softfloat.c 265.7 KB
Newer Older
1 2 3 4 5
/*
 * QEMU float support
 *
 * Derived from SoftFloat.
 */
B
bellard 已提交
6

7 8 9 10
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
11 12 13 14 15 16 17 18

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
20 21
arithmetic/SoftFloat.html'.

22 23 24 25 26
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
27 28

Derivative works are acceptable, even for commercial purposes, so long as
29 30 31
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
32

33 34
===============================================================================
*/
B
bellard 已提交
35

36 37 38 39 40
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
#include "config.h"

41
#include "fpu/softfloat.h"
B
bellard 已提交
42

43 44 45
/* We only need stdlib for abort() */
#include <stdlib.h>

B
bellard 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
#include "softfloat-macros.h"

/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

63 64 65 66
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

67
static inline uint32_t extractFloat16Frac(float16 a)
68 69 70 71 72 73 74 75
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

76
static inline int_fast16_t extractFloat16Exp(float16 a)
77 78 79 80 81 82 83 84
{
    return (float16_val(a) >> 10) & 0x1f;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

85
static inline flag extractFloat16Sign(float16 a)
86 87 88 89
{
    return float16_val(a)>>15;
}

B
bellard 已提交
90 91 92 93 94 95 96 97 98 99 100
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

101
static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM)
B
bellard 已提交
102 103 104 105
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
106
    int32_t z;
B
bellard 已提交
107 108 109

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
110 111
    switch (roundingMode) {
    case float_round_nearest_even:
112
    case float_round_ties_away:
113 114 115 116 117 118 119 120 121 122 123 124 125
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
126 127 128 129 130 131 132 133
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
        float_raise( float_flag_invalid STATUS_VAR);
134
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

153
static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM)
B
bellard 已提交
154 155 156
{
    int8 roundingMode;
    flag roundNearestEven, increment;
157
    int64_t z;
B
bellard 已提交
158 159 160

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
161 162
    switch (roundingMode) {
    case float_round_nearest_even:
163
    case float_round_ties_away:
164 165 166 167 168 169 170 171 172 173 174 175 176
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
177 178 179 180
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
181
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
182 183 184 185 186 187 188
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
        float_raise( float_flag_invalid STATUS_VAR);
        return
189
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
190 191 192 193 194 195 196
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
    if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

T
Tom Musta 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

static int64 roundAndPackUint64(flag zSign, uint64_t absZ0,
                                uint64_t absZ1 STATUS_PARAM)
{
    int8 roundingMode;
    flag roundNearestEven, increment;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = (roundingMode == float_round_nearest_even);
215 216
    switch (roundingMode) {
    case float_round_nearest_even:
217
    case float_round_ties_away:
218 219 220 221 222 223 224 225 226 227 228 229 230
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
        float_raise(float_flag_invalid STATUS_VAR);
        return 0;
    }

    if (absZ1) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return absZ0;
}

B
bellard 已提交
252 253 254 255
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

256
static inline uint32_t extractFloat32Frac( float32 a )
B
bellard 已提交
257 258
{

P
pbrook 已提交
259
    return float32_val(a) & 0x007FFFFF;
B
bellard 已提交
260 261 262 263 264 265 266

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

267
static inline int_fast16_t extractFloat32Exp(float32 a)
B
bellard 已提交
268 269
{

P
pbrook 已提交
270
    return ( float32_val(a)>>23 ) & 0xFF;
B
bellard 已提交
271 272 273 274 275 276 277

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

278
static inline flag extractFloat32Sign( float32 a )
B
bellard 已提交
279 280
{

P
pbrook 已提交
281
    return float32_val(a)>>31;
B
bellard 已提交
282 283 284

}

285 286 287 288
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
289
float32 float32_squash_input_denormal(float32 a STATUS_PARAM)
290 291 292 293 294 295 296 297 298 299
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
300 301 302 303 304 305 306 307
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
308
 normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| single-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

329
static inline float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig)
B
bellard 已提交
330 331
{

P
pbrook 已提交
332
    return make_float32(
333
          ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
B
bellard 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

359
static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
B
bellard 已提交
360 361 362 363 364 365 366 367
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
368 369
    switch (roundingMode) {
    case float_round_nearest_even:
370
    case float_round_ties_away:
371 372 373 374 375 376 377 378 379 380 381 382 383 384
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
385 386
    }
    roundBits = zSig & 0x7F;
387
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
388 389
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
390
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
391 392
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
393
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
394 395
        }
        if ( zExp < 0 ) {
396 397 398 399
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
428
 normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
B
bellard 已提交
429 430 431 432 433 434 435 436 437 438 439 440
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( zSig ) - 1;
    return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

441
static inline uint64_t extractFloat64Frac( float64 a )
B
bellard 已提交
442 443
{

P
pbrook 已提交
444
    return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
B
bellard 已提交
445 446 447 448 449 450 451

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

452
static inline int_fast16_t extractFloat64Exp(float64 a)
B
bellard 已提交
453 454
{

P
pbrook 已提交
455
    return ( float64_val(a)>>52 ) & 0x7FF;
B
bellard 已提交
456 457 458 459 460 461 462

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

463
static inline flag extractFloat64Sign( float64 a )
B
bellard 已提交
464 465
{

P
pbrook 已提交
466
    return float64_val(a)>>63;
B
bellard 已提交
467 468 469

}

470 471 472 473
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
474
float64 float64_squash_input_denormal(float64 a STATUS_PARAM)
475 476 477 478 479 480 481 482 483 484
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
485 486 487 488 489 490 491 492
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
493
 normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

514
static inline float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig)
B
bellard 已提交
515 516
{

P
pbrook 已提交
517
    return make_float64(
518
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
519 520 521 522 523 524 525 526 527 528 529

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
530 531 532
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
533 534 535 536 537 538 539 540 541 542 543
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

544
static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
B
bellard 已提交
545 546 547
{
    int8 roundingMode;
    flag roundNearestEven;
548
    int_fast16_t roundIncrement, roundBits;
B
bellard 已提交
549 550 551 552
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
553 554
    switch (roundingMode) {
    case float_round_nearest_even:
555
    case float_round_ties_away:
556 557 558 559 560 561 562 563 564 565 566 567 568
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
    default:
        abort();
B
bellard 已提交
569 570
    }
    roundBits = zSig & 0x3FF;
571
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
572 573
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
574
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
575 576
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
577
            return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
B
bellard 已提交
578 579
        }
        if ( zExp < 0 ) {
580 581 582 583
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
612
 normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
B
bellard 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( zSig ) - 1;
    return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

626
static inline uint64_t extractFloatx80Frac( floatx80 a )
B
bellard 已提交
627 628 629 630 631 632 633 634 635 636 637
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

638
static inline int32 extractFloatx80Exp( floatx80 a )
B
bellard 已提交
639 640 641 642 643 644 645 646 647 648 649
{

    return a.high & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

650
static inline flag extractFloatx80Sign( floatx80 a )
B
bellard 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664
{

    return a.high>>15;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
665
 normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr )
B
bellard 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

680
static inline floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig )
B
bellard 已提交
681 682 683 684
{
    floatx80 z;

    z.low = zSig;
685
    z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
B
bellard 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80
 roundAndPackFloatx80(
716
     int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
B
bellard 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
 STATUS_PARAM)
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;
    int64 roundIncrement, roundMask, roundBits;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
738 739
    switch (roundingMode) {
    case float_round_nearest_even:
740
    case float_round_ties_away:
741 742 743 744 745 746 747 748 749 750 751 752
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
753 754
    }
    roundBits = zSig0 & roundMask;
755
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
756 757 758 759 760 761
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
762 763 764 765
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
766 767 768 769 770 771 772 773 774 775
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
            if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
            zSig0 += roundIncrement;
776
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
799 800
    switch (roundingMode) {
    case float_round_nearest_even:
801
    case float_round_ties_away:
802 803 804 805 806 807 808 809 810 811 812 813 814
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
815
    }
816
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
            if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
            if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
844 845
            switch (roundingMode) {
            case float_round_nearest_even:
846
            case float_round_ties_away:
847 848 849 850 851 852 853 854 855 856 857 858 859
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
860 861 862 863
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
864 865
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
866 867 868 869 870 871 872 873 874 875 876 877
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
878
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

static floatx80
 normalizeRoundAndPackFloatx80(
899
     int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
B
bellard 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
 STATUS_PARAM)
{
    int8 shiftCount;

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
    return
        roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

922
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
923 924 925 926 927 928 929 930 931 932 933
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

934
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
935 936 937 938 939 940 941 942 943 944 945
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

946
static inline int32 extractFloat128Exp( float128 a )
B
bellard 已提交
947 948 949 950 951 952 953 954 955 956
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

957
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
976 977
     uint64_t aSig0,
     uint64_t aSig1,
B
bellard 已提交
978
     int32 *zExpPtr,
979 980
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
 )
{
    int8 shiftCount;

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

1018
static inline float128
1019
 packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
1020 1021 1022 1023
{
    float128 z;

    z.low = zSig1;
1024
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128
 roundAndPackFloat128(
1052
     flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM)
B
bellard 已提交
1053 1054 1055 1056 1057 1058
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
1059 1060
    switch (roundingMode) {
    case float_round_nearest_even:
1061
    case float_round_ties_away:
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
    default:
        abort();
B
bellard 已提交
1075
    }
1076
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
1104 1105 1106 1107
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
            if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
1122 1123
            switch (roundingMode) {
            case float_round_nearest_even:
1124
            case float_round_ties_away:
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
            default:
                abort();
B
bellard 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
            }
        }
    }
    if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

static float128
 normalizeRoundAndPackFloat128(
1165
     flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM)
B
bellard 已提交
1166 1167
{
    int8 shiftCount;
1168
    uint64_t zSig2;
B
bellard 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1195
float32 int32_to_float32(int32_t a STATUS_PARAM)
B
bellard 已提交
1196 1197 1198
{
    flag zSign;

P
pbrook 已提交
1199
    if ( a == 0 ) return float32_zero;
1200
    if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
B
bellard 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1212
float64 int32_to_float64(int32_t a STATUS_PARAM)
B
bellard 已提交
1213 1214 1215 1216
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1217
    uint64_t zSig;
B
bellard 已提交
1218

P
pbrook 已提交
1219
    if ( a == 0 ) return float64_zero;
B
bellard 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 21;
    zSig = absA;
    return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1235
floatx80 int32_to_floatx80(int32_t a STATUS_PARAM)
B
bellard 已提交
1236 1237 1238 1239
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1240
    uint64_t zSig;
B
bellard 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1257
float128 int32_to_float128(int32_t a STATUS_PARAM)
B
bellard 已提交
1258 1259 1260 1261
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1262
    uint64_t zSig0;
B
bellard 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1279
float32 int64_to_float32(int64_t a STATUS_PARAM)
B
bellard 已提交
1280 1281 1282 1283 1284
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

P
pbrook 已提交
1285
    if ( a == 0 ) return float32_zero;
B
bellard 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) - 40;
    if ( 0 <= shiftCount ) {
        return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
    }
    else {
        shiftCount += 7;
        if ( shiftCount < 0 ) {
            shift64RightJamming( absA, - shiftCount, &absA );
        }
        else {
            absA <<= shiftCount;
        }
        return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1311
float64 int64_to_float64(int64_t a STATUS_PARAM)
B
bellard 已提交
1312 1313 1314
{
    flag zSign;

P
pbrook 已提交
1315
    if ( a == 0 ) return float64_zero;
1316
    if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
B
bellard 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        return packFloat64( 1, 0x43E, 0 );
    }
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1331
floatx80 int64_to_floatx80(int64_t a STATUS_PARAM)
B
bellard 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1351
float128 int64_to_float128(int64_t a STATUS_PARAM)
B
bellard 已提交
1352 1353 1354 1355 1356
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;
    int32 zExp;
1357
    uint64_t zSig0, zSig1;
B
bellard 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 uint64_to_float32(uint64_t a STATUS_PARAM)
{
    int shiftcount;

    if (a == 0) {
        return float32_zero;
    }

    /* Determine (left) shift needed to put first set bit into bit posn 23
     * (since packFloat32() expects the binary point between bits 23 and 22);
     * this is the fast case for smallish numbers.
     */
    shiftcount = countLeadingZeros64(a) - 40;
    if (shiftcount >= 0) {
        return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
    }
    /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
     * expects the binary point between bits 30 and 29, hence the + 7.
     */
    shiftcount += 7;
    if (shiftcount < 0) {
        shift64RightJamming(a, -shiftcount, &a);
    } else {
        a <<= shiftcount;
    }

    return roundAndPackFloat32(0, 0x9c - shiftcount, a STATUS_VAR);
}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 uint64_to_float64(uint64_t a STATUS_PARAM)
{
    int exp = 0x43C;
    int shiftcount;

    if (a == 0) {
        return float64_zero;
    }

    shiftcount = countLeadingZeros64(a) - 1;
    if (shiftcount < 0) {
        shift64RightJamming(a, -shiftcount, &a);
    } else {
        a <<= shiftcount;
    }
    return roundAndPackFloat64(0, exp - shiftcount, a STATUS_VAR);
}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1443
float128 uint64_to_float128(uint64_t a STATUS_PARAM)
1444 1445 1446 1447 1448 1449 1450
{
    if (a == 0) {
        return float128_zero;
    }
    return normalizeRoundAndPackFloat128(0, 0x406E, a, 0 STATUS_VAR);
}

B
bellard 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float32_to_int32( float32 a STATUS_PARAM )
{
    flag aSign;
1464
    int_fast16_t aExp, shiftCount;
1465 1466
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1467

1468
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= 0x00800000;
    shiftCount = 0xAF - aExp;
    aSig64 = aSig;
    aSig64 <<= 32;
    if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
    return roundAndPackInt32( aSign, aSig64 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
{
    flag aSign;
1495
    int_fast16_t aExp, shiftCount;
1496
    uint32_t aSig;
1497
    int32_t z;
1498
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1499 1500 1501 1502 1503 1504

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x9E;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1505
        if ( float32_val(a) != 0xCF000000 ) {
B
bellard 已提交
1506 1507 1508
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
        }
1509
        return (int32_t) 0x80000000;
B
bellard 已提交
1510 1511 1512 1513 1514 1515 1516
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1517
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
B
bellard 已提交
1518 1519 1520 1521 1522 1523 1524
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

1535
int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM)
1536 1537
{
    flag aSign;
1538
    int_fast16_t aExp, shiftCount;
1539
    uint32_t aSig;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    int32 z;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x8E;
    if ( 0 <= shiftCount ) {
        if ( float32_val(a) != 0xC7000000 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return 0x7FFF;
            }
        }
1553
        return (int32_t) 0xffff8000;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    shiftCount -= 0x10;
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1564
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
1565 1566 1567 1568 1569 1570 1571 1572 1573
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) {
        z = - z;
    }
    return z;

}

B
bellard 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float32_to_int64( float32 a STATUS_PARAM )
{
    flag aSign;
1587
    int_fast16_t aExp, shiftCount;
1588 1589
    uint32_t aSig;
    uint64_t aSig64, aSigExtra;
1590
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = 0xBE - aExp;
    if ( shiftCount < 0 ) {
        float_raise( float_flag_invalid STATUS_VAR);
        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
            return LIT64( 0x7FFFFFFFFFFFFFFF );
        }
1601
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610
    }
    if ( aExp ) aSig |= 0x00800000;
    aSig64 = aSig;
    aSig64 <<= 40;
    shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
    return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );

}

T
Tom Musta 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| unsigned integer is returned.  Otherwise, if the conversion overflows, the
| largest unsigned integer is returned.  If the 'a' is negative, the result
| is rounded and zero is returned; values that do not round to zero will
| raise the inexact exception flag.
*----------------------------------------------------------------------------*/

uint64 float32_to_uint64(float32 a STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp, shiftCount;
    uint32_t aSig;
    uint64_t aSig64, aSigExtra;
    a = float32_squash_input_denormal(a STATUS_VAR);

    aSig = extractFloat32Frac(a);
    aExp = extractFloat32Exp(a);
    aSign = extractFloat32Sign(a);
    if ((aSign) && (aExp > 126)) {
        float_raise(float_flag_invalid STATUS_VAR);
        if (float32_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    shiftCount = 0xBE - aExp;
    if (aExp) {
        aSig |= 0x00800000;
    }
    if (shiftCount < 0) {
        float_raise(float_flag_invalid STATUS_VAR);
        return LIT64(0xFFFFFFFFFFFFFFFF);
    }

    aSig64 = aSig;
    aSig64 <<= 40;
    shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
    return roundAndPackUint64(aSign, aSig64, aSigExtra STATUS_VAR);
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest unsigned integer is returned.  Otherwise, if the
| conversion overflows, the largest unsigned integer is returned.  If the
| 'a' is negative, the result is rounded and zero is returned; values that do
| not round to zero will raise the inexact flag.
*----------------------------------------------------------------------------*/

uint64 float32_to_uint64_round_to_zero(float32 a STATUS_PARAM)
{
    signed char current_rounding_mode = STATUS(float_rounding_mode);
    set_float_rounding_mode(float_round_to_zero STATUS_VAR);
    int64_t v = float32_to_uint64(a STATUS_VAR);
    set_float_rounding_mode(current_rounding_mode STATUS_VAR);
    return v;
}

B
bellard 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
{
    flag aSign;
1690
    int_fast16_t aExp, shiftCount;
1691 1692
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1693
    int64 z;
1694
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1695 1696 1697 1698 1699 1700

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0xBE;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1701
        if ( float32_val(a) != 0xDF000000 ) {
B
bellard 已提交
1702 1703 1704 1705 1706
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
1707
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1708 1709 1710 1711 1712 1713 1714 1715
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig64 = aSig | 0x00800000;
    aSig64 <<= 40;
    z = aSig64>>( - shiftCount );
1716
    if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float64 float32_to_float64( float32 a STATUS_PARAM )
{
    flag aSign;
1734
    int_fast16_t aExp;
1735
    uint32_t aSig;
1736
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1737 1738 1739 1740 1741

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1742
        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1743 1744 1745 1746 1747 1748 1749
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1750
    return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
B
bellard 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
{
    flag aSign;
1764
    int_fast16_t aExp;
1765
    uint32_t aSig;
B
bellard 已提交
1766

1767
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1768 1769 1770 1771
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1772
        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1773 1774 1775 1776 1777 1778 1779
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
1780
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float128 float32_to_float128( float32 a STATUS_PARAM )
{
    flag aSign;
1794
    int_fast16_t aExp;
1795
    uint32_t aSig;
B
bellard 已提交
1796

1797
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1798 1799 1800 1801
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1802
        if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1803 1804 1805 1806 1807 1808 1809
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1810
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

}

/*----------------------------------------------------------------------------
| Rounds the single-precision floating-point value `a' to an integer, and
| returns the result as a single-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_round_to_int( float32 a STATUS_PARAM)
{
    flag aSign;
1824
    int_fast16_t aExp;
1825 1826
    uint32_t lastBitMask, roundBitsMask;
    uint32_t z;
1827
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836

    aExp = extractFloat32Exp( a );
    if ( 0x96 <= aExp ) {
        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp <= 0x7E ) {
1837
        if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
1838 1839 1840 1841 1842 1843 1844 1845
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat32Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
                return packFloat32( aSign, 0x7F, 0 );
            }
            break;
1846 1847 1848 1849 1850
        case float_round_ties_away:
            if (aExp == 0x7E) {
                return packFloat32(aSign, 0x7F, 0);
            }
            break;
B
bellard 已提交
1851
         case float_round_down:
P
pbrook 已提交
1852
            return make_float32(aSign ? 0xBF800000 : 0);
B
bellard 已提交
1853
         case float_round_up:
P
pbrook 已提交
1854
            return make_float32(aSign ? 0x80000000 : 0x3F800000);
B
bellard 已提交
1855 1856 1857 1858 1859 1860
        }
        return packFloat32( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x96 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
1861
    z = float32_val(a);
1862 1863
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
B
bellard 已提交
1864
        z += lastBitMask>>1;
1865 1866 1867 1868
        if ((z & roundBitsMask) == 0) {
            z &= ~lastBitMask;
        }
        break;
1869 1870 1871
    case float_round_ties_away:
        z += lastBitMask >> 1;
        break;
1872 1873 1874 1875 1876 1877 1878 1879 1880
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloat32Sign(make_float32(z))) {
            z += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloat32Sign(make_float32(z))) {
B
bellard 已提交
1881 1882
            z += roundBitsMask;
        }
1883 1884 1885
        break;
    default:
        abort();
B
bellard 已提交
1886 1887
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
1888 1889
    if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float32(z);
B
bellard 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the single-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
1903
    int_fast16_t aExp, bExp, zExp;
1904
    uint32_t aSig, bSig, zSig;
1905
    int_fast16_t expDiff;
B
bellard 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 6;
    bSig <<= 6;
    if ( 0 < expDiff ) {
        if ( aExp == 0xFF ) {
            if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= 0x20000000;
        }
        shift32RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return packFloat32( zSign, 0xFF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= 0x20000000;
        }
        shift32RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0xFF ) {
            if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
1947
        if ( aExp == 0 ) {
1948 1949 1950 1951 1952 1953
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat32(zSign, 0, 0);
            }
1954 1955
            return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
        }
B
bellard 已提交
1956 1957 1958 1959 1960 1961 1962
        zSig = 0x40000000 + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= 0x20000000;
    zSig = ( aSig + bSig )<<1;
    --zExp;
1963
    if ( (int32_t) zSig < 0 ) {
B
bellard 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the single-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
1982
    int_fast16_t aExp, bExp, zExp;
1983
    uint32_t aSig, bSig, zSig;
1984
    int_fast16_t expDiff;
B
bellard 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 7;
    bSig <<= 7;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0xFF ) {
        if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign ^ 1, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= 0x40000000;
    }
    shift32RightJamming( aSig, - expDiff, &aSig );
    bSig |= 0x40000000;
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= 0x40000000;
    }
    shift32RightJamming( bSig, expDiff, &bSig );
    aSig |= 0x40000000;
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the single-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_add( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign;
2056 2057
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return addFloat32Sigs( a, b, aSign STATUS_VAR);
    }
    else {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_sub( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign;
2079 2080
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_mul( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
2102
    int_fast16_t aExp, bExp, zExp;
2103 2104 2105
    uint32_t aSig, bSig;
    uint64_t zSig64;
    uint32_t zSig;
B
bellard 已提交
2106

2107 2108 2109
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x7F;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
2146
    shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
B
bellard 已提交
2147
    zSig = zSig64;
2148
    if ( 0 <= (int32_t) ( zSig<<1 ) ) {
B
bellard 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        zSig <<= 1;
        --zExp;
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the single-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_div( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
2165
    int_fast16_t aExp, bExp, zExp;
2166
    uint32_t aSig, bSig, zSig;
2167 2168
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float32_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat32( zSign, 0xFF, 0 );
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x7D;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
2212
    zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2213
    if ( ( zSig & 0x3F ) == 0 ) {
2214
        zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
B
bellard 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_rem( float32 a, float32 b STATUS_PARAM )
{
2228
    flag aSign, zSign;
2229
    int_fast16_t aExp, bExp, expDiff;
2230 2231 2232 2233 2234
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
2235 2236
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
2278
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
2290 2291
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
2310
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
2311 2312 2313 2314
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
2315
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
2316 2317 2318 2319 2320
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM)
{
    flag aSign, bSign, cSign, zSign;
2335
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
    uint32_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig64, cSig64, zSig64;
    uint32_t pSig;
    int shiftcount;
    flag signflip, infzero;

    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
    c = float32_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat32Frac(a);
    aExp = extractFloat32Exp(a);
    aSign = extractFloat32Sign(a);
    bSig = extractFloat32Frac(b);
    bExp = extractFloat32Exp(b);
    bSign = extractFloat32Sign(b);
    cSig = extractFloat32Frac(c);
    cExp = extractFloat32Exp(c);
    cSign = extractFloat32Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
               (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0xff) && aSig) ||
        ((bExp == 0xff) && bSig) ||
        ((cExp == 0xff) && cSig)) {
        return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0xff) || (bExp == 0xff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0xff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat32(cSign ^ signflip, 0xff, 0);
    }

    if (pInf) {
        return packFloat32(pSign ^ signflip, 0xff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat32(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
        if (flags & float_muladd_halve_result) {
            if (cExp == 0) {
                normalizeFloat32Subnormal(cSig, &cExp, &cSig);
            }
            /* Subtract one to halve, and one again because roundAndPackFloat32
             * wants one less than the true exponent.
             */
            cExp -= 2;
            cSig = (cSig | 0x00800000) << 7;
            return roundAndPackFloat32(cSign ^ signflip, cExp, cSig STATUS_VAR);
        }
2434
        return packFloat32(cSign ^ signflip, cExp, cSig);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    }

    if (aExp == 0) {
        normalizeFloat32Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat32Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat32() takes.
     */
    pExp = aExp + bExp - 0x7e;
    aSig = (aSig | 0x00800000) << 7;
    bSig = (bSig | 0x00800000) << 8;
    pSig64 = (uint64_t)aSig * bSig;
    if ((int64_t)(pSig64 << 1) >= 0) {
        pSig64 <<= 1;
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now pSig64 is the significand of the multiply, with the explicit bit in
     * position 62.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift64RightJamming(pSig64, 32, &pSig64);
            pSig = pSig64;
2470 2471 2472
            if (flags & float_muladd_halve_result) {
                pExp--;
            }
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
            return roundAndPackFloat32(zSign, pExp - 1,
                                       pSig STATUS_VAR);
        }
        normalizeFloat32Subnormal(cSig, &cExp, &cSig);
    }

    cSig64 = (uint64_t)cSig << (62 - 23);
    cSig64 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 62 */
        zSig64 = pSig64 + cSig64;
        if ((int64_t)zSig64 < 0) {
            shift64RightJamming(zSig64, 1, &zSig64);
        } else {
            zExp--;
        }
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zSig64 = pSig64 - cSig64;
            zExp = pExp;
        } else if (expDiff < 0) {
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zSig64 = cSig64 - pSig64;
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (cSig64 < pSig64) {
                zSig64 = pSig64 - cSig64;
            } else if (pSig64 < cSig64) {
                zSig64 = cSig64 - pSig64;
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat32(zSign, 0, 0);
            }
        }
        --zExp;
        /* Normalize to put the explicit bit back into bit 62. */
        shiftcount = countLeadingZeros64(zSig64) - 1;
        zSig64 <<= shiftcount;
        zExp -= shiftcount;
    }
2537 2538 2539 2540
    if (flags & float_muladd_halve_result) {
        zExp--;
    }

2541 2542 2543 2544 2545
    shift64RightJamming(zSig64, 32, &zSig64);
    return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR);
}


B
bellard 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554
/*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_sqrt( float32 a STATUS_PARAM )
{
    flag aSign;
2555
    int_fast16_t aExp, zExp;
2556 2557
    uint32_t aSig, zSig;
    uint64_t rem, term;
2558
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2559 2560 2561 2562 2563

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
pbrook 已提交
2564
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
B
bellard 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
2575
        if ( aSig == 0 ) return float32_zero;
B
bellard 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
    aSig = ( aSig | 0x00800000 )<<8;
    zSig = estimateSqrt32( aExp, aSig ) + 2;
    if ( ( zSig & 0x7F ) <= 5 ) {
        if ( zSig < 2 ) {
            zSig = 0x7FFFFFFF;
            goto roundAndPack;
        }
        aSig >>= aExp & 1;
2587 2588 2589
        term = ( (uint64_t) zSig ) * zSig;
        rem = ( ( (uint64_t) aSig )<<32 ) - term;
        while ( (int64_t) rem < 0 ) {
B
bellard 已提交
2590
            --zSig;
2591
            rem += ( ( (uint64_t) zSig )<<1 ) | 1;
B
bellard 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600
        }
        zSig |= ( rem != 0 );
    }
    shift32RightJamming( zSig, 1, &zSig );
 roundAndPack:
    return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );

}

A
Aurelien Jarno 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
2636 2637 2638 2639 2640
};

float32 float32_exp2( float32 a STATUS_PARAM )
{
    flag aSign;
2641
    int_fast16_t aExp;
2642
    uint32_t aSig;
A
Aurelien Jarno 已提交
2643 2644
    float64 r, x, xn;
    int i;
2645
    a = float32_squash_input_denormal(a STATUS_VAR);
A
Aurelien Jarno 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

    float_raise( float_flag_inexact STATUS_VAR);

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
    x = float32_to_float64(a STATUS_VAR);
    x = float64_mul(x, float64_ln2 STATUS_VAR);

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

        f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR);
        r = float64_add(r, f STATUS_VAR);

        xn = float64_mul(xn, x STATUS_VAR);
    }

    return float64_to_float32(r, status);
}

2681 2682 2683 2684 2685 2686 2687 2688
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
float32 float32_log2( float32 a STATUS_PARAM )
{
    flag aSign, zSign;
2689
    int_fast16_t aExp;
2690
    uint32_t aSig, zSig, i;
2691

2692
    a = float32_squash_input_denormal(a STATUS_VAR);
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
2716
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

    return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR );
}

B
bellard 已提交
2729 2730
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2731 2732
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
2733 2734 2735
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2736
int float32_eq( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2737
{
2738
    uint32_t av, bv;
2739 2740
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2741 2742 2743 2744

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2745
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
2746 2747
        return 0;
    }
2748 2749 2750
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
2751 2752 2753 2754
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2755 2756 2757
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2758 2759
*----------------------------------------------------------------------------*/

2760
int float32_le( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2761 2762
{
    flag aSign, bSign;
2763
    uint32_t av, bv;
2764 2765
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2775 2776
    av = float32_val(a);
    bv = float32_val(b);
2777
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2778
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2779 2780 2781 2782 2783

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2784 2785 2786
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2787 2788
*----------------------------------------------------------------------------*/

2789
int float32_lt( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2790 2791
{
    flag aSign, bSign;
2792
    uint32_t av, bv;
2793 2794
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2804 2805
    av = float32_val(a);
    bv = float32_val(b);
2806
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2807
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2808 2809 2810

}

2811 2812
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
2813 2814 2815
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
*----------------------------------------------------------------------------*/

int float32_unordered( float32 a, float32 b STATUS_PARAM )
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}
2831

B
bellard 已提交
2832 2833
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2834 2835 2836
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
2837 2838
*----------------------------------------------------------------------------*/

2839
int float32_eq_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2840
{
2841 2842
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2843 2844 2845 2846

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2847 2848 2849
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
2850 2851
        return 0;
    }
2852 2853
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2863
int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2864 2865
{
    flag aSign, bSign;
2866
    uint32_t av, bv;
2867 2868
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2880 2881
    av = float32_val(a);
    bv = float32_val(b);
2882
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2883
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2894
int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2895 2896
{
    flag aSign, bSign;
2897
    uint32_t av, bv;
2898 2899
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2911 2912
    av = float32_val(a);
    bv = float32_val(b);
2913
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2914
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2915 2916 2917

}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM )
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float64_to_int32( float64 a STATUS_PARAM )
{
    flag aSign;
2954
    int_fast16_t aExp, shiftCount;
2955
    uint64_t aSig;
2956
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x42C - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
{
    flag aSign;
2982
    int_fast16_t aExp, shiftCount;
2983
    uint64_t aSig, savedASig;
2984
    int32_t z;
2985
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x41E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
3007
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
3008 3009 3010 3011 3012 3013 3014 3015
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

3026
int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM)
3027 3028
{
    flag aSign;
3029
    int_fast16_t aExp, shiftCount;
3030
    uint64_t aSig, savedASig;
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
    int32 z;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x40E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) {
            aSign = 0;
        }
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) {
        z = - z;
    }
    if ( ( (int16_t)z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
3059
        return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
3060 3061 3062 3063 3064 3065 3066
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;
}

B
bellard 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float64_to_int64( float64 a STATUS_PARAM )
{
    flag aSign;
3080
    int_fast16_t aExp, shiftCount;
3081
    uint64_t aSig, aSigExtra;
3082
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x43E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FF )
                      && ( aSig != LIT64( 0x0010000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
3098
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
        }
        aSigExtra = 0;
        aSig <<= - shiftCount;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
{
    flag aSign;
3123
    int_fast16_t aExp, shiftCount;
3124
    uint64_t aSig;
B
bellard 已提交
3125
    int64 z;
3126
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3127 3128 3129 3130 3131 3132 3133 3134

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = aExp - 0x433;
    if ( 0 <= shiftCount ) {
        if ( 0x43E <= aExp ) {
P
pbrook 已提交
3135
            if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
B
bellard 已提交
3136 3137 3138 3139 3140 3141 3142 3143
                float_raise( float_flag_invalid STATUS_VAR);
                if (    ! aSign
                     || (    ( aExp == 0x7FF )
                          && ( aSig != LIT64( 0x0010000000000000 ) ) )
                   ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
3144
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153
        }
        z = aSig<<shiftCount;
    }
    else {
        if ( aExp < 0x3FE ) {
            if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
            return 0;
        }
        z = aSig>>( - shiftCount );
3154
        if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float32 float64_to_float32( float64 a STATUS_PARAM )
{
    flag aSign;
3173
    int_fast16_t aExp;
3174 3175
    uint64_t aSig;
    uint32_t zSig;
3176
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3177 3178 3179 3180 3181

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3182
        if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

P
Paul Brook 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| half-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
3206
static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig)
P
Paul Brook 已提交
3207
{
3208
    return make_float16(
3209
        (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
P
Paul Brook 已提交
3210 3211
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper half-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the half-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal half-
| precision floating-point number.
| The `ieee' flag indicates whether to use IEEE standard half precision, or
| ARM-style "alternative representation", which omits the NaN and Inf
| encodings in order to raise the maximum representable exponent by one.
|     The input significand `zSig' has its binary point between bits 22
| and 23, which is 13 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| Note the slightly odd position of the binary point in zSig compared with the
| other roundAndPackFloat functions. This should probably be fixed if we
| need to implement more float16 routines than just conversion.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 roundAndPackFloat16(flag zSign, int_fast16_t zExp,
                                   uint32_t zSig, flag ieee STATUS_PARAM)
{
    int maxexp = ieee ? 29 : 30;
    uint32_t mask;
    uint32_t increment;
    bool rounding_bumps_exp;
    bool is_tiny = false;

    /* Calculate the mask of bits of the mantissa which are not
     * representable in half-precision and will be lost.
     */
    if (zExp < 1) {
        /* Will be denormal in halfprec */
        mask = 0x00ffffff;
        if (zExp >= -11) {
            mask >>= 11 + zExp;
        }
    } else {
        /* Normal number in halfprec */
        mask = 0x00001fff;
    }

3263
    switch (STATUS(float_rounding_mode)) {
3264 3265 3266 3267 3268 3269
    case float_round_nearest_even:
        increment = (mask + 1) >> 1;
        if ((zSig & mask) == increment) {
            increment = zSig & (increment << 1);
        }
        break;
3270 3271 3272
    case float_round_ties_away:
        increment = (mask + 1) >> 1;
        break;
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
    case float_round_up:
        increment = zSign ? 0 : mask;
        break;
    case float_round_down:
        increment = zSign ? mask : 0;
        break;
    default: /* round_to_zero */
        increment = 0;
        break;
    }

    rounding_bumps_exp = (zSig + increment >= 0x01000000);

    if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
        if (ieee) {
            float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
            return packFloat16(zSign, 0x1f, 0);
        } else {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(zSign, 0x1f, 0x3ff);
        }
    }

    if (zExp < 0) {
        /* Note that flush-to-zero does not affect half-precision results */
        is_tiny =
            (STATUS(float_detect_tininess) == float_tininess_before_rounding)
            || (zExp < -1)
            || (!rounding_bumps_exp);
    }
    if (zSig & mask) {
        float_raise(float_flag_inexact STATUS_VAR);
        if (is_tiny) {
            float_raise(float_flag_underflow STATUS_VAR);
        }
    }

    zSig += increment;
    if (rounding_bumps_exp) {
        zSig >>= 1;
        zExp++;
    }

    if (zExp < -10) {
        return packFloat16(zSign, 0, 0);
    }
    if (zExp < 0) {
        zSig >>= -zExp;
        zExp = 0;
    }
    return packFloat16(zSign, zExp, zSig >> 13);
}

static void normalizeFloat16Subnormal(uint32_t aSig, int_fast16_t *zExpPtr,
                                      uint32_t *zSigPtr)
{
    int8_t shiftCount = countLeadingZeros32(aSig) - 21;
    *zSigPtr = aSig << shiftCount;
    *zExpPtr = 1 - shiftCount;
}

P
Paul Brook 已提交
3334 3335
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
   The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3336 3337

float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM)
P
Paul Brook 已提交
3338 3339
{
    flag aSign;
3340
    int_fast16_t aExp;
3341
    uint32_t aSig;
P
Paul Brook 已提交
3342

3343 3344 3345
    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);
P
Paul Brook 已提交
3346 3347 3348

    if (aExp == 0x1f && ieee) {
        if (aSig) {
3349
            return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3350
        }
3351
        return packFloat32(aSign, 0xff, 0);
P
Paul Brook 已提交
3352 3353 3354 3355 3356 3357
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat32(aSign, 0, 0);
        }

3358 3359
        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
P
Paul Brook 已提交
3360 3361 3362 3363
    }
    return packFloat32( aSign, aExp + 0x70, aSig << 13);
}

3364
float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM)
P
Paul Brook 已提交
3365 3366
{
    flag aSign;
3367
    int_fast16_t aExp;
3368
    uint32_t aSig;
3369

3370
    a = float32_squash_input_denormal(a STATUS_VAR);
P
Paul Brook 已提交
3371 3372 3373 3374 3375 3376

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if (aSig) {
3377 3378
            /* Input is a NaN */
            if (!ieee) {
3379
                float_raise(float_flag_invalid STATUS_VAR);
3380 3381
                return packFloat16(aSign, 0, 0);
            }
3382 3383
            return commonNaNToFloat16(
                float32ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3384
        }
3385 3386 3387 3388 3389 3390
        /* Infinity */
        if (!ieee) {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
P
Paul Brook 已提交
3391
    }
3392
    if (aExp == 0 && aSig == 0) {
P
Paul Brook 已提交
3393 3394
        return packFloat16(aSign, 0, 0);
    }
3395 3396 3397 3398 3399 3400 3401
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
P
Paul Brook 已提交
3402
    aSig |= 0x00800000;
3403
    aExp -= 0x71;
P
Paul Brook 已提交
3404

3405
    return roundAndPackFloat16(aSign, aExp, aSig, ieee STATUS_VAR);
P
Paul Brook 已提交
3406 3407
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp;
    uint32_t aSig;

    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);

    if (aExp == 0x1f && ieee) {
        if (aSig) {
            return commonNaNToFloat64(
                float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
        }
        return packFloat64(aSign, 0x7ff, 0);
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat64(aSign, 0, 0);
        }

        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
    }
    return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
}

float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp;
    uint64_t aSig;
    uint32_t zSig;

    a = float64_squash_input_denormal(a STATUS_VAR);

    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aExp == 0x7FF) {
        if (aSig) {
            /* Input is a NaN */
            if (!ieee) {
                float_raise(float_flag_invalid STATUS_VAR);
                return packFloat16(aSign, 0, 0);
            }
            return commonNaNToFloat16(
                float64ToCommonNaN(a STATUS_VAR) STATUS_VAR);
        }
        /* Infinity */
        if (!ieee) {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
    }
    shift64RightJamming(aSig, 29, &aSig);
    zSig = aSig;
    if (aExp == 0 && zSig == 0) {
        return packFloat16(aSign, 0, 0);
    }
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
    zSig |= 0x00800000;
    aExp -= 0x3F1;

    return roundAndPackFloat16(aSign, aExp, zSig, ieee STATUS_VAR);
}

B
bellard 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
{
    flag aSign;
3493
    int_fast16_t aExp;
3494
    uint64_t aSig;
B
bellard 已提交
3495

3496
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3497 3498 3499 3500
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3501
        if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float128 float64_to_float128( float64 a STATUS_PARAM )
{
    flag aSign;
3524
    int_fast16_t aExp;
3525
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
3526

3527
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3528 3529 3530 3531
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3532
        if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the double-precision floating-point value `a' to an integer, and
| returns the result as a double-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_round_to_int( float64 a STATUS_PARAM )
{
    flag aSign;
3555
    int_fast16_t aExp;
3556 3557
    uint64_t lastBitMask, roundBitsMask;
    uint64_t z;
3558
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567

    aExp = extractFloat64Exp( a );
    if ( 0x433 <= aExp ) {
        if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FF ) {
3568
        if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
3569 3570 3571 3572 3573 3574 3575 3576
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat64Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
                return packFloat64( aSign, 0x3FF, 0 );
            }
            break;
3577 3578 3579 3580 3581
        case float_round_ties_away:
            if (aExp == 0x3FE) {
                return packFloat64(aSign, 0x3ff, 0);
            }
            break;
B
bellard 已提交
3582
         case float_round_down:
P
pbrook 已提交
3583
            return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
B
bellard 已提交
3584
         case float_round_up:
P
pbrook 已提交
3585 3586
            return make_float64(
            aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
B
bellard 已提交
3587 3588 3589 3590 3591 3592
        }
        return packFloat64( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x433 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
3593
    z = float64_val(a);
3594 3595 3596 3597 3598 3599 3600
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
        z += lastBitMask >> 1;
        if ((z & roundBitsMask) == 0) {
            z &= ~lastBitMask;
        }
        break;
3601 3602 3603
    case float_round_ties_away:
        z += lastBitMask >> 1;
        break;
3604 3605 3606 3607 3608 3609 3610 3611 3612
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloat64Sign(make_float64(z))) {
            z += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloat64Sign(make_float64(z))) {
B
bellard 已提交
3613 3614
            z += roundBitsMask;
        }
3615 3616 3617
        break;
    default:
        abort();
B
bellard 已提交
3618 3619
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
3620 3621 3622
    if ( z != float64_val(a) )
        STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float64(z);
B
bellard 已提交
3623 3624 3625

}

P
pbrook 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
float64 float64_trunc_to_int( float64 a STATUS_PARAM)
{
    int oldmode;
    float64 res;
    oldmode = STATUS(float_rounding_mode);
    STATUS(float_rounding_mode) = float_round_to_zero;
    res = float64_round_to_int(a STATUS_VAR);
    STATUS(float_rounding_mode) = oldmode;
    return res;
}

B
bellard 已提交
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the double-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
3647
    int_fast16_t aExp, bExp, zExp;
3648
    uint64_t aSig, bSig, zSig;
3649
    int_fast16_t expDiff;
B
bellard 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 9;
    bSig <<= 9;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FF ) {
            if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return packFloat64( zSign, 0x7FF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FF ) {
            if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
3691
        if ( aExp == 0 ) {
3692 3693 3694 3695 3696 3697
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat64(zSign, 0, 0);
            }
3698 3699
            return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
        }
B
bellard 已提交
3700 3701 3702 3703 3704 3705 3706
        zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= LIT64( 0x2000000000000000 );
    zSig = ( aSig + bSig )<<1;
    --zExp;
3707
    if ( (int64_t) zSig < 0 ) {
B
bellard 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
3726
    int_fast16_t aExp, bExp, zExp;
3727
    uint64_t aSig, bSig, zSig;
3728
    int_fast16_t expDiff;
B
bellard 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 10;
    bSig <<= 10;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FF ) {
        if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign ^ 1, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( aSig, - expDiff, &aSig );
    bSig |= LIT64( 0x4000000000000000 );
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( bSig, expDiff, &bSig );
    aSig |= LIT64( 0x4000000000000000 );
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the double-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_add( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign;
3800 3801
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_sub( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign;
3823 3824
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_mul( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
3846
    int_fast16_t aExp, bExp, zExp;
3847
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
3848

3849 3850 3851
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FF;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
    zSig0 |= ( zSig1 != 0 );
3890
    if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
B
bellard 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
        zSig0 <<= 1;
        --zExp;
    }
    return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the double-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_div( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
3907
    int_fast16_t aExp, bExp, zExp;
3908 3909 3910
    uint64_t aSig, bSig, zSig;
    uint64_t rem0, rem1;
    uint64_t term0, term1;
3911 3912
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float64_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat64( zSign, 0x7FF, 0 );
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FD;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
    zSig = estimateDiv128To64( aSig, 0, bSig );
    if ( ( zSig & 0x1FF ) <= 2 ) {
        mul64To128( bSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
3960
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
            --zSig;
            add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
        }
        zSig |= ( rem1 != 0 );
    }
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_rem( float64 a, float64 b STATUS_PARAM )
{
3978
    flag aSign, zSign;
3979
    int_fast16_t aExp, bExp, expDiff;
3980 3981 3982
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
3983

3984 3985
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4045
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4046 4047 4048 4049
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4050
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4051 4052 4053 4054 4055
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM)
{
    flag aSign, bSign, cSign, zSign;
4070
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
    uint64_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
    int shiftcount;
    flag signflip, infzero;

    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
    c = float64_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    bSig = extractFloat64Frac(b);
    bExp = extractFloat64Exp(b);
    bSign = extractFloat64Sign(b);
    cSig = extractFloat64Frac(c);
    cExp = extractFloat64Exp(c);
    cSign = extractFloat64Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
               (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0x7ff) && aSig) ||
        ((bExp == 0x7ff) && bSig) ||
        ((cExp == 0x7ff) && cSig)) {
        return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0x7ff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat64(cSign ^ signflip, 0x7ff, 0);
    }

    if (pInf) {
        return packFloat64(pSign ^ signflip, 0x7ff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat64(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
        if (flags & float_muladd_halve_result) {
            if (cExp == 0) {
                normalizeFloat64Subnormal(cSig, &cExp, &cSig);
            }
            /* Subtract one to halve, and one again because roundAndPackFloat64
             * wants one less than the true exponent.
             */
            cExp -= 2;
            cSig = (cSig | 0x0010000000000000ULL) << 10;
            return roundAndPackFloat64(cSign ^ signflip, cExp, cSig STATUS_VAR);
        }
4168
        return packFloat64(cSign ^ signflip, cExp, cSig);
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
    }

    if (aExp == 0) {
        normalizeFloat64Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat64Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat64() takes.
     */
    pExp = aExp + bExp - 0x3fe;
    aSig = (aSig | LIT64(0x0010000000000000))<<10;
    bSig = (bSig | LIT64(0x0010000000000000))<<11;
    mul64To128(aSig, bSig, &pSig0, &pSig1);
    if ((int64_t)(pSig0 << 1) >= 0) {
        shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
     * bit in position 126.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
4203 4204 4205
            if (flags & float_muladd_halve_result) {
                pExp--;
            }
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
            return roundAndPackFloat64(zSign, pExp - 1,
                                       pSig1 STATUS_VAR);
        }
        normalizeFloat64Subnormal(cSig, &cExp, &cSig);
    }

    /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
     * significand of the addend, with the explicit bit in position 126.
     */
    cSig0 = cSig << (126 - 64 - 52);
    cSig1 = 0;
    cSig0 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 126 */
        add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
        if ((int64_t)zSig0 < 0) {
            shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
        } else {
            zExp--;
        }
        shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
4242 4243 4244
        if (flags & float_muladd_halve_result) {
            zExp--;
        }
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
        return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR);
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (lt128(cSig0, cSig1, pSig0, pSig1)) {
                sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
                sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat64(zSign, 0, 0);
            }
        }
        --zExp;
        /* Do the equivalent of normalizeRoundAndPackFloat64() but
         * starting with the significand in a pair of uint64_t.
         */
        if (zSig0) {
            shiftcount = countLeadingZeros64(zSig0) - 1;
            shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
            if (zSig1) {
                zSig0 |= 1;
            }
            zExp -= shiftcount;
        } else {
4285 4286 4287 4288 4289 4290 4291 4292 4293
            shiftcount = countLeadingZeros64(zSig1);
            if (shiftcount == 0) {
                zSig0 = (zSig1 >> 1) | (zSig1 & 1);
                zExp -= 63;
            } else {
                shiftcount--;
                zSig0 = zSig1 << shiftcount;
                zExp -= (shiftcount + 64);
            }
4294
        }
4295 4296 4297
        if (flags & float_muladd_halve_result) {
            zExp--;
        }
4298 4299 4300 4301
        return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR);
    }
}

B
bellard 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310
/*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_sqrt( float64 a STATUS_PARAM )
{
    flag aSign;
4311
    int_fast16_t aExp, zExp;
4312 4313
    uint64_t aSig, zSig, doubleZSig;
    uint64_t rem0, rem1, term0, term1;
4314
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
4331
        if ( aSig == 0 ) return float64_zero;
B
bellard 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
    aSig |= LIT64( 0x0010000000000000 );
    zSig = estimateSqrt32( aExp, aSig>>21 );
    aSig <<= 9 - ( aExp & 1 );
    zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
    if ( ( zSig & 0x1FF ) <= 5 ) {
        doubleZSig = zSig<<1;
        mul64To128( zSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4343
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
            --zSig;
            doubleZSig -= 2;
            add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
        }
        zSig |= ( ( rem0 | rem1 ) != 0 );
    }
    return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );

}

4354 4355 4356 4357 4358 4359 4360 4361
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
float64 float64_log2( float64 a STATUS_PARAM )
{
    flag aSign, zSign;
4362
    int_fast16_t aExp;
4363
    uint64_t aSig, aSig0, aSig1, zSig, i;
4364
    a = float64_squash_input_denormal(a STATUS_VAR);
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4386
    zSig = (uint64_t)aExp << 52;
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
    return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR );
}

B
bellard 已提交
4401 4402
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4403 4404
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4405 4406 4407
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4408
int float64_eq( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4409
{
4410
    uint64_t av, bv;
4411 4412
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4413 4414 4415 4416

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4417
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
4418 4419
        return 0;
    }
P
pbrook 已提交
4420
    av = float64_val(a);
P
pbrook 已提交
4421
    bv = float64_val(b);
4422
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4423 4424 4425 4426 4427

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4428 4429 4430
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4431 4432
*----------------------------------------------------------------------------*/

4433
int float64_le( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4434 4435
{
    flag aSign, bSign;
4436
    uint64_t av, bv;
4437 4438
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4448
    av = float64_val(a);
P
pbrook 已提交
4449
    bv = float64_val(b);
4450
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4451
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4452 4453 4454 4455 4456

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4457 4458 4459
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4460 4461
*----------------------------------------------------------------------------*/

4462
int float64_lt( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4463 4464
{
    flag aSign, bSign;
4465
    uint64_t av, bv;
B
bellard 已提交
4466

4467 4468
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4469 4470 4471 4472 4473 4474 4475 4476
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4477
    av = float64_val(a);
P
pbrook 已提交
4478
    bv = float64_val(b);
4479
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4480
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4481 4482 4483

}

4484 4485
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4486 4487 4488
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
*----------------------------------------------------------------------------*/

int float64_unordered( float64 a, float64 b STATUS_PARAM )
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
4505 4506
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4507 4508 4509
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4510 4511
*----------------------------------------------------------------------------*/

4512
int float64_eq_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4513
{
4514
    uint64_t av, bv;
4515 4516
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4517 4518 4519 4520

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4521 4522 4523
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
4524 4525
        return 0;
    }
P
pbrook 已提交
4526
    av = float64_val(a);
P
pbrook 已提交
4527
    bv = float64_val(b);
4528
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4539
int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4540 4541
{
    flag aSign, bSign;
4542
    uint64_t av, bv;
4543 4544
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4556
    av = float64_val(a);
P
pbrook 已提交
4557
    bv = float64_val(b);
4558
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4559
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4570
int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4571 4572
{
    flag aSign, bSign;
4573
    uint64_t av, bv;
4574 4575
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4587
    av = float64_val(a);
P
pbrook 已提交
4588
    bv = float64_val(b);
4589
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4590
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4591 4592 4593

}

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM )
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4631
    uint64_t aSig;
B
bellard 已提交
4632 4633 4634 4635

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4636
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4658
    uint64_t aSig, savedASig;
4659
    int32_t z;
B
bellard 已提交
4660 4661 4662 4663 4664

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4665
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
4680
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4703
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig != LIT64( 0x8000000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4718
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4743
    uint64_t aSig;
B
bellard 已提交
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
    int64 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4758
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4759 4760 4761 4762 4763 4764
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    z = aSig>>( - shiftCount );
4765
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4784
    uint64_t aSig;
B
bellard 已提交
4785 4786 4787 4788 4789

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4790
        if ( (uint64_t) ( aSig<<1 ) ) {
4791
            return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
    return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4812
    uint64_t aSig, zSig;
B
bellard 已提交
4813 4814 4815 4816 4817

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4818
        if ( (uint64_t) ( aSig<<1 ) ) {
4819
            return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
    return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
{
    flag aSign;
4839
    int_fast16_t aExp;
4840
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4841 4842 4843 4844

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4845
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
4846
        return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4864
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4865 4866 4867 4868
    floatx80 z;

    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4869
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
B
bellard 已提交
4870 4871 4872 4873 4874 4875
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4876
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4877 4878 4879 4880 4881 4882
            return a;
        }
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloatx80Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
4883
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4884 4885 4886 4887 4888
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4889 4890 4891 4892 4893
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4910 4911
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
B
bellard 已提交
4912
        z.low += lastBitMask>>1;
4913 4914 4915 4916
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4917 4918 4919
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4920 4921 4922 4923 4924 4925 4926 4927 4928
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4929 4930
            z.low += roundBitsMask;
        }
4931 4932 4933
        break;
    default:
        abort();
B
bellard 已提交
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
    if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
4956
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965
    int32 expDiff;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
4966
            if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4967 4968 4969 4970 4971 4972 4973 4974
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
4975
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4976 4977 4978 4979 4980 4981 4982 4983
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
4984
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
                return propagateFloatx80NaN( a, b STATUS_VAR );
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
4999
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
{
    int32 aExp, bExp, zExp;
5022
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
    int32 expDiff;
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5034
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
5052
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
5064
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    return
        normalizeRoundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
5131
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5142 5143
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
5144 5145 5146 5147 5148 5149
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
5150
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5170
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
5190 5191
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5202
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5203
        if ( bExp == 0x7FFF ) {
5204
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5205 5206 5207 5208 5209
            goto invalid;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
5210
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = floatx80_default_nan_low;
                z.high = floatx80_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5240
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5241 5242 5243 5244
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5245
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5246 5247
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5248
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
{
5268
    flag aSign, zSign;
B
bellard 已提交
5269
    int32 aExp, bExp, expDiff;
5270 5271
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5272 5273 5274 5275 5276 5277 5278 5279
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5280 5281
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
5282 5283 5284 5285 5286
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
5287
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5301
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
            80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, zExp;
5366 5367
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5368 5369 5370 5371 5372 5373
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5374
        if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
B
bellard 已提交
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5397
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5409
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
5427 5428 5429 5430
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5431 5432
*----------------------------------------------------------------------------*/

5433
int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5434 5435 5436
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5437
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5438
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5439
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5440
       ) {
5441
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
5442 5443 5444 5445 5446 5447
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5448
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5449 5450 5451 5452 5453 5454 5455
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5456 5457 5458
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5459 5460
*----------------------------------------------------------------------------*/

5461
int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5462 5463 5464 5465
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5466
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5467
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5468
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5478
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5489 5490 5491
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5492 5493
*----------------------------------------------------------------------------*/

5494
int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5495 5496 5497 5498
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5499
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5500
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5501
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5511
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5512 5513 5514 5515 5516 5517 5518 5519
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5520 5521
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5522 5523 5524
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
*----------------------------------------------------------------------------*/
int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM )
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
5539
/*----------------------------------------------------------------------------
5540
| Returns 1 if the extended double-precision floating-point value `a' is
5541 5542 5543
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5544 5545
*----------------------------------------------------------------------------*/

5546
int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5547 5548 5549
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5550
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5551
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5552
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5553
       ) {
5554 5555 5556 5557
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
5558 5559 5560 5561 5562 5563
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5564
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5576
int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5577 5578 5579 5580
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5581
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5582
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5583
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5596
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5612
int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5613 5614 5615 5616
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5617
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5618
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5619
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5632
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5633 5634 5635 5636 5637 5638 5639 5640
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float128_to_int32( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5677
    uint64_t aSig0, aSig1;
B
bellard 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
    return roundAndPackInt32( aSign, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5706
    uint64_t aSig0, aSig1, savedASig;
5707
    int32_t z;
B
bellard 已提交
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
5731
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float128_to_int64( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5754
    uint64_t aSig0, aSig1;
B
bellard 已提交
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5772
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
    return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5797
    uint64_t aSig0, aSig1;
B
bellard 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
    int64 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
                if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
            }
            else {
                float_raise( float_flag_invalid STATUS_VAR);
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5819
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5820 5821
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5822
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
B
bellard 已提交
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
                STATUS(float_exception_flags) |= float_flag_inexact;
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5835
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
B
bellard 已提交
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float32 float128_to_float32( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5855 5856
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5857 5858 5859 5860 5861 5862 5863

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5864
            return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float64 float128_to_float64( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5890
    uint64_t aSig0, aSig1;
B
bellard 已提交
5891 5892 5893 5894 5895 5896 5897

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5898
            return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
    return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5923
    uint64_t aSig0, aSig1;
B
bellard 已提交
5924 5925 5926 5927 5928 5929 5930

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5931
            return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
        }
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
    return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_round_to_int( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5958
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
                return propagateFloat128NaN( a, a STATUS_VAR );
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
5975 5976
        switch (STATUS(float_rounding_mode)) {
        case float_round_nearest_even:
B
bellard 已提交
5977 5978 5979 5980 5981
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
5982
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
5983
                    ++z.high;
5984
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
5985 5986
                }
            }
5987
            break;
5988 5989 5990 5991 5992 5993 5994 5995 5996
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6007
            }
6008 6009 6010
            break;
        default:
            abort();
B
bellard 已提交
6011 6012 6013 6014 6015
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6016
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
B
bellard 已提交
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
            STATUS(float_exception_flags) |= float_flag_inexact;
            aSign = extractFloat128Sign( a );
            switch ( STATUS(float_rounding_mode) ) {
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6028 6029 6030 6031 6032
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6049 6050
        switch (STATUS(float_rounding_mode)) {
        case float_round_nearest_even:
B
bellard 已提交
6051 6052 6053 6054
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6055
            break;
6056 6057 6058
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6059 6060 6061 6062
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6063 6064 6065
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6066 6067 6068 6069 6070 6071 6072 6073 6074
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
6096
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
B
bellard 已提交
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
    int32 expDiff;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
                return propagateFloat128NaN( a, b STATUS_VAR );
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6144
        if ( aExp == 0 ) {
6145 6146 6147 6148 6149 6150
            if (STATUS(flush_to_zero)) {
                if (zSig0 | zSig1) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6151 6152
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
6182
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
B
bellard 已提交
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
    int32 expDiff;
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
    return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_add( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_sub( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_mul( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
6307
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_div( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
6371 6372
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = float128_default_nan_low;
                z.high = float128_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6426
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6427 6428 6429 6430 6431 6432 6433
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6434
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_rem( float128 a, float128 b STATUS_PARAM )
{
6453
    flag aSign, zSign;
B
bellard 已提交
6454
    int32 aExp, bExp, expDiff;
6455 6456 6457
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6539
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6540
    add128(
6541
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6542 6543 6544 6545 6546
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6547
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
    return
        normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_sqrt( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, zExp;
6564 6565
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6597
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6609
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6625 6626
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6627 6628 6629
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6630
int float128_eq( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6631 6632 6633 6634 6635 6636 6637
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6638
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
6639 6640 6641 6642 6643 6644
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6645
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6646 6647 6648 6649 6650 6651
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6652 6653 6654
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6655 6656
*----------------------------------------------------------------------------*/

6657
int float128_le( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6674
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6685 6686 6687
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6688 6689
*----------------------------------------------------------------------------*/

6690
int float128_lt( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6707
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6708 6709 6710 6711 6712 6713 6714 6715
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6716 6717
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6718 6719 6720
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
*----------------------------------------------------------------------------*/

int float128_unordered( float128 a, float128 b STATUS_PARAM )
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
6736 6737
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6738 6739 6740
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6741 6742
*----------------------------------------------------------------------------*/

6743
int float128_eq_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6744 6745 6746 6747 6748 6749 6750
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6751 6752 6753 6754
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
6755 6756 6757 6758 6759 6760
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6761
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6773
int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6793
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6809
int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6829
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6830 6831 6832 6833 6834 6835 6836 6837
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM )
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
6861
/* misc functions */
6862
float32 uint32_to_float32(uint32_t a STATUS_PARAM)
B
bellard 已提交
6863 6864 6865 6866
{
    return int64_to_float32(a STATUS_VAR);
}

6867
float64 uint32_to_float64(uint32_t a STATUS_PARAM)
B
bellard 已提交
6868 6869 6870 6871
{
    return int64_to_float64(a STATUS_VAR);
}

6872
uint32 float32_to_uint32( float32 a STATUS_PARAM )
B
bellard 已提交
6873 6874
{
    int64_t v;
6875
    uint32 res;
6876
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6877 6878 6879 6880 6881 6882 6883

    v = float32_to_int64(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6884
        return v;
B
bellard 已提交
6885
    }
6886 6887
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6888 6889 6890
    return res;
}

6891
uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
B
bellard 已提交
6892 6893
{
    int64_t v;
6894
    uint32 res;
6895
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6896 6897 6898 6899 6900 6901 6902

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6903
        return v;
B
bellard 已提交
6904
    }
6905 6906
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6907 6908 6909
    return res;
}

6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
int_fast16_t float32_to_int16(float32 a STATUS_PARAM)
{
    int32_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

uint_fast16_t float32_to_uint16(float32 a STATUS_PARAM)
{
    int32_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

6950
uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM)
6951 6952
{
    int64_t v;
6953
    uint_fast16_t res;
6954
    int old_exc_flags = get_float_exception_flags(status);
6955 6956 6957 6958 6959 6960 6961

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
6962
        return v;
6963
    }
6964 6965
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
6966 6967 6968
    return res;
}

6969
uint32 float64_to_uint32( float64 a STATUS_PARAM )
B
bellard 已提交
6970
{
T
Tom Musta 已提交
6971
    uint64_t v;
6972
    uint32 res;
T
Tom Musta 已提交
6973
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6974

T
Tom Musta 已提交
6975 6976
    v = float64_to_uint64(a STATUS_VAR);
    if (v > 0xffffffff) {
B
bellard 已提交
6977 6978
        res = 0xffffffff;
    } else {
T
Tom Musta 已提交
6979
        return v;
B
bellard 已提交
6980
    }
T
Tom Musta 已提交
6981 6982
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6983 6984 6985
    return res;
}

6986
uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
B
bellard 已提交
6987
{
6988
    uint64_t v;
6989
    uint32 res;
6990
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6991

6992 6993
    v = float64_to_uint64_round_to_zero(a STATUS_VAR);
    if (v > 0xffffffff) {
B
bellard 已提交
6994 6995
        res = 0xffffffff;
    } else {
6996
        return v;
B
bellard 已提交
6997
    }
6998 6999
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
7000 7001 7002
    return res;
}

7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
int_fast16_t float64_to_int16(float64 a STATUS_PARAM)
{
    int64_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

uint_fast16_t float64_to_uint16(float64 a STATUS_PARAM)
{
    int64_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

7043
uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM)
7044 7045
{
    int64_t v;
7046
    uint_fast16_t res;
7047
    int old_exc_flags = get_float_exception_flags(status);
7048 7049 7050 7051 7052 7053 7054

    v = float64_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
7055
        return v;
7056
    }
7057 7058
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
7059 7060 7061
    return res;
}

T
Tom Musta 已提交
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/
J
j_mayer 已提交
7073

T
Tom Musta 已提交
7074 7075 7076 7077 7078 7079
uint64_t float64_to_uint64(float64 a STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp, shiftCount;
    uint64_t aSig, aSigExtra;
    a = float64_squash_input_denormal(a STATUS_VAR);
J
j_mayer 已提交
7080

T
Tom Musta 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aSign && (aExp > 1022)) {
        float_raise(float_flag_invalid STATUS_VAR);
        if (float64_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig |= LIT64(0x0010000000000000);
    }
    shiftCount = 0x433 - aExp;
    if (shiftCount <= 0) {
        if (0x43E < aExp) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        aSigExtra = 0;
        aSig <<= -shiftCount;
    } else {
        shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
    }
    return roundAndPackUint64(aSign, aSig, aSigExtra STATUS_VAR);
J
j_mayer 已提交
7107 7108 7109 7110
}

uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
{
7111 7112 7113 7114 7115
    signed char current_rounding_mode = STATUS(float_rounding_mode);
    set_float_rounding_mode(float_round_to_zero STATUS_VAR);
    int64_t v = float64_to_uint64(a STATUS_VAR);
    set_float_rounding_mode(current_rounding_mode STATUS_VAR);
    return v;
J
j_mayer 已提交
7116 7117
}

B
bellard 已提交
7118
#define COMPARE(s, nan_exp)                                                  \
7119
static inline int float ## s ## _compare_internal( float ## s a, float ## s b,      \
B
bellard 已提交
7120 7121 7122
                                      int is_quiet STATUS_PARAM )            \
{                                                                            \
    flag aSign, bSign;                                                       \
7123
    uint ## s ## _t av, bv;                                                  \
7124 7125
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);                  \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);                  \
B
bellard 已提交
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
                                                                             \
    if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \
         extractFloat ## s ## Frac( a ) ) ||                                 \
        ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
          extractFloat ## s ## Frac( b ) )) {                                \
        if (!is_quiet ||                                                     \
            float ## s ## _is_signaling_nan( a ) ||                          \
            float ## s ## _is_signaling_nan( b ) ) {                         \
            float_raise( float_flag_invalid STATUS_VAR);                     \
        }                                                                    \
        return float_relation_unordered;                                     \
    }                                                                        \
    aSign = extractFloat ## s ## Sign( a );                                  \
    bSign = extractFloat ## s ## Sign( b );                                  \
P
pbrook 已提交
7140
    av = float ## s ## _val(a);                                              \
7141
    bv = float ## s ## _val(b);                                              \
B
bellard 已提交
7142
    if ( aSign != bSign ) {                                                  \
7143
        if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) {                   \
B
bellard 已提交
7144 7145 7146 7147 7148 7149
            /* zero case */                                                  \
            return float_relation_equal;                                     \
        } else {                                                             \
            return 1 - (2 * aSign);                                          \
        }                                                                    \
    } else {                                                                 \
P
pbrook 已提交
7150
        if (av == bv) {                                                      \
B
bellard 已提交
7151 7152
            return float_relation_equal;                                     \
        } else {                                                             \
P
pbrook 已提交
7153
            return 1 - 2 * (aSign ^ ( av < bv ));                            \
B
bellard 已提交
7154 7155 7156 7157
        }                                                                    \
    }                                                                        \
}                                                                            \
                                                                             \
7158
int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM )        \
B
bellard 已提交
7159 7160 7161 7162
{                                                                            \
    return float ## s ## _compare_internal(a, b, 0 STATUS_VAR);              \
}                                                                            \
                                                                             \
7163
int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM )  \
B
bellard 已提交
7164 7165 7166 7167 7168 7169
{                                                                            \
    return float ## s ## _compare_internal(a, b, 1 STATUS_VAR);              \
}

COMPARE(32, 0xff)
COMPARE(64, 0x7ff)
P
pbrook 已提交
7170

7171
static inline int floatx80_compare_internal( floatx80 a, floatx80 b,
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
                                      int is_quiet STATUS_PARAM )
{
    flag aSign, bSign;

    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
            floatx80_is_signaling_nan( a ) ||
            floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
{
    return floatx80_compare_internal(a, b, 0 STATUS_VAR);
}

int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
    return floatx80_compare_internal(a, b, 1 STATUS_VAR);
}

7217
static inline int float128_compare_internal( float128 a, float128 b,
B
blueswir1 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
                                      int is_quiet STATUS_PARAM )
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
            float128_is_signaling_nan( a ) ||
            float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

int float128_compare( float128 a, float128 b STATUS_PARAM )
{
    return float128_compare_internal(a, b, 0 STATUS_VAR);
}

int float128_compare_quiet( float128 a, float128 b STATUS_PARAM )
{
    return float128_compare_internal(a, b, 1 STATUS_VAR);
}

7261 7262 7263
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
7264 7265 7266 7267 7268 7269 7270
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
7271 7272 7273
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
7274
 */
7275
#define MINMAX(s)                                                       \
7276
static inline float ## s float ## s ## _minmax(float ## s a, float ## s b,     \
7277 7278
                                               int ismin, int isieee,   \
                                               int ismag STATUS_PARAM)  \
7279 7280
{                                                                       \
    flag aSign, bSign;                                                  \
7281
    uint ## s ## _t av, bv, aav, abv;                                   \
7282 7283 7284 7285
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);             \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);             \
    if (float ## s ## _is_any_nan(a) ||                                 \
        float ## s ## _is_any_nan(b)) {                                 \
7286 7287 7288 7289 7290 7291 7292 7293 7294
        if (isieee) {                                                   \
            if (float ## s ## _is_quiet_nan(a) &&                       \
                !float ## s ##_is_any_nan(b)) {                         \
                return b;                                               \
            } else if (float ## s ## _is_quiet_nan(b) &&                \
                       !float ## s ## _is_any_nan(a)) {                 \
                return a;                                               \
            }                                                           \
        }                                                               \
7295 7296 7297 7298 7299 7300
        return propagateFloat ## s ## NaN(a, b STATUS_VAR);             \
    }                                                                   \
    aSign = extractFloat ## s ## Sign(a);                               \
    bSign = extractFloat ## s ## Sign(b);                               \
    av = float ## s ## _val(a);                                         \
    bv = float ## s ## _val(b);                                         \
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
    if (ismag) {                                                        \
        aav = float ## s ## _abs(av);                                   \
        abv = float ## s ## _abs(bv);                                   \
        if (aav != abv) {                                               \
            if (ismin) {                                                \
                return (aav < abv) ? a : b;                             \
            } else {                                                    \
                return (aav < abv) ? b : a;                             \
            }                                                           \
        }                                                               \
    }                                                                   \
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
    if (aSign != bSign) {                                               \
        if (ismin) {                                                    \
            return aSign ? a : b;                                       \
        } else {                                                        \
            return aSign ? b : a;                                       \
        }                                                               \
    } else {                                                            \
        if (ismin) {                                                    \
            return (aSign ^ (av < bv)) ? a : b;                         \
        } else {                                                        \
            return (aSign ^ (av < bv)) ? b : a;                         \
        }                                                               \
    }                                                                   \
}                                                                       \
                                                                        \
float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM)  \
{                                                                       \
7329
    return float ## s ## _minmax(a, b, 1, 0, 0 STATUS_VAR);             \
7330 7331 7332 7333
}                                                                       \
                                                                        \
float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM)  \
{                                                                       \
7334
    return float ## s ## _minmax(a, b, 0, 0, 0 STATUS_VAR);             \
7335 7336 7337 7338
}                                                                       \
                                                                        \
float ## s float ## s ## _minnum(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
7339
    return float ## s ## _minmax(a, b, 1, 1, 0 STATUS_VAR);             \
7340 7341 7342 7343
}                                                                       \
                                                                        \
float ## s float ## s ## _maxnum(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    return float ## s ## _minmax(a, b, 0, 1, 0 STATUS_VAR);             \
}                                                                       \
                                                                        \
float ## s float ## s ## _minnummag(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
    return float ## s ## _minmax(a, b, 1, 1, 1 STATUS_VAR);             \
}                                                                       \
                                                                        \
float ## s float ## s ## _maxnummag(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
    return float ## s ## _minmax(a, b, 0, 1, 1 STATUS_VAR);             \
7355 7356
}

7357 7358
MINMAX(32)
MINMAX(64)
7359 7360


P
pbrook 已提交
7361 7362 7363 7364
/* Multiply A by 2 raised to the power N.  */
float32 float32_scalbn( float32 a, int n STATUS_PARAM )
{
    flag aSign;
7365
    int16_t aExp;
7366
    uint32_t aSig;
P
pbrook 已提交
7367

7368
    a = float32_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
7369 7370 7371 7372 7373
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF ) {
7374 7375 7376
        if ( aSig ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7377 7378
        return a;
    }
7379
    if (aExp != 0) {
7380
        aSig |= 0x00800000;
7381
    } else if (aSig == 0) {
7382
        return a;
7383 7384 7385
    } else {
        aExp++;
    }
7386

7387 7388 7389 7390 7391 7392
    if (n > 0x200) {
        n = 0x200;
    } else if (n < -0x200) {
        n = -0x200;
    }

7393 7394 7395
    aExp += n - 1;
    aSig <<= 7;
    return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7396 7397 7398 7399 7400
}

float64 float64_scalbn( float64 a, int n STATUS_PARAM )
{
    flag aSign;
7401
    int16_t aExp;
7402
    uint64_t aSig;
P
pbrook 已提交
7403

7404
    a = float64_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
7405 7406 7407 7408 7409
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0x7FF ) {
7410 7411 7412
        if ( aSig ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7413 7414
        return a;
    }
7415
    if (aExp != 0) {
7416
        aSig |= LIT64( 0x0010000000000000 );
7417
    } else if (aSig == 0) {
7418
        return a;
7419 7420 7421
    } else {
        aExp++;
    }
7422

7423 7424 7425 7426 7427 7428
    if (n > 0x1000) {
        n = 0x1000;
    } else if (n < -0x1000) {
        n = -0x1000;
    }

7429 7430 7431
    aExp += n - 1;
    aSig <<= 10;
    return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7432 7433 7434 7435 7436
}

floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
{
    flag aSign;
7437
    int32_t aExp;
7438
    uint64_t aSig;
P
pbrook 已提交
7439 7440 7441 7442 7443

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7444 7445 7446 7447
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7448 7449
        return a;
    }
7450

7451 7452 7453 7454 7455 7456
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7457

7458 7459 7460 7461 7462 7463
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7464
    aExp += n;
7465 7466
    return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
                                          aSign, aExp, aSig, 0 STATUS_VAR );
P
pbrook 已提交
7467 7468 7469 7470 7471
}

float128 float128_scalbn( float128 a, int n STATUS_PARAM )
{
    flag aSign;
7472
    int32_t aExp;
7473
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7474 7475 7476 7477 7478 7479

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7480 7481 7482
        if ( aSig0 | aSig1 ) {
            return propagateFloat128NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7483 7484
        return a;
    }
7485
    if (aExp != 0) {
7486
        aSig0 |= LIT64( 0x0001000000000000 );
7487
    } else if (aSig0 == 0 && aSig1 == 0) {
7488
        return a;
7489 7490 7491
    } else {
        aExp++;
    }
7492

7493 7494 7495 7496 7497 7498
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7499 7500 7501
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
                                          STATUS_VAR );
P
pbrook 已提交
7502 7503

}