softfloat.c 259.6 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
E
Emilio G. Cota 已提交
86
#include <math.h>
A
Alex Bennée 已提交
87
#include "qemu/bitops.h"
88
#include "fpu/softfloat.h"
B
bellard 已提交
89

90 91
/* We only need stdlib for abort() */

B
bellard 已提交
92 93 94 95 96
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
97
#include "fpu/softfloat-macros.h"
B
bellard 已提交
98

E
Emilio G. Cota 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * Hardfloat
 *
 * Fast emulation of guest FP instructions is challenging for two reasons.
 * First, FP instruction semantics are similar but not identical, particularly
 * when handling NaNs. Second, emulating at reasonable speed the guest FP
 * exception flags is not trivial: reading the host's flags register with a
 * feclearexcept & fetestexcept pair is slow [slightly slower than soft-fp],
 * and trapping on every FP exception is not fast nor pleasant to work with.
 *
 * We address these challenges by leveraging the host FPU for a subset of the
 * operations. To do this we expand on the idea presented in this paper:
 *
 * Guo, Yu-Chuan, et al. "Translating the ARM Neon and VFP instructions in a
 * binary translator." Software: Practice and Experience 46.12 (2016):1591-1615.
 *
 * The idea is thus to leverage the host FPU to (1) compute FP operations
 * and (2) identify whether FP exceptions occurred while avoiding
 * expensive exception flag register accesses.
 *
 * An important optimization shown in the paper is that given that exception
 * flags are rarely cleared by the guest, we can avoid recomputing some flags.
 * This is particularly useful for the inexact flag, which is very frequently
 * raised in floating-point workloads.
 *
 * We optimize the code further by deferring to soft-fp whenever FP exception
 * detection might get hairy. Two examples: (1) when at least one operand is
 * denormal/inf/NaN; (2) when operands are not guaranteed to lead to a 0 result
 * and the result is < the minimum normal.
 */
#define GEN_INPUT_FLUSH__NOCHECK(name, soft_t)                          \
    static inline void name(soft_t *a, float_status *s)                 \
    {                                                                   \
        if (unlikely(soft_t ## _is_denormal(*a))) {                     \
            *a = soft_t ## _set_sign(soft_t ## _zero,                   \
                                     soft_t ## _is_neg(*a));            \
            s->float_exception_flags |= float_flag_input_denormal;      \
        }                                                               \
    }

GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32)
GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64)
#undef GEN_INPUT_FLUSH__NOCHECK

#define GEN_INPUT_FLUSH1(name, soft_t)                  \
    static inline void name(soft_t *a, float_status *s) \
    {                                                   \
        if (likely(!s->flush_inputs_to_zero)) {         \
            return;                                     \
        }                                               \
        soft_t ## _input_flush__nocheck(a, s);          \
    }

GEN_INPUT_FLUSH1(float32_input_flush1, float32)
GEN_INPUT_FLUSH1(float64_input_flush1, float64)
#undef GEN_INPUT_FLUSH1

#define GEN_INPUT_FLUSH2(name, soft_t)                                  \
    static inline void name(soft_t *a, soft_t *b, float_status *s)      \
    {                                                                   \
        if (likely(!s->flush_inputs_to_zero)) {                         \
            return;                                                     \
        }                                                               \
        soft_t ## _input_flush__nocheck(a, s);                          \
        soft_t ## _input_flush__nocheck(b, s);                          \
    }

GEN_INPUT_FLUSH2(float32_input_flush2, float32)
GEN_INPUT_FLUSH2(float64_input_flush2, float64)
#undef GEN_INPUT_FLUSH2

#define GEN_INPUT_FLUSH3(name, soft_t)                                  \
    static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \
    {                                                                   \
        if (likely(!s->flush_inputs_to_zero)) {                         \
            return;                                                     \
        }                                                               \
        soft_t ## _input_flush__nocheck(a, s);                          \
        soft_t ## _input_flush__nocheck(b, s);                          \
        soft_t ## _input_flush__nocheck(c, s);                          \
    }

GEN_INPUT_FLUSH3(float32_input_flush3, float32)
GEN_INPUT_FLUSH3(float64_input_flush3, float64)
#undef GEN_INPUT_FLUSH3

/*
 * Choose whether to use fpclassify or float32/64_* primitives in the generated
 * hardfloat functions. Each combination of number of inputs and float size
 * gets its own value.
 */
#if defined(__x86_64__)
# define QEMU_HARDFLOAT_1F32_USE_FP 0
# define QEMU_HARDFLOAT_1F64_USE_FP 1
# define QEMU_HARDFLOAT_2F32_USE_FP 0
# define QEMU_HARDFLOAT_2F64_USE_FP 1
# define QEMU_HARDFLOAT_3F32_USE_FP 0
# define QEMU_HARDFLOAT_3F64_USE_FP 1
#else
# define QEMU_HARDFLOAT_1F32_USE_FP 0
# define QEMU_HARDFLOAT_1F64_USE_FP 0
# define QEMU_HARDFLOAT_2F32_USE_FP 0
# define QEMU_HARDFLOAT_2F64_USE_FP 0
# define QEMU_HARDFLOAT_3F32_USE_FP 0
# define QEMU_HARDFLOAT_3F64_USE_FP 0
#endif

/*
 * QEMU_HARDFLOAT_USE_ISINF chooses whether to use isinf() over
 * float{32,64}_is_infinity when !USE_FP.
 * On x86_64/aarch64, using the former over the latter can yield a ~6% speedup.
 * On power64 however, using isinf() reduces fp-bench performance by up to 50%.
 */
#if defined(__x86_64__) || defined(__aarch64__)
# define QEMU_HARDFLOAT_USE_ISINF   1
#else
# define QEMU_HARDFLOAT_USE_ISINF   0
#endif

/*
 * Some targets clear the FP flags before most FP operations. This prevents
 * the use of hardfloat, since hardfloat relies on the inexact flag being
 * already set.
 */
#if defined(TARGET_PPC) || defined(__FAST_MATH__)
# if defined(__FAST_MATH__)
#  warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \
    IEEE implementation
# endif
# define QEMU_NO_HARDFLOAT 1
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN
#else
# define QEMU_NO_HARDFLOAT 0
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline))
#endif

static inline bool can_use_fpu(const float_status *s)
{
    if (QEMU_NO_HARDFLOAT) {
        return false;
    }
    return likely(s->float_exception_flags & float_flag_inexact &&
                  s->float_rounding_mode == float_round_nearest_even);
}

/*
 * Hardfloat generation functions. Each operation can have two flavors:
 * either using softfloat primitives (e.g. float32_is_zero_or_normal) for
 * most condition checks, or native ones (e.g. fpclassify).
 *
 * The flavor is chosen by the callers. Instead of using macros, we rely on the
 * compiler to propagate constants and inline everything into the callers.
 *
 * We only generate functions for operations with two inputs, since only
 * these are common enough to justify consolidating them into common code.
 */

typedef union {
    float32 s;
    float h;
} union_float32;

typedef union {
    float64 s;
    double h;
} union_float64;

typedef bool (*f32_check_fn)(union_float32 a, union_float32 b);
typedef bool (*f64_check_fn)(union_float64 a, union_float64 b);

typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s);
typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s);
typedef float   (*hard_f32_op2_fn)(float a, float b);
typedef double  (*hard_f64_op2_fn)(double a, double b);

/* 2-input is-zero-or-normal */
static inline bool f32_is_zon2(union_float32 a, union_float32 b)
{
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
        /*
         * Not using a temp variable for consecutive fpclassify calls ends up
         * generating faster code.
         */
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
    }
    return float32_is_zero_or_normal(a.s) &&
           float32_is_zero_or_normal(b.s);
}

static inline bool f64_is_zon2(union_float64 a, union_float64 b)
{
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
    }
    return float64_is_zero_or_normal(a.s) &&
           float64_is_zero_or_normal(b.s);
}

/* 3-input is-zero-or-normal */
static inline
bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c)
{
    if (QEMU_HARDFLOAT_3F32_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
    }
    return float32_is_zero_or_normal(a.s) &&
           float32_is_zero_or_normal(b.s) &&
           float32_is_zero_or_normal(c.s);
}

static inline
bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c)
{
    if (QEMU_HARDFLOAT_3F64_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
    }
    return float64_is_zero_or_normal(a.s) &&
           float64_is_zero_or_normal(b.s) &&
           float64_is_zero_or_normal(c.s);
}

static inline bool f32_is_inf(union_float32 a)
{
    if (QEMU_HARDFLOAT_USE_ISINF) {
        return isinf(a.h);
    }
    return float32_is_infinity(a.s);
}

static inline bool f64_is_inf(union_float64 a)
{
    if (QEMU_HARDFLOAT_USE_ISINF) {
        return isinf(a.h);
    }
    return float64_is_infinity(a.s);
}

/* Note: @fast_test and @post can be NULL */
static inline float32
float32_gen2(float32 xa, float32 xb, float_status *s,
             hard_f32_op2_fn hard, soft_f32_op2_fn soft,
             f32_check_fn pre, f32_check_fn post,
             f32_check_fn fast_test, soft_f32_op2_fn fast_op)
{
    union_float32 ua, ub, ur;

    ua.s = xa;
    ub.s = xb;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float32_input_flush2(&ua.s, &ub.s, s);
    if (unlikely(!pre(ua, ub))) {
        goto soft;
    }
    if (fast_test && fast_test(ua, ub)) {
        return fast_op(ua.s, ub.s, s);
    }

    ur.h = hard(ua.h, ub.h);
    if (unlikely(f32_is_inf(ur))) {
        s->float_exception_flags |= float_flag_overflow;
    } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
        if (post == NULL || post(ua, ub)) {
            goto soft;
        }
    }
    return ur.s;

 soft:
    return soft(ua.s, ub.s, s);
}

static inline float64
float64_gen2(float64 xa, float64 xb, float_status *s,
             hard_f64_op2_fn hard, soft_f64_op2_fn soft,
             f64_check_fn pre, f64_check_fn post,
             f64_check_fn fast_test, soft_f64_op2_fn fast_op)
{
    union_float64 ua, ub, ur;

    ua.s = xa;
    ub.s = xb;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float64_input_flush2(&ua.s, &ub.s, s);
    if (unlikely(!pre(ua, ub))) {
        goto soft;
    }
    if (fast_test && fast_test(ua, ub)) {
        return fast_op(ua.s, ub.s, s);
    }

    ur.h = hard(ua.h, ub.h);
    if (unlikely(f64_is_inf(ur))) {
        s->float_exception_flags |= float_flag_overflow;
    } else if (unlikely(fabs(ur.h) <= DBL_MIN)) {
        if (post == NULL || post(ua, ub)) {
            goto soft;
        }
    }
    return ur.s;

 soft:
    return soft(ua.s, ub.s, s);
}

417 418 419 420
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

421
static inline uint32_t extractFloat16Frac(float16 a)
422 423 424 425 426 427 428 429
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

430
static inline int extractFloat16Exp(float16 a)
431 432 433 434
{
    return (float16_val(a) >> 10) & 0x1f;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
} FloatClass;

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/* Simple helpers for checking if, or what kind of, NaN we have */
static inline __attribute__((unused)) bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}

static inline __attribute__((unused)) bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}

static inline __attribute__((unused)) bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
549
 *   frac_lsbm1: the bit below the least significant bit (for rounding)
550
 *   round_mask/roundeven_mask: masks used for rounding
551 552
 * The following optional modifiers are available:
 *   arm_althp: handle ARM Alternative Half Precision
553 554 555 556 557 558 559 560 561 562 563
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
564
    bool arm_althp;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

583 584 585 586 587
static const FloatFmt float16_params_ahp = {
    FLOAT_PARAMS(5, 10),
    .arm_althp = true
};

588 589 590 591 592 593 594 595
static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

647 648 649 650 651 652 653 654 655 656
/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

A
Alex Bennée 已提交
657
/* Canonicalize EXP and FRAC, setting CLS.  */
658 659
static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm,
                                  float_status *status)
A
Alex Bennée 已提交
660
{
661
    if (part.exp == parm->exp_max && !parm->arm_althp) {
A
Alex Bennée 已提交
662 663 664
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
665
            part.frac <<= parm->frac_shift;
666 667
            part.cls = (parts_is_snan_frac(part.frac, status)
                        ? float_class_snan : float_class_qnan);
A
Alex Bennée 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

750 751 752 753 754 755 756 757 758
            if (parm->arm_althp) {
                /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
                if (unlikely(exp > exp_max)) {
                    /* Overflow.  Return the maximum normal.  */
                    flags = float_flag_invalid;
                    exp = exp_max;
                    frac = -1;
                }
            } else if (unlikely(exp >= exp_max)) {
A
Alex Bennée 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
809
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
810 811 812 813 814 815
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
816
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
817
        exp = exp_max;
818
        frac >>= parm->frac_shift;
A
Alex Bennée 已提交
819 820 821 822 823 824 825 826 827 828 829 830
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

831 832 833 834
/* Explicit FloatFmt version */
static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
                                            const FloatFmt *params)
{
835
    return sf_canonicalize(float16_unpack_raw(f), params, s);
836 837
}

A
Alex Bennée 已提交
838 839
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
840 841 842 843 844 845 846
    return float16a_unpack_canonical(f, s, &float16_params);
}

static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
                                             const FloatFmt *params)
{
    return float16_pack_raw(round_canonical(p, s, params));
A
Alex Bennée 已提交
847 848 849 850
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
851
    return float16a_round_pack_canonical(p, s, &float16_params);
A
Alex Bennée 已提交
852 853 854 855
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
856
    return sf_canonicalize(float32_unpack_raw(f), &float32_params, s);
A
Alex Bennée 已提交
857 858 859 860
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
861
    return float32_pack_raw(round_canonical(p, s, &float32_params));
A
Alex Bennée 已提交
862 863 864 865
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
866
    return sf_canonicalize(float64_unpack_raw(f), &float64_params, s);
A
Alex Bennée 已提交
867 868 869 870
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
871
    return float64_pack_raw(round_canonical(p, s, &float64_params));
A
Alex Bennée 已提交
872 873
}

874 875 876 877 878
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
879
        a = parts_silence_nan(a, s);
880 881 882
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
883
            return parts_default_nan(s);
884 885 886 887 888 889 890 891 892
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
893 894 895 896 897 898 899
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
900
        return parts_default_nan(s);
A
Alex Bennée 已提交
901
    } else {
902
        if (pickNaN(a.cls, b.cls,
A
Alex Bennée 已提交
903 904 905 906
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
907 908 909
        if (is_snan(a.cls)) {
            return parts_silence_nan(a, s);
        }
A
Alex Bennée 已提交
910 911 912 913
    }
    return a;
}

A
Alex Bennée 已提交
914 915 916
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
917 918
    int which;

A
Alex Bennée 已提交
919 920 921 922
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

923
    which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
924

A
Alex Bennée 已提交
925
    if (s->default_nan_mode) {
926 927 928
        /* Note that this check is after pickNaNMulAdd so that function
         * has an opportunity to set the Invalid flag.
         */
929
        which = 3;
930
    }
A
Alex Bennée 已提交
931

932 933 934 935 936 937 938 939 940 941
    switch (which) {
    case 0:
        break;
    case 1:
        a = b;
        break;
    case 2:
        a = c;
        break;
    case 3:
942
        return parts_default_nan(s);
943 944
    default:
        g_assert_not_reached();
A
Alex Bennée 已提交
945
    }
946

947 948 949
    if (is_snan(a.cls)) {
        return parts_silence_nan(a, s);
    }
A
Alex Bennée 已提交
950 951 952
    return a;
}

A
Alex Bennée 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
997
                return parts_default_nan(s);
A
Alex Bennée 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
1023
                shift64RightJamming(a.frac, 1, &a.frac);
A
Alex Bennée 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

1048
float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
1049 1050 1051 1052 1053 1054 1055 1056
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

static float32 QEMU_SOFTFLOAT_ATTR
soft_f32_addsub(float32 a, float32 b, bool subtract, float_status *status)
A
Alex Bennée 已提交
1068 1069 1070
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
1071
    FloatParts pr = addsub_floats(pa, pb, subtract, status);
A
Alex Bennée 已提交
1072 1073 1074 1075

    return float32_round_pack_canonical(pr, status);
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static inline float32 soft_f32_add(float32 a, float32 b, float_status *status)
{
    return soft_f32_addsub(a, b, false, status);
}

static inline float32 soft_f32_sub(float32 a, float32 b, float_status *status)
{
    return soft_f32_addsub(a, b, true, status);
}

static float64 QEMU_SOFTFLOAT_ATTR
soft_f64_addsub(float64 a, float64 b, bool subtract, float_status *status)
A
Alex Bennée 已提交
1088 1089 1090
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
1091
    FloatParts pr = addsub_floats(pa, pb, subtract, status);
A
Alex Bennée 已提交
1092 1093 1094 1095

    return float64_round_pack_canonical(pr, status);
}

1096
static inline float64 soft_f64_add(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1097
{
1098 1099
    return soft_f64_addsub(a, b, false, status);
}
A
Alex Bennée 已提交
1100

1101 1102 1103
static inline float64 soft_f64_sub(float64 a, float64 b, float_status *status)
{
    return soft_f64_addsub(a, b, true, status);
A
Alex Bennée 已提交
1104 1105
}

1106
static float hard_f32_add(float a, float b)
A
Alex Bennée 已提交
1107
{
1108 1109
    return a + b;
}
A
Alex Bennée 已提交
1110

1111 1112 1113
static float hard_f32_sub(float a, float b)
{
    return a - b;
A
Alex Bennée 已提交
1114 1115
}

1116
static double hard_f64_add(double a, double b)
A
Alex Bennée 已提交
1117
{
1118 1119
    return a + b;
}
A
Alex Bennée 已提交
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static double hard_f64_sub(double a, double b)
{
    return a - b;
}

static bool f32_addsub_post(union_float32 a, union_float32 b)
{
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
        return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
    }
    return !(float32_is_zero(a.s) && float32_is_zero(b.s));
}

static bool f64_addsub_post(union_float64 a, union_float64 b)
{
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
        return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
    } else {
        return !(float64_is_zero(a.s) && float64_is_zero(b.s));
    }
}

static float32 float32_addsub(float32 a, float32 b, float_status *s,
                              hard_f32_op2_fn hard, soft_f32_op2_fn soft)
{
    return float32_gen2(a, b, s, hard, soft,
                        f32_is_zon2, f32_addsub_post, NULL, NULL);
}

static float64 float64_addsub(float64 a, float64 b, float_status *s,
                              hard_f64_op2_fn hard, soft_f64_op2_fn soft)
{
    return float64_gen2(a, b, s, hard, soft,
                        f64_is_zon2, f64_addsub_post, NULL, NULL);
}

float32 QEMU_FLATTEN
float32_add(float32 a, float32 b, float_status *s)
{
    return float32_addsub(a, b, s, hard_f32_add, soft_f32_add);
}

float32 QEMU_FLATTEN
float32_sub(float32 a, float32 b, float_status *s)
{
    return float32_addsub(a, b, s, hard_f32_sub, soft_f32_sub);
}

float64 QEMU_FLATTEN
float64_add(float64 a, float64 b, float_status *s)
{
    return float64_addsub(a, b, s, hard_f64_add, soft_f64_add);
}

float64 QEMU_FLATTEN
float64_sub(float64 a, float64 b, float_status *s)
{
    return float64_addsub(a, b, s, hard_f64_sub, soft_f64_sub);
A
Alex Bennée 已提交
1179 1180
}

A
Alex Bennée 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
1216
        return parts_default_nan(s);
A
Alex Bennée 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

1230
float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
1231 1232 1233 1234 1235 1236 1237 1238
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

1239
float32 QEMU_FLATTEN float32_mul(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
1240 1241 1242 1243 1244 1245 1246 1247
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

1248
float64 QEMU_FLATTEN float64_mul(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1249 1250 1251 1252 1253 1254 1255 1256
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
1291
        return parts_default_nan(s);
A
Alex Bennée 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
1315
            return parts_default_nan(s);
A
Alex Bennée 已提交
1316 1317 1318
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
1319
            return a;
A
Alex Bennée 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        }
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

1460
float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c,
A
Alex Bennée 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

1471
float32 QEMU_FLATTEN float32_muladd(float32 a, float32 b, float32 c,
A
Alex Bennée 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
                                                int flags, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

1482
float64 QEMU_FLATTEN float64_muladd(float64 a, float64 b, float64 c,
A
Alex Bennée 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
                                                int flags, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
R
Richard Henderson 已提交
1504
        uint64_t n0, n1, q, r;
A
Alex Bennée 已提交
1505
        int exp = a.exp - b.exp;
R
Richard Henderson 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

        /*
         * We want a 2*N / N-bit division to produce exactly an N-bit
         * result, so that we do not lose any precision and so that we
         * do not have to renormalize afterward.  If A.frac < B.frac,
         * then division would produce an (N-1)-bit result; shift A left
         * by one to produce the an N-bit result, and decrement the
         * exponent to match.
         *
         * The udiv_qrnnd algorithm that we're using requires normalization,
         * i.e. the msb of the denominator must be set.  Since we know that
         * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left
         * by one (more), and the remainder must be shifted right by one.
         */
A
Alex Bennée 已提交
1520 1521
        if (a.frac < b.frac) {
            exp -= 1;
R
Richard Henderson 已提交
1522
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
A
Alex Bennée 已提交
1523
        } else {
R
Richard Henderson 已提交
1524
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
A
Alex Bennée 已提交
1525
        }
R
Richard Henderson 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
        q = udiv_qrnnd(&r, n1, n0, b.frac << 1);

        /*
         * Set lsb if there is a remainder, to set inexact.
         * As mentioned above, to find the actual value of the remainder we
         * would need to shift right, but (1) we are only concerned about
         * non-zero-ness, and (2) the remainder will always be even because
         * both inputs to the division primitive are even.
         */
        a.frac = q | (r != 0);
A
Alex Bennée 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
1549
        return parts_default_nan(s);
A
Alex Bennée 已提交
1550
    }
1551 1552 1553 1554 1555
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
A
Alex Bennée 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 float32_div(float32 a, float32 b, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 float64_div(float64 a, float64 b, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/*
 * Float to Float conversions
 *
 * Returns the result of converting one float format to another. The
 * conversion is performed according to the IEC/IEEE Standard for
 * Binary Floating-Point Arithmetic.
 *
 * The float_to_float helper only needs to take care of raising
 * invalid exceptions and handling the conversion on NaNs.
 */

static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
                                 float_status *s)
{
    if (dstf->arm_althp) {
        switch (a.cls) {
        case float_class_qnan:
        case float_class_snan:
            /* There is no NaN in the destination format.  Raise Invalid
             * and return a zero with the sign of the input NaN.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_zero;
            a.frac = 0;
            a.exp = 0;
            break;

        case float_class_inf:
            /* There is no Inf in the destination format.  Raise Invalid
             * and return the maximum normal with the correct sign.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_normal;
            a.exp = dstf->exp_max;
            a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
            break;

        default:
            break;
        }
    } else if (is_nan(a.cls)) {
        if (is_snan(a.cls)) {
            s->float_exception_flags |= float_flag_invalid;
            a = parts_silence_nan(a, s);
        }
        if (s->default_nan_mode) {
            return parts_default_nan(s);
        }
    }
    return a;
}

float32 float16_to_float32(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float16_to_float64(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float32_to_float16(float32 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float64 float32_to_float64(float32 a, float_status *s)
{
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float64_to_float16(float64 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float32 float64_to_float32(float64 a, float_status *s)
{
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

1697 1698 1699 1700 1701 1702 1703
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

1704 1705
static FloatParts round_to_int(FloatParts a, int rmode,
                               int scale, float_status *s)
1706
{
1707 1708 1709
    switch (a.cls) {
    case float_class_qnan:
    case float_class_snan:
1710 1711 1712 1713 1714 1715
        return return_nan(a, s);

    case float_class_zero:
    case float_class_inf:
        /* already "integral" */
        break;
1716

1717
    case float_class_normal:
1718 1719 1720
        scale = MIN(MAX(scale, -0x10000), 0x10000);
        a.exp += scale;

1721 1722 1723 1724 1725 1726 1727 1728
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
1729
            switch (rmode) {
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

1762
            switch (rmode) {
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
1802
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1803 1804 1805 1806 1807 1808
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
1809
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1810 1811 1812 1813 1814 1815
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
1816
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1817 1818 1819
    return float64_round_pack_canonical(pr, s);
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

1831
static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
1832 1833 1834 1835 1836
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
1837
    FloatParts p = round_to_int(in, rmode, scale, s);
1838 1839 1840 1841

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
1842
        s->float_exception_flags = orig_flags | float_flag_invalid;
1843 1844
        return max;
    case float_class_inf:
1845
        s->float_exception_flags = orig_flags | float_flag_invalid;
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
1858
            if (r <= -(uint64_t) min) {
1859 1860 1861 1862 1863 1864
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
1865
            if (r <= max) {
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float16_to_int16(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float16_to_int32(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float16_to_int64(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float32_to_int16(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float32_to_int32(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float32_to_int64(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float64_to_int16(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float64_to_int32(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float64_to_int64(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float16_to_int16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, float_round_to_zero, 0, s);
}

int32_t float16_to_int32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float16_to_int64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, float_round_to_zero, 0, s);
1998 1999
}

2000 2001 2002 2003
int16_t float32_to_int16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
int32_t float32_to_int32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float32_to_int64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, float_round_to_zero, 0, s);
}

int16_t float64_to_int16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
2019

2020 2021 2022 2023
int32_t float64_to_int32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, float_round_to_zero, 0, s);
}
2024

2025 2026 2027 2028
int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, float_round_to_zero, 0, s);
}
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

2043 2044
static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
                                       uint64_t max, float_status *s)
2045 2046
{
    int orig_flags = get_float_exception_flags(s);
2047 2048
    FloatParts p = round_to_int(in, rmode, scale, s);
    uint64_t r;
2049 2050 2051 2052 2053 2054 2055

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
2056
        s->float_exception_flags = orig_flags | float_flag_invalid;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }
2083
        return r;
2084 2085 2086 2087 2088
    default:
        g_assert_not_reached();
    }
}

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float16_to_uint16(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float16_to_uint32(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float16_to_uint64(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float32_to_uint16(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float32_to_uint32(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float32_to_uint64(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float64_to_uint16(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float64_to_uint32(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float64_to_uint64(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}
2241

2242 2243 2244 2245 2246 2247 2248 2249
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

2250
static FloatParts int_to_float(int64_t a, int scale, float_status *status)
2251
{
2252 2253
    FloatParts r = { .sign = false };

2254 2255 2256
    if (a == 0) {
        r.cls = float_class_zero;
    } else {
2257 2258 2259 2260
        uint64_t f = a;
        int shift;

        r.cls = float_class_normal;
2261
        if (a < 0) {
2262
            f = -f;
2263 2264
            r.sign = true;
        }
2265 2266 2267 2268 2269
        shift = clz64(f) - 1;
        scale = MIN(MAX(scale, -0x10000), 0x10000);

        r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
        r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift);
2270 2271 2272 2273 2274
    }

    return r;
}

2275
float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
2276
{
2277
    FloatParts pa = int_to_float(a, scale, status);
2278 2279 2280
    return float16_round_pack_canonical(pa, status);
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    return int64_to_float16_scalbn(a, 0, status);
}

2296 2297
float16 int32_to_float16(int32_t a, float_status *status)
{
2298
    return int64_to_float16_scalbn(a, 0, status);
2299 2300 2301 2302
}

float16 int16_to_float16(int16_t a, float_status *status)
{
2303
    return int64_to_float16_scalbn(a, 0, status);
2304 2305
}

2306
float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
2307
{
2308
    FloatParts pa = int_to_float(a, scale, status);
2309 2310 2311
    return float32_round_pack_canonical(pa, status);
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    return int64_to_float32_scalbn(a, 0, status);
}

2327 2328
float32 int32_to_float32(int32_t a, float_status *status)
{
2329
    return int64_to_float32_scalbn(a, 0, status);
2330 2331 2332 2333
}

float32 int16_to_float32(int16_t a, float_status *status)
{
2334
    return int64_to_float32_scalbn(a, 0, status);
2335 2336
}

2337
float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
2338
{
2339
    FloatParts pa = int_to_float(a, scale, status);
2340 2341 2342
    return float64_round_pack_canonical(pa, status);
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    return int64_to_float64_scalbn(a, 0, status);
}

2358 2359
float64 int32_to_float64(int32_t a, float_status *status)
{
2360
    return int64_to_float64_scalbn(a, 0, status);
2361 2362 2363 2364
}

float64 int16_to_float64(int16_t a, float_status *status)
{
2365
    return int64_to_float64_scalbn(a, 0, status);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

2377
static FloatParts uint_to_float(uint64_t a, int scale, float_status *status)
2378
{
2379
    FloatParts r = { .sign = false };
2380 2381 2382 2383

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
2384
        scale = MIN(MAX(scale, -0x10000), 0x10000);
2385
        r.cls = float_class_normal;
2386 2387 2388
        if ((int64_t)a < 0) {
            r.exp = DECOMPOSED_BINARY_POINT + 1 + scale;
            shift64RightJamming(a, 1, &a);
2389 2390
            r.frac = a;
        } else {
2391 2392 2393
            int shift = clz64(a) - 1;
            r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
            r.frac = a << shift;
2394 2395 2396 2397 2398 2399
        }
    }

    return r;
}

2400
float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status)
2401
{
2402
    FloatParts pa = uint_to_float(a, scale, status);
2403 2404 2405
    return float16_round_pack_canonical(pa, status);
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    return uint64_to_float16_scalbn(a, 0, status);
}

2421 2422
float16 uint32_to_float16(uint32_t a, float_status *status)
{
2423
    return uint64_to_float16_scalbn(a, 0, status);
2424 2425 2426 2427
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
2428
    return uint64_to_float16_scalbn(a, 0, status);
2429 2430
}

2431
float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status)
2432
{
2433
    FloatParts pa = uint_to_float(a, scale, status);
2434 2435 2436
    return float32_round_pack_canonical(pa, status);
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    return uint64_to_float32_scalbn(a, 0, status);
}

2452 2453
float32 uint32_to_float32(uint32_t a, float_status *status)
{
2454
    return uint64_to_float32_scalbn(a, 0, status);
2455 2456 2457 2458
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
2459
    return uint64_to_float32_scalbn(a, 0, status);
2460 2461
}

2462
float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status)
2463
{
2464
    FloatParts pa = uint_to_float(a, scale, status);
2465 2466 2467
    return float64_round_pack_canonical(pa, status);
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    return uint64_to_float64_scalbn(a, 0, status);
}

2483 2484
float64 uint32_to_float64(uint32_t a, float_status *status)
{
2485
    return uint64_to_float64_scalbn(a, 0, status);
2486 2487 2488 2489
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
2490
    return uint64_to_float64_scalbn(a, 0, status);
2491 2492
}

A
Alex Bennée 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

2560 2561 2562 2563 2564 2565
        if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2566 2567
        }

2568
        if (a.sign == b.sign) {
A
Alex Bennée 已提交
2569 2570 2571 2572
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
2573
            return a.sign ^ a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2574
        } else {
2575
            return a.sign ^ ismin ? b : a;
A
Alex Bennée 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
2694 2695 2696 2697 2698 2699 2700
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
2701 2702 2703 2704 2705 2706
        /* The largest float type (even though not supported by FloatParts)
         * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
         * still allows rounding to infinity, without allowing overflow
         * within the int32_t that backs FloatParts.exp.
         */
        n = MIN(MAX(n, -0x10000), 0x10000);
A
Alex Bennée 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
/*
 * Square Root
 *
 * The old softfloat code did an approximation step before zeroing in
 * on the final result. However for simpleness we just compute the
 * square root by iterating down from the implicit bit to enough extra
 * bits to ensure we get a correctly rounded result.
 *
 * This does mean however the calculation is slower than before,
 * especially for 64 bit floats.
 */

static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
{
    uint64_t a_frac, r_frac, s_frac;
    int bit, last_bit;

    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_zero) {
        return a;  /* sqrt(+-0) = +-0 */
    }
    if (a.sign) {
        s->float_exception_flags |= float_flag_invalid;
2758
        return parts_default_nan(s);
A
Alex Bennée 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
    }
    if (a.cls == float_class_inf) {
        return a;  /* sqrt(+inf) = +inf */
    }

    assert(a.cls == float_class_normal);

    /* We need two overflow bits at the top. Adding room for that is a
     * right shift. If the exponent is odd, we can discard the low bit
     * by multiplying the fraction by 2; that's a left shift. Combine
     * those and we shift right if the exponent is even.
     */
    a_frac = a.frac;
    if (!(a.exp & 1)) {
        a_frac >>= 1;
    }
    a.exp >>= 1;

    /* Bit-by-bit computation of sqrt.  */
    r_frac = 0;
    s_frac = 0;

    /* Iterate from implicit bit down to the 3 extra bits to compute a
     * properly rounded result. Remember we've inserted one more bit
     * at the top, so these positions are one less.
     */
    bit = DECOMPOSED_BINARY_POINT - 1;
    last_bit = MAX(p->frac_shift - 4, 0);
    do {
        uint64_t q = 1ULL << bit;
        uint64_t t_frac = s_frac + q;
        if (t_frac <= a_frac) {
            s_frac = t_frac + q;
            a_frac -= t_frac;
            r_frac += q;
        }
        a_frac <<= 1;
    } while (--bit >= last_bit);

    /* Undo the right shift done above. If there is any remaining
     * fraction, the result is inexact. Set the sticky bit.
     */
    a.frac = (r_frac << 1) + (a_frac != 0);

    return a;
}

2806
float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status)
A
Alex Bennée 已提交
2807 2808 2809 2810 2811 2812
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float16_params);
    return float16_round_pack_canonical(pr, status);
}

2813
float32 QEMU_FLATTEN float32_sqrt(float32 a, float_status *status)
A
Alex Bennée 已提交
2814 2815 2816 2817 2818 2819
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float32_params);
    return float32_round_pack_canonical(pr, status);
}

2820
float64 QEMU_FLATTEN float64_sqrt(float64 a, float_status *status)
A
Alex Bennée 已提交
2821 2822 2823 2824 2825 2826
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float64_params);
    return float64_round_pack_canonical(pr, status);
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
/*----------------------------------------------------------------------------
| The pattern for a default generated NaN.
*----------------------------------------------------------------------------*/

float16 float16_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

float128 float128_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    float128 r;

    /* Extrapolate from the choices made by parts_default_nan to fill
     * in the quad-floating format.  If the low bit is set, assume we
     * want to set all non-snan bits.
     */
    r.low = -(p.frac & 1);
    r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
    r.high |= LIT64(0x7FFF000000000000);
    r.high |= (uint64_t)p.sign << 63;

    return r;
}
A
Alex Bennée 已提交
2868

B
bellard 已提交
2869
/*----------------------------------------------------------------------------
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
| Returns a quiet NaN from a signalling NaN for the floating point value `a'.
*----------------------------------------------------------------------------*/

float16 float16_silence_nan(float16 a, float_status *status)
{
    FloatParts p = float16_unpack_raw(a);
    p.frac <<= float16_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_silence_nan(float32 a, float_status *status)
{
    FloatParts p = float32_unpack_raw(a);
    p.frac <<= float32_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_silence_nan(float64 a, float_status *status)
{
    FloatParts p = float64_unpack_raw(a);
    p.frac <<= float64_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

/*----------------------------------------------------------------------------
B
bellard 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

2911
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
2912
{
2913
    int8_t roundingMode;
B
bellard 已提交
2914
    flag roundNearestEven;
2915
    int8_t roundIncrement, roundBits;
2916
    int32_t z;
B
bellard 已提交
2917

2918
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2919
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2920 2921
    switch (roundingMode) {
    case float_round_nearest_even:
2922
    case float_round_ties_away:
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
2936 2937 2938 2939 2940 2941 2942
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
2943
        float_raise(float_flag_invalid, status);
2944
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2945
    }
2946 2947 2948
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

2965
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
2966
                               float_status *status)
B
bellard 已提交
2967
{
2968
    int8_t roundingMode;
B
bellard 已提交
2969
    flag roundNearestEven, increment;
2970
    int64_t z;
B
bellard 已提交
2971

2972
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2973
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2974 2975
    switch (roundingMode) {
    case float_round_nearest_even:
2976
    case float_round_ties_away:
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
2990 2991 2992 2993
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
2994
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2995 2996 2997 2998 2999
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
3000
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3001
        return
3002
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
3003 3004
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
3005 3006 3007
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3008 3009 3010 3011
    return z;

}

T
Tom Musta 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

3022
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
3023
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
3024
{
3025
    int8_t roundingMode;
T
Tom Musta 已提交
3026 3027
    flag roundNearestEven, increment;

3028
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
3029
    roundNearestEven = (roundingMode == float_round_nearest_even);
3030 3031
    switch (roundingMode) {
    case float_round_nearest_even:
3032
    case float_round_ties_away:
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
3046 3047 3048 3049
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
3050
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
3051 3052 3053 3054 3055 3056
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
3057
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
3058 3059 3060 3061
        return 0;
    }

    if (absZ1) {
3062
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
3063 3064 3065 3066
    }
    return absZ0;
}

3067 3068 3069 3070
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
3071
float32 float32_squash_input_denormal(float32 a, float_status *status)
3072
{
3073
    if (status->flush_inputs_to_zero) {
3074
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
3075
            float_raise(float_flag_input_denormal, status);
3076 3077 3078 3079 3080 3081
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
3082 3083 3084 3085 3086 3087 3088 3089
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
3090
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
3091
{
3092
    int8_t shiftCount;
B
bellard 已提交
3093

3094
    shiftCount = clz32(aSig) - 8;
B
bellard 已提交
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3122
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3123
                                   float_status *status)
B
bellard 已提交
3124
{
3125
    int8_t roundingMode;
B
bellard 已提交
3126
    flag roundNearestEven;
3127
    int8_t roundIncrement, roundBits;
B
bellard 已提交
3128 3129
    flag isTiny;

3130
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3131
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3132 3133
    switch (roundingMode) {
    case float_round_nearest_even:
3134
    case float_round_ties_away:
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
3149 3150
    }
    roundBits = zSig & 0x7F;
3151
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
3152 3153
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
3154
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
3155
           ) {
P
Peter Maydell 已提交
3156
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
3157
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
3158 3159
        }
        if ( zExp < 0 ) {
3160
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3161
                float_raise(float_flag_output_denormal, status);
3162 3163
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
3164
            isTiny =
3165 3166
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
3167 3168 3169 3170 3171
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
3172 3173 3174
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
3175 3176
        }
    }
3177 3178 3179
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
3197
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3198
                              float_status *status)
B
bellard 已提交
3199
{
3200
    int8_t shiftCount;
B
bellard 已提交
3201

3202
    shiftCount = clz32(zSig) - 1;
P
Peter Maydell 已提交
3203 3204
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
3205 3206 3207

}

3208 3209 3210 3211
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
3212
float64 float64_squash_input_denormal(float64 a, float_status *status)
3213
{
3214
    if (status->flush_inputs_to_zero) {
3215
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
3216
            float_raise(float_flag_input_denormal, status);
3217 3218 3219 3220 3221 3222
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
3223 3224 3225 3226 3227 3228 3229 3230
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
3231
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
3232
{
3233
    int8_t shiftCount;
B
bellard 已提交
3234

3235
    shiftCount = clz64(aSig) - 11;
B
bellard 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

3252
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
3253 3254
{

P
pbrook 已提交
3255
    return make_float64(
3256
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
3268 3269 3270
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3282
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3283
                                   float_status *status)
B
bellard 已提交
3284
{
3285
    int8_t roundingMode;
B
bellard 已提交
3286
    flag roundNearestEven;
3287
    int roundIncrement, roundBits;
B
bellard 已提交
3288 3289
    flag isTiny;

3290
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3291
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3292 3293
    switch (roundingMode) {
    case float_round_nearest_even:
3294
    case float_round_ties_away:
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
3306 3307 3308
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
3309 3310
    default:
        abort();
B
bellard 已提交
3311 3312
    }
    roundBits = zSig & 0x3FF;
3313
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
3314 3315
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
3316
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
3317
           ) {
3318 3319
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
3320
            float_raise(float_flag_overflow | float_flag_inexact, status);
3321
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
3322 3323
        }
        if ( zExp < 0 ) {
3324
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3325
                float_raise(float_flag_output_denormal, status);
3326 3327
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
3328
            isTiny =
3329 3330
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3331 3332 3333 3334 3335
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
3336 3337 3338
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
3339 3340 3341 3342 3343 3344 3345
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
3346 3347
        }
    }
3348 3349 3350
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
3368
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3369
                              float_status *status)
B
bellard 已提交
3370
{
3371
    int8_t shiftCount;
B
bellard 已提交
3372

3373
    shiftCount = clz64(zSig) - 1;
P
Peter Maydell 已提交
3374 3375
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

3386 3387
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr)
B
bellard 已提交
3388
{
3389
    int8_t shiftCount;
B
bellard 已提交
3390

3391
    shiftCount = clz64(aSig);
B
bellard 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;
}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3420 3421 3422
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status)
B
bellard 已提交
3423
{
3424
    int8_t roundingMode;
B
bellard 已提交
3425
    flag roundNearestEven, increment, isTiny;
3426
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
3427

3428
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
3443 3444
    switch (roundingMode) {
    case float_round_nearest_even:
3445
    case float_round_ties_away:
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
3458 3459
    }
    roundBits = zSig0 & roundMask;
3460
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3461 3462 3463 3464 3465 3466
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
3467
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3468
                float_raise(float_flag_output_denormal, status);
3469 3470
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
3471
            isTiny =
3472 3473
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3474 3475 3476 3477 3478
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
3479 3480 3481
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
3482 3483 3484
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
3485
            zSig0 += roundIncrement;
3486
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3487 3488 3489 3490 3491 3492 3493 3494
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3495 3496 3497
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
3511 3512
    switch (roundingMode) {
    case float_round_nearest_even:
3513
    case float_round_ties_away:
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
3527
    }
3528
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3529 3530 3531 3532 3533 3534 3535 3536
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
3537
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3538 3539 3540 3541 3542 3543
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
3544 3545 3546
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
3547 3548 3549
        }
        if ( zExp <= 0 ) {
            isTiny =
3550 3551
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3552 3553 3554 3555 3556
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
3557 3558 3559
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
3560 3561 3562
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
3563 3564
            switch (roundingMode) {
            case float_round_nearest_even:
3565
            case float_round_ties_away:
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
3579 3580 3581 3582
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
3583 3584
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3585 3586 3587 3588
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3589 3590 3591
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3592 3593 3594 3595 3596 3597 3598
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
3599
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

3618 3619 3620 3621
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status)
B
bellard 已提交
3622
{
3623
    int8_t shiftCount;
B
bellard 已提交
3624 3625 3626 3627 3628 3629

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
3630
    shiftCount = clz64(zSig0);
B
bellard 已提交
3631 3632
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
3633 3634
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
3635 3636 3637 3638 3639 3640 3641 3642

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3643
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3655
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

3667
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

3678
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
3697 3698
     uint64_t aSig0,
     uint64_t aSig1,
3699
     int32_t *zExpPtr,
3700 3701
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
3702 3703
 )
{
3704
    int8_t shiftCount;
B
bellard 已提交
3705 3706

    if ( aSig0 == 0 ) {
3707
        shiftCount = clz64(aSig1) - 15;
B
bellard 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
3719
        shiftCount = clz64(aSig0) - 15;
B
bellard 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

3739
static inline float128
3740
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
3741 3742 3743 3744
{
    float128 z;

    z.low = zSig1;
3745
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3771
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
3772 3773
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
3774
{
3775
    int8_t roundingMode;
B
bellard 已提交
3776 3777
    flag roundNearestEven, increment, isTiny;

3778
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3779
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3780 3781
    switch (roundingMode) {
    case float_round_nearest_even:
3782
    case float_round_ties_away:
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
3794 3795 3796
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
3797 3798
    default:
        abort();
B
bellard 已提交
3799
    }
3800
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
3812
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3813 3814 3815
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
3816
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
3829
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3830
                float_raise(float_flag_output_denormal, status);
3831 3832
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
3833
            isTiny =
3834 3835
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
3847 3848 3849
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
3850 3851
            switch (roundingMode) {
            case float_round_nearest_even:
3852
            case float_round_ties_away:
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
3864 3865 3866
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
3867 3868
            default:
                abort();
B
bellard 已提交
3869 3870 3871
            }
        }
    }
3872 3873 3874
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

3896
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
3897 3898
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
3899
{
3900
    int8_t shiftCount;
3901
    uint64_t zSig2;
B
bellard 已提交
3902 3903 3904 3905 3906 3907

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
3908
    shiftCount = clz64(zSig0) - 15;
B
bellard 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
3918
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3930
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
3931 3932
{
    flag zSign;
3933
    uint32_t absA;
3934
    int8_t shiftCount;
3935
    uint64_t zSig;
B
bellard 已提交
3936 3937 3938 3939

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3940
    shiftCount = clz32(absA) + 32;
B
bellard 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3952
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
3953 3954
{
    flag zSign;
3955
    uint32_t absA;
3956
    int8_t shiftCount;
3957
    uint64_t zSig0;
B
bellard 已提交
3958 3959 3960 3961

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3962
    shiftCount = clz32(absA) + 17;
B
bellard 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3975
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
3976 3977
{
    flag zSign;
3978
    uint64_t absA;
3979
    int8_t shiftCount;
B
bellard 已提交
3980 3981 3982 3983

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3984
    shiftCount = clz64(absA);
B
bellard 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3995
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
3996 3997
{
    flag zSign;
3998
    uint64_t absA;
3999
    int8_t shiftCount;
4000
    int32_t zExp;
4001
    uint64_t zSig0, zSig1;
B
bellard 已提交
4002 4003 4004 4005

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
4006
    shiftCount = clz64(absA) + 49;
B
bellard 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

4022 4023 4024 4025 4026 4027
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4028
float128 uint64_to_float128(uint64_t a, float_status *status)
4029 4030 4031 4032
{
    if (a == 0) {
        return float128_zero;
    }
4033
    return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
4034 4035
}

B
bellard 已提交
4036 4037 4038 4039 4040 4041 4042
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4043
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
4044 4045
{
    flag aSign;
4046
    int aExp;
4047
    uint32_t aSig;
B
bellard 已提交
4048

P
Peter Maydell 已提交
4049
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
4050 4051 4052 4053
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4054 4055 4056
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
4057 4058 4059
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4060 4061 4062 4063 4064 4065
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
4066
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4077
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
4078 4079
{
    flag aSign;
4080
    int aExp;
4081
    uint32_t aSig;
B
bellard 已提交
4082

P
Peter Maydell 已提交
4083
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
4084 4085 4086 4087
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4088 4089 4090
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4091 4092 4093 4094 4095 4096 4097
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
4098
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4108
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
4109
{
4110
    flag aSign, zSign;
4111
    int aExp, bExp, expDiff;
4112 4113 4114 4115 4116
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
4117 4118
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4119 4120 4121 4122 4123 4124 4125 4126

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
4127
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
4128
        }
P
Peter Maydell 已提交
4129
        float_raise(float_flag_invalid, status);
4130
        return float32_default_nan(status);
B
bellard 已提交
4131 4132
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
4133 4134 4135
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
4136 4137 4138 4139
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4140
            float_raise(float_flag_invalid, status);
4141
            return float32_default_nan(status);
B
bellard 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
4162
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
4174 4175
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4194
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
4195 4196 4197 4198
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4199
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
4200
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4201
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4202 4203
}

4204

B
bellard 已提交
4205

A
Aurelien Jarno 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
4241 4242
};

4243
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
4244 4245
{
    flag aSign;
4246
    int aExp;
4247
    uint32_t aSig;
A
Aurelien Jarno 已提交
4248 4249
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
4250
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
4251 4252 4253 4254 4255 4256

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
4257 4258 4259
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
4260 4261 4262 4263 4264 4265
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
4266
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
4267 4268 4269 4270

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
4271 4272
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
4273 4274 4275 4276 4277 4278

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
4279 4280
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
4281

P
Peter Maydell 已提交
4282
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
4283 4284 4285 4286 4287
    }

    return float64_to_float32(r, status);
}

4288 4289 4290 4291 4292
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4293
float32 float32_log2(float32 a, float_status *status)
4294 4295
{
    flag aSign, zSign;
4296
    int aExp;
4297
    uint32_t aSig, zSig, i;
4298

P
Peter Maydell 已提交
4299
    a = float32_squash_input_denormal(a, status);
4300 4301 4302 4303 4304 4305 4306 4307 4308
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4309
        float_raise(float_flag_invalid, status);
4310
        return float32_default_nan(status);
4311 4312
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4313 4314 4315
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
4316 4317 4318 4319 4320 4321 4322 4323 4324
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
4325
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
4326 4327 4328 4329 4330 4331 4332 4333 4334
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
4335
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
4336 4337
}

B
bellard 已提交
4338 4339
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
4340 4341
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4342 4343 4344
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4345
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
4346
{
4347
    uint32_t av, bv;
P
Peter Maydell 已提交
4348 4349
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4350 4351 4352 4353

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4354
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4355 4356
        return 0;
    }
4357 4358 4359
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4360 4361 4362 4363
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
4364 4365 4366
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4367 4368
*----------------------------------------------------------------------------*/

4369
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
4370 4371
{
    flag aSign, bSign;
4372
    uint32_t av, bv;
P
Peter Maydell 已提交
4373 4374
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4375 4376 4377 4378

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4379
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4380 4381 4382 4383
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4384 4385
    av = float32_val(a);
    bv = float32_val(b);
4386
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4387
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4388 4389 4390 4391 4392

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
4393 4394 4395
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4396 4397
*----------------------------------------------------------------------------*/

4398
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
4399 4400
{
    flag aSign, bSign;
4401
    uint32_t av, bv;
P
Peter Maydell 已提交
4402 4403
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4404 4405 4406 4407

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4408
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4409 4410 4411 4412
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4413 4414
    av = float32_val(a);
    bv = float32_val(b);
4415
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4416
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4417 4418 4419

}

4420 4421
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
4422 4423 4424
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4425 4426
*----------------------------------------------------------------------------*/

4427
int float32_unordered(float32 a, float32 b, float_status *status)
4428
{
P
Peter Maydell 已提交
4429 4430
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
4431 4432 4433 4434

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4435
        float_raise(float_flag_invalid, status);
4436 4437 4438 4439
        return 1;
    }
    return 0;
}
4440

B
bellard 已提交
4441 4442
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
4443 4444 4445
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4446 4447
*----------------------------------------------------------------------------*/

4448
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4449
{
P
Peter Maydell 已提交
4450 4451
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4452 4453 4454 4455

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4456 4457
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4458
            float_raise(float_flag_invalid, status);
4459
        }
B
bellard 已提交
4460 4461
        return 0;
    }
4462 4463
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4473
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4474 4475
{
    flag aSign, bSign;
4476
    uint32_t av, bv;
P
Peter Maydell 已提交
4477 4478
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4479 4480 4481 4482

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4483 4484
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4485
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4486 4487 4488 4489 4490
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4491 4492
    av = float32_val(a);
    bv = float32_val(b);
4493
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4494
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4495 4496 4497 4498 4499 4500 4501

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
4502
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4503 4504
*----------------------------------------------------------------------------*/

4505
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4506
{
4507 4508 4509 4510
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4511

4512 4513 4514 4515 4516
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4517
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4518
        }
4519
        return 0;
B
bellard 已提交
4520
    }
4521 4522 4523 4524 4525 4526
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4527 4528 4529 4530

}

/*----------------------------------------------------------------------------
4531 4532 4533 4534
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
4535 4536
*----------------------------------------------------------------------------*/

4537
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4538
{
4539 4540
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4541

4542 4543 4544 4545 4546 4547
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4548
        }
4549
        return 1;
B
bellard 已提交
4550
    }
4551
    return 0;
B
bellard 已提交
4552 4553
}

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

B
bellard 已提交
4569 4570 4571 4572 4573 4574 4575
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4576
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
4577 4578
{
    flag aSign;
4579
    int aExp;
4580
    uint64_t aSig;
B
bellard 已提交
4581

P
Peter Maydell 已提交
4582
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4583 4584 4585 4586
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4587 4588 4589
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
4590 4591 4592
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4611
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
4612 4613
{
    flag aSign;
4614
    int aExp;
4615
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4616

P
Peter Maydell 已提交
4617
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4618 4619 4620 4621
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4622 4623 4624
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4644
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4645
{
4646
    flag aSign, zSign;
4647
    int aExp, bExp, expDiff;
4648 4649 4650
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4651

P
Peter Maydell 已提交
4652 4653
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4654 4655 4656 4657 4658 4659 4660
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
4661
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
4662
        }
P
Peter Maydell 已提交
4663
        float_raise(float_flag_invalid, status);
4664
        return float64_default_nan(status);
B
bellard 已提交
4665 4666
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
4667 4668 4669
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
4670 4671 4672 4673
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4674
            float_raise(float_flag_invalid, status);
4675
            return float64_default_nan(status);
B
bellard 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4715
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4716 4717 4718 4719
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4720
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4721
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4722
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4723 4724 4725

}

4726 4727 4728 4729 4730
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4731
float64 float64_log2(float64 a, float_status *status)
4732 4733
{
    flag aSign, zSign;
4734
    int aExp;
4735
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
4736
    a = float64_squash_input_denormal(a, status);
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4747
        float_raise(float_flag_invalid, status);
4748
        return float64_default_nan(status);
4749 4750
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4751 4752 4753
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
4754 4755 4756 4757 4758 4759
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4760
    zSig = (uint64_t)aExp << 52;
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
4772
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4773 4774
}

B
bellard 已提交
4775 4776
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4777 4778
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4779 4780 4781
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4782
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4783
{
4784
    uint64_t av, bv;
P
Peter Maydell 已提交
4785 4786
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4787 4788 4789 4790

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4791
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4792 4793
        return 0;
    }
P
pbrook 已提交
4794
    av = float64_val(a);
P
pbrook 已提交
4795
    bv = float64_val(b);
4796
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4797 4798 4799 4800 4801

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4802 4803 4804
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4805 4806
*----------------------------------------------------------------------------*/

4807
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4808 4809
{
    flag aSign, bSign;
4810
    uint64_t av, bv;
P
Peter Maydell 已提交
4811 4812
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4813 4814 4815 4816

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4817
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4818 4819 4820 4821
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4822
    av = float64_val(a);
P
pbrook 已提交
4823
    bv = float64_val(b);
4824
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4825
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4826 4827 4828 4829 4830

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4831 4832 4833
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4834 4835
*----------------------------------------------------------------------------*/

4836
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4837 4838
{
    flag aSign, bSign;
4839
    uint64_t av, bv;
B
bellard 已提交
4840

P
Peter Maydell 已提交
4841 4842
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4843 4844 4845
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4846
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4847 4848 4849 4850
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4851
    av = float64_val(a);
P
pbrook 已提交
4852
    bv = float64_val(b);
4853
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4854
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4855 4856 4857

}

4858 4859
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4860 4861 4862
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4863 4864
*----------------------------------------------------------------------------*/

4865
int float64_unordered(float64 a, float64 b, float_status *status)
4866
{
P
Peter Maydell 已提交
4867 4868
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4869 4870 4871 4872

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4873
        float_raise(float_flag_invalid, status);
4874 4875 4876 4877 4878
        return 1;
    }
    return 0;
}

B
bellard 已提交
4879 4880
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4881 4882 4883
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4884 4885
*----------------------------------------------------------------------------*/

4886
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4887
{
4888
    uint64_t av, bv;
P
Peter Maydell 已提交
4889 4890
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4891 4892 4893 4894

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4895 4896
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4897
            float_raise(float_flag_invalid, status);
4898
        }
B
bellard 已提交
4899 4900
        return 0;
    }
P
pbrook 已提交
4901
    av = float64_val(a);
P
pbrook 已提交
4902
    bv = float64_val(b);
4903
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4914
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4915 4916
{
    flag aSign, bSign;
4917
    uint64_t av, bv;
P
Peter Maydell 已提交
4918 4919
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4920 4921 4922 4923

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4924 4925
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4926
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4927 4928 4929 4930 4931
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4932
    av = float64_val(a);
P
pbrook 已提交
4933
    bv = float64_val(b);
4934
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4935
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4946
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4947 4948
{
    flag aSign, bSign;
4949
    uint64_t av, bv;
P
Peter Maydell 已提交
4950 4951
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4952 4953 4954 4955

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4956 4957
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4958
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4959 4960 4961 4962 4963
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4964
    av = float64_val(a);
P
pbrook 已提交
4965
    bv = float64_val(b);
4966
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4967
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4968 4969 4970

}

4971 4972 4973 4974 4975 4976 4977
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4978
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4979
{
P
Peter Maydell 已提交
4980 4981
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4982 4983 4984 4985

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4986 4987
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4988
            float_raise(float_flag_invalid, status);
4989 4990 4991 4992 4993 4994
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5005
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
5006 5007
{
    flag aSign;
5008
    int32_t aExp, shiftCount;
5009
    uint64_t aSig;
B
bellard 已提交
5010

5011 5012 5013 5014
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
5015 5016 5017
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
5018
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
5019 5020 5021
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
5022
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

5036
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
5037 5038
{
    flag aSign;
5039
    int32_t aExp, shiftCount;
5040
    uint64_t aSig, savedASig;
5041
    int32_t z;
B
bellard 已提交
5042

5043 5044 5045 5046
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
5047 5048 5049 5050
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
5051
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
5052 5053 5054
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
5055 5056 5057
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
5067
        float_raise(float_flag_invalid, status);
5068
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5069 5070
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
5071
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5087
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
5088 5089
{
    flag aSign;
5090
    int32_t aExp, shiftCount;
5091
    uint64_t aSig, aSigExtra;
B
bellard 已提交
5092

5093 5094 5095 5096
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
5097 5098 5099 5100 5101 5102
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
5103
            float_raise(float_flag_invalid, status);
5104
            if (!aSign || floatx80_is_any_nan(a)) {
B
bellard 已提交
5105 5106
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5107
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5108 5109 5110 5111 5112 5113
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
5114
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

5128
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
5129 5130
{
    flag aSign;
5131
    int32_t aExp, shiftCount;
5132
    uint64_t aSig;
5133
    int64_t z;
B
bellard 已提交
5134

5135 5136 5137 5138
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
5139 5140 5141 5142 5143 5144 5145
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
5146
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5147 5148 5149 5150
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
5151
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5152 5153
    }
    else if ( aExp < 0x3FFF ) {
5154 5155 5156
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5157 5158 5159
        return 0;
    }
    z = aSig>>( - shiftCount );
5160
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
5161
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5175
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
5176 5177
{
    flag aSign;
5178
    int32_t aExp;
5179
    uint64_t aSig;
B
bellard 已提交
5180

5181 5182 5183 5184
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
5185 5186 5187 5188
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5189
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5190
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5191 5192 5193 5194 5195
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
5196
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5207
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
5208 5209
{
    flag aSign;
5210
    int32_t aExp;
5211
    uint64_t aSig, zSig;
B
bellard 已提交
5212

5213 5214 5215 5216
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
5217 5218 5219 5220
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5221
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5222
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5223 5224 5225 5226 5227
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
5228
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5239
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
5240 5241
{
    flag aSign;
5242
    int aExp;
5243
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
5244

5245 5246 5247 5248
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
5249 5250 5251
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
5252
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5253
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5254 5255 5256 5257 5258 5259
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
5276 5277 5278 5279 5280 5281 5282
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5283
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
5284 5285
{
    flag aSign;
5286
    int32_t aExp;
5287
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5288 5289
    floatx80 z;

5290 5291 5292 5293
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5294 5295
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
5296
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
5297
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
5298 5299 5300 5301 5302
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
5303
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
5304 5305
            return a;
        }
5306
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5307
        aSign = extractFloatx80Sign( a );
5308
        switch (status->float_rounding_mode) {
B
bellard 已提交
5309
         case float_round_nearest_even:
5310
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
5311 5312 5313 5314 5315
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
5316 5317 5318 5319 5320
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
5337
    switch (status->float_rounding_mode) {
5338
    case float_round_nearest_even:
B
bellard 已提交
5339
        z.low += lastBitMask>>1;
5340 5341 5342 5343
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
5344 5345 5346
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
5347 5348 5349 5350 5351 5352 5353 5354 5355
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
5356 5357
            z.low += roundBitsMask;
        }
5358 5359 5360
        break;
    default:
        abort();
B
bellard 已提交
5361 5362 5363 5364 5365 5366
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
5367 5368 5369
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5382 5383
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5384
{
5385
    int32_t aExp, bExp, zExp;
5386
    uint64_t aSig, bSig, zSig0, zSig1;
5387
    int32_t expDiff;
B
bellard 已提交
5388 5389 5390 5391 5392 5393 5394 5395

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5396 5397 5398
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5399 5400 5401 5402 5403 5404 5405 5406
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5407 5408 5409
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
5410 5411 5412
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
5413 5414 5415 5416 5417 5418 5419
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
5420
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5421
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
5435
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
5436 5437 5438 5439 5440
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
5441
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5442
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5453 5454
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5455
{
5456
    int32_t aExp, bExp, zExp;
5457
    uint64_t aSig, bSig, zSig0, zSig1;
5458
    int32_t expDiff;
B
bellard 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5468
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5469
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5470
        }
P
Peter Maydell 已提交
5471
        float_raise(float_flag_invalid, status);
5472
        return floatx80_default_nan(status);
B
bellard 已提交
5473 5474 5475 5476 5477 5478 5479 5480
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
5481
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
5482 5483
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5484 5485 5486
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
5487 5488
        return packFloatx80(zSign ^ 1, floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5499 5500 5501
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5502 5503 5504 5505 5506 5507 5508 5509
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
5510
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5511
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5512 5513 5514 5515 5516 5517 5518 5519
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5520
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5521 5522 5523
{
    flag aSign, bSign;

5524 5525 5526 5527
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5528 5529 5530
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5531
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5532 5533
    }
    else {
P
Peter Maydell 已提交
5534
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5545
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5546 5547 5548
{
    flag aSign, bSign;

5549 5550 5551 5552
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5553 5554 5555
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5556
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5557 5558
    }
    else {
P
Peter Maydell 已提交
5559
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5570
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5571 5572
{
    flag aSign, bSign, zSign;
5573
    int32_t aExp, bExp, zExp;
5574
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5575

5576 5577 5578 5579
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5580 5581 5582 5583 5584 5585 5586 5587
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5588 5589
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5590
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5591 5592
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
5593 5594
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5595 5596
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5597 5598 5599
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5600 5601
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5602
            float_raise(float_flag_invalid, status);
5603
            return floatx80_default_nan(status);
B
bellard 已提交
5604
        }
5605 5606
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5618
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5619 5620 5621
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
5622
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5623
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5624 5625 5626 5627 5628 5629 5630 5631
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5632
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5633 5634
{
    flag aSign, bSign, zSign;
5635
    int32_t aExp, bExp, zExp;
5636 5637
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5638

5639 5640 5641 5642
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5643 5644 5645 5646 5647 5648 5649 5650
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5651 5652 5653
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5654
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5655 5656 5657
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5658 5659
            goto invalid;
        }
5660 5661
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5662 5663
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5664 5665 5666
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5667 5668 5669 5670 5671 5672
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5673
                float_raise(float_flag_invalid, status);
5674
                return floatx80_default_nan(status);
B
bellard 已提交
5675
            }
P
Peter Maydell 已提交
5676
            float_raise(float_flag_divbyzero, status);
5677 5678
            return packFloatx80(zSign, floatx80_infinity_high,
                                       floatx80_infinity_low);
B
bellard 已提交
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5695
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5696 5697 5698 5699
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5700
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5701 5702
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5703
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5704 5705 5706 5707 5708
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
5709
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5710
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5711 5712 5713 5714 5715 5716 5717 5718
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5719
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5720
{
5721
    flag aSign, zSign;
5722
    int32_t aExp, bExp, expDiff;
5723 5724
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5725

5726 5727 5728 5729
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5730 5731 5732 5733 5734 5735
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5736 5737
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5738
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5739 5740 5741 5742
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5743 5744 5745
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5746 5747 5748 5749 5750
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
5751
            float_raise(float_flag_invalid, status);
5752
            return floatx80_default_nan(status);
B
bellard 已提交
5753 5754 5755 5756
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5757
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
5808
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
5809 5810 5811 5812 5813 5814 5815 5816 5817

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5818
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5819 5820
{
    flag aSign;
5821
    int32_t aExp, zExp;
5822 5823
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5824

5825 5826 5827 5828
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5829 5830 5831 5832
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5833 5834 5835
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
5836 5837 5838 5839 5840 5841
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
5842
        float_raise(float_flag_invalid, status);
5843
        return floatx80_default_nan(status);
B
bellard 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5856
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5868
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
5879 5880
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
5881 5882 5883
}

/*----------------------------------------------------------------------------
5884 5885 5886 5887
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5888 5889
*----------------------------------------------------------------------------*/

5890
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5891 5892
{

5893 5894 5895 5896 5897
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5898
       ) {
P
Peter Maydell 已提交
5899
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5900 5901 5902 5903 5904 5905
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5906
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5907 5908 5909 5910 5911 5912 5913
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5914 5915 5916
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5917 5918
*----------------------------------------------------------------------------*/

5919
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5920 5921 5922
{
    flag aSign, bSign;

5923 5924 5925 5926 5927
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5928
       ) {
P
Peter Maydell 已提交
5929
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5930 5931 5932 5933 5934 5935 5936
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5937
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5948 5949 5950
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5951 5952
*----------------------------------------------------------------------------*/

5953
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5954 5955 5956
{
    flag aSign, bSign;

5957 5958 5959 5960 5961
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5962
       ) {
P
Peter Maydell 已提交
5963
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5964 5965 5966 5967 5968 5969 5970
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5971
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5972 5973 5974 5975 5976 5977 5978 5979
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5980 5981
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5982 5983 5984
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5985
*----------------------------------------------------------------------------*/
5986
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5987
{
5988 5989 5990 5991 5992
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
5993
       ) {
P
Peter Maydell 已提交
5994
        float_raise(float_flag_invalid, status);
5995 5996 5997 5998 5999
        return 1;
    }
    return 0;
}

B
bellard 已提交
6000
/*----------------------------------------------------------------------------
6001
| Returns 1 if the extended double-precision floating-point value `a' is
6002 6003 6004
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6005 6006
*----------------------------------------------------------------------------*/

6007
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6008 6009
{

6010 6011 6012 6013
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
6014
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
6015
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
6016
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
6017
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
6018
       ) {
6019 6020
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6021
            float_raise(float_flag_invalid, status);
6022
        }
B
bellard 已提交
6023 6024 6025 6026 6027 6028
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6029
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6041
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6042 6043 6044
{
    flag aSign, bSign;

6045 6046 6047 6048
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
6049
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
6050
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
6051
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
6052
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
6053
       ) {
6054 6055
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6056
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6057 6058 6059 6060 6061 6062 6063 6064
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6065
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6081
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6082 6083 6084
{
    flag aSign, bSign;

6085 6086 6087 6088
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
6089
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
6090
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
6091
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
6092
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
6093
       ) {
6094 6095
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6096
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6097 6098 6099 6100 6101 6102 6103 6104
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6105
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6106 6107 6108 6109 6110 6111 6112 6113
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6114 6115 6116 6117 6118 6119
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
6120
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
6121
{
6122 6123 6124 6125
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
6126 6127 6128 6129 6130
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
6131 6132
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6133
            float_raise(float_flag_invalid, status);
6134 6135 6136 6137 6138 6139
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

6150
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
6151 6152
{
    flag aSign;
6153
    int32_t aExp, shiftCount;
6154
    uint64_t aSig0, aSig1;
B
bellard 已提交
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
6165
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

6179
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
6180 6181
{
    flag aSign;
6182
    int32_t aExp, shiftCount;
6183
    uint64_t aSig0, aSig1, savedASig;
6184
    int32_t z;
B
bellard 已提交
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
6196 6197 6198
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
6209
        float_raise(float_flag_invalid, status);
6210
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
6211 6212
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
6213
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

6229
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
6230 6231
{
    flag aSign;
6232
    int32_t aExp, shiftCount;
6233
    uint64_t aSig0, aSig1;
B
bellard 已提交
6234 6235 6236 6237 6238 6239 6240 6241 6242

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
6243
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6244 6245 6246 6247 6248 6249 6250
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
6251
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
6252 6253 6254 6255 6256 6257
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
6258
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

6272
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
6273 6274
{
    flag aSign;
6275
    int32_t aExp, shiftCount;
6276
    uint64_t aSig0, aSig1;
6277
    int64_t z;
B
bellard 已提交
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
6290 6291 6292
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
6293 6294
            }
            else {
P
Peter Maydell 已提交
6295
                float_raise(float_flag_invalid, status);
B
bellard 已提交
6296 6297 6298 6299
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
6300
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
6301 6302
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
6303
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
6304
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6305 6306 6307 6308 6309
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
6310
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6311 6312 6313 6314 6315
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
6316
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
6317
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6318 6319 6320 6321 6322 6323 6324
        }
    }
    if ( aSign ) z = - z;
    return z;

}

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
6384 6385
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
6414 6415 6416 6417 6418
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6419
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
6420 6421
{
    flag aSign;
6422
    int32_t aExp;
6423 6424
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
6425 6426 6427 6428 6429 6430 6431

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6432
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
6443
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6454
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
6455 6456
{
    flag aSign;
6457
    int32_t aExp;
6458
    uint64_t aSig0, aSig1;
B
bellard 已提交
6459 6460 6461 6462 6463 6464 6465

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6466
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6467 6468 6469 6470 6471 6472 6473 6474 6475
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
6476
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6487
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
6488 6489
{
    flag aSign;
6490
    int32_t aExp;
6491
    uint64_t aSig0, aSig1;
B
bellard 已提交
6492 6493 6494 6495 6496 6497 6498

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6499
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6500
        }
6501 6502
        return packFloatx80(aSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
6503 6504 6505 6506 6507 6508 6509 6510 6511
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6512
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6523
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
6524 6525
{
    flag aSign;
6526
    int32_t aExp;
6527
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
6528 6529 6530 6531 6532 6533 6534 6535
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
6536
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
6537 6538 6539 6540 6541 6542 6543
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
6544
        switch (status->float_rounding_mode) {
6545
        case float_round_nearest_even:
B
bellard 已提交
6546 6547 6548 6549 6550
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
6551
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
6552
                    ++z.high;
6553
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
6554 6555
                }
            }
6556
            break;
6557 6558 6559 6560 6561 6562 6563 6564 6565
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6576
            }
6577 6578 6579
            break;
        default:
            abort();
B
bellard 已提交
6580 6581 6582 6583 6584
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6585
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6586
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6587
            aSign = extractFloat128Sign( a );
6588
            switch (status->float_rounding_mode) {
B
bellard 已提交
6589 6590 6591 6592 6593 6594 6595 6596
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6597 6598 6599 6600 6601
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6618
        switch (status->float_rounding_mode) {
6619
        case float_round_nearest_even:
B
bellard 已提交
6620 6621 6622 6623
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6624
            break;
6625 6626 6627
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6628 6629 6630 6631
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6632 6633 6634
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6635 6636 6637 6638 6639 6640 6641 6642 6643
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6644 6645 6646 6647
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6648
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6662 6663
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6664
{
6665
    int32_t aExp, bExp, zExp;
6666
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6667
    int32_t expDiff;
B
bellard 已提交
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6678 6679 6680
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6695 6696 6697
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6713
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6714 6715 6716 6717
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6718
        if ( aExp == 0 ) {
6719
            if (status->flush_to_zero) {
6720
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
6721
                    float_raise(float_flag_output_denormal, status);
6722 6723 6724
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6725 6726
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
6741
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6753 6754
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6755
{
6756
    int32_t aExp, bExp, zExp;
6757
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
6758
    int32_t expDiff;
B
bellard 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6773
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6774
        }
P
Peter Maydell 已提交
6775
        float_raise(float_flag_invalid, status);
6776
        return float128_default_nan(status);
B
bellard 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
6786 6787
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
6788 6789
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6790 6791 6792
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6810 6811 6812
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
6828 6829
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6839
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6840 6841 6842 6843 6844 6845
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6846
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6847 6848
    }
    else {
P
Peter Maydell 已提交
6849
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6860
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6861 6862 6863 6864 6865 6866
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6867
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6868 6869
    }
    else {
P
Peter Maydell 已提交
6870
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6881
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6882 6883
{
    flag aSign, bSign, zSign;
6884
    int32_t aExp, bExp, zExp;
6885
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6899
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6900 6901 6902 6903 6904
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6905 6906 6907
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6908 6909
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6910
            float_raise(float_flag_invalid, status);
6911
            return float128_default_nan(status);
B
bellard 已提交
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
6934
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6944
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6945 6946
{
    flag aSign, bSign, zSign;
6947
    int32_t aExp, bExp, zExp;
6948 6949
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6961 6962 6963
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6964
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6965 6966 6967
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6968 6969 6970 6971 6972
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6973 6974 6975
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6976 6977 6978 6979 6980 6981
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6982
                float_raise(float_flag_invalid, status);
6983
                return float128_default_nan(status);
B
bellard 已提交
6984
            }
P
Peter Maydell 已提交
6985
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
7006
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
7007 7008 7009 7010 7011 7012 7013
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
7014
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
7015 7016 7017 7018 7019 7020
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
7021
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
7022 7023 7024 7025 7026 7027 7028 7029 7030

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7031
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
7032
{
7033
    flag aSign, zSign;
7034
    int32_t aExp, bExp, expDiff;
7035 7036 7037
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
7049
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
7050 7051 7052 7053
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
7054 7055 7056
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
7057 7058 7059 7060 7061
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
7062
            float_raise(float_flag_invalid, status);
7063
            return float128_default_nan(status);
B
bellard 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
7118
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
7119
    add128(
7120
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
7121 7122 7123 7124 7125
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
7126
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
7127
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
7128 7129
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
7130 7131 7132 7133 7134 7135 7136 7137
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7138
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
7139 7140
{
    flag aSign;
7141
    int32_t aExp, zExp;
7142 7143
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
7144 7145 7146 7147 7148 7149

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
7150 7151 7152
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
7153 7154 7155 7156 7157 7158
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
7159
        float_raise(float_flag_invalid, status);
7160
        return float128_default_nan(status);
B
bellard 已提交
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
7174
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
7186
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
7187 7188 7189 7190 7191 7192 7193 7194 7195
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
7196
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
7197 7198 7199 7200 7201

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
7202 7203
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
7204 7205 7206
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7207
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
7208 7209 7210 7211 7212 7213 7214
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7215
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7216 7217 7218 7219 7220 7221
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
7222
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
7223 7224 7225 7226 7227 7228
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
7229 7230 7231
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
7232 7233
*----------------------------------------------------------------------------*/

7234
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
7235 7236 7237 7238 7239 7240 7241 7242
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7243
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7244 7245 7246 7247 7248 7249 7250
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7251
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
7262 7263 7264
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
7265 7266
*----------------------------------------------------------------------------*/

7267
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
7268 7269 7270 7271 7272 7273 7274 7275
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7276
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7277 7278 7279 7280 7281 7282 7283
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7284
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7285 7286 7287 7288 7289 7290 7291 7292
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

7293 7294
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
7295 7296 7297
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
7298 7299
*----------------------------------------------------------------------------*/

7300
int float128_unordered(float128 a, float128 b, float_status *status)
7301 7302 7303 7304 7305 7306
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7307
        float_raise(float_flag_invalid, status);
7308 7309 7310 7311 7312
        return 1;
    }
    return 0;
}

B
bellard 已提交
7313 7314
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
7315 7316 7317
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
7318 7319
*----------------------------------------------------------------------------*/

7320
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7321 7322 7323 7324 7325 7326 7327
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7328 7329
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7330
            float_raise(float_flag_invalid, status);
7331
        }
B
bellard 已提交
7332 7333 7334 7335 7336 7337
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
7338
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7350
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7351 7352 7353 7354 7355 7356 7357 7358
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7359 7360
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7361
            float_raise(float_flag_invalid, status);
B
bellard 已提交
7362 7363 7364 7365 7366 7367 7368 7369
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7370
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7386
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7387 7388 7389 7390 7391 7392 7393 7394
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7395 7396
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7397
            float_raise(float_flag_invalid, status);
B
bellard 已提交
7398 7399 7400 7401 7402 7403 7404 7405
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7406
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7407 7408 7409 7410 7411 7412 7413 7414
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

7415 7416 7417 7418 7419 7420 7421
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7422
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
7423 7424 7425 7426 7427 7428
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7429 7430
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7431
            float_raise(float_flag_invalid, status);
7432 7433 7434 7435 7436 7437
        }
        return 1;
    }
    return 0;
}

7438 7439
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
7440 7441 7442
{
    flag aSign, bSign;

7443 7444 7445 7446
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
7447 7448 7449 7450 7451
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
7452 7453
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7454
            float_raise(float_flag_invalid, status);
7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7478
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7479
{
P
Peter Maydell 已提交
7480
    return floatx80_compare_internal(a, b, 0, status);
7481 7482
}

7483
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7484
{
P
Peter Maydell 已提交
7485
    return floatx80_compare_internal(a, b, 1, status);
7486 7487
}

7488 7489
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
7490 7491 7492 7493 7494 7495 7496 7497
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
7498 7499
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7500
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7522
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7523
{
P
Peter Maydell 已提交
7524
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
7525 7526
}

7527
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7528
{
P
Peter Maydell 已提交
7529
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
7530 7531
}

7532
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
7533 7534
{
    flag aSign;
7535
    int32_t aExp;
7536
    uint64_t aSig;
P
pbrook 已提交
7537

7538 7539 7540 7541
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
7542 7543 7544 7545
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7546 7547
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
7548
            return propagateFloatx80NaN(a, a, status);
7549
        }
P
pbrook 已提交
7550 7551
        return a;
    }
7552

7553 7554 7555 7556 7557 7558
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7559

7560 7561 7562 7563 7564 7565
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7566
    aExp += n;
7567 7568
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
7569 7570
}

7571
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7572 7573
{
    flag aSign;
7574
    int32_t aExp;
7575
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7576 7577 7578 7579 7580 7581

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7582
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
7583
            return propagateFloat128NaN(a, a, status);
7584
        }
P
pbrook 已提交
7585 7586
        return a;
    }
7587
    if (aExp != 0) {
7588
        aSig0 |= LIT64( 0x0001000000000000 );
7589
    } else if (aSig0 == 0 && aSig1 == 0) {
7590
        return a;
7591 7592 7593
    } else {
        aExp++;
    }
7594

7595 7596 7597 7598 7599 7600
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7601 7602
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
7603
                                         , status);
P
pbrook 已提交
7604 7605

}