softfloat.c 264.2 KB
Newer Older
1 2 3 4 5
/*
 * QEMU float support
 *
 * Derived from SoftFloat.
 */
B
bellard 已提交
6

7 8 9 10
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
11 12 13 14 15 16 17 18

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
20 21
arithmetic/SoftFloat.html'.

22 23 24 25 26
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
27 28

Derivative works are acceptable, even for commercial purposes, so long as
29 30 31
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
32

33 34
===============================================================================
*/
B
bellard 已提交
35

36 37 38 39 40
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
#include "config.h"

41
#include "fpu/softfloat.h"
B
bellard 已提交
42

43 44 45
/* We only need stdlib for abort() */
#include <stdlib.h>

B
bellard 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
#include "softfloat-macros.h"

/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

63 64 65 66
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

67
static inline uint32_t extractFloat16Frac(float16 a)
68 69 70 71 72 73 74 75
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

76
static inline int_fast16_t extractFloat16Exp(float16 a)
77 78 79 80 81 82 83 84
{
    return (float16_val(a) >> 10) & 0x1f;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

85
static inline flag extractFloat16Sign(float16 a)
86 87 88 89
{
    return float16_val(a)>>15;
}

B
bellard 已提交
90 91 92 93 94 95 96 97 98 99 100
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

101
static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM)
B
bellard 已提交
102 103 104 105
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
106
    int32_t z;
B
bellard 已提交
107 108 109

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
110 111
    switch (roundingMode) {
    case float_round_nearest_even:
112
    case float_round_ties_away:
113 114 115 116 117 118 119 120 121 122 123 124 125
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
126 127 128 129 130 131 132 133
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
        float_raise( float_flag_invalid STATUS_VAR);
134
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

153
static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM)
B
bellard 已提交
154 155 156
{
    int8 roundingMode;
    flag roundNearestEven, increment;
157
    int64_t z;
B
bellard 已提交
158 159 160

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
161 162
    switch (roundingMode) {
    case float_round_nearest_even:
163
    case float_round_ties_away:
164 165 166 167 168 169 170 171 172 173 174 175 176
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
177 178 179 180
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
181
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
182 183 184 185 186 187 188
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
        float_raise( float_flag_invalid STATUS_VAR);
        return
189
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
190 191 192 193 194 195 196
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
    if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

T
Tom Musta 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

static int64 roundAndPackUint64(flag zSign, uint64_t absZ0,
                                uint64_t absZ1 STATUS_PARAM)
{
    int8 roundingMode;
    flag roundNearestEven, increment;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = (roundingMode == float_round_nearest_even);
215 216
    switch (roundingMode) {
    case float_round_nearest_even:
217
    case float_round_ties_away:
218 219 220 221 222 223 224 225 226 227 228 229 230
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
        float_raise(float_flag_invalid STATUS_VAR);
        return 0;
    }

    if (absZ1) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return absZ0;
}

B
bellard 已提交
252 253 254 255
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

256
static inline uint32_t extractFloat32Frac( float32 a )
B
bellard 已提交
257 258
{

P
pbrook 已提交
259
    return float32_val(a) & 0x007FFFFF;
B
bellard 已提交
260 261 262 263 264 265 266

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

267
static inline int_fast16_t extractFloat32Exp(float32 a)
B
bellard 已提交
268 269
{

P
pbrook 已提交
270
    return ( float32_val(a)>>23 ) & 0xFF;
B
bellard 已提交
271 272 273 274 275 276 277

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

278
static inline flag extractFloat32Sign( float32 a )
B
bellard 已提交
279 280
{

P
pbrook 已提交
281
    return float32_val(a)>>31;
B
bellard 已提交
282 283 284

}

285 286 287 288
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
289
float32 float32_squash_input_denormal(float32 a STATUS_PARAM)
290 291 292 293 294 295 296 297 298 299
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
300 301 302 303 304 305 306 307
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
308
 normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| single-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

329
static inline float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig)
B
bellard 已提交
330 331
{

P
pbrook 已提交
332
    return make_float32(
333
          ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
B
bellard 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

359
static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
B
bellard 已提交
360 361 362 363 364 365 366 367
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
368 369
    switch (roundingMode) {
    case float_round_nearest_even:
370
    case float_round_ties_away:
371 372 373 374 375 376 377 378 379 380 381 382 383 384
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
385 386
    }
    roundBits = zSig & 0x7F;
387
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
388 389
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
390
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
391 392
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
393
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
394 395
        }
        if ( zExp < 0 ) {
396 397 398 399
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
428
 normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
B
bellard 已提交
429 430 431 432 433 434 435 436 437 438 439 440
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( zSig ) - 1;
    return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

441
static inline uint64_t extractFloat64Frac( float64 a )
B
bellard 已提交
442 443
{

P
pbrook 已提交
444
    return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
B
bellard 已提交
445 446 447 448 449 450 451

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

452
static inline int_fast16_t extractFloat64Exp(float64 a)
B
bellard 已提交
453 454
{

P
pbrook 已提交
455
    return ( float64_val(a)>>52 ) & 0x7FF;
B
bellard 已提交
456 457 458 459 460 461 462

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

463
static inline flag extractFloat64Sign( float64 a )
B
bellard 已提交
464 465
{

P
pbrook 已提交
466
    return float64_val(a)>>63;
B
bellard 已提交
467 468 469

}

470 471 472 473
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
474
float64 float64_squash_input_denormal(float64 a STATUS_PARAM)
475 476 477 478 479 480 481 482 483 484
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
485 486 487 488 489 490 491 492
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
493
 normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

514
static inline float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig)
B
bellard 已提交
515 516
{

P
pbrook 已提交
517
    return make_float64(
518
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
519 520 521 522 523 524 525 526 527 528 529

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
530 531 532
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
533 534 535 536 537 538 539 540 541 542 543
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

544
static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
B
bellard 已提交
545 546 547
{
    int8 roundingMode;
    flag roundNearestEven;
548
    int_fast16_t roundIncrement, roundBits;
B
bellard 已提交
549 550 551 552
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
553 554
    switch (roundingMode) {
    case float_round_nearest_even:
555
    case float_round_ties_away:
556 557 558 559 560 561 562 563 564 565 566 567 568
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
    default:
        abort();
B
bellard 已提交
569 570
    }
    roundBits = zSig & 0x3FF;
571
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
572 573
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
574
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
575 576
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
577
            return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
B
bellard 已提交
578 579
        }
        if ( zExp < 0 ) {
580 581 582 583
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
612
 normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
B
bellard 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( zSig ) - 1;
    return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

626
static inline uint64_t extractFloatx80Frac( floatx80 a )
B
bellard 已提交
627 628 629 630 631 632 633 634 635 636 637
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

638
static inline int32 extractFloatx80Exp( floatx80 a )
B
bellard 已提交
639 640 641 642 643 644 645 646 647 648 649
{

    return a.high & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

650
static inline flag extractFloatx80Sign( floatx80 a )
B
bellard 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664
{

    return a.high>>15;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
665
 normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr )
B
bellard 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

680
static inline floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig )
B
bellard 已提交
681 682 683 684
{
    floatx80 z;

    z.low = zSig;
685
    z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
B
bellard 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80
 roundAndPackFloatx80(
716
     int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
B
bellard 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
 STATUS_PARAM)
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;
    int64 roundIncrement, roundMask, roundBits;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
738 739
    switch (roundingMode) {
    case float_round_nearest_even:
740
    case float_round_ties_away:
741 742 743 744 745 746 747 748 749 750 751 752
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
753 754
    }
    roundBits = zSig0 & roundMask;
755
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
756 757 758 759 760 761
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
762 763 764 765
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
766 767 768 769 770 771 772 773 774 775
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
            if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
            zSig0 += roundIncrement;
776
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
799 800
    switch (roundingMode) {
    case float_round_nearest_even:
801
    case float_round_ties_away:
802 803 804 805 806 807 808 809 810 811 812 813 814
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
815
    }
816
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
            if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
            if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
844 845
            switch (roundingMode) {
            case float_round_nearest_even:
846
            case float_round_ties_away:
847 848 849 850 851 852 853 854 855 856 857 858 859
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
860 861 862 863
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
864 865
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
866 867 868 869 870 871 872 873 874 875 876 877
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
878
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

static floatx80
 normalizeRoundAndPackFloatx80(
899
     int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
B
bellard 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
 STATUS_PARAM)
{
    int8 shiftCount;

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
    return
        roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

922
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
923 924 925 926 927 928 929 930 931 932 933
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

934
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
935 936 937 938 939 940 941 942 943 944 945
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

946
static inline int32 extractFloat128Exp( float128 a )
B
bellard 已提交
947 948 949 950 951 952 953 954 955 956
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

957
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
976 977
     uint64_t aSig0,
     uint64_t aSig1,
B
bellard 已提交
978
     int32 *zExpPtr,
979 980
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 )
{
    int8 shiftCount;

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

1018
static inline float128
1019
 packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
1020 1021 1022 1023
{
    float128 z;

    z.low = zSig1;
1024
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128
 roundAndPackFloat128(
1052
     flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM)
B
bellard 已提交
1053 1054 1055 1056 1057 1058
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
1059 1060
    switch (roundingMode) {
    case float_round_nearest_even:
1061
    case float_round_ties_away:
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
    default:
        abort();
B
bellard 已提交
1075
    }
1076
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
1104 1105 1106 1107
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
            if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
1122 1123
            switch (roundingMode) {
            case float_round_nearest_even:
1124
            case float_round_ties_away:
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
            default:
                abort();
B
bellard 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
            }
        }
    }
    if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

static float128
 normalizeRoundAndPackFloat128(
1165
     flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM)
B
bellard 已提交
1166 1167
{
    int8 shiftCount;
1168
    uint64_t zSig2;
B
bellard 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1195
float32 int32_to_float32(int32_t a STATUS_PARAM)
B
bellard 已提交
1196 1197 1198
{
    flag zSign;

P
pbrook 已提交
1199
    if ( a == 0 ) return float32_zero;
1200
    if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
B
bellard 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1212
float64 int32_to_float64(int32_t a STATUS_PARAM)
B
bellard 已提交
1213 1214 1215 1216
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1217
    uint64_t zSig;
B
bellard 已提交
1218

P
pbrook 已提交
1219
    if ( a == 0 ) return float64_zero;
B
bellard 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 21;
    zSig = absA;
    return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1235
floatx80 int32_to_floatx80(int32_t a STATUS_PARAM)
B
bellard 已提交
1236 1237 1238 1239
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1240
    uint64_t zSig;
B
bellard 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1257
float128 int32_to_float128(int32_t a STATUS_PARAM)
B
bellard 已提交
1258 1259 1260 1261
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1262
    uint64_t zSig0;
B
bellard 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1279
float32 int64_to_float32(int64_t a STATUS_PARAM)
B
bellard 已提交
1280 1281 1282 1283 1284
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

P
pbrook 已提交
1285
    if ( a == 0 ) return float32_zero;
B
bellard 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) - 40;
    if ( 0 <= shiftCount ) {
        return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
    }
    else {
        shiftCount += 7;
        if ( shiftCount < 0 ) {
            shift64RightJamming( absA, - shiftCount, &absA );
        }
        else {
            absA <<= shiftCount;
        }
        return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
    }

}

1305
float32 uint64_to_float32(uint64_t a STATUS_PARAM)
J
j_mayer 已提交
1306 1307 1308
{
    int8 shiftCount;

P
pbrook 已提交
1309
    if ( a == 0 ) return float32_zero;
J
j_mayer 已提交
1310 1311
    shiftCount = countLeadingZeros64( a ) - 40;
    if ( 0 <= shiftCount ) {
1312
        return packFloat32(0, 0x95 - shiftCount, a<<shiftCount);
J
j_mayer 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321
    }
    else {
        shiftCount += 7;
        if ( shiftCount < 0 ) {
            shift64RightJamming( a, - shiftCount, &a );
        }
        else {
            a <<= shiftCount;
        }
1322
        return roundAndPackFloat32(0, 0x9C - shiftCount, a STATUS_VAR);
J
j_mayer 已提交
1323 1324 1325
    }
}

B
bellard 已提交
1326 1327 1328 1329 1330 1331
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1332
float64 int64_to_float64(int64_t a STATUS_PARAM)
B
bellard 已提交
1333 1334 1335
{
    flag zSign;

P
pbrook 已提交
1336
    if ( a == 0 ) return float64_zero;
1337
    if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
B
bellard 已提交
1338 1339 1340 1341 1342 1343 1344
        return packFloat64( 1, 0x43E, 0 );
    }
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );

}

1345
float64 uint64_to_float64(uint64_t a STATUS_PARAM)
J
j_mayer 已提交
1346
{
1347
    int exp =  0x43C;
J
j_mayer 已提交
1348

1349 1350 1351 1352 1353 1354 1355 1356
    if (a == 0) {
        return float64_zero;
    }
    if ((int64_t)a < 0) {
        shift64RightJamming(a, 1, &a);
        exp += 1;
    }
    return normalizeRoundAndPackFloat64(0, exp, a STATUS_VAR);
J
j_mayer 已提交
1357 1358
}

B
bellard 已提交
1359 1360 1361 1362 1363 1364 1365
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1366
floatx80 int64_to_floatx80(int64_t a STATUS_PARAM)
B
bellard 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1386
float128 int64_to_float128(int64_t a STATUS_PARAM)
B
bellard 已提交
1387 1388 1389 1390 1391
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;
    int32 zExp;
1392
    uint64_t zSig0, zSig1;
B
bellard 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

1413
float128 uint64_to_float128(uint64_t a STATUS_PARAM)
1414 1415 1416 1417 1418 1419 1420
{
    if (a == 0) {
        return float128_zero;
    }
    return normalizeRoundAndPackFloat128(0, 0x406E, a, 0 STATUS_VAR);
}

B
bellard 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float32_to_int32( float32 a STATUS_PARAM )
{
    flag aSign;
1434
    int_fast16_t aExp, shiftCount;
1435 1436
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1437

1438
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= 0x00800000;
    shiftCount = 0xAF - aExp;
    aSig64 = aSig;
    aSig64 <<= 32;
    if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
    return roundAndPackInt32( aSign, aSig64 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
{
    flag aSign;
1465
    int_fast16_t aExp, shiftCount;
1466
    uint32_t aSig;
1467
    int32_t z;
1468
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1469 1470 1471 1472 1473 1474

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x9E;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1475
        if ( float32_val(a) != 0xCF000000 ) {
B
bellard 已提交
1476 1477 1478
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
        }
1479
        return (int32_t) 0x80000000;
B
bellard 已提交
1480 1481 1482 1483 1484 1485 1486
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1487
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
B
bellard 已提交
1488 1489 1490 1491 1492 1493 1494
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

1505
int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM)
1506 1507
{
    flag aSign;
1508
    int_fast16_t aExp, shiftCount;
1509
    uint32_t aSig;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    int32 z;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x8E;
    if ( 0 <= shiftCount ) {
        if ( float32_val(a) != 0xC7000000 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return 0x7FFF;
            }
        }
1523
        return (int32_t) 0xffff8000;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    shiftCount -= 0x10;
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1534
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
1535 1536 1537 1538 1539 1540 1541 1542 1543
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) {
        z = - z;
    }
    return z;

}

B
bellard 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float32_to_int64( float32 a STATUS_PARAM )
{
    flag aSign;
1557
    int_fast16_t aExp, shiftCount;
1558 1559
    uint32_t aSig;
    uint64_t aSig64, aSigExtra;
1560
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = 0xBE - aExp;
    if ( shiftCount < 0 ) {
        float_raise( float_flag_invalid STATUS_VAR);
        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
            return LIT64( 0x7FFFFFFFFFFFFFFF );
        }
1571
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580
    }
    if ( aExp ) aSig |= 0x00800000;
    aSig64 = aSig;
    aSig64 <<= 40;
    shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
    return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );

}

T
Tom Musta 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| unsigned integer is returned.  Otherwise, if the conversion overflows, the
| largest unsigned integer is returned.  If the 'a' is negative, the result
| is rounded and zero is returned; values that do not round to zero will
| raise the inexact exception flag.
*----------------------------------------------------------------------------*/

uint64 float32_to_uint64(float32 a STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp, shiftCount;
    uint32_t aSig;
    uint64_t aSig64, aSigExtra;
    a = float32_squash_input_denormal(a STATUS_VAR);

    aSig = extractFloat32Frac(a);
    aExp = extractFloat32Exp(a);
    aSign = extractFloat32Sign(a);
    if ((aSign) && (aExp > 126)) {
        float_raise(float_flag_invalid STATUS_VAR);
        if (float32_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    shiftCount = 0xBE - aExp;
    if (aExp) {
        aSig |= 0x00800000;
    }
    if (shiftCount < 0) {
        float_raise(float_flag_invalid STATUS_VAR);
        return LIT64(0xFFFFFFFFFFFFFFFF);
    }

    aSig64 = aSig;
    aSig64 <<= 40;
    shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
    return roundAndPackUint64(aSign, aSig64, aSigExtra STATUS_VAR);
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest unsigned integer is returned.  Otherwise, if the
| conversion overflows, the largest unsigned integer is returned.  If the
| 'a' is negative, the result is rounded and zero is returned; values that do
| not round to zero will raise the inexact flag.
*----------------------------------------------------------------------------*/

uint64 float32_to_uint64_round_to_zero(float32 a STATUS_PARAM)
{
    signed char current_rounding_mode = STATUS(float_rounding_mode);
    set_float_rounding_mode(float_round_to_zero STATUS_VAR);
    int64_t v = float32_to_uint64(a STATUS_VAR);
    set_float_rounding_mode(current_rounding_mode STATUS_VAR);
    return v;
}

B
bellard 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
{
    flag aSign;
1660
    int_fast16_t aExp, shiftCount;
1661 1662
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1663
    int64 z;
1664
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1665 1666 1667 1668 1669 1670

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0xBE;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1671
        if ( float32_val(a) != 0xDF000000 ) {
B
bellard 已提交
1672 1673 1674 1675 1676
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
1677
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1678 1679 1680 1681 1682 1683 1684 1685
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig64 = aSig | 0x00800000;
    aSig64 <<= 40;
    z = aSig64>>( - shiftCount );
1686
    if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float64 float32_to_float64( float32 a STATUS_PARAM )
{
    flag aSign;
1704
    int_fast16_t aExp;
1705
    uint32_t aSig;
1706
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1707 1708 1709 1710 1711

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1712
        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1713 1714 1715 1716 1717 1718 1719
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1720
    return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
B
bellard 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
{
    flag aSign;
1734
    int_fast16_t aExp;
1735
    uint32_t aSig;
B
bellard 已提交
1736

1737
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1738 1739 1740 1741
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1742
        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1743 1744 1745 1746 1747 1748 1749
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
1750
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float128 float32_to_float128( float32 a STATUS_PARAM )
{
    flag aSign;
1764
    int_fast16_t aExp;
1765
    uint32_t aSig;
B
bellard 已提交
1766

1767
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1768 1769 1770 1771
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1772
        if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1773 1774 1775 1776 1777 1778 1779
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1780
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

}

/*----------------------------------------------------------------------------
| Rounds the single-precision floating-point value `a' to an integer, and
| returns the result as a single-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_round_to_int( float32 a STATUS_PARAM)
{
    flag aSign;
1794
    int_fast16_t aExp;
1795 1796
    uint32_t lastBitMask, roundBitsMask;
    uint32_t z;
1797
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806

    aExp = extractFloat32Exp( a );
    if ( 0x96 <= aExp ) {
        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp <= 0x7E ) {
1807
        if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
1808 1809 1810 1811 1812 1813 1814 1815
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat32Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
                return packFloat32( aSign, 0x7F, 0 );
            }
            break;
1816 1817 1818 1819 1820
        case float_round_ties_away:
            if (aExp == 0x7E) {
                return packFloat32(aSign, 0x7F, 0);
            }
            break;
B
bellard 已提交
1821
         case float_round_down:
P
pbrook 已提交
1822
            return make_float32(aSign ? 0xBF800000 : 0);
B
bellard 已提交
1823
         case float_round_up:
P
pbrook 已提交
1824
            return make_float32(aSign ? 0x80000000 : 0x3F800000);
B
bellard 已提交
1825 1826 1827 1828 1829 1830
        }
        return packFloat32( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x96 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
1831
    z = float32_val(a);
1832 1833
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
B
bellard 已提交
1834
        z += lastBitMask>>1;
1835 1836 1837 1838
        if ((z & roundBitsMask) == 0) {
            z &= ~lastBitMask;
        }
        break;
1839 1840 1841
    case float_round_ties_away:
        z += lastBitMask >> 1;
        break;
1842 1843 1844 1845 1846 1847 1848 1849 1850
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloat32Sign(make_float32(z))) {
            z += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloat32Sign(make_float32(z))) {
B
bellard 已提交
1851 1852
            z += roundBitsMask;
        }
1853 1854 1855
        break;
    default:
        abort();
B
bellard 已提交
1856 1857
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
1858 1859
    if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float32(z);
B
bellard 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the single-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
1873
    int_fast16_t aExp, bExp, zExp;
1874
    uint32_t aSig, bSig, zSig;
1875
    int_fast16_t expDiff;
B
bellard 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 6;
    bSig <<= 6;
    if ( 0 < expDiff ) {
        if ( aExp == 0xFF ) {
            if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= 0x20000000;
        }
        shift32RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return packFloat32( zSign, 0xFF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= 0x20000000;
        }
        shift32RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0xFF ) {
            if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
1917
        if ( aExp == 0 ) {
1918 1919 1920 1921 1922 1923
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat32(zSign, 0, 0);
            }
1924 1925
            return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
        }
B
bellard 已提交
1926 1927 1928 1929 1930 1931 1932
        zSig = 0x40000000 + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= 0x20000000;
    zSig = ( aSig + bSig )<<1;
    --zExp;
1933
    if ( (int32_t) zSig < 0 ) {
B
bellard 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the single-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
1952
    int_fast16_t aExp, bExp, zExp;
1953
    uint32_t aSig, bSig, zSig;
1954
    int_fast16_t expDiff;
B
bellard 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 7;
    bSig <<= 7;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0xFF ) {
        if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign ^ 1, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= 0x40000000;
    }
    shift32RightJamming( aSig, - expDiff, &aSig );
    bSig |= 0x40000000;
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= 0x40000000;
    }
    shift32RightJamming( bSig, expDiff, &bSig );
    aSig |= 0x40000000;
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the single-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_add( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign;
2026 2027
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return addFloat32Sigs( a, b, aSign STATUS_VAR);
    }
    else {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_sub( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign;
2049 2050
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_mul( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
2072
    int_fast16_t aExp, bExp, zExp;
2073 2074 2075
    uint32_t aSig, bSig;
    uint64_t zSig64;
    uint32_t zSig;
B
bellard 已提交
2076

2077 2078 2079
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x7F;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
2116
    shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
B
bellard 已提交
2117
    zSig = zSig64;
2118
    if ( 0 <= (int32_t) ( zSig<<1 ) ) {
B
bellard 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
        zSig <<= 1;
        --zExp;
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the single-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_div( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
2135
    int_fast16_t aExp, bExp, zExp;
2136
    uint32_t aSig, bSig, zSig;
2137 2138
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float32_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat32( zSign, 0xFF, 0 );
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x7D;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
2182
    zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2183
    if ( ( zSig & 0x3F ) == 0 ) {
2184
        zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
B
bellard 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_rem( float32 a, float32 b STATUS_PARAM )
{
2198
    flag aSign, zSign;
2199
    int_fast16_t aExp, bExp, expDiff;
2200 2201 2202 2203 2204
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
2205 2206
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
2248
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
2260 2261
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
2280
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
2281 2282 2283 2284
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
2285
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
2286 2287 2288 2289 2290
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM)
{
    flag aSign, bSign, cSign, zSign;
2305
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    uint32_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig64, cSig64, zSig64;
    uint32_t pSig;
    int shiftcount;
    flag signflip, infzero;

    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
    c = float32_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat32Frac(a);
    aExp = extractFloat32Exp(a);
    aSign = extractFloat32Sign(a);
    bSig = extractFloat32Frac(b);
    bExp = extractFloat32Exp(b);
    bSign = extractFloat32Sign(b);
    cSig = extractFloat32Frac(c);
    cExp = extractFloat32Exp(c);
    cSign = extractFloat32Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
               (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0xff) && aSig) ||
        ((bExp == 0xff) && bSig) ||
        ((cExp == 0xff) && cSig)) {
        return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0xff) || (bExp == 0xff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0xff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat32(cSign ^ signflip, 0xff, 0);
    }

    if (pInf) {
        return packFloat32(pSign ^ signflip, 0xff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat32(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
        if (flags & float_muladd_halve_result) {
            if (cExp == 0) {
                normalizeFloat32Subnormal(cSig, &cExp, &cSig);
            }
            /* Subtract one to halve, and one again because roundAndPackFloat32
             * wants one less than the true exponent.
             */
            cExp -= 2;
            cSig = (cSig | 0x00800000) << 7;
            return roundAndPackFloat32(cSign ^ signflip, cExp, cSig STATUS_VAR);
        }
2404
        return packFloat32(cSign ^ signflip, cExp, cSig);
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
    }

    if (aExp == 0) {
        normalizeFloat32Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat32Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat32() takes.
     */
    pExp = aExp + bExp - 0x7e;
    aSig = (aSig | 0x00800000) << 7;
    bSig = (bSig | 0x00800000) << 8;
    pSig64 = (uint64_t)aSig * bSig;
    if ((int64_t)(pSig64 << 1) >= 0) {
        pSig64 <<= 1;
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now pSig64 is the significand of the multiply, with the explicit bit in
     * position 62.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift64RightJamming(pSig64, 32, &pSig64);
            pSig = pSig64;
2440 2441 2442
            if (flags & float_muladd_halve_result) {
                pExp--;
            }
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
            return roundAndPackFloat32(zSign, pExp - 1,
                                       pSig STATUS_VAR);
        }
        normalizeFloat32Subnormal(cSig, &cExp, &cSig);
    }

    cSig64 = (uint64_t)cSig << (62 - 23);
    cSig64 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 62 */
        zSig64 = pSig64 + cSig64;
        if ((int64_t)zSig64 < 0) {
            shift64RightJamming(zSig64, 1, &zSig64);
        } else {
            zExp--;
        }
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zSig64 = pSig64 - cSig64;
            zExp = pExp;
        } else if (expDiff < 0) {
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zSig64 = cSig64 - pSig64;
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (cSig64 < pSig64) {
                zSig64 = pSig64 - cSig64;
            } else if (pSig64 < cSig64) {
                zSig64 = cSig64 - pSig64;
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat32(zSign, 0, 0);
            }
        }
        --zExp;
        /* Normalize to put the explicit bit back into bit 62. */
        shiftcount = countLeadingZeros64(zSig64) - 1;
        zSig64 <<= shiftcount;
        zExp -= shiftcount;
    }
2507 2508 2509 2510
    if (flags & float_muladd_halve_result) {
        zExp--;
    }

2511 2512 2513 2514 2515
    shift64RightJamming(zSig64, 32, &zSig64);
    return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR);
}


B
bellard 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524
/*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_sqrt( float32 a STATUS_PARAM )
{
    flag aSign;
2525
    int_fast16_t aExp, zExp;
2526 2527
    uint32_t aSig, zSig;
    uint64_t rem, term;
2528
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2529 2530 2531 2532 2533

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
pbrook 已提交
2534
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
B
bellard 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
2545
        if ( aSig == 0 ) return float32_zero;
B
bellard 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
    aSig = ( aSig | 0x00800000 )<<8;
    zSig = estimateSqrt32( aExp, aSig ) + 2;
    if ( ( zSig & 0x7F ) <= 5 ) {
        if ( zSig < 2 ) {
            zSig = 0x7FFFFFFF;
            goto roundAndPack;
        }
        aSig >>= aExp & 1;
2557 2558 2559
        term = ( (uint64_t) zSig ) * zSig;
        rem = ( ( (uint64_t) aSig )<<32 ) - term;
        while ( (int64_t) rem < 0 ) {
B
bellard 已提交
2560
            --zSig;
2561
            rem += ( ( (uint64_t) zSig )<<1 ) | 1;
B
bellard 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570
        }
        zSig |= ( rem != 0 );
    }
    shift32RightJamming( zSig, 1, &zSig );
 roundAndPack:
    return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );

}

A
Aurelien Jarno 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
2606 2607 2608 2609 2610
};

float32 float32_exp2( float32 a STATUS_PARAM )
{
    flag aSign;
2611
    int_fast16_t aExp;
2612
    uint32_t aSig;
A
Aurelien Jarno 已提交
2613 2614
    float64 r, x, xn;
    int i;
2615
    a = float32_squash_input_denormal(a STATUS_VAR);
A
Aurelien Jarno 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

    float_raise( float_flag_inexact STATUS_VAR);

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
    x = float32_to_float64(a STATUS_VAR);
    x = float64_mul(x, float64_ln2 STATUS_VAR);

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

        f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR);
        r = float64_add(r, f STATUS_VAR);

        xn = float64_mul(xn, x STATUS_VAR);
    }

    return float64_to_float32(r, status);
}

2651 2652 2653 2654 2655 2656 2657 2658
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
float32 float32_log2( float32 a STATUS_PARAM )
{
    flag aSign, zSign;
2659
    int_fast16_t aExp;
2660
    uint32_t aSig, zSig, i;
2661

2662
    a = float32_squash_input_denormal(a STATUS_VAR);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
2686
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

    return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR );
}

B
bellard 已提交
2699 2700
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2701 2702
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
2703 2704 2705
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2706
int float32_eq( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2707
{
2708
    uint32_t av, bv;
2709 2710
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2711 2712 2713 2714

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2715
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
2716 2717
        return 0;
    }
2718 2719 2720
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
2721 2722 2723 2724
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2725 2726 2727
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2728 2729
*----------------------------------------------------------------------------*/

2730
int float32_le( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2731 2732
{
    flag aSign, bSign;
2733
    uint32_t av, bv;
2734 2735
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2745 2746
    av = float32_val(a);
    bv = float32_val(b);
2747
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2748
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2749 2750 2751 2752 2753

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2754 2755 2756
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2757 2758
*----------------------------------------------------------------------------*/

2759
int float32_lt( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2760 2761
{
    flag aSign, bSign;
2762
    uint32_t av, bv;
2763 2764
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2774 2775
    av = float32_val(a);
    bv = float32_val(b);
2776
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2777
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2778 2779 2780

}

2781 2782
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
2783 2784 2785
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
*----------------------------------------------------------------------------*/

int float32_unordered( float32 a, float32 b STATUS_PARAM )
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}
2801

B
bellard 已提交
2802 2803
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2804 2805 2806
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
2807 2808
*----------------------------------------------------------------------------*/

2809
int float32_eq_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2810
{
2811 2812
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2813 2814 2815 2816

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2817 2818 2819
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
2820 2821
        return 0;
    }
2822 2823
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2833
int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2834 2835
{
    flag aSign, bSign;
2836
    uint32_t av, bv;
2837 2838
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2850 2851
    av = float32_val(a);
    bv = float32_val(b);
2852
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2853
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2864
int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2865 2866
{
    flag aSign, bSign;
2867
    uint32_t av, bv;
2868 2869
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2881 2882
    av = float32_val(a);
    bv = float32_val(b);
2883
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2884
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2885 2886 2887

}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM )
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float64_to_int32( float64 a STATUS_PARAM )
{
    flag aSign;
2924
    int_fast16_t aExp, shiftCount;
2925
    uint64_t aSig;
2926
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x42C - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
{
    flag aSign;
2952
    int_fast16_t aExp, shiftCount;
2953
    uint64_t aSig, savedASig;
2954
    int32_t z;
2955
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x41E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
2977
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2978 2979 2980 2981 2982 2983 2984 2985
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

2996
int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM)
2997 2998
{
    flag aSign;
2999
    int_fast16_t aExp, shiftCount;
3000
    uint64_t aSig, savedASig;
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    int32 z;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x40E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) {
            aSign = 0;
        }
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) {
        z = - z;
    }
    if ( ( (int16_t)z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
3029
        return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
3030 3031 3032 3033 3034 3035 3036
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;
}

B
bellard 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float64_to_int64( float64 a STATUS_PARAM )
{
    flag aSign;
3050
    int_fast16_t aExp, shiftCount;
3051
    uint64_t aSig, aSigExtra;
3052
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x43E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FF )
                      && ( aSig != LIT64( 0x0010000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
3068
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
        }
        aSigExtra = 0;
        aSig <<= - shiftCount;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
{
    flag aSign;
3093
    int_fast16_t aExp, shiftCount;
3094
    uint64_t aSig;
B
bellard 已提交
3095
    int64 z;
3096
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3097 3098 3099 3100 3101 3102 3103 3104

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = aExp - 0x433;
    if ( 0 <= shiftCount ) {
        if ( 0x43E <= aExp ) {
P
pbrook 已提交
3105
            if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
B
bellard 已提交
3106 3107 3108 3109 3110 3111 3112 3113
                float_raise( float_flag_invalid STATUS_VAR);
                if (    ! aSign
                     || (    ( aExp == 0x7FF )
                          && ( aSig != LIT64( 0x0010000000000000 ) ) )
                   ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
3114
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
3115 3116 3117 3118 3119 3120 3121 3122 3123
        }
        z = aSig<<shiftCount;
    }
    else {
        if ( aExp < 0x3FE ) {
            if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
            return 0;
        }
        z = aSig>>( - shiftCount );
3124
        if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float32 float64_to_float32( float64 a STATUS_PARAM )
{
    flag aSign;
3143
    int_fast16_t aExp;
3144 3145
    uint64_t aSig;
    uint32_t zSig;
3146
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3147 3148 3149 3150 3151

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3152
        if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

P
Paul Brook 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| half-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
3176
static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig)
P
Paul Brook 已提交
3177
{
3178
    return make_float16(
3179
        (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
P
Paul Brook 已提交
3180 3181
}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper half-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the half-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal half-
| precision floating-point number.
| The `ieee' flag indicates whether to use IEEE standard half precision, or
| ARM-style "alternative representation", which omits the NaN and Inf
| encodings in order to raise the maximum representable exponent by one.
|     The input significand `zSig' has its binary point between bits 22
| and 23, which is 13 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| Note the slightly odd position of the binary point in zSig compared with the
| other roundAndPackFloat functions. This should probably be fixed if we
| need to implement more float16 routines than just conversion.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 roundAndPackFloat16(flag zSign, int_fast16_t zExp,
                                   uint32_t zSig, flag ieee STATUS_PARAM)
{
    int maxexp = ieee ? 29 : 30;
    uint32_t mask;
    uint32_t increment;
    bool rounding_bumps_exp;
    bool is_tiny = false;

    /* Calculate the mask of bits of the mantissa which are not
     * representable in half-precision and will be lost.
     */
    if (zExp < 1) {
        /* Will be denormal in halfprec */
        mask = 0x00ffffff;
        if (zExp >= -11) {
            mask >>= 11 + zExp;
        }
    } else {
        /* Normal number in halfprec */
        mask = 0x00001fff;
    }

3233
    switch (STATUS(float_rounding_mode)) {
3234 3235 3236 3237 3238 3239
    case float_round_nearest_even:
        increment = (mask + 1) >> 1;
        if ((zSig & mask) == increment) {
            increment = zSig & (increment << 1);
        }
        break;
3240 3241 3242
    case float_round_ties_away:
        increment = (mask + 1) >> 1;
        break;
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
    case float_round_up:
        increment = zSign ? 0 : mask;
        break;
    case float_round_down:
        increment = zSign ? mask : 0;
        break;
    default: /* round_to_zero */
        increment = 0;
        break;
    }

    rounding_bumps_exp = (zSig + increment >= 0x01000000);

    if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
        if (ieee) {
            float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
            return packFloat16(zSign, 0x1f, 0);
        } else {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(zSign, 0x1f, 0x3ff);
        }
    }

    if (zExp < 0) {
        /* Note that flush-to-zero does not affect half-precision results */
        is_tiny =
            (STATUS(float_detect_tininess) == float_tininess_before_rounding)
            || (zExp < -1)
            || (!rounding_bumps_exp);
    }
    if (zSig & mask) {
        float_raise(float_flag_inexact STATUS_VAR);
        if (is_tiny) {
            float_raise(float_flag_underflow STATUS_VAR);
        }
    }

    zSig += increment;
    if (rounding_bumps_exp) {
        zSig >>= 1;
        zExp++;
    }

    if (zExp < -10) {
        return packFloat16(zSign, 0, 0);
    }
    if (zExp < 0) {
        zSig >>= -zExp;
        zExp = 0;
    }
    return packFloat16(zSign, zExp, zSig >> 13);
}

static void normalizeFloat16Subnormal(uint32_t aSig, int_fast16_t *zExpPtr,
                                      uint32_t *zSigPtr)
{
    int8_t shiftCount = countLeadingZeros32(aSig) - 21;
    *zSigPtr = aSig << shiftCount;
    *zExpPtr = 1 - shiftCount;
}

P
Paul Brook 已提交
3304 3305
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
   The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3306 3307

float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM)
P
Paul Brook 已提交
3308 3309
{
    flag aSign;
3310
    int_fast16_t aExp;
3311
    uint32_t aSig;
P
Paul Brook 已提交
3312

3313 3314 3315
    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);
P
Paul Brook 已提交
3316 3317 3318

    if (aExp == 0x1f && ieee) {
        if (aSig) {
3319
            return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3320
        }
3321
        return packFloat32(aSign, 0xff, 0);
P
Paul Brook 已提交
3322 3323 3324 3325 3326 3327
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat32(aSign, 0, 0);
        }

3328 3329
        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
P
Paul Brook 已提交
3330 3331 3332 3333
    }
    return packFloat32( aSign, aExp + 0x70, aSig << 13);
}

3334
float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM)
P
Paul Brook 已提交
3335 3336
{
    flag aSign;
3337
    int_fast16_t aExp;
3338
    uint32_t aSig;
3339

3340
    a = float32_squash_input_denormal(a STATUS_VAR);
P
Paul Brook 已提交
3341 3342 3343 3344 3345 3346

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if (aSig) {
3347 3348
            /* Input is a NaN */
            if (!ieee) {
3349
                float_raise(float_flag_invalid STATUS_VAR);
3350 3351
                return packFloat16(aSign, 0, 0);
            }
3352 3353
            return commonNaNToFloat16(
                float32ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3354
        }
3355 3356 3357 3358 3359 3360
        /* Infinity */
        if (!ieee) {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
P
Paul Brook 已提交
3361
    }
3362
    if (aExp == 0 && aSig == 0) {
P
Paul Brook 已提交
3363 3364
        return packFloat16(aSign, 0, 0);
    }
3365 3366 3367 3368 3369 3370 3371
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
P
Paul Brook 已提交
3372
    aSig |= 0x00800000;
3373
    aExp -= 0x71;
P
Paul Brook 已提交
3374

3375
    return roundAndPackFloat16(aSign, aExp, aSig, ieee STATUS_VAR);
P
Paul Brook 已提交
3376 3377
}

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp;
    uint32_t aSig;

    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);

    if (aExp == 0x1f && ieee) {
        if (aSig) {
            return commonNaNToFloat64(
                float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
        }
        return packFloat64(aSign, 0x7ff, 0);
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat64(aSign, 0, 0);
        }

        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
    }
    return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
}

float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp;
    uint64_t aSig;
    uint32_t zSig;

    a = float64_squash_input_denormal(a STATUS_VAR);

    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aExp == 0x7FF) {
        if (aSig) {
            /* Input is a NaN */
            if (!ieee) {
                float_raise(float_flag_invalid STATUS_VAR);
                return packFloat16(aSign, 0, 0);
            }
            return commonNaNToFloat16(
                float64ToCommonNaN(a STATUS_VAR) STATUS_VAR);
        }
        /* Infinity */
        if (!ieee) {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
    }
    shift64RightJamming(aSig, 29, &aSig);
    zSig = aSig;
    if (aExp == 0 && zSig == 0) {
        return packFloat16(aSign, 0, 0);
    }
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
    zSig |= 0x00800000;
    aExp -= 0x3F1;

    return roundAndPackFloat16(aSign, aExp, zSig, ieee STATUS_VAR);
}

B
bellard 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
{
    flag aSign;
3463
    int_fast16_t aExp;
3464
    uint64_t aSig;
B
bellard 已提交
3465

3466
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3467 3468 3469 3470
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3471
        if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float128 float64_to_float128( float64 a STATUS_PARAM )
{
    flag aSign;
3494
    int_fast16_t aExp;
3495
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
3496

3497
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3498 3499 3500 3501
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3502
        if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the double-precision floating-point value `a' to an integer, and
| returns the result as a double-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_round_to_int( float64 a STATUS_PARAM )
{
    flag aSign;
3525
    int_fast16_t aExp;
3526 3527
    uint64_t lastBitMask, roundBitsMask;
    uint64_t z;
3528
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537

    aExp = extractFloat64Exp( a );
    if ( 0x433 <= aExp ) {
        if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FF ) {
3538
        if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
3539 3540 3541 3542 3543 3544 3545 3546
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat64Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
                return packFloat64( aSign, 0x3FF, 0 );
            }
            break;
3547 3548 3549 3550 3551
        case float_round_ties_away:
            if (aExp == 0x3FE) {
                return packFloat64(aSign, 0x3ff, 0);
            }
            break;
B
bellard 已提交
3552
         case float_round_down:
P
pbrook 已提交
3553
            return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
B
bellard 已提交
3554
         case float_round_up:
P
pbrook 已提交
3555 3556
            return make_float64(
            aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
B
bellard 已提交
3557 3558 3559 3560 3561 3562
        }
        return packFloat64( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x433 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
3563
    z = float64_val(a);
3564 3565 3566 3567 3568 3569 3570
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
        z += lastBitMask >> 1;
        if ((z & roundBitsMask) == 0) {
            z &= ~lastBitMask;
        }
        break;
3571 3572 3573
    case float_round_ties_away:
        z += lastBitMask >> 1;
        break;
3574 3575 3576 3577 3578 3579 3580 3581 3582
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloat64Sign(make_float64(z))) {
            z += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloat64Sign(make_float64(z))) {
B
bellard 已提交
3583 3584
            z += roundBitsMask;
        }
3585 3586 3587
        break;
    default:
        abort();
B
bellard 已提交
3588 3589
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
3590 3591 3592
    if ( z != float64_val(a) )
        STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float64(z);
B
bellard 已提交
3593 3594 3595

}

P
pbrook 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
float64 float64_trunc_to_int( float64 a STATUS_PARAM)
{
    int oldmode;
    float64 res;
    oldmode = STATUS(float_rounding_mode);
    STATUS(float_rounding_mode) = float_round_to_zero;
    res = float64_round_to_int(a STATUS_VAR);
    STATUS(float_rounding_mode) = oldmode;
    return res;
}

B
bellard 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the double-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
3617
    int_fast16_t aExp, bExp, zExp;
3618
    uint64_t aSig, bSig, zSig;
3619
    int_fast16_t expDiff;
B
bellard 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 9;
    bSig <<= 9;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FF ) {
            if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return packFloat64( zSign, 0x7FF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FF ) {
            if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
3661
        if ( aExp == 0 ) {
3662 3663 3664 3665 3666 3667
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat64(zSign, 0, 0);
            }
3668 3669
            return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
        }
B
bellard 已提交
3670 3671 3672 3673 3674 3675 3676
        zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= LIT64( 0x2000000000000000 );
    zSig = ( aSig + bSig )<<1;
    --zExp;
3677
    if ( (int64_t) zSig < 0 ) {
B
bellard 已提交
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
3696
    int_fast16_t aExp, bExp, zExp;
3697
    uint64_t aSig, bSig, zSig;
3698
    int_fast16_t expDiff;
B
bellard 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 10;
    bSig <<= 10;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FF ) {
        if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign ^ 1, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( aSig, - expDiff, &aSig );
    bSig |= LIT64( 0x4000000000000000 );
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( bSig, expDiff, &bSig );
    aSig |= LIT64( 0x4000000000000000 );
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the double-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_add( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign;
3770 3771
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_sub( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign;
3793 3794
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_mul( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
3816
    int_fast16_t aExp, bExp, zExp;
3817
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
3818

3819 3820 3821
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FF;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
    zSig0 |= ( zSig1 != 0 );
3860
    if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
B
bellard 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
        zSig0 <<= 1;
        --zExp;
    }
    return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the double-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_div( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
3877
    int_fast16_t aExp, bExp, zExp;
3878 3879 3880
    uint64_t aSig, bSig, zSig;
    uint64_t rem0, rem1;
    uint64_t term0, term1;
3881 3882
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float64_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat64( zSign, 0x7FF, 0 );
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FD;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
    zSig = estimateDiv128To64( aSig, 0, bSig );
    if ( ( zSig & 0x1FF ) <= 2 ) {
        mul64To128( bSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
3930
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
            --zSig;
            add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
        }
        zSig |= ( rem1 != 0 );
    }
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_rem( float64 a, float64 b STATUS_PARAM )
{
3948
    flag aSign, zSign;
3949
    int_fast16_t aExp, bExp, expDiff;
3950 3951 3952
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
3953

3954 3955
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4015
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4016 4017 4018 4019
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4020
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4021 4022 4023 4024 4025
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM)
{
    flag aSign, bSign, cSign, zSign;
4040
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
    uint64_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
    int shiftcount;
    flag signflip, infzero;

    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
    c = float64_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    bSig = extractFloat64Frac(b);
    bExp = extractFloat64Exp(b);
    bSign = extractFloat64Sign(b);
    cSig = extractFloat64Frac(c);
    cExp = extractFloat64Exp(c);
    cSign = extractFloat64Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
               (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0x7ff) && aSig) ||
        ((bExp == 0x7ff) && bSig) ||
        ((cExp == 0x7ff) && cSig)) {
        return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0x7ff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat64(cSign ^ signflip, 0x7ff, 0);
    }

    if (pInf) {
        return packFloat64(pSign ^ signflip, 0x7ff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat64(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
        if (flags & float_muladd_halve_result) {
            if (cExp == 0) {
                normalizeFloat64Subnormal(cSig, &cExp, &cSig);
            }
            /* Subtract one to halve, and one again because roundAndPackFloat64
             * wants one less than the true exponent.
             */
            cExp -= 2;
            cSig = (cSig | 0x0010000000000000ULL) << 10;
            return roundAndPackFloat64(cSign ^ signflip, cExp, cSig STATUS_VAR);
        }
4138
        return packFloat64(cSign ^ signflip, cExp, cSig);
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
    }

    if (aExp == 0) {
        normalizeFloat64Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat64Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat64() takes.
     */
    pExp = aExp + bExp - 0x3fe;
    aSig = (aSig | LIT64(0x0010000000000000))<<10;
    bSig = (bSig | LIT64(0x0010000000000000))<<11;
    mul64To128(aSig, bSig, &pSig0, &pSig1);
    if ((int64_t)(pSig0 << 1) >= 0) {
        shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
     * bit in position 126.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
4173 4174 4175
            if (flags & float_muladd_halve_result) {
                pExp--;
            }
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
            return roundAndPackFloat64(zSign, pExp - 1,
                                       pSig1 STATUS_VAR);
        }
        normalizeFloat64Subnormal(cSig, &cExp, &cSig);
    }

    /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
     * significand of the addend, with the explicit bit in position 126.
     */
    cSig0 = cSig << (126 - 64 - 52);
    cSig1 = 0;
    cSig0 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 126 */
        add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
        if ((int64_t)zSig0 < 0) {
            shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
        } else {
            zExp--;
        }
        shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
4212 4213 4214
        if (flags & float_muladd_halve_result) {
            zExp--;
        }
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
        return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR);
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (lt128(cSig0, cSig1, pSig0, pSig1)) {
                sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
                sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat64(zSign, 0, 0);
            }
        }
        --zExp;
        /* Do the equivalent of normalizeRoundAndPackFloat64() but
         * starting with the significand in a pair of uint64_t.
         */
        if (zSig0) {
            shiftcount = countLeadingZeros64(zSig0) - 1;
            shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
            if (zSig1) {
                zSig0 |= 1;
            }
            zExp -= shiftcount;
        } else {
4255 4256 4257 4258 4259 4260 4261 4262 4263
            shiftcount = countLeadingZeros64(zSig1);
            if (shiftcount == 0) {
                zSig0 = (zSig1 >> 1) | (zSig1 & 1);
                zExp -= 63;
            } else {
                shiftcount--;
                zSig0 = zSig1 << shiftcount;
                zExp -= (shiftcount + 64);
            }
4264
        }
4265 4266 4267
        if (flags & float_muladd_halve_result) {
            zExp--;
        }
4268 4269 4270 4271
        return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR);
    }
}

B
bellard 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280
/*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_sqrt( float64 a STATUS_PARAM )
{
    flag aSign;
4281
    int_fast16_t aExp, zExp;
4282 4283
    uint64_t aSig, zSig, doubleZSig;
    uint64_t rem0, rem1, term0, term1;
4284
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
4301
        if ( aSig == 0 ) return float64_zero;
B
bellard 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
    aSig |= LIT64( 0x0010000000000000 );
    zSig = estimateSqrt32( aExp, aSig>>21 );
    aSig <<= 9 - ( aExp & 1 );
    zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
    if ( ( zSig & 0x1FF ) <= 5 ) {
        doubleZSig = zSig<<1;
        mul64To128( zSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4313
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
            --zSig;
            doubleZSig -= 2;
            add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
        }
        zSig |= ( ( rem0 | rem1 ) != 0 );
    }
    return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );

}

4324 4325 4326 4327 4328 4329 4330 4331
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
float64 float64_log2( float64 a STATUS_PARAM )
{
    flag aSign, zSign;
4332
    int_fast16_t aExp;
4333
    uint64_t aSig, aSig0, aSig1, zSig, i;
4334
    a = float64_squash_input_denormal(a STATUS_VAR);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4356
    zSig = (uint64_t)aExp << 52;
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
    return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR );
}

B
bellard 已提交
4371 4372
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4373 4374
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4375 4376 4377
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4378
int float64_eq( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4379
{
4380
    uint64_t av, bv;
4381 4382
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4383 4384 4385 4386

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4387
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
4388 4389
        return 0;
    }
P
pbrook 已提交
4390
    av = float64_val(a);
P
pbrook 已提交
4391
    bv = float64_val(b);
4392
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4393 4394 4395 4396 4397

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4398 4399 4400
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4401 4402
*----------------------------------------------------------------------------*/

4403
int float64_le( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4404 4405
{
    flag aSign, bSign;
4406
    uint64_t av, bv;
4407 4408
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4418
    av = float64_val(a);
P
pbrook 已提交
4419
    bv = float64_val(b);
4420
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4421
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4422 4423 4424 4425 4426

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4427 4428 4429
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4430 4431
*----------------------------------------------------------------------------*/

4432
int float64_lt( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4433 4434
{
    flag aSign, bSign;
4435
    uint64_t av, bv;
B
bellard 已提交
4436

4437 4438
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4439 4440 4441 4442 4443 4444 4445 4446
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4447
    av = float64_val(a);
P
pbrook 已提交
4448
    bv = float64_val(b);
4449
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4450
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4451 4452 4453

}

4454 4455
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4456 4457 4458
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
*----------------------------------------------------------------------------*/

int float64_unordered( float64 a, float64 b STATUS_PARAM )
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
4475 4476
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4477 4478 4479
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4480 4481
*----------------------------------------------------------------------------*/

4482
int float64_eq_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4483
{
4484
    uint64_t av, bv;
4485 4486
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4487 4488 4489 4490

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4491 4492 4493
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
4494 4495
        return 0;
    }
P
pbrook 已提交
4496
    av = float64_val(a);
P
pbrook 已提交
4497
    bv = float64_val(b);
4498
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4509
int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4510 4511
{
    flag aSign, bSign;
4512
    uint64_t av, bv;
4513 4514
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4526
    av = float64_val(a);
P
pbrook 已提交
4527
    bv = float64_val(b);
4528
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4529
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4540
int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4541 4542
{
    flag aSign, bSign;
4543
    uint64_t av, bv;
4544 4545
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4557
    av = float64_val(a);
P
pbrook 已提交
4558
    bv = float64_val(b);
4559
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4560
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4561 4562 4563

}

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM )
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4601
    uint64_t aSig;
B
bellard 已提交
4602 4603 4604 4605

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4606
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4628
    uint64_t aSig, savedASig;
4629
    int32_t z;
B
bellard 已提交
4630 4631 4632 4633 4634

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4635
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
4650
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4673
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig != LIT64( 0x8000000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4688
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4713
    uint64_t aSig;
B
bellard 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
    int64 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4728
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4729 4730 4731 4732 4733 4734
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    z = aSig>>( - shiftCount );
4735
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4754
    uint64_t aSig;
B
bellard 已提交
4755 4756 4757 4758 4759

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4760
        if ( (uint64_t) ( aSig<<1 ) ) {
4761
            return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
    return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4782
    uint64_t aSig, zSig;
B
bellard 已提交
4783 4784 4785 4786 4787

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4788
        if ( (uint64_t) ( aSig<<1 ) ) {
4789
            return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
    return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
{
    flag aSign;
4809
    int_fast16_t aExp;
4810
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4811 4812 4813 4814

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4815
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
4816
        return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4834
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4835 4836 4837 4838
    floatx80 z;

    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4839
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
B
bellard 已提交
4840 4841 4842 4843 4844 4845
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4846
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4847 4848 4849 4850 4851 4852
            return a;
        }
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloatx80Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
4853
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4854 4855 4856 4857 4858
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4859 4860 4861 4862 4863
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4880 4881
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
B
bellard 已提交
4882
        z.low += lastBitMask>>1;
4883 4884 4885 4886
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4887 4888 4889
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4890 4891 4892 4893 4894 4895 4896 4897 4898
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4899 4900
            z.low += roundBitsMask;
        }
4901 4902 4903
        break;
    default:
        abort();
B
bellard 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
    if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
4926
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935
    int32 expDiff;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
4936
            if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4937 4938 4939 4940 4941 4942 4943 4944
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
4945
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4946 4947 4948 4949 4950 4951 4952 4953
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
4954
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
                return propagateFloatx80NaN( a, b STATUS_VAR );
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
4969
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
{
    int32 aExp, bExp, zExp;
4992
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
    int32 expDiff;
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5004
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
5022
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
5034
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    return
        normalizeRoundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
5101
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5112 5113
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
5114 5115 5116 5117 5118 5119
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
5120
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5140
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
5160 5161
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5172
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5173
        if ( bExp == 0x7FFF ) {
5174
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5175 5176 5177 5178 5179
            goto invalid;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
5180
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = floatx80_default_nan_low;
                z.high = floatx80_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5210
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5211 5212 5213 5214
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5215
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5216 5217
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5218
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
{
5238
    flag aSign, zSign;
B
bellard 已提交
5239
    int32 aExp, bExp, expDiff;
5240 5241
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5242 5243 5244 5245 5246 5247 5248 5249
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5250 5251
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
5252 5253 5254 5255 5256
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
5257
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5271
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
            80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, zExp;
5336 5337
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5338 5339 5340 5341 5342 5343
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5344
        if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
B
bellard 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5367
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5379
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
5397 5398 5399 5400
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5401 5402
*----------------------------------------------------------------------------*/

5403
int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5404 5405 5406
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5407
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5408
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5409
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5410
       ) {
5411
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
5412 5413 5414 5415 5416 5417
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5418
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5419 5420 5421 5422 5423 5424 5425
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5426 5427 5428
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5429 5430
*----------------------------------------------------------------------------*/

5431
int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5432 5433 5434 5435
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5436
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5437
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5438
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5439 5440 5441 5442 5443 5444 5445 5446 5447
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5448
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5459 5460 5461
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5462 5463
*----------------------------------------------------------------------------*/

5464
int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5465 5466 5467 5468
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5469
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5470
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5471
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5472 5473 5474 5475 5476 5477 5478 5479 5480
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5481
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5482 5483 5484 5485 5486 5487 5488 5489
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5490 5491
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5492 5493 5494
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
*----------------------------------------------------------------------------*/
int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM )
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
5509
/*----------------------------------------------------------------------------
5510
| Returns 1 if the extended double-precision floating-point value `a' is
5511 5512 5513
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5514 5515
*----------------------------------------------------------------------------*/

5516
int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5517 5518 5519
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5520
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5521
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5522
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5523
       ) {
5524 5525 5526 5527
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
5528 5529 5530 5531 5532 5533
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5534
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5546
int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5547 5548 5549 5550
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5551
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5552
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5553
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5566
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5582
int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5583 5584 5585 5586
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5587
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5588
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5589
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5602
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5603 5604 5605 5606 5607 5608 5609 5610
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float128_to_int32( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5647
    uint64_t aSig0, aSig1;
B
bellard 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
    return roundAndPackInt32( aSign, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5676
    uint64_t aSig0, aSig1, savedASig;
5677
    int32_t z;
B
bellard 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
5701
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float128_to_int64( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5724
    uint64_t aSig0, aSig1;
B
bellard 已提交
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5742
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
    return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5767
    uint64_t aSig0, aSig1;
B
bellard 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
    int64 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
                if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
            }
            else {
                float_raise( float_flag_invalid STATUS_VAR);
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5789
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5790 5791
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5792
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
B
bellard 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
                STATUS(float_exception_flags) |= float_flag_inexact;
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5805
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
B
bellard 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float32 float128_to_float32( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5825 5826
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5827 5828 5829 5830 5831 5832 5833

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5834
            return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float64 float128_to_float64( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5860
    uint64_t aSig0, aSig1;
B
bellard 已提交
5861 5862 5863 5864 5865 5866 5867

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5868
            return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
    return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5893
    uint64_t aSig0, aSig1;
B
bellard 已提交
5894 5895 5896 5897 5898 5899 5900

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5901
            return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
        }
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
    return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_round_to_int( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5928
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
                return propagateFloat128NaN( a, a STATUS_VAR );
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
5945 5946
        switch (STATUS(float_rounding_mode)) {
        case float_round_nearest_even:
B
bellard 已提交
5947 5948 5949 5950 5951
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
5952
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
5953
                    ++z.high;
5954
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
5955 5956
                }
            }
5957
            break;
5958 5959 5960 5961 5962 5963 5964 5965 5966
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
5977
            }
5978 5979 5980
            break;
        default:
            abort();
B
bellard 已提交
5981 5982 5983 5984 5985
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
5986
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
B
bellard 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
            STATUS(float_exception_flags) |= float_flag_inexact;
            aSign = extractFloat128Sign( a );
            switch ( STATUS(float_rounding_mode) ) {
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
5998 5999 6000 6001 6002
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6019 6020
        switch (STATUS(float_rounding_mode)) {
        case float_round_nearest_even:
B
bellard 已提交
6021 6022 6023 6024
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6025
            break;
6026 6027 6028
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6029 6030 6031 6032
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6033 6034 6035
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6036 6037 6038 6039 6040 6041 6042 6043 6044
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
6066
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
B
bellard 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
    int32 expDiff;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
                return propagateFloat128NaN( a, b STATUS_VAR );
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6114
        if ( aExp == 0 ) {
6115 6116 6117 6118 6119 6120
            if (STATUS(flush_to_zero)) {
                if (zSig0 | zSig1) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6121 6122
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
6152
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
B
bellard 已提交
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
    int32 expDiff;
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
    return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_add( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_sub( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_mul( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
6277
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_div( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
6341 6342
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = float128_default_nan_low;
                z.high = float128_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6396
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6397 6398 6399 6400 6401 6402 6403
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6404
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_rem( float128 a, float128 b STATUS_PARAM )
{
6423
    flag aSign, zSign;
B
bellard 已提交
6424
    int32 aExp, bExp, expDiff;
6425 6426 6427
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6509
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6510
    add128(
6511
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6512 6513 6514 6515 6516
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6517
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
    return
        normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_sqrt( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, zExp;
6534 6535
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6567
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6579
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6595 6596
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6597 6598 6599
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6600
int float128_eq( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6601 6602 6603 6604 6605 6606 6607
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6608
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
6609 6610 6611 6612 6613 6614
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6615
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6616 6617 6618 6619 6620 6621
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6622 6623 6624
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6625 6626
*----------------------------------------------------------------------------*/

6627
int float128_le( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6644
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6655 6656 6657
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6658 6659
*----------------------------------------------------------------------------*/

6660
int float128_lt( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6677
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6678 6679 6680 6681 6682 6683 6684 6685
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6686 6687
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6688 6689 6690
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
*----------------------------------------------------------------------------*/

int float128_unordered( float128 a, float128 b STATUS_PARAM )
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
6706 6707
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6708 6709 6710
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6711 6712
*----------------------------------------------------------------------------*/

6713
int float128_eq_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6714 6715 6716 6717 6718 6719 6720
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6721 6722 6723 6724
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
6725 6726 6727 6728 6729 6730
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6731
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6743
int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6763
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6779
int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6799
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6800 6801 6802 6803 6804 6805 6806 6807
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM )
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
6831
/* misc functions */
6832
float32 uint32_to_float32(uint32_t a STATUS_PARAM)
B
bellard 已提交
6833 6834 6835 6836
{
    return int64_to_float32(a STATUS_VAR);
}

6837
float64 uint32_to_float64(uint32_t a STATUS_PARAM)
B
bellard 已提交
6838 6839 6840 6841
{
    return int64_to_float64(a STATUS_VAR);
}

6842
uint32 float32_to_uint32( float32 a STATUS_PARAM )
B
bellard 已提交
6843 6844
{
    int64_t v;
6845
    uint32 res;
6846
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6847 6848 6849 6850 6851 6852 6853

    v = float32_to_int64(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6854
        return v;
B
bellard 已提交
6855
    }
6856 6857
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6858 6859 6860
    return res;
}

6861
uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
B
bellard 已提交
6862 6863
{
    int64_t v;
6864
    uint32 res;
6865
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6866 6867 6868 6869 6870 6871 6872

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6873
        return v;
B
bellard 已提交
6874
    }
6875 6876
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6877 6878 6879
    return res;
}

6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
int_fast16_t float32_to_int16(float32 a STATUS_PARAM)
{
    int32_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

uint_fast16_t float32_to_uint16(float32 a STATUS_PARAM)
{
    int32_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

6920
uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM)
6921 6922
{
    int64_t v;
6923
    uint_fast16_t res;
6924
    int old_exc_flags = get_float_exception_flags(status);
6925 6926 6927 6928 6929 6930 6931

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
6932
        return v;
6933
    }
6934 6935
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
6936 6937 6938
    return res;
}

6939
uint32 float64_to_uint32( float64 a STATUS_PARAM )
B
bellard 已提交
6940
{
T
Tom Musta 已提交
6941
    uint64_t v;
6942
    uint32 res;
T
Tom Musta 已提交
6943
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6944

T
Tom Musta 已提交
6945 6946
    v = float64_to_uint64(a STATUS_VAR);
    if (v > 0xffffffff) {
B
bellard 已提交
6947 6948
        res = 0xffffffff;
    } else {
T
Tom Musta 已提交
6949
        return v;
B
bellard 已提交
6950
    }
T
Tom Musta 已提交
6951 6952
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6953 6954 6955
    return res;
}

6956
uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
B
bellard 已提交
6957
{
6958
    uint64_t v;
6959
    uint32 res;
6960
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6961

6962 6963
    v = float64_to_uint64_round_to_zero(a STATUS_VAR);
    if (v > 0xffffffff) {
B
bellard 已提交
6964 6965
        res = 0xffffffff;
    } else {
6966
        return v;
B
bellard 已提交
6967
    }
6968 6969
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6970 6971 6972
    return res;
}

6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
int_fast16_t float64_to_int16(float64 a STATUS_PARAM)
{
    int64_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

uint_fast16_t float64_to_uint16(float64 a STATUS_PARAM)
{
    int64_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

7013
uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM)
7014 7015
{
    int64_t v;
7016
    uint_fast16_t res;
7017
    int old_exc_flags = get_float_exception_flags(status);
7018 7019 7020 7021 7022 7023 7024

    v = float64_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
7025
        return v;
7026
    }
7027 7028
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
7029 7030 7031
    return res;
}

T
Tom Musta 已提交
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/
J
j_mayer 已提交
7043

T
Tom Musta 已提交
7044 7045 7046 7047 7048 7049
uint64_t float64_to_uint64(float64 a STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp, shiftCount;
    uint64_t aSig, aSigExtra;
    a = float64_squash_input_denormal(a STATUS_VAR);
J
j_mayer 已提交
7050

T
Tom Musta 已提交
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aSign && (aExp > 1022)) {
        float_raise(float_flag_invalid STATUS_VAR);
        if (float64_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig |= LIT64(0x0010000000000000);
    }
    shiftCount = 0x433 - aExp;
    if (shiftCount <= 0) {
        if (0x43E < aExp) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        aSigExtra = 0;
        aSig <<= -shiftCount;
    } else {
        shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
    }
    return roundAndPackUint64(aSign, aSig, aSigExtra STATUS_VAR);
J
j_mayer 已提交
7077 7078 7079 7080
}

uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
{
7081 7082 7083 7084 7085
    signed char current_rounding_mode = STATUS(float_rounding_mode);
    set_float_rounding_mode(float_round_to_zero STATUS_VAR);
    int64_t v = float64_to_uint64(a STATUS_VAR);
    set_float_rounding_mode(current_rounding_mode STATUS_VAR);
    return v;
J
j_mayer 已提交
7086 7087
}

B
bellard 已提交
7088
#define COMPARE(s, nan_exp)                                                  \
7089
static inline int float ## s ## _compare_internal( float ## s a, float ## s b,      \
B
bellard 已提交
7090 7091 7092
                                      int is_quiet STATUS_PARAM )            \
{                                                                            \
    flag aSign, bSign;                                                       \
7093
    uint ## s ## _t av, bv;                                                  \
7094 7095
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);                  \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);                  \
B
bellard 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
                                                                             \
    if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \
         extractFloat ## s ## Frac( a ) ) ||                                 \
        ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
          extractFloat ## s ## Frac( b ) )) {                                \
        if (!is_quiet ||                                                     \
            float ## s ## _is_signaling_nan( a ) ||                          \
            float ## s ## _is_signaling_nan( b ) ) {                         \
            float_raise( float_flag_invalid STATUS_VAR);                     \
        }                                                                    \
        return float_relation_unordered;                                     \
    }                                                                        \
    aSign = extractFloat ## s ## Sign( a );                                  \
    bSign = extractFloat ## s ## Sign( b );                                  \
P
pbrook 已提交
7110
    av = float ## s ## _val(a);                                              \
7111
    bv = float ## s ## _val(b);                                              \
B
bellard 已提交
7112
    if ( aSign != bSign ) {                                                  \
7113
        if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) {                   \
B
bellard 已提交
7114 7115 7116 7117 7118 7119
            /* zero case */                                                  \
            return float_relation_equal;                                     \
        } else {                                                             \
            return 1 - (2 * aSign);                                          \
        }                                                                    \
    } else {                                                                 \
P
pbrook 已提交
7120
        if (av == bv) {                                                      \
B
bellard 已提交
7121 7122
            return float_relation_equal;                                     \
        } else {                                                             \
P
pbrook 已提交
7123
            return 1 - 2 * (aSign ^ ( av < bv ));                            \
B
bellard 已提交
7124 7125 7126 7127
        }                                                                    \
    }                                                                        \
}                                                                            \
                                                                             \
7128
int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM )        \
B
bellard 已提交
7129 7130 7131 7132
{                                                                            \
    return float ## s ## _compare_internal(a, b, 0 STATUS_VAR);              \
}                                                                            \
                                                                             \
7133
int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM )  \
B
bellard 已提交
7134 7135 7136 7137 7138 7139
{                                                                            \
    return float ## s ## _compare_internal(a, b, 1 STATUS_VAR);              \
}

COMPARE(32, 0xff)
COMPARE(64, 0x7ff)
P
pbrook 已提交
7140

7141
static inline int floatx80_compare_internal( floatx80 a, floatx80 b,
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
                                      int is_quiet STATUS_PARAM )
{
    flag aSign, bSign;

    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
            floatx80_is_signaling_nan( a ) ||
            floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
{
    return floatx80_compare_internal(a, b, 0 STATUS_VAR);
}

int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
    return floatx80_compare_internal(a, b, 1 STATUS_VAR);
}

7187
static inline int float128_compare_internal( float128 a, float128 b,
B
blueswir1 已提交
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
                                      int is_quiet STATUS_PARAM )
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
            float128_is_signaling_nan( a ) ||
            float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

int float128_compare( float128 a, float128 b STATUS_PARAM )
{
    return float128_compare_internal(a, b, 0 STATUS_VAR);
}

int float128_compare_quiet( float128 a, float128 b STATUS_PARAM )
{
    return float128_compare_internal(a, b, 1 STATUS_VAR);
}

7231 7232 7233
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
7234 7235 7236 7237 7238 7239 7240
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
7241 7242 7243
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
7244
 */
7245
#define MINMAX(s)                                                       \
7246
static inline float ## s float ## s ## _minmax(float ## s a, float ## s b,     \
7247 7248
                                               int ismin, int isieee,   \
                                               int ismag STATUS_PARAM)  \
7249 7250
{                                                                       \
    flag aSign, bSign;                                                  \
7251
    uint ## s ## _t av, bv, aav, abv;                                   \
7252 7253 7254 7255
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);             \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);             \
    if (float ## s ## _is_any_nan(a) ||                                 \
        float ## s ## _is_any_nan(b)) {                                 \
7256 7257 7258 7259 7260 7261 7262 7263 7264
        if (isieee) {                                                   \
            if (float ## s ## _is_quiet_nan(a) &&                       \
                !float ## s ##_is_any_nan(b)) {                         \
                return b;                                               \
            } else if (float ## s ## _is_quiet_nan(b) &&                \
                       !float ## s ## _is_any_nan(a)) {                 \
                return a;                                               \
            }                                                           \
        }                                                               \
7265 7266 7267 7268 7269 7270
        return propagateFloat ## s ## NaN(a, b STATUS_VAR);             \
    }                                                                   \
    aSign = extractFloat ## s ## Sign(a);                               \
    bSign = extractFloat ## s ## Sign(b);                               \
    av = float ## s ## _val(a);                                         \
    bv = float ## s ## _val(b);                                         \
7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
    if (ismag) {                                                        \
        aav = float ## s ## _abs(av);                                   \
        abv = float ## s ## _abs(bv);                                   \
        if (aav != abv) {                                               \
            if (ismin) {                                                \
                return (aav < abv) ? a : b;                             \
            } else {                                                    \
                return (aav < abv) ? b : a;                             \
            }                                                           \
        }                                                               \
    }                                                                   \
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
    if (aSign != bSign) {                                               \
        if (ismin) {                                                    \
            return aSign ? a : b;                                       \
        } else {                                                        \
            return aSign ? b : a;                                       \
        }                                                               \
    } else {                                                            \
        if (ismin) {                                                    \
            return (aSign ^ (av < bv)) ? a : b;                         \
        } else {                                                        \
            return (aSign ^ (av < bv)) ? b : a;                         \
        }                                                               \
    }                                                                   \
}                                                                       \
                                                                        \
float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM)  \
{                                                                       \
7299
    return float ## s ## _minmax(a, b, 1, 0, 0 STATUS_VAR);             \
7300 7301 7302 7303
}                                                                       \
                                                                        \
float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM)  \
{                                                                       \
7304
    return float ## s ## _minmax(a, b, 0, 0, 0 STATUS_VAR);             \
7305 7306 7307 7308
}                                                                       \
                                                                        \
float ## s float ## s ## _minnum(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
7309
    return float ## s ## _minmax(a, b, 1, 1, 0 STATUS_VAR);             \
7310 7311 7312 7313
}                                                                       \
                                                                        \
float ## s float ## s ## _maxnum(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
    return float ## s ## _minmax(a, b, 0, 1, 0 STATUS_VAR);             \
}                                                                       \
                                                                        \
float ## s float ## s ## _minnummag(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
    return float ## s ## _minmax(a, b, 1, 1, 1 STATUS_VAR);             \
}                                                                       \
                                                                        \
float ## s float ## s ## _maxnummag(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
    return float ## s ## _minmax(a, b, 0, 1, 1 STATUS_VAR);             \
7325 7326
}

7327 7328
MINMAX(32)
MINMAX(64)
7329 7330


P
pbrook 已提交
7331 7332 7333 7334
/* Multiply A by 2 raised to the power N.  */
float32 float32_scalbn( float32 a, int n STATUS_PARAM )
{
    flag aSign;
7335
    int16_t aExp;
7336
    uint32_t aSig;
P
pbrook 已提交
7337

7338
    a = float32_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
7339 7340 7341 7342 7343
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF ) {
7344 7345 7346
        if ( aSig ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7347 7348
        return a;
    }
7349
    if (aExp != 0) {
7350
        aSig |= 0x00800000;
7351
    } else if (aSig == 0) {
7352
        return a;
7353 7354 7355
    } else {
        aExp++;
    }
7356

7357 7358 7359 7360 7361 7362
    if (n > 0x200) {
        n = 0x200;
    } else if (n < -0x200) {
        n = -0x200;
    }

7363 7364 7365
    aExp += n - 1;
    aSig <<= 7;
    return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7366 7367 7368 7369 7370
}

float64 float64_scalbn( float64 a, int n STATUS_PARAM )
{
    flag aSign;
7371
    int16_t aExp;
7372
    uint64_t aSig;
P
pbrook 已提交
7373

7374
    a = float64_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
7375 7376 7377 7378 7379
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0x7FF ) {
7380 7381 7382
        if ( aSig ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7383 7384
        return a;
    }
7385
    if (aExp != 0) {
7386
        aSig |= LIT64( 0x0010000000000000 );
7387
    } else if (aSig == 0) {
7388
        return a;
7389 7390 7391
    } else {
        aExp++;
    }
7392

7393 7394 7395 7396 7397 7398
    if (n > 0x1000) {
        n = 0x1000;
    } else if (n < -0x1000) {
        n = -0x1000;
    }

7399 7400 7401
    aExp += n - 1;
    aSig <<= 10;
    return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7402 7403 7404 7405 7406
}

floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
{
    flag aSign;
7407
    int32_t aExp;
7408
    uint64_t aSig;
P
pbrook 已提交
7409 7410 7411 7412 7413

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7414 7415 7416 7417
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7418 7419
        return a;
    }
7420

7421 7422 7423 7424 7425 7426
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7427

7428 7429 7430 7431 7432 7433
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7434
    aExp += n;
7435 7436
    return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
                                          aSign, aExp, aSig, 0 STATUS_VAR );
P
pbrook 已提交
7437 7438 7439 7440 7441
}

float128 float128_scalbn( float128 a, int n STATUS_PARAM )
{
    flag aSign;
7442
    int32_t aExp;
7443
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7444 7445 7446 7447 7448 7449

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7450 7451 7452
        if ( aSig0 | aSig1 ) {
            return propagateFloat128NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7453 7454
        return a;
    }
7455
    if (aExp != 0) {
7456
        aSig0 |= LIT64( 0x0001000000000000 );
7457
    } else if (aSig0 == 0 && aSig1 == 0) {
7458
        return a;
7459 7460 7461
    } else {
        aExp++;
    }
7462

7463 7464 7465 7466 7467 7468
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7469 7470 7471
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
                                          STATUS_VAR );
P
pbrook 已提交
7472 7473

}