675
    av = float32_val(a);
    bv = float32_val(b);
4676
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4677
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4678 4679 4680 4681 4682

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
4683 4684 4685
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4686 4687
*----------------------------------------------------------------------------*/

4688
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
4689 4690
{
    flag aSign, bSign;
4691
    uint32_t av, bv;
P
Peter Maydell 已提交
4692 4693
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4694 4695 4696 4697

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4698
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4699 4700 4701 4702
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4703 4704
    av = float32_val(a);
    bv = float32_val(b);
4705
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4706
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4707 4708 4709

}

4710 4711
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
4712 4713 4714
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4715 4716
*----------------------------------------------------------------------------*/

4717
int float32_unordered(float32 a, float32 b, float_status *status)
4718
{
P
Peter Maydell 已提交
4719 4720
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
4721 4722 4723 4724

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4725
        float_raise(float_flag_invalid, status);
4726 4727 4728 4729
        return 1;
    }
    return 0;
}
4730

B
bellard 已提交
4731 4732
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
4733 4734 4735
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4736 4737
*----------------------------------------------------------------------------*/

4738
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4739
{
P
Peter Maydell 已提交
4740 4741
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4742 4743 4744 4745

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4746 4747
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4748
            float_raise(float_flag_invalid, status);
4749
        }
B
bellard 已提交
4750 4751
        return 0;
    }
4752 4753
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4763
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4764 4765
{
    flag aSign, bSign;
4766
    uint32_t av, bv;
P
Peter Maydell 已提交
4767 4768
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4769 4770 4771 4772

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4773 4774
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4775
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4776 4777 4778 4779 4780
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4781 4782
    av = float32_val(a);
    bv = float32_val(b);
4783
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4784
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4785 4786 4787 4788 4789 4790 4791

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
4792
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4793 4794
*----------------------------------------------------------------------------*/

4795
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4796
{
4797 4798 4799 4800
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4801

4802 4803 4804 4805 4806
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4807
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4808
        }
4809
        return 0;
B
bellard 已提交
4810
    }
4811 4812 4813 4814 4815 4816
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4817 4818 4819 4820

}

/*----------------------------------------------------------------------------
4821 4822 4823 4824
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
4825 4826
*----------------------------------------------------------------------------*/

4827
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4828
{
4829 4830
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4831

4832 4833 4834 4835 4836 4837
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4838
        }
4839
        return 1;
B
bellard 已提交
4840
    }
4841
    return 0;
B
bellard 已提交
4842 4843
}

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

B
bellard 已提交
4859 4860 4861 4862 4863 4864 4865
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4866
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
4867 4868
{
    flag aSign;
4869
    int aExp;
4870
    uint64_t aSig;
B
bellard 已提交
4871

P
Peter Maydell 已提交
4872
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4873 4874 4875 4876
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4877 4878 4879
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
4880 4881 4882
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4901
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
4902 4903
{
    flag aSign;
4904
    int aExp;
4905
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4906

P
Peter Maydell 已提交
4907
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4908 4909 4910 4911
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4912 4913 4914
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4934
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4935
{
4936
    flag aSign, zSign;
4937
    int aExp, bExp, expDiff;
4938 4939 4940
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4941

P
Peter Maydell 已提交
4942 4943
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4944 4945 4946 4947 4948 4949 4950
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
4951
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
4952
        }
P
Peter Maydell 已提交
4953
        float_raise(float_flag_invalid, status);
4954
        return float64_default_nan(status);
B
bellard 已提交
4955 4956
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
4957 4958 4959
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
4960 4961 4962 4963
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4964
            float_raise(float_flag_invalid, status);
4965
            return float64_default_nan(status);
B
bellard 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
5005
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
5006 5007 5008 5009
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
5010
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
5011
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
5012
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
5013 5014 5015

}

5016 5017 5018 5019 5020
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
5021
float64 float64_log2(float64 a, float_status *status)
5022 5023
{
    flag aSign, zSign;
5024
    int aExp;
5025
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
5026
    a = float64_squash_input_denormal(a, status);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
5037
        float_raise(float_flag_invalid, status);
5038
        return float64_default_nan(status);
5039 5040
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
5041 5042 5043
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
5044 5045 5046 5047 5048 5049
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
5050
    zSig = (uint64_t)aExp << 52;
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
5062
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
5063 5064
}

B
bellard 已提交
5065 5066
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
5067 5068
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
5069 5070 5071
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5072
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
5073
{
5074
    uint64_t av, bv;
P
Peter Maydell 已提交
5075 5076
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
5077 5078 5079 5080

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
5081
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5082 5083
        return 0;
    }
P
pbrook 已提交
5084
    av = float64_val(a);
P
pbrook 已提交
5085
    bv = float64_val(b);
5086
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
5087 5088 5089 5090 5091

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
5092 5093 5094
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5095 5096
*----------------------------------------------------------------------------*/

5097
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
5098 5099
{
    flag aSign, bSign;
5100
    uint64_t av, bv;
P
Peter Maydell 已提交
5101 5102
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
5103 5104 5105 5106

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
5107
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5108 5109 5110 5111
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
5112
    av = float64_val(a);
P
pbrook 已提交
5113
    bv = float64_val(b);
5114
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
5115
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
5116 5117 5118 5119 5120

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
5121 5122 5123
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5124 5125
*----------------------------------------------------------------------------*/

5126
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
5127 5128
{
    flag aSign, bSign;
5129
    uint64_t av, bv;
B
bellard 已提交
5130

P
Peter Maydell 已提交
5131 5132
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
5133 5134 5135
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
5136
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5137 5138 5139 5140
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
5141
    av = float64_val(a);
P
pbrook 已提交
5142
    bv = float64_val(b);
5143
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
5144
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
5145 5146 5147

}

5148 5149
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
5150 5151 5152
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
5153 5154
*----------------------------------------------------------------------------*/

5155
int float64_unordered(float64 a, float64 b, float_status *status)
5156
{
P
Peter Maydell 已提交
5157 5158
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
5159 5160 5161 5162

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
5163
        float_raise(float_flag_invalid, status);
5164 5165 5166 5167 5168
        return 1;
    }
    return 0;
}

B
bellard 已提交
5169 5170
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
5171 5172 5173
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
5174 5175
*----------------------------------------------------------------------------*/

5176
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
5177
{
5178
    uint64_t av, bv;
P
Peter Maydell 已提交
5179 5180
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
5181 5182 5183 5184

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
5185 5186
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5187
            float_raise(float_flag_invalid, status);
5188
        }
B
bellard 已提交
5189 5190
        return 0;
    }
P
pbrook 已提交
5191
    av = float64_val(a);
P
pbrook 已提交
5192
    bv = float64_val(b);
5193
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5204
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
5205 5206
{
    flag aSign, bSign;
5207
    uint64_t av, bv;
P
Peter Maydell 已提交
5208 5209
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
5210 5211 5212 5213

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
5214 5215
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5216
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5217 5218 5219 5220 5221
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
5222
    av = float64_val(a);
P
pbrook 已提交
5223
    bv = float64_val(b);
5224
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
5225
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5236
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
5237 5238
{
    flag aSign, bSign;
5239
    uint64_t av, bv;
P
Peter Maydell 已提交
5240 5241
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
5242 5243 5244 5245

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
5246 5247
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5248
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5249 5250 5251 5252 5253
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
5254
    av = float64_val(a);
P
pbrook 已提交
5255
    bv = float64_val(b);
5256
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
5257
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
5258 5259 5260

}

5261 5262 5263 5264 5265 5266 5267
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5268
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
5269
{
P
Peter Maydell 已提交
5270 5271
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
5272 5273 5274 5275

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
5276 5277
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5278
            float_raise(float_flag_invalid, status);
5279 5280 5281 5282 5283 5284
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5295
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
5296 5297
{
    flag aSign;
5298
    int32_t aExp, shiftCount;
5299
    uint64_t aSig;
B
bellard 已提交
5300

5301 5302 5303 5304
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
5305 5306 5307
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
5308
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
5309 5310 5311
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
5312
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

5326
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
5327 5328
{
    flag aSign;
5329
    int32_t aExp, shiftCount;
5330
    uint64_t aSig, savedASig;
5331
    int32_t z;
B
bellard 已提交
5332

5333 5334 5335 5336
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
5337 5338 5339 5340
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
5341
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
5342 5343 5344
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
5345 5346 5347
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5348 5349 5350 5351 5352 5353 5354 5355 5356
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
5357
        float_raise(float_flag_invalid, status);
5358
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5359 5360
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
5361
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5377
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
5378 5379
{
    flag aSign;
5380
    int32_t aExp, shiftCount;
5381
    uint64_t aSig, aSigExtra;
B
bellard 已提交
5382

5383 5384 5385 5386
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
5387 5388 5389 5390 5391 5392
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
5393
            float_raise(float_flag_invalid, status);
5394
            if (!aSign || floatx80_is_any_nan(a)) {
B
bellard 已提交
5395 5396
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5397
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5398 5399 5400 5401 5402 5403
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
5404
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

5418
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
5419 5420
{
    flag aSign;
5421
    int32_t aExp, shiftCount;
5422
    uint64_t aSig;
5423
    int64_t z;
B
bellard 已提交
5424

5425 5426 5427 5428
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
5429 5430 5431 5432 5433 5434 5435
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
5436
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5437 5438 5439 5440
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
5441
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5442 5443
    }
    else if ( aExp < 0x3FFF ) {
5444 5445 5446
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5447 5448 5449
        return 0;
    }
    z = aSig>>( - shiftCount );
5450
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
5451
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5465
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
5466 5467
{
    flag aSign;
5468
    int32_t aExp;
5469
    uint64_t aSig;
B
bellard 已提交
5470

5471 5472 5473 5474
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
5475 5476 5477 5478
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5479
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5480
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5481 5482 5483 5484 5485
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
5486
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5497
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
5498 5499
{
    flag aSign;
5500
    int32_t aExp;
5501
    uint64_t aSig, zSig;
B
bellard 已提交
5502

5503 5504 5505 5506
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
5507 5508 5509 5510
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5511
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5512
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5513 5514 5515 5516 5517
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
5518
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5529
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
5530 5531
{
    flag aSign;
5532
    int aExp;
5533
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
5534

5535 5536 5537 5538
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
5539 5540 5541
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
5542
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5543
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5544 5545 5546 5547 5548 5549
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
5566 5567 5568 5569 5570 5571 5572
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5573
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
5574 5575
{
    flag aSign;
5576
    int32_t aExp;
5577
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5578 5579
    floatx80 z;

5580 5581 5582 5583
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5584 5585
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
5586
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
5587
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
5588 5589 5590 5591 5592
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
5593
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
5594 5595
            return a;
        }
5596
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5597
        aSign = extractFloatx80Sign( a );
5598
        switch (status->float_rounding_mode) {
B
bellard 已提交
5599
         case float_round_nearest_even:
5600
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
5601 5602 5603 5604 5605
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
5606 5607 5608 5609 5610
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
5627
    switch (status->float_rounding_mode) {
5628
    case float_round_nearest_even:
B
bellard 已提交
5629
        z.low += lastBitMask>>1;
5630 5631 5632 5633
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
5634 5635 5636
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
5637 5638 5639 5640 5641 5642 5643 5644 5645
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
5646 5647
            z.low += roundBitsMask;
        }
5648 5649 5650
        break;
    default:
        abort();
B
bellard 已提交
5651 5652 5653 5654 5655 5656
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
5657 5658 5659
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5672 5673
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5674
{
5675
    int32_t aExp, bExp, zExp;
5676
    uint64_t aSig, bSig, zSig0, zSig1;
5677
    int32_t expDiff;
B
bellard 已提交
5678 5679 5680 5681 5682 5683 5684 5685

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5686 5687 5688
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5689 5690 5691 5692 5693 5694 5695 5696
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5697 5698 5699
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
5700 5701 5702
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
5703 5704 5705 5706 5707 5708 5709
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
5710
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5711
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
5725
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
5726 5727 5728 5729 5730
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
5731
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5732
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5743 5744
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5745
{
5746
    int32_t aExp, bExp, zExp;
5747
    uint64_t aSig, bSig, zSig0, zSig1;
5748
    int32_t expDiff;
B
bellard 已提交
5749 5750 5751 5752 5753 5754 5755 5756 5757

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5758
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5759
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5760
        }
P
Peter Maydell 已提交
5761
        float_raise(float_flag_invalid, status);
5762
        return floatx80_default_nan(status);
B
bellard 已提交
5763 5764 5765 5766 5767 5768 5769 5770
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
5771
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
5772 5773
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5774 5775 5776
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
5777 5778
        return packFloatx80(zSign ^ 1, floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5789 5790 5791
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5792 5793 5794 5795 5796 5797 5798 5799
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
5800
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5801
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5802 5803 5804 5805 5806 5807 5808 5809
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5810
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5811 5812 5813
{
    flag aSign, bSign;

5814 5815 5816 5817
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5818 5819 5820
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5821
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5822 5823
    }
    else {
P
Peter Maydell 已提交
5824
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5835
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5836 5837 5838
{
    flag aSign, bSign;

5839 5840 5841 5842
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5843 5844 5845
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5846
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5847 5848
    }
    else {
P
Peter Maydell 已提交
5849
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5860
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5861 5862
{
    flag aSign, bSign, zSign;
5863
    int32_t aExp, bExp, zExp;
5864
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5865

5866 5867 5868 5869
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5870 5871 5872 5873 5874 5875 5876 5877
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5878 5879
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5880
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5881 5882
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
5883 5884
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5885 5886
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5887 5888 5889
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5890 5891
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5892
            float_raise(float_flag_invalid, status);
5893
            return floatx80_default_nan(status);
B
bellard 已提交
5894
        }
5895 5896
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5908
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5909 5910 5911
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
5912
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5913
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5914 5915 5916 5917 5918 5919 5920 5921
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5922
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5923 5924
{
    flag aSign, bSign, zSign;
5925
    int32_t aExp, bExp, zExp;
5926 5927
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5928

5929 5930 5931 5932
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5933 5934 5935 5936 5937 5938 5939 5940
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5941 5942 5943
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5944
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5945 5946 5947
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5948 5949
            goto invalid;
        }
5950 5951
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5952 5953
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5954 5955 5956
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5957 5958 5959 5960 5961 5962
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5963
                float_raise(float_flag_invalid, status);
5964
                return floatx80_default_nan(status);
B
bellard 已提交
5965
            }
P
Peter Maydell 已提交
5966
            float_raise(float_flag_divbyzero, status);
5967 5968
            return packFloatx80(zSign, floatx80_infinity_high,
                                       floatx80_infinity_low);
B
bellard 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5985
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5986 5987 5988 5989
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5990
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5991 5992
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5993
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5994 5995 5996 5997 5998
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
5999
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
6000
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
6001 6002 6003 6004 6005 6006 6007 6008
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6009
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6010
{
6011
    flag aSign, zSign;
6012
    int32_t aExp, bExp, expDiff;
6013 6014
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
6015

6016 6017 6018 6019
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
6020 6021 6022 6023 6024 6025
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
6026 6027
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
6028
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
6029 6030 6031 6032
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6033 6034 6035
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
6036 6037 6038 6039 6040
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
6041
            float_raise(float_flag_invalid, status);
6042
            return floatx80_default_nan(status);
B
bellard 已提交
6043 6044 6045 6046
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
6047
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
6098
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
6099 6100 6101 6102 6103 6104 6105 6106 6107

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6108
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
6109 6110
{
    flag aSign;
6111
    int32_t aExp, zExp;
6112 6113
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6114

6115 6116 6117 6118
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
6119 6120 6121 6122
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6123 6124 6125
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
6126 6127 6128 6129 6130 6131
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
6132
        float_raise(float_flag_invalid, status);
6133
        return floatx80_default_nan(status);
B
bellard 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6146
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6158
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
6169 6170
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
6171 6172 6173
}

/*----------------------------------------------------------------------------
6174 6175 6176 6177
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6178 6179
*----------------------------------------------------------------------------*/

6180
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6181 6182
{

6183 6184 6185 6186 6187
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
6188
       ) {
P
Peter Maydell 已提交
6189
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6190 6191 6192 6193 6194 6195
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6196
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6197 6198 6199 6200 6201 6202 6203
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
6204 6205 6206
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
6207 6208
*----------------------------------------------------------------------------*/

6209
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6210 6211 6212
{
    flag aSign, bSign;

6213 6214 6215 6216 6217
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
6218
       ) {
P
Peter Maydell 已提交
6219
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6220 6221 6222 6223 6224 6225 6226
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6227
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
6238 6239 6240
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6241 6242
*----------------------------------------------------------------------------*/

6243
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6244 6245 6246
{
    flag aSign, bSign;

6247 6248 6249 6250 6251
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
6252
       ) {
P
Peter Maydell 已提交
6253
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6254 6255 6256 6257 6258 6259 6260
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6261
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6262 6263 6264 6265 6266 6267 6268 6269
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6270 6271
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
6272 6273 6274
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6275
*----------------------------------------------------------------------------*/
6276
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
6277
{
6278 6279 6280 6281 6282
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
6283
       ) {
P
Peter Maydell 已提交
6284
        float_raise(float_flag_invalid, status);
6285 6286 6287 6288 6289
        return 1;
    }
    return 0;
}

B
bellard 已提交
6290
/*----------------------------------------------------------------------------
6291
| Returns 1 if the extended double-precision floating-point value `a' is
6292 6293 6294
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6295 6296
*----------------------------------------------------------------------------*/

6297
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6298 6299
{

6300 6301 6302 6303
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
6304
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
6305
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
6306
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
6307
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
6308
       ) {
6309 6310
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6311
            float_raise(float_flag_invalid, status);
6312
        }
B
bellard 已提交
6313 6314 6315 6316 6317 6318
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6319
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6331
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6332 6333 6334
{
    flag aSign, bSign;

6335 6336 6337 6338
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
6339
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
6340
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
6341
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
6342
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
6343
       ) {
6344 6345
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6346
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6347 6348 6349 6350 6351 6352 6353 6354
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6355
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6371
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6372 6373 6374
{
    flag aSign, bSign;

6375 6376 6377 6378
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
6379
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
6380
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
6381
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
6382
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
6383
       ) {
6384 6385
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6386
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6387 6388 6389 6390 6391 6392 6393 6394
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6395
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6396 6397 6398 6399 6400 6401 6402 6403
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6404 6405 6406 6407 6408 6409
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
6410
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
6411
{
6412 6413 6414 6415
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
6416 6417 6418 6419 6420
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
6421 6422
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6423
            float_raise(float_flag_invalid, status);
6424 6425 6426 6427 6428 6429
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

6440
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
6441 6442
{
    flag aSign;
6443
    int32_t aExp, shiftCount;
6444
    uint64_t aSig0, aSig1;
B
bellard 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
6455
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

6469
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
6470 6471
{
    flag aSign;
6472
    int32_t aExp, shiftCount;
6473
    uint64_t aSig0, aSig1, savedASig;
6474
    int32_t z;
B
bellard 已提交
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
6486 6487 6488
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
6499
        float_raise(float_flag_invalid, status);
6500
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
6501 6502
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
6503
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

6519
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
6520 6521
{
    flag aSign;
6522
    int32_t aExp, shiftCount;
6523
    uint64_t aSig0, aSig1;
B
bellard 已提交
6524 6525 6526 6527 6528 6529 6530 6531 6532

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
6533
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6534 6535 6536 6537 6538 6539 6540
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
6541
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
6542 6543 6544 6545 6546 6547
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
6548
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

6562
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
6563 6564
{
    flag aSign;
6565
    int32_t aExp, shiftCount;
6566
    uint64_t aSig0, aSig1;
6567
    int64_t z;
B
bellard 已提交
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
6580 6581 6582
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
6583 6584
            }
            else {
P
Peter Maydell 已提交
6585
                float_raise(float_flag_invalid, status);
B
bellard 已提交
6586 6587 6588 6589
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
6590
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
6591 6592
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
6593
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
6594
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6595 6596 6597 6598 6599
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
6600
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6601 6602 6603 6604 6605
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
6606
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
6607
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6608 6609 6610 6611 6612 6613 6614
        }
    }
    if ( aSign ) z = - z;
    return z;

}

6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
6674 6675
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
6704 6705 6706 6707 6708
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6709
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
6710 6711
{
    flag aSign;
6712
    int32_t aExp;
6713 6714
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
6715 6716 6717 6718 6719 6720 6721

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6722
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
6733
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6744
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
6745 6746
{
    flag aSign;
6747
    int32_t aExp;
6748
    uint64_t aSig0, aSig1;
B
bellard 已提交
6749 6750 6751 6752 6753 6754 6755

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6756
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
6766
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6777
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
6778 6779
{
    flag aSign;
6780
    int32_t aExp;
6781
    uint64_t aSig0, aSig1;
B
bellard 已提交
6782 6783 6784 6785 6786 6787 6788

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6789
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6790
        }
6791 6792
        return packFloatx80(aSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6802
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6813
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
6814 6815
{
    flag aSign;
6816
    int32_t aExp;
6817
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
6818 6819 6820 6821 6822 6823 6824 6825
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
6826
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
6827 6828 6829 6830 6831 6832 6833
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
6834
        switch (status->float_rounding_mode) {
6835
        case float_round_nearest_even:
B
bellard 已提交
6836 6837 6838 6839 6840
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
6841
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
6842
                    ++z.high;
6843
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
6844 6845
                }
            }
6846
            break;
6847 6848 6849 6850 6851 6852 6853 6854 6855
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6866
            }
6867 6868 6869
            break;
        default:
            abort();
B
bellard 已提交
6870 6871 6872 6873 6874
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6875
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6876
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6877
            aSign = extractFloat128Sign( a );
6878
            switch (status->float_rounding_mode) {
B
bellard 已提交
6879 6880 6881 6882 6883 6884 6885 6886
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6887 6888 6889 6890 6891
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6908
        switch (status->float_rounding_mode) {
6909
        case float_round_nearest_even:
B
bellard 已提交
6910 6911 6912 6913
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6914
            break;
6915 6916 6917
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6918 6919 6920 6921
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6922 6923 6924
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6925 6926 6927 6928 6929 6930 6931 6932 6933
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6934 6935 6936 6937
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6938
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6952 6953
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6954
{
6955
    int32_t aExp, bExp, zExp;
6956
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6957
    int32_t expDiff;
B
bellard 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6968 6969 6970
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6985 6986 6987
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
7003
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
7004 7005 7006 7007
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
7008
        if ( aExp == 0 ) {
7009
            if (status->flush_to_zero) {
7010
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
7011
                    float_raise(float_flag_output_denormal, status);
7012 7013 7014
                }
                return packFloat128(zSign, 0, 0, 0);
            }
7015 7016
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
7031
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7043 7044
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
7045
{
7046
    int32_t aExp, bExp, zExp;
7047
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
7048
    int32_t expDiff;
B
bellard 已提交
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
7063
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
7064
        }
P
Peter Maydell 已提交
7065
        float_raise(float_flag_invalid, status);
7066
        return float128_default_nan(status);
B
bellard 已提交
7067 7068 7069 7070 7071 7072 7073 7074 7075
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
7076 7077
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
7078 7079
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
7080 7081 7082
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
7100 7101 7102
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
7118 7119
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
7120 7121 7122 7123 7124 7125 7126 7127 7128

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7129
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
7130 7131 7132 7133 7134 7135
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
7136
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
7137 7138
    }
    else {
P
Peter Maydell 已提交
7139
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7150
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
7151 7152 7153 7154 7155 7156
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
7157
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
7158 7159
    }
    else {
P
Peter Maydell 已提交
7160
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7171
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
7172 7173
{
    flag aSign, bSign, zSign;
7174
    int32_t aExp, bExp, zExp;
7175
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
7189
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
7190 7191 7192 7193 7194
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
7195 7196 7197
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
7198 7199
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
7200
            float_raise(float_flag_invalid, status);
7201
            return float128_default_nan(status);
B
bellard 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
7224
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
7225 7226 7227 7228 7229 7230 7231 7232 7233

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7234
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
7235 7236
{
    flag aSign, bSign, zSign;
7237
    int32_t aExp, bExp, zExp;
7238 7239
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
7251 7252 7253
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
7254
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
7255 7256 7257
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
7258 7259 7260 7261 7262
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
7263 7264 7265
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
7266 7267 7268 7269 7270 7271
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
7272
                float_raise(float_flag_invalid, status);
7273
                return float128_default_nan(status);
B
bellard 已提交
7274
            }
P
Peter Maydell 已提交
7275
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
7296
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
7297 7298 7299 7300 7301 7302 7303
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
7304
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
7305 7306 7307 7308 7309 7310
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
7311
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7321
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
7322
{
7323
    flag aSign, zSign;
7324
    int32_t aExp, bExp, expDiff;
7325 7326 7327
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
7339
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
7340 7341 7342 7343
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
7344 7345 7346
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
7347 7348 7349 7350 7351
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
7352
            float_raise(float_flag_invalid, status);
7353
            return float128_default_nan(status);
B
bellard 已提交
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
7408
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
7409
    add128(
7410
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
7411 7412 7413 7414 7415
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
7416
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
7417
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
7418 7419
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
7420 7421 7422 7423 7424 7425 7426 7427
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7428
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
7429 7430
{
    flag aSign;
7431
    int32_t aExp, zExp;
7432 7433
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
7434 7435 7436 7437 7438 7439

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
7440 7441 7442
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
7443 7444 7445 7446 7447 7448
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
7449
        float_raise(float_flag_invalid, status);
7450
        return float128_default_nan(status);
B
bellard 已提交
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
7464
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
7476
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
7477 7478 7479 7480 7481 7482 7483 7484 7485
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
7486
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
7487 7488 7489 7490 7491

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
7492 7493
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
7494 7495 7496
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7497
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
7498 7499 7500 7501 7502 7503 7504
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7505
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7506 7507 7508 7509 7510 7511
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
7512
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
7513 7514 7515 7516 7517 7518
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
7519 7520 7521
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
7522 7523
*----------------------------------------------------------------------------*/

7524
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
7525 7526 7527 7528 7529 7530 7531 7532
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7533
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7534 7535 7536 7537 7538 7539 7540
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7541
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
7552 7553 7554
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
7555 7556
*----------------------------------------------------------------------------*/

7557
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
7558 7559 7560 7561 7562 7563 7564 7565
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7566
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7567 7568 7569 7570 7571 7572 7573
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7574
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7575 7576 7577 7578 7579 7580 7581 7582
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

7583 7584
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
7585 7586 7587
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
7588 7589
*----------------------------------------------------------------------------*/

7590
int float128_unordered(float128 a, float128 b, float_status *status)
7591 7592 7593 7594 7595 7596
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7597
        float_raise(float_flag_invalid, status);
7598 7599 7600 7601 7602
        return 1;
    }
    return 0;
}

B
bellard 已提交
7603 7604
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
7605 7606 7607
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
7608 7609
*----------------------------------------------------------------------------*/

7610
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7611 7612 7613 7614 7615 7616 7617
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7618 7619
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7620
            float_raise(float_flag_invalid, status);
7621
        }
B
bellard 已提交
7622 7623 7624 7625 7626 7627
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
7628
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7640
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7641 7642 7643 7644 7645 7646 7647 7648
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7649 7650
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7651
            float_raise(float_flag_invalid, status);
B
bellard 已提交
7652 7653 7654 7655 7656 7657 7658 7659
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7660
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7676
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7677 7678 7679 7680 7681 7682 7683 7684
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7685 7686
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7687
            float_raise(float_flag_invalid, status);
B
bellard 已提交
7688 7689 7690 7691 7692 7693 7694 7695
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7696
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7697 7698 7699 7700 7701 7702 7703 7704
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

7705 7706 7707 7708 7709 7710 7711
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7712
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
7713 7714 7715 7716 7717 7718
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7719 7720
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7721
            float_raise(float_flag_invalid, status);
7722 7723 7724 7725 7726 7727
        }
        return 1;
    }
    return 0;
}

7728 7729
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
7730 7731 7732
{
    flag aSign, bSign;

7733 7734 7735 7736
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
7737 7738 7739 7740 7741
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
7742 7743
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7744
            float_raise(float_flag_invalid, status);
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7768
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7769
{
P
Peter Maydell 已提交
7770
    return floatx80_compare_internal(a, b, 0, status);
7771 7772
}

7773
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7774
{
P
Peter Maydell 已提交
7775
    return floatx80_compare_internal(a, b, 1, status);
7776 7777
}

7778 7779
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
7780 7781 7782 7783 7784 7785 7786 7787
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
7788 7789
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7790
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7812
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7813
{
P
Peter Maydell 已提交
7814
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
7815 7816
}

7817
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7818
{
P
Peter Maydell 已提交
7819
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
7820 7821
}

7822
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
7823 7824
{
    flag aSign;
7825
    int32_t aExp;
7826
    uint64_t aSig;
P
pbrook 已提交
7827

7828 7829 7830 7831
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
7832 7833 7834 7835
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7836 7837
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
7838
            return propagateFloatx80NaN(a, a, status);
7839
        }
P
pbrook 已提交
7840 7841
        return a;
    }
7842

7843 7844 7845 7846 7847 7848
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7849

7850 7851 7852 7853 7854 7855
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7856
    aExp += n;
7857 7858
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
7859 7860
}

7861
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7862 7863
{
    flag aSign;
7864
    int32_t aExp;
7865
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7866 7867 7868 7869 7870 7871

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7872
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
7873
            return propagateFloat128NaN(a, a, status);
7874
        }
P
pbrook 已提交
7875 7876
        return a;
    }
7877
    if (aExp != 0) {
7878
        aSig0 |= LIT64( 0x0001000000000000 );
7879
    } else if (aSig0 == 0 && aSig1 == 0) {
7880
        return a;
7881 7882 7883
    } else {
        aExp++;
    }
7884

7885 7886 7887 7888 7889 7890
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7891 7892
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
7893
                                         , status);
P
pbrook 已提交
7894 7895

}