softfloat.c 243.0 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
A
Alex Bennée 已提交
86
#include "qemu/bitops.h"
87
#include "fpu/softfloat.h"
B
bellard 已提交
88

89 90
/* We only need stdlib for abort() */

B
bellard 已提交
91 92 93 94 95
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
96
#include "fpu/softfloat-macros.h"
B
bellard 已提交
97 98 99 100 101 102 103 104 105 106 107

/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

108 109 110 111
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

112
static inline uint32_t extractFloat16Frac(float16 a)
113 114 115 116 117 118 119 120
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

121
static inline int extractFloat16Exp(float16 a)
122 123 124 125 126 127 128 129
{
    return (float16_val(a) >> 10) & 0x1f;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

130
static inline flag extractFloat16Sign(float16 a)
131 132 133 134
{
    return float16_val(a)>>15;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
    float_class_dnan,
    float_class_msnan, /* maybe silenced */
} FloatClass;

/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
 *   fram_lsbm1: the bit bellow the least significant bit (for rounding)
 *   round_mask/roundeven_mask: masks used for rounding
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

/* Canonicalize EXP and FRAC, setting CLS.  */
static FloatParts canonicalize(FloatParts part, const FloatFmt *parm,
                               float_status *status)
{
    if (part.exp == parm->exp_max) {
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
#ifdef NO_SIGNALING_NANS
            part.cls = float_class_qnan;
#else
            int64_t msb = part.frac << (parm->frac_shift + 2);
            if ((msb < 0) == status->snan_bit_is_one) {
                part.cls = float_class_snan;
            } else {
                part.cls = float_class_qnan;
            }
#endif
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

            if (unlikely(exp >= exp_max)) {
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
        exp = exp_max;
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
    return canonicalize(float16_unpack_raw(f), &float16_params, s);
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float16_default_nan(s);
    case float_class_msnan:
        return float16_maybe_silence_nan(float16_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float16_params);
        return float16_pack_raw(p);
    }
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
    return canonicalize(float32_unpack_raw(f), &float32_params, s);
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float32_default_nan(s);
    case float_class_msnan:
        return float32_maybe_silence_nan(float32_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float32_params);
        return float32_pack_raw(p);
    }
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
    return canonicalize(float64_unpack_raw(f), &float64_params, s);
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float64_default_nan(s);
    case float_class_msnan:
        return float64_maybe_silence_nan(float64_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float64_params);
        return float64_pack_raw(p);
    }
}

/* Simple helpers for checking if what NaN we have */
static bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}
static bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}
static bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_msnan;
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
            a.cls = float_class_dnan;
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
        a.cls = float_class_dnan;
    } else {
        if (pickNaN(is_qnan(a.cls), is_snan(a.cls),
                    is_qnan(b.cls), is_snan(b.cls),
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
        a.cls = float_class_msnan;
    }
    return a;
}

A
Alex Bennée 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
        a.cls = float_class_dnan;
    } else {
        switch (pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls),
                              is_qnan(b.cls), is_snan(b.cls),
                              is_qnan(c.cls), is_snan(c.cls),
                              inf_zero, s)) {
        case 0:
            break;
        case 1:
            a = b;
            break;
        case 2:
            a = c;
            break;
        case 3:
            a.cls = float_class_dnan;
            return a;
        default:
            g_assert_not_reached();
        }

        a.cls = float_class_msnan;
    }
    return a;
}

A
Alex Bennée 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
                a.cls = float_class_dnan;
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                a.frac >>= 1;
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

float16  __attribute__((flatten)) float16_add(float16 a, float16 b,
                                              float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_add(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_add(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float64_round_pack_canonical(pr, status);
}

float16 __attribute__((flatten)) float16_sub(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_sub(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_sub(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        a.sign = sign;
        return a;
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

float16 __attribute__((flatten)) float16_mul(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_mul(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_dnan;
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
        }
        return a;
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t temp_lo, temp_hi;
        int exp = a.exp - b.exp;
        if (a.frac < b.frac) {
            exp -= 1;
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1,
                              &temp_hi, &temp_lo);
        } else {
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT,
                              &temp_hi, &temp_lo);
        }
        /* LSB of quot is set if inexact which roundandpack will use
         * to set flags. Yet again we re-use a for the result */
        a.frac = div128To64(temp_lo, temp_hi, b.frac);
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 float32_div(float32 a, float32 b, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 float64_div(float64 a, float64 b, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s)
{
    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }

    switch (a.cls) {
    case float_class_zero:
    case float_class_inf:
    case float_class_qnan:
        /* already "integral" */
        break;
    case float_class_normal:
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
            switch (rounding_mode) {
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

            switch (rounding_mode) {
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float64_round_pack_canonical(pr, s);
}

float64 float64_trunc_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, float_round_to_zero, s);
    return float64_round_pack_canonical(pr, s);
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

static int64_t round_to_int_and_pack(FloatParts in, int rmode,
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        return max;
    case float_class_inf:
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
            if (r < -(uint64_t) min) {
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
            if (r < max) {
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_INT(fsz, isz)                                          \
int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a,         \
                                                float_status *s)        \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, s->float_rounding_mode,             \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}                                                                       \
                                                                        \
int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero       \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, float_round_to_zero,                \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}

FLOAT_TO_INT(16, 16)
FLOAT_TO_INT(16, 32)
FLOAT_TO_INT(16, 64)

FLOAT_TO_INT(32, 16)
FLOAT_TO_INT(32, 32)
FLOAT_TO_INT(32, 64)

FLOAT_TO_INT(64, 16)
FLOAT_TO_INT(64, 32)
FLOAT_TO_INT(64, 64)

#undef FLOAT_TO_INT

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max,
                                       float_status *s)
{
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
    {
        uint64_t r;
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        } else {
            return r;
        }
    }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_UINT(fsz, isz) \
uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a,       \
                                                  float_status *s)      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_uint_and_pack(p, s->float_rounding_mode,            \
                                 UINT ## isz ## _MAX, s);               \
}                                                                       \
                                                                        \
uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero     \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_uint_and_pack(p, s->float_rounding_mode,            \
                                 UINT ## isz ## _MAX, s);               \
}

FLOAT_TO_UINT(16, 16)
FLOAT_TO_UINT(16, 32)
FLOAT_TO_UINT(16, 64)

FLOAT_TO_UINT(32, 16)
FLOAT_TO_UINT(32, 32)
FLOAT_TO_UINT(32, 64)

FLOAT_TO_UINT(64, 16)
FLOAT_TO_UINT(64, 32)
FLOAT_TO_UINT(64, 64)

#undef FLOAT_TO_UINT

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts int_to_float(int64_t a, float_status *status)
{
    FloatParts r;
    if (a == 0) {
        r.cls = float_class_zero;
        r.sign = false;
    } else if (a == (1ULL << 63)) {
        r.cls = float_class_normal;
        r.sign = true;
        r.frac = DECOMPOSED_IMPLICIT_BIT;
        r.exp = 63;
    } else {
        uint64_t f;
        if (a < 0) {
            f = -a;
            r.sign = true;
        } else {
            f = a;
            r.sign = false;
        }
        int shift = clz64(f) - 1;
        r.cls = float_class_normal;
        r.exp = (DECOMPOSED_BINARY_POINT - shift);
        r.frac = f << shift;
    }

    return r;
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 int32_to_float16(int32_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float16 int16_to_float16(int16_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 int32_to_float32(int32_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float32 int16_to_float32(int16_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 int32_to_float64(int32_t a, float_status *status)
{
    return int64_to_float64(a, status);
}

float64 int16_to_float64(int16_t a, float_status *status)
{
    return int64_to_float64(a, status);
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts uint_to_float(uint64_t a, float_status *status)
{
    FloatParts r = { .sign = false};

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
        int spare_bits = clz64(a) - 1;
        r.cls = float_class_normal;
        r.exp = DECOMPOSED_BINARY_POINT - spare_bits;
        if (spare_bits < 0) {
            shift64RightJamming(a, -spare_bits, &a);
            r.frac = a;
        } else {
            r.frac = a << spare_bits;
        }
    }

    return r;
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 uint32_to_float16(uint32_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 uint32_to_float32(uint32_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 uint32_to_float64(uint32_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

A
Alex Bennée 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;
        bool a_sign, b_sign;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

        a_sign = a.sign;
        b_sign = b.sign;
        if (ismag) {
            a_sign = b_sign = 0;
        }

        if (a_sign == b_sign) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_sign ^ a_less ^ ismin ? b : a;
        } else {
            return a_sign ^ ismin ? b : a;
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
/*
 * Square Root
 *
 * The old softfloat code did an approximation step before zeroing in
 * on the final result. However for simpleness we just compute the
 * square root by iterating down from the implicit bit to enough extra
 * bits to ensure we get a correctly rounded result.
 *
 * This does mean however the calculation is slower than before,
 * especially for 64 bit floats.
 */

static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
{
    uint64_t a_frac, r_frac, s_frac;
    int bit, last_bit;

    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_zero) {
        return a;  /* sqrt(+-0) = +-0 */
    }
    if (a.sign) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }
    if (a.cls == float_class_inf) {
        return a;  /* sqrt(+inf) = +inf */
    }

    assert(a.cls == float_class_normal);

    /* We need two overflow bits at the top. Adding room for that is a
     * right shift. If the exponent is odd, we can discard the low bit
     * by multiplying the fraction by 2; that's a left shift. Combine
     * those and we shift right if the exponent is even.
     */
    a_frac = a.frac;
    if (!(a.exp & 1)) {
        a_frac >>= 1;
    }
    a.exp >>= 1;

    /* Bit-by-bit computation of sqrt.  */
    r_frac = 0;
    s_frac = 0;

    /* Iterate from implicit bit down to the 3 extra bits to compute a
     * properly rounded result. Remember we've inserted one more bit
     * at the top, so these positions are one less.
     */
    bit = DECOMPOSED_BINARY_POINT - 1;
    last_bit = MAX(p->frac_shift - 4, 0);
    do {
        uint64_t q = 1ULL << bit;
        uint64_t t_frac = s_frac + q;
        if (t_frac <= a_frac) {
            s_frac = t_frac + q;
            a_frac -= t_frac;
            r_frac += q;
        }
        a_frac <<= 1;
    } while (--bit >= last_bit);

    /* Undo the right shift done above. If there is any remaining
     * fraction, the result is inexact. Set the sticky bit.
     */
    a.frac = (r_frac << 1) + (a_frac != 0);

    return a;
}

float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float16_params);
    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float32_params);
    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float64_params);
    return float64_round_pack_canonical(pr, status);
}


B
bellard 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

2006
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
2007
{
2008
    int8_t roundingMode;
B
bellard 已提交
2009
    flag roundNearestEven;
2010
    int8_t roundIncrement, roundBits;
2011
    int32_t z;
B
bellard 已提交
2012

2013
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2014
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2015 2016
    switch (roundingMode) {
    case float_round_nearest_even:
2017
    case float_round_ties_away:
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
2031 2032 2033 2034 2035 2036 2037
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
2038
        float_raise(float_flag_invalid, status);
2039
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2040
    }
2041 2042 2043
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

2060
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
2061
                               float_status *status)
B
bellard 已提交
2062
{
2063
    int8_t roundingMode;
B
bellard 已提交
2064
    flag roundNearestEven, increment;
2065
    int64_t z;
B
bellard 已提交
2066

2067
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2068
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2069 2070
    switch (roundingMode) {
    case float_round_nearest_even:
2071
    case float_round_ties_away:
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
2085 2086 2087 2088
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
2089
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2090 2091 2092 2093 2094
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
2095
        float_raise(float_flag_invalid, status);
B
bellard 已提交
2096
        return
2097
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
2098 2099
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
2100 2101 2102
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2103 2104 2105 2106
    return z;

}

T
Tom Musta 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

2117
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
2118
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
2119
{
2120
    int8_t roundingMode;
T
Tom Musta 已提交
2121 2122
    flag roundNearestEven, increment;

2123
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
2124
    roundNearestEven = (roundingMode == float_round_nearest_even);
2125 2126
    switch (roundingMode) {
    case float_round_nearest_even:
2127
    case float_round_ties_away:
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
2141 2142 2143 2144
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
2145
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2146 2147 2148 2149 2150 2151
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
2152
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2153 2154 2155 2156
        return 0;
    }

    if (absZ1) {
2157
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
2158 2159 2160 2161
    }
    return absZ0;
}

2162 2163 2164 2165
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2166
float32 float32_squash_input_denormal(float32 a, float_status *status)
2167
{
2168
    if (status->flush_inputs_to_zero) {
2169
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
2170
            float_raise(float_flag_input_denormal, status);
2171 2172 2173 2174 2175 2176
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
2177 2178 2179 2180 2181 2182 2183 2184
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2185
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
2186
{
2187
    int8_t shiftCount;
B
bellard 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2217
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2218
                                   float_status *status)
B
bellard 已提交
2219
{
2220
    int8_t roundingMode;
B
bellard 已提交
2221
    flag roundNearestEven;
2222
    int8_t roundIncrement, roundBits;
B
bellard 已提交
2223 2224
    flag isTiny;

2225
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2226
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2227 2228
    switch (roundingMode) {
    case float_round_nearest_even:
2229
    case float_round_ties_away:
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
2244 2245
    }
    roundBits = zSig & 0x7F;
2246
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
2247 2248
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
2249
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2250
           ) {
P
Peter Maydell 已提交
2251
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
2252
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
2253 2254
        }
        if ( zExp < 0 ) {
2255
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2256
                float_raise(float_flag_output_denormal, status);
2257 2258
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
2259
            isTiny =
2260 2261
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
2262 2263 2264 2265 2266
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
2267 2268 2269
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
2270 2271
        }
    }
2272 2273 2274
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
2292
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2293
                              float_status *status)
B
bellard 已提交
2294
{
2295
    int8_t shiftCount;
B
bellard 已提交
2296 2297

    shiftCount = countLeadingZeros32( zSig ) - 1;
P
Peter Maydell 已提交
2298 2299
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2300 2301 2302

}

2303 2304 2305 2306
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2307
float64 float64_squash_input_denormal(float64 a, float_status *status)
2308
{
2309
    if (status->flush_inputs_to_zero) {
2310
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
2311
            float_raise(float_flag_input_denormal, status);
2312 2313 2314 2315 2316 2317
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
2318 2319 2320 2321 2322 2323 2324 2325
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2326
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
2327
{
2328
    int8_t shiftCount;
B
bellard 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2347
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
2348 2349
{

P
pbrook 已提交
2350
    return make_float64(
2351
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
2363 2364 2365
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2377
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2378
                                   float_status *status)
B
bellard 已提交
2379
{
2380
    int8_t roundingMode;
B
bellard 已提交
2381
    flag roundNearestEven;
2382
    int roundIncrement, roundBits;
B
bellard 已提交
2383 2384
    flag isTiny;

2385
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2386
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2387 2388
    switch (roundingMode) {
    case float_round_nearest_even:
2389
    case float_round_ties_away:
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
2401 2402 2403
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
2404 2405
    default:
        abort();
B
bellard 已提交
2406 2407
    }
    roundBits = zSig & 0x3FF;
2408
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
2409 2410
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
2411
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2412
           ) {
2413 2414
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
2415
            float_raise(float_flag_overflow | float_flag_inexact, status);
2416
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
2417 2418
        }
        if ( zExp < 0 ) {
2419
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2420
                float_raise(float_flag_output_denormal, status);
2421 2422
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
2423
            isTiny =
2424 2425
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2426 2427 2428 2429 2430
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
2431 2432 2433
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2434 2435 2436 2437 2438 2439 2440
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
2441 2442
        }
    }
2443 2444 2445
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
2463
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2464
                              float_status *status)
B
bellard 已提交
2465
{
2466
    int8_t shiftCount;
B
bellard 已提交
2467 2468

    shiftCount = countLeadingZeros64( zSig ) - 1;
P
Peter Maydell 已提交
2469 2470
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

2481 2482
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr)
B
bellard 已提交
2483
{
2484
    int8_t shiftCount;
B
bellard 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;
}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2515 2516 2517
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status)
B
bellard 已提交
2518
{
2519
    int8_t roundingMode;
B
bellard 已提交
2520
    flag roundNearestEven, increment, isTiny;
2521
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
2522

2523
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
2538 2539
    switch (roundingMode) {
    case float_round_nearest_even:
2540
    case float_round_ties_away:
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
2553 2554
    }
    roundBits = zSig0 & roundMask;
2555
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2556 2557 2558 2559 2560 2561
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
2562
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2563
                float_raise(float_flag_output_denormal, status);
2564 2565
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
2566
            isTiny =
2567 2568
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2569 2570 2571 2572 2573
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
2574 2575 2576
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2577 2578 2579
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
2580
            zSig0 += roundIncrement;
2581
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2582 2583 2584 2585 2586 2587 2588 2589
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2590 2591 2592
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
2606 2607
    switch (roundingMode) {
    case float_round_nearest_even:
2608
    case float_round_ties_away:
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
2622
    }
2623
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2624 2625 2626 2627 2628 2629 2630 2631
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
2632
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
2643 2644
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2645 2646 2647 2648 2649
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
2650 2651 2652
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
2653 2654 2655
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
2656 2657
            switch (roundingMode) {
            case float_round_nearest_even:
2658
            case float_round_ties_away:
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
2672 2673 2674 2675
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
2676 2677
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2678 2679 2680 2681
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2682 2683 2684
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2685 2686 2687 2688 2689 2690 2691
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
2692
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

2711 2712 2713 2714
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status)
B
bellard 已提交
2715
{
2716
    int8_t shiftCount;
B
bellard 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
2726 2727
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
2728 2729 2730 2731 2732 2733 2734 2735

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2736
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2748
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

2760
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

2771
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
2790 2791
     uint64_t aSig0,
     uint64_t aSig1,
2792
     int32_t *zExpPtr,
2793 2794
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
2795 2796
 )
{
2797
    int8_t shiftCount;
B
bellard 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2832
static inline float128
2833
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
2834 2835 2836 2837
{
    float128 z;

    z.low = zSig1;
2838
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2864
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
2865 2866
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
2867
{
2868
    int8_t roundingMode;
B
bellard 已提交
2869 2870
    flag roundNearestEven, increment, isTiny;

2871
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2872
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2873 2874
    switch (roundingMode) {
    case float_round_nearest_even:
2875
    case float_round_ties_away:
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
2887 2888 2889
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
2890 2891
    default:
        abort();
B
bellard 已提交
2892
    }
2893
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
2905
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
2906 2907 2908
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
2909
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
2922
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2923
                float_raise(float_flag_output_denormal, status);
2924 2925
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
2926
            isTiny =
2927 2928
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
2940 2941 2942
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
2943 2944
            switch (roundingMode) {
            case float_round_nearest_even:
2945
            case float_round_ties_away:
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
2957 2958 2959
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
2960 2961
            default:
                abort();
B
bellard 已提交
2962 2963 2964
            }
        }
    }
2965 2966 2967
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

2989
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
2990 2991
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
2992
{
2993
    int8_t shiftCount;
2994
    uint64_t zSig2;
B
bellard 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
3011
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3023
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
3024 3025
{
    flag zSign;
3026
    uint32_t absA;
3027
    int8_t shiftCount;
3028
    uint64_t zSig;
B
bellard 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3045
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
3046 3047
{
    flag zSign;
3048
    uint32_t absA;
3049
    int8_t shiftCount;
3050
    uint64_t zSig0;
B
bellard 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3068
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
3069 3070
{
    flag zSign;
3071
    uint64_t absA;
3072
    int8_t shiftCount;
B
bellard 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3088
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
3089 3090
{
    flag zSign;
3091
    uint64_t absA;
3092
    int8_t shiftCount;
3093
    int32_t zExp;
3094
    uint64_t zSig0, zSig1;
B
bellard 已提交
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

3115 3116 3117 3118 3119 3120
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3121
float128 uint64_to_float128(uint64_t a, float_status *status)
3122 3123 3124 3125
{
    if (a == 0) {
        return float128_zero;
    }
P
Peter Maydell 已提交
3126
    return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
3127 3128
}

B
bellard 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138



/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3139
float64 float32_to_float64(float32 a, float_status *status)
B
bellard 已提交
3140 3141
{
    flag aSign;
3142
    int aExp;
3143
    uint32_t aSig;
P
Peter Maydell 已提交
3144
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3145 3146 3147 3148 3149

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3150 3151 3152
        if (aSig) {
            return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3153 3154 3155 3156 3157 3158 3159
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3160
    return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
B
bellard 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3171
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
3172 3173
{
    flag aSign;
3174
    int aExp;
3175
    uint32_t aSig;
B
bellard 已提交
3176

P
Peter Maydell 已提交
3177
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3178 3179 3180 3181
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3182 3183 3184
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3185 3186 3187 3188 3189 3190 3191
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
3192
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3203
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
3204 3205
{
    flag aSign;
3206
    int aExp;
3207
    uint32_t aSig;
B
bellard 已提交
3208

P
Peter Maydell 已提交
3209
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3210 3211 3212 3213
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3214 3215 3216
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3217 3218 3219 3220 3221 3222 3223
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3224
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3234
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
3235
{
3236
    flag aSign, zSign;
3237
    int aExp, bExp, expDiff;
3238 3239 3240 3241 3242
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
3243 3244
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3245 3246 3247 3248 3249 3250 3251 3252

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
3253
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
3254
        }
P
Peter Maydell 已提交
3255
        float_raise(float_flag_invalid, status);
3256
        return float32_default_nan(status);
B
bellard 已提交
3257 3258
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
3259 3260 3261
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
3262 3263 3264 3265
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
3266
            float_raise(float_flag_invalid, status);
3267
            return float32_default_nan(status);
B
bellard 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
3288
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
3300 3301
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
3320
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
3321 3322 3323 3324
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
3325
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
3326
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
3327
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
3328 3329
}

3330

B
bellard 已提交
3331

A
Aurelien Jarno 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
3367 3368
};

3369
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
3370 3371
{
    flag aSign;
3372
    int aExp;
3373
    uint32_t aSig;
A
Aurelien Jarno 已提交
3374 3375
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
3376
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
3377 3378 3379 3380 3381 3382

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
3383 3384 3385
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
3386 3387 3388 3389 3390 3391
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
3392
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
3393 3394 3395 3396

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
3397 3398
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
3399 3400 3401 3402 3403 3404

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
3405 3406
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
3407

P
Peter Maydell 已提交
3408
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
3409 3410 3411 3412 3413
    }

    return float64_to_float32(r, status);
}

3414 3415 3416 3417 3418
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
3419
float32 float32_log2(float32 a, float_status *status)
3420 3421
{
    flag aSign, zSign;
3422
    int aExp;
3423
    uint32_t aSig, zSig, i;
3424

P
Peter Maydell 已提交
3425
    a = float32_squash_input_denormal(a, status);
3426 3427 3428 3429 3430 3431 3432 3433 3434
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
3435
        float_raise(float_flag_invalid, status);
3436
        return float32_default_nan(status);
3437 3438
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3439 3440 3441
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
3442 3443 3444 3445 3446 3447 3448 3449 3450
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
3451
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
3452 3453 3454 3455 3456 3457 3458 3459 3460
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
3461
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
3462 3463
}

B
bellard 已提交
3464 3465
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3466 3467
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
3468 3469 3470
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3471
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
3472
{
3473
    uint32_t av, bv;
P
Peter Maydell 已提交
3474 3475
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3476 3477 3478 3479

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3480
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3481 3482
        return 0;
    }
3483 3484 3485
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
3486 3487 3488 3489
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3490 3491 3492
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3493 3494
*----------------------------------------------------------------------------*/

3495
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
3496 3497
{
    flag aSign, bSign;
3498
    uint32_t av, bv;
P
Peter Maydell 已提交
3499 3500
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3501 3502 3503 3504

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3505
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3506 3507 3508 3509
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3510 3511
    av = float32_val(a);
    bv = float32_val(b);
3512
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3513
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3514 3515 3516 3517 3518

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3519 3520 3521
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3522 3523
*----------------------------------------------------------------------------*/

3524
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
3525 3526
{
    flag aSign, bSign;
3527
    uint32_t av, bv;
P
Peter Maydell 已提交
3528 3529
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3530 3531 3532 3533

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3534
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3535 3536 3537 3538
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3539 3540
    av = float32_val(a);
    bv = float32_val(b);
3541
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
3542
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3543 3544 3545

}

3546 3547
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
3548 3549 3550
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
3551 3552
*----------------------------------------------------------------------------*/

3553
int float32_unordered(float32 a, float32 b, float_status *status)
3554
{
P
Peter Maydell 已提交
3555 3556
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
3557 3558 3559 3560

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3561
        float_raise(float_flag_invalid, status);
3562 3563 3564 3565
        return 1;
    }
    return 0;
}
3566

B
bellard 已提交
3567 3568
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3569 3570 3571
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
3572 3573
*----------------------------------------------------------------------------*/

3574
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3575
{
P
Peter Maydell 已提交
3576 3577
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3578 3579 3580 3581

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3582 3583
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3584
            float_raise(float_flag_invalid, status);
3585
        }
B
bellard 已提交
3586 3587
        return 0;
    }
3588 3589
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3599
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3600 3601
{
    flag aSign, bSign;
3602
    uint32_t av, bv;
P
Peter Maydell 已提交
3603 3604
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3605 3606 3607 3608

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3609 3610
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3611
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3612 3613 3614 3615 3616
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3617 3618
    av = float32_val(a);
    bv = float32_val(b);
3619
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3620
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3621 3622 3623 3624 3625 3626 3627

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
3628
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3629 3630
*----------------------------------------------------------------------------*/

3631
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3632
{
3633 3634 3635 3636
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3637

3638 3639 3640 3641 3642
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3643
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3644
        }
3645
        return 0;
B
bellard 已提交
3646
    }
3647 3648 3649 3650 3651 3652
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3653 3654 3655 3656

}

/*----------------------------------------------------------------------------
3657 3658 3659 3660
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
3661 3662
*----------------------------------------------------------------------------*/

3663
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3664
{
3665 3666
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3667

3668 3669 3670 3671 3672 3673
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3674
        }
3675
        return 1;
B
bellard 已提交
3676
    }
3677
    return 0;
B
bellard 已提交
3678 3679
}

3680

B
bellard 已提交
3681 3682 3683 3684 3685 3686 3687
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3688
float32 float64_to_float32(float64 a, float_status *status)
B
bellard 已提交
3689 3690
{
    flag aSign;
3691
    int aExp;
3692 3693
    uint64_t aSig;
    uint32_t zSig;
P
Peter Maydell 已提交
3694
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
3695 3696 3697 3698 3699

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
3700 3701 3702
        if (aSig) {
            return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3703 3704 3705 3706 3707 3708 3709 3710
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
P
Peter Maydell 已提交
3711
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
3712 3713 3714

}

P
Paul Brook 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| half-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
3726
static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
P
Paul Brook 已提交
3727
{
3728
    return make_float16(
3729
        (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
P
Paul Brook 已提交
3730 3731
}

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper half-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the half-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal half-
| precision floating-point number.
| The `ieee' flag indicates whether to use IEEE standard half precision, or
| ARM-style "alternative representation", which omits the NaN and Inf
| encodings in order to raise the maximum representable exponent by one.
|     The input significand `zSig' has its binary point between bits 22
| and 23, which is 13 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| Note the slightly odd position of the binary point in zSig compared with the
| other roundAndPackFloat functions. This should probably be fixed if we
| need to implement more float16 routines than just conversion.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3760
static float16 roundAndPackFloat16(flag zSign, int zExp,
3761 3762
                                   uint32_t zSig, flag ieee,
                                   float_status *status)
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
{
    int maxexp = ieee ? 29 : 30;
    uint32_t mask;
    uint32_t increment;
    bool rounding_bumps_exp;
    bool is_tiny = false;

    /* Calculate the mask of bits of the mantissa which are not
     * representable in half-precision and will be lost.
     */
    if (zExp < 1) {
        /* Will be denormal in halfprec */
        mask = 0x00ffffff;
        if (zExp >= -11) {
            mask >>= 11 + zExp;
        }
    } else {
        /* Normal number in halfprec */
        mask = 0x00001fff;
    }

3784
    switch (status->float_rounding_mode) {
3785 3786 3787 3788 3789 3790
    case float_round_nearest_even:
        increment = (mask + 1) >> 1;
        if ((zSig & mask) == increment) {
            increment = zSig & (increment << 1);
        }
        break;
3791 3792 3793
    case float_round_ties_away:
        increment = (mask + 1) >> 1;
        break;
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
    case float_round_up:
        increment = zSign ? 0 : mask;
        break;
    case float_round_down:
        increment = zSign ? mask : 0;
        break;
    default: /* round_to_zero */
        increment = 0;
        break;
    }

    rounding_bumps_exp = (zSig + increment >= 0x01000000);

    if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
        if (ieee) {
P
Peter Maydell 已提交
3809
            float_raise(float_flag_overflow | float_flag_inexact, status);
3810 3811
            return packFloat16(zSign, 0x1f, 0);
        } else {
P
Peter Maydell 已提交
3812
            float_raise(float_flag_invalid, status);
3813 3814 3815 3816 3817 3818 3819
            return packFloat16(zSign, 0x1f, 0x3ff);
        }
    }

    if (zExp < 0) {
        /* Note that flush-to-zero does not affect half-precision results */
        is_tiny =
3820
            (status->float_detect_tininess == float_tininess_before_rounding)
3821 3822 3823 3824
            || (zExp < -1)
            || (!rounding_bumps_exp);
    }
    if (zSig & mask) {
P
Peter Maydell 已提交
3825
        float_raise(float_flag_inexact, status);
3826
        if (is_tiny) {
P
Peter Maydell 已提交
3827
            float_raise(float_flag_underflow, status);
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
        }
    }

    zSig += increment;
    if (rounding_bumps_exp) {
        zSig >>= 1;
        zExp++;
    }

    if (zExp < -10) {
        return packFloat16(zSign, 0, 0);
    }
    if (zExp < 0) {
        zSig >>= -zExp;
        zExp = 0;
    }
    return packFloat16(zSign, zExp, zSig >> 13);
}

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

3862
static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
3863 3864 3865 3866 3867 3868 3869
                                      uint32_t *zSigPtr)
{
    int8_t shiftCount = countLeadingZeros32(aSig) - 21;
    *zSigPtr = aSig << shiftCount;
    *zExpPtr = 1 - shiftCount;
}

P
Paul Brook 已提交
3870 3871
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
   The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3872

3873
float32 float16_to_float32(float16 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3874 3875
{
    flag aSign;
3876
    int aExp;
3877
    uint32_t aSig;
P
Paul Brook 已提交
3878

3879 3880 3881
    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);
P
Paul Brook 已提交
3882 3883 3884

    if (aExp == 0x1f && ieee) {
        if (aSig) {
P
Peter Maydell 已提交
3885
            return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
P
Paul Brook 已提交
3886
        }
3887
        return packFloat32(aSign, 0xff, 0);
P
Paul Brook 已提交
3888 3889 3890 3891 3892 3893
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat32(aSign, 0, 0);
        }

3894 3895
        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
P
Paul Brook 已提交
3896 3897 3898 3899
    }
    return packFloat32( aSign, aExp + 0x70, aSig << 13);
}

3900
float16 float32_to_float16(float32 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3901 3902
{
    flag aSign;
3903
    int aExp;
3904
    uint32_t aSig;
3905

P
Peter Maydell 已提交
3906
    a = float32_squash_input_denormal(a, status);
P
Paul Brook 已提交
3907 3908 3909 3910 3911 3912

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if (aSig) {
3913 3914
            /* Input is a NaN */
            if (!ieee) {
P
Peter Maydell 已提交
3915
                float_raise(float_flag_invalid, status);
3916 3917
                return packFloat16(aSign, 0, 0);
            }
3918
            return commonNaNToFloat16(
P
Peter Maydell 已提交
3919
                float32ToCommonNaN(a, status), status);
P
Paul Brook 已提交
3920
        }
3921 3922
        /* Infinity */
        if (!ieee) {
P
Peter Maydell 已提交
3923
            float_raise(float_flag_invalid, status);
3924 3925 3926
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
P
Paul Brook 已提交
3927
    }
3928
    if (aExp == 0 && aSig == 0) {
P
Paul Brook 已提交
3929 3930
        return packFloat16(aSign, 0, 0);
    }
3931 3932 3933 3934 3935 3936 3937
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
P
Paul Brook 已提交
3938
    aSig |= 0x00800000;
3939
    aExp -= 0x71;
P
Paul Brook 已提交
3940

P
Peter Maydell 已提交
3941
    return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
P
Paul Brook 已提交
3942 3943
}

3944
float64 float16_to_float64(float16 a, flag ieee, float_status *status)
3945 3946
{
    flag aSign;
3947
    int aExp;
3948 3949 3950 3951 3952 3953 3954 3955 3956
    uint32_t aSig;

    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);

    if (aExp == 0x1f && ieee) {
        if (aSig) {
            return commonNaNToFloat64(
P
Peter Maydell 已提交
3957
                float16ToCommonNaN(a, status), status);
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
        }
        return packFloat64(aSign, 0x7ff, 0);
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat64(aSign, 0, 0);
        }

        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
    }
    return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
}

3972
float16 float64_to_float16(float64 a, flag ieee, float_status *status)
3973 3974
{
    flag aSign;
3975
    int aExp;
3976 3977 3978
    uint64_t aSig;
    uint32_t zSig;

P
Peter Maydell 已提交
3979
    a = float64_squash_input_denormal(a, status);
3980 3981 3982 3983 3984 3985 3986 3987

    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aExp == 0x7FF) {
        if (aSig) {
            /* Input is a NaN */
            if (!ieee) {
P
Peter Maydell 已提交
3988
                float_raise(float_flag_invalid, status);
3989 3990 3991
                return packFloat16(aSign, 0, 0);
            }
            return commonNaNToFloat16(
P
Peter Maydell 已提交
3992
                float64ToCommonNaN(a, status), status);
3993 3994 3995
        }
        /* Infinity */
        if (!ieee) {
P
Peter Maydell 已提交
3996
            float_raise(float_flag_invalid, status);
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
    }
    shift64RightJamming(aSig, 29, &aSig);
    zSig = aSig;
    if (aExp == 0 && zSig == 0) {
        return packFloat16(aSign, 0, 0);
    }
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
    zSig |= 0x00800000;
    aExp -= 0x3F1;

P
Peter Maydell 已提交
4016
    return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
4017 4018
}

B
bellard 已提交
4019 4020 4021 4022 4023 4024 4025
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4026
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
4027 4028
{
    flag aSign;
4029
    int aExp;
4030
    uint64_t aSig;
B
bellard 已提交
4031

P
Peter Maydell 已提交
4032
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4033 4034 4035 4036
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4037 4038 4039
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4059
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
4060 4061
{
    flag aSign;
4062
    int aExp;
4063
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4064

P
Peter Maydell 已提交
4065
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4066 4067 4068 4069
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4070 4071 4072
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4092
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4093
{
4094
    flag aSign, zSign;
4095
    int aExp, bExp, expDiff;
4096 4097 4098
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4099

P
Peter Maydell 已提交
4100 4101
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4102 4103 4104 4105 4106 4107 4108
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
4109
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
4110
        }
P
Peter Maydell 已提交
4111
        float_raise(float_flag_invalid, status);
4112
        return float64_default_nan(status);
B
bellard 已提交
4113 4114
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
4115 4116 4117
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
4118 4119 4120 4121
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4122
            float_raise(float_flag_invalid, status);
4123
            return float64_default_nan(status);
B
bellard 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4163
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4164 4165 4166 4167
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4168
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4169
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4170
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4171 4172 4173

}

4174 4175 4176 4177 4178
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4179
float64 float64_log2(float64 a, float_status *status)
4180 4181
{
    flag aSign, zSign;
4182
    int aExp;
4183
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
4184
    a = float64_squash_input_denormal(a, status);
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4195
        float_raise(float_flag_invalid, status);
4196
        return float64_default_nan(status);
4197 4198
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4199 4200 4201
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
4202 4203 4204 4205 4206 4207
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4208
    zSig = (uint64_t)aExp << 52;
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
4220
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4221 4222
}

B
bellard 已提交
4223 4224
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4225 4226
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4227 4228 4229
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4230
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4231
{
4232
    uint64_t av, bv;
P
Peter Maydell 已提交
4233 4234
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4235 4236 4237 4238

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4239
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4240 4241
        return 0;
    }
P
pbrook 已提交
4242
    av = float64_val(a);
P
pbrook 已提交
4243
    bv = float64_val(b);
4244
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4245 4246 4247 4248 4249

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4250 4251 4252
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4253 4254
*----------------------------------------------------------------------------*/

4255
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4256 4257
{
    flag aSign, bSign;
4258
    uint64_t av, bv;
P
Peter Maydell 已提交
4259 4260
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4261 4262 4263 4264

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4265
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4266 4267 4268 4269
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4270
    av = float64_val(a);
P
pbrook 已提交
4271
    bv = float64_val(b);
4272
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4273
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4274 4275 4276 4277 4278

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4279 4280 4281
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4282 4283
*----------------------------------------------------------------------------*/

4284
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4285 4286
{
    flag aSign, bSign;
4287
    uint64_t av, bv;
B
bellard 已提交
4288

P
Peter Maydell 已提交
4289 4290
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4291 4292 4293
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4294
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4295 4296 4297 4298
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4299
    av = float64_val(a);
P
pbrook 已提交
4300
    bv = float64_val(b);
4301
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4302
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4303 4304 4305

}

4306 4307
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4308 4309 4310
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4311 4312
*----------------------------------------------------------------------------*/

4313
int float64_unordered(float64 a, float64 b, float_status *status)
4314
{
P
Peter Maydell 已提交
4315 4316
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4317 4318 4319 4320

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4321
        float_raise(float_flag_invalid, status);
4322 4323 4324 4325 4326
        return 1;
    }
    return 0;
}

B
bellard 已提交
4327 4328
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4329 4330 4331
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4332 4333
*----------------------------------------------------------------------------*/

4334
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4335
{
4336
    uint64_t av, bv;
P
Peter Maydell 已提交
4337 4338
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4339 4340 4341 4342

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4343 4344
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4345
            float_raise(float_flag_invalid, status);
4346
        }
B
bellard 已提交
4347 4348
        return 0;
    }
P
pbrook 已提交
4349
    av = float64_val(a);
P
pbrook 已提交
4350
    bv = float64_val(b);
4351
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4362
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4363 4364
{
    flag aSign, bSign;
4365
    uint64_t av, bv;
P
Peter Maydell 已提交
4366 4367
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4368 4369 4370 4371

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4372 4373
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4374
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4375 4376 4377 4378 4379
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4380
    av = float64_val(a);
P
pbrook 已提交
4381
    bv = float64_val(b);
4382
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4383
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4394
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4395 4396
{
    flag aSign, bSign;
4397
    uint64_t av, bv;
P
Peter Maydell 已提交
4398 4399
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4400 4401 4402 4403

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4404 4405
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4406
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4407 4408 4409 4410 4411
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4412
    av = float64_val(a);
P
pbrook 已提交
4413
    bv = float64_val(b);
4414
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4415
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4416 4417 4418

}

4419 4420 4421 4422 4423 4424 4425
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4426
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4427
{
P
Peter Maydell 已提交
4428 4429
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4430 4431 4432 4433

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4434 4435
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4436
            float_raise(float_flag_invalid, status);
4437 4438 4439 4440 4441 4442
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4453
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
4454 4455
{
    flag aSign;
4456
    int32_t aExp, shiftCount;
4457
    uint64_t aSig;
B
bellard 已提交
4458

4459 4460 4461 4462
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4463 4464 4465
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4466
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4467 4468 4469
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
4470
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4484
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4485 4486
{
    flag aSign;
4487
    int32_t aExp, shiftCount;
4488
    uint64_t aSig, savedASig;
4489
    int32_t z;
B
bellard 已提交
4490

4491 4492 4493 4494
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4495 4496 4497 4498
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4499
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4500 4501 4502
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
4503 4504 4505
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
4515
        float_raise(float_flag_invalid, status);
4516
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4517 4518
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
4519
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4535
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
4536 4537
{
    flag aSign;
4538
    int32_t aExp, shiftCount;
4539
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4540

4541 4542 4543 4544
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4545 4546 4547 4548 4549 4550
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
4551
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4552 4553 4554 4555 4556 4557
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig != LIT64( 0x8000000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4558
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4559 4560 4561 4562 4563 4564
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
4565
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4579
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4580 4581
{
    flag aSign;
4582
    int32_t aExp, shiftCount;
4583
    uint64_t aSig;
4584
    int64_t z;
B
bellard 已提交
4585

4586 4587 4588 4589
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4590 4591 4592 4593 4594 4595 4596
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
4597
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4598 4599 4600 4601
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4602
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4603 4604
    }
    else if ( aExp < 0x3FFF ) {
4605 4606 4607
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4608 4609 4610
        return 0;
    }
    z = aSig>>( - shiftCount );
4611
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
4612
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4626
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
4627 4628
{
    flag aSign;
4629
    int32_t aExp;
4630
    uint64_t aSig;
B
bellard 已提交
4631

4632 4633 4634 4635
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
4636 4637 4638 4639
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4640
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4641
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4642 4643 4644 4645 4646
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
4647
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4658
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
4659 4660
{
    flag aSign;
4661
    int32_t aExp;
4662
    uint64_t aSig, zSig;
B
bellard 已提交
4663

4664 4665 4666 4667
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
4668 4669 4670 4671
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4672
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4673
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4674 4675 4676 4677 4678
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
4679
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4690
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
4691 4692
{
    flag aSign;
4693
    int aExp;
4694
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4695

4696 4697 4698 4699
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
4700 4701 4702
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4703
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4704
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4705 4706 4707 4708 4709 4710
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
4727 4728 4729 4730 4731 4732 4733
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4734
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
4735 4736
{
    flag aSign;
4737
    int32_t aExp;
4738
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4739 4740
    floatx80 z;

4741 4742 4743 4744
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4745 4746
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4747
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
4748
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
4749 4750 4751 4752 4753
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4754
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4755 4756
            return a;
        }
4757
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4758
        aSign = extractFloatx80Sign( a );
4759
        switch (status->float_rounding_mode) {
B
bellard 已提交
4760
         case float_round_nearest_even:
4761
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4762 4763 4764 4765 4766
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4767 4768 4769 4770 4771
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4788
    switch (status->float_rounding_mode) {
4789
    case float_round_nearest_even:
B
bellard 已提交
4790
        z.low += lastBitMask>>1;
4791 4792 4793 4794
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4795 4796 4797
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4798 4799 4800 4801 4802 4803 4804 4805 4806
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4807 4808
            z.low += roundBitsMask;
        }
4809 4810 4811
        break;
    default:
        abort();
B
bellard 已提交
4812 4813 4814 4815 4816 4817
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
4818 4819 4820
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4833 4834
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4835
{
4836
    int32_t aExp, bExp, zExp;
4837
    uint64_t aSig, bSig, zSig0, zSig1;
4838
    int32_t expDiff;
B
bellard 已提交
4839 4840 4841 4842 4843 4844 4845 4846

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4847 4848 4849
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
4850 4851 4852 4853 4854 4855 4856 4857
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4858 4859 4860
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
4861 4862 4863 4864 4865 4866 4867 4868
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
4869
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
4870
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
4884
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
4885 4886 4887 4888 4889
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
4890
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4891
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4902 4903
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4904
{
4905
    int32_t aExp, bExp, zExp;
4906
    uint64_t aSig, bSig, zSig0, zSig1;
4907
    int32_t expDiff;
B
bellard 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
4917
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
4918
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4919
        }
P
Peter Maydell 已提交
4920
        float_raise(float_flag_invalid, status);
4921
        return floatx80_default_nan(status);
B
bellard 已提交
4922 4923 4924 4925 4926 4927 4928 4929
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
4930
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
4931 4932
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4933 4934 4935
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4947 4948 4949
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4950 4951 4952 4953 4954 4955 4956 4957
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
4958
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4959
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4960 4961 4962 4963 4964 4965 4966 4967
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4968
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4969 4970 4971
{
    flag aSign, bSign;

4972 4973 4974 4975
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4976 4977 4978
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
4979
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
4980 4981
    }
    else {
P
Peter Maydell 已提交
4982
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4993
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4994 4995 4996
{
    flag aSign, bSign;

4997 4998 4999 5000
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5001 5002 5003
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5004
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5005 5006
    }
    else {
P
Peter Maydell 已提交
5007
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5018
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5019 5020
{
    flag aSign, bSign, zSign;
5021
    int32_t aExp, bExp, zExp;
5022
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5023

5024 5025 5026 5027
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5028 5029 5030 5031 5032 5033 5034 5035
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5036 5037
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5038
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5039 5040 5041 5042 5043
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5044 5045 5046
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5047 5048
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5049
            float_raise(float_flag_invalid, status);
5050
            return floatx80_default_nan(status);
B
bellard 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5064
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5065 5066 5067
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
5068
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5069
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5070 5071 5072 5073 5074 5075 5076 5077
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5078
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5079 5080
{
    flag aSign, bSign, zSign;
5081
    int32_t aExp, bExp, zExp;
5082 5083
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5084

5085 5086 5087 5088
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5089 5090 5091 5092 5093 5094 5095 5096
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5097 5098 5099
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5100
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5101 5102 5103
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5104 5105 5106 5107 5108
            goto invalid;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5109 5110 5111
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5112 5113 5114 5115 5116 5117
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5118
                float_raise(float_flag_invalid, status);
5119
                return floatx80_default_nan(status);
B
bellard 已提交
5120
            }
P
Peter Maydell 已提交
5121
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5139
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5140 5141 5142 5143
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5144
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5145 5146
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5147
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5148 5149 5150 5151 5152
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
5153
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5154
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5155 5156 5157 5158 5159 5160 5161 5162
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5163
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5164
{
5165
    flag aSign, zSign;
5166
    int32_t aExp, bExp, expDiff;
5167 5168
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5169

5170 5171 5172 5173
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5174 5175 5176 5177 5178 5179
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5180 5181
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5182
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5183 5184 5185 5186
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5187 5188 5189
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5190 5191 5192 5193 5194
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
5195
            float_raise(float_flag_invalid, status);
5196
            return floatx80_default_nan(status);
B
bellard 已提交
5197 5198 5199 5200
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5201
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
5252
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5262
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5263 5264
{
    flag aSign;
5265
    int32_t aExp, zExp;
5266 5267
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5268

5269 5270 5271 5272
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5273 5274 5275 5276
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5277 5278 5279
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
5280 5281 5282 5283 5284 5285
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
5286
        float_raise(float_flag_invalid, status);
5287
        return floatx80_default_nan(status);
B
bellard 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5300
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5312
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
5323 5324
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
5325 5326 5327
}

/*----------------------------------------------------------------------------
5328 5329 5330 5331
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5332 5333
*----------------------------------------------------------------------------*/

5334
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5335 5336
{

5337 5338 5339 5340 5341
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5342
       ) {
P
Peter Maydell 已提交
5343
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5344 5345 5346 5347 5348 5349
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5350
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5351 5352 5353 5354 5355 5356 5357
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5358 5359 5360
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5361 5362
*----------------------------------------------------------------------------*/

5363
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5364 5365 5366
{
    flag aSign, bSign;

5367 5368 5369 5370 5371
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5372
       ) {
P
Peter Maydell 已提交
5373
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5374 5375 5376 5377 5378 5379 5380
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5381
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5392 5393 5394
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5395 5396
*----------------------------------------------------------------------------*/

5397
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5398 5399 5400
{
    flag aSign, bSign;

5401 5402 5403 5404 5405
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5406
       ) {
P
Peter Maydell 已提交
5407
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5408 5409 5410 5411 5412 5413 5414
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5415
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5416 5417 5418 5419 5420 5421 5422 5423
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5424 5425
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5426 5427 5428
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5429
*----------------------------------------------------------------------------*/
5430
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5431
{
5432 5433 5434 5435 5436
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
5437
       ) {
P
Peter Maydell 已提交
5438
        float_raise(float_flag_invalid, status);
5439 5440 5441 5442 5443
        return 1;
    }
    return 0;
}

B
bellard 已提交
5444
/*----------------------------------------------------------------------------
5445
| Returns 1 if the extended double-precision floating-point value `a' is
5446 5447 5448
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5449 5450
*----------------------------------------------------------------------------*/

5451
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5452 5453
{

5454 5455 5456 5457
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5458
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5459
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5460
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5461
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5462
       ) {
5463 5464
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5465
            float_raise(float_flag_invalid, status);
5466
        }
B
bellard 已提交
5467 5468 5469 5470 5471 5472
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5473
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5485
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5486 5487 5488
{
    flag aSign, bSign;

5489 5490 5491 5492
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5493
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5494
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5495
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5496
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5497
       ) {
5498 5499
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5500
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5501 5502 5503 5504 5505 5506 5507 5508
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5509
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5525
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5526 5527 5528
{
    flag aSign, bSign;

5529 5530 5531 5532
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5533
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5534
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5535
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5536
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5537
       ) {
5538 5539
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5540
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5541 5542 5543 5544 5545 5546 5547 5548
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5549
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5550 5551 5552 5553 5554 5555 5556 5557
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5558 5559 5560 5561 5562 5563
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
5564
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
5565
{
5566 5567 5568 5569
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
5570 5571 5572 5573 5574
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
5575 5576
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5577
            float_raise(float_flag_invalid, status);
5578 5579 5580 5581 5582 5583
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5594
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
5595 5596
{
    flag aSign;
5597
    int32_t aExp, shiftCount;
5598
    uint64_t aSig0, aSig1;
B
bellard 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
5609
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5623
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5624 5625
{
    flag aSign;
5626
    int32_t aExp, shiftCount;
5627
    uint64_t aSig0, aSig1, savedASig;
5628
    int32_t z;
B
bellard 已提交
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
5640 5641 5642
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
5653
        float_raise(float_flag_invalid, status);
5654
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5655 5656
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
5657
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5673
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
5674 5675
{
    flag aSign;
5676
    int32_t aExp, shiftCount;
5677
    uint64_t aSig0, aSig1;
B
bellard 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
5687
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5688 5689 5690 5691 5692 5693 5694
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5695
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5696 5697 5698 5699 5700 5701
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
5702
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5716
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5717 5718
{
    flag aSign;
5719
    int32_t aExp, shiftCount;
5720
    uint64_t aSig0, aSig1;
5721
    int64_t z;
B
bellard 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
5734 5735 5736
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
5737 5738
            }
            else {
P
Peter Maydell 已提交
5739
                float_raise(float_flag_invalid, status);
B
bellard 已提交
5740 5741 5742 5743
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5744
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5745 5746
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5747
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
5748
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5749 5750 5751 5752 5753
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
5754
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5755 5756 5757 5758 5759
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5760
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
5761
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5762 5763 5764 5765 5766 5767 5768
        }
    }
    if ( aSign ) z = - z;
    return z;

}

5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
5828 5829
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
5858 5859 5860 5861 5862
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5863
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
5864 5865
{
    flag aSign;
5866
    int32_t aExp;
5867 5868
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5869 5870 5871 5872 5873 5874 5875

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5876
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
5887
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5898
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
5899 5900
{
    flag aSign;
5901
    int32_t aExp;
5902
    uint64_t aSig0, aSig1;
B
bellard 已提交
5903 5904 5905 5906 5907 5908 5909

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5910
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5911 5912 5913 5914 5915 5916 5917 5918 5919
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
5920
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5931
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
5932 5933
{
    flag aSign;
5934
    int32_t aExp;
5935
    uint64_t aSig0, aSig1;
B
bellard 已提交
5936 5937 5938 5939 5940 5941 5942

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5943
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
        }
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
5955
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5966
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
5967 5968
{
    flag aSign;
5969
    int32_t aExp;
5970
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5971 5972 5973 5974 5975 5976 5977 5978
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
5979
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
5980 5981 5982 5983 5984 5985 5986
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
5987
        switch (status->float_rounding_mode) {
5988
        case float_round_nearest_even:
B
bellard 已提交
5989 5990 5991 5992 5993
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
5994
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
5995
                    ++z.high;
5996
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
5997 5998
                }
            }
5999
            break;
6000 6001 6002 6003 6004 6005 6006 6007 6008
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6019
            }
6020 6021 6022
            break;
        default:
            abort();
B
bellard 已提交
6023 6024 6025 6026 6027
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6028
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6029
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6030
            aSign = extractFloat128Sign( a );
6031
            switch (status->float_rounding_mode) {
B
bellard 已提交
6032 6033 6034 6035 6036 6037 6038 6039
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6040 6041 6042 6043 6044
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6061
        switch (status->float_rounding_mode) {
6062
        case float_round_nearest_even:
B
bellard 已提交
6063 6064 6065 6066
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6067
            break;
6068 6069 6070
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6071 6072 6073 6074
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6075 6076 6077
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6078 6079 6080 6081 6082 6083 6084 6085 6086
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6087 6088 6089 6090
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6091
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6105 6106
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6107
{
6108
    int32_t aExp, bExp, zExp;
6109
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6110
    int32_t expDiff;
B
bellard 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6121 6122 6123
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6138 6139 6140
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6156
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6157 6158 6159 6160
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6161
        if ( aExp == 0 ) {
6162
            if (status->flush_to_zero) {
6163
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
6164
                    float_raise(float_flag_output_denormal, status);
6165 6166 6167
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6168 6169
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
6184
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6196 6197
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6198
{
6199
    int32_t aExp, bExp, zExp;
6200
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
6201
    int32_t expDiff;
B
bellard 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6216
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6217
        }
P
Peter Maydell 已提交
6218
        float_raise(float_flag_invalid, status);
6219
        return float128_default_nan(status);
B
bellard 已提交
6220 6221 6222 6223 6224 6225 6226 6227 6228
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
6229 6230
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
6231 6232
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6233 6234 6235
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6253 6254 6255
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
6271 6272
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
6273 6274 6275 6276 6277 6278 6279 6280 6281

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6282
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6283 6284 6285 6286 6287 6288
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6289
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6290 6291
    }
    else {
P
Peter Maydell 已提交
6292
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6303
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6304 6305 6306 6307 6308 6309
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6310
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6311 6312
    }
    else {
P
Peter Maydell 已提交
6313
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6324
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6325 6326
{
    flag aSign, bSign, zSign;
6327
    int32_t aExp, bExp, zExp;
6328
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6342
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6343 6344 6345 6346 6347
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6348 6349 6350
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6351 6352
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6353
            float_raise(float_flag_invalid, status);
6354
            return float128_default_nan(status);
B
bellard 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
6377
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6378 6379 6380 6381 6382 6383 6384 6385 6386

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6387
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6388 6389
{
    flag aSign, bSign, zSign;
6390
    int32_t aExp, bExp, zExp;
6391 6392
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6404 6405 6406
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6407
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6408 6409 6410
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6411 6412 6413 6414 6415
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6416 6417 6418
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6419 6420 6421 6422 6423 6424
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6425
                float_raise(float_flag_invalid, status);
6426
                return float128_default_nan(status);
B
bellard 已提交
6427
            }
P
Peter Maydell 已提交
6428
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6449
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6450 6451 6452 6453 6454 6455 6456
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6457
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6458 6459 6460 6461 6462 6463
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6464
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6465 6466 6467 6468 6469 6470 6471 6472 6473

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6474
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
6475
{
6476
    flag aSign, zSign;
6477
    int32_t aExp, bExp, expDiff;
6478 6479 6480
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6492
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6493 6494 6495 6496
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6497 6498 6499
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6500 6501 6502 6503 6504
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6505
            float_raise(float_flag_invalid, status);
6506
            return float128_default_nan(status);
B
bellard 已提交
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6561
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6562
    add128(
6563
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6564 6565 6566 6567 6568
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6569
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6570
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6571 6572
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
6573 6574 6575 6576 6577 6578 6579 6580
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6581
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
6582 6583
{
    flag aSign;
6584
    int32_t aExp, zExp;
6585 6586
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6587 6588 6589 6590 6591 6592

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6593 6594 6595
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
6596 6597 6598 6599 6600 6601
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
6602
        float_raise(float_flag_invalid, status);
6603
        return float128_default_nan(status);
B
bellard 已提交
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6617
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6629
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6630 6631 6632 6633 6634 6635 6636 6637 6638
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6639
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6640 6641 6642 6643 6644

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6645 6646
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6647 6648 6649
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6650
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
6651 6652 6653 6654 6655 6656 6657
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6658
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6659 6660 6661 6662 6663 6664
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6665
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6666 6667 6668 6669 6670 6671
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6672 6673 6674
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6675 6676
*----------------------------------------------------------------------------*/

6677
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
6678 6679 6680 6681 6682 6683 6684 6685
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6686
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6687 6688 6689 6690 6691 6692 6693
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6694
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6705 6706 6707
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6708 6709
*----------------------------------------------------------------------------*/

6710
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
6711 6712 6713 6714 6715 6716 6717 6718
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6719
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6720 6721 6722 6723 6724 6725 6726
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6727
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6728 6729 6730 6731 6732 6733 6734 6735
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6736 6737
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6738 6739 6740
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6741 6742
*----------------------------------------------------------------------------*/

6743
int float128_unordered(float128 a, float128 b, float_status *status)
6744 6745 6746 6747 6748 6749
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6750
        float_raise(float_flag_invalid, status);
6751 6752 6753 6754 6755
        return 1;
    }
    return 0;
}

B
bellard 已提交
6756 6757
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6758 6759 6760
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6761 6762
*----------------------------------------------------------------------------*/

6763
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6764 6765 6766 6767 6768 6769 6770
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6771 6772
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6773
            float_raise(float_flag_invalid, status);
6774
        }
B
bellard 已提交
6775 6776 6777 6778 6779 6780
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6781
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6793
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6794 6795 6796 6797 6798 6799 6800 6801
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6802 6803
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6804
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6805 6806 6807 6808 6809 6810 6811 6812
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6813
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6829
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6830 6831 6832 6833 6834 6835 6836 6837
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6838 6839
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6840
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6841 6842 6843 6844 6845 6846 6847 6848
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6849
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6850 6851 6852 6853 6854 6855 6856 6857
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6858 6859 6860 6861 6862 6863 6864
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6865
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
6866 6867 6868 6869 6870 6871
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6872 6873
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6874
            float_raise(float_flag_invalid, status);
6875 6876 6877 6878 6879 6880
        }
        return 1;
    }
    return 0;
}

6881 6882
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
6883 6884 6885
{
    flag aSign, bSign;

6886 6887 6888 6889
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
6890 6891 6892 6893 6894
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
6895 6896
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6897
            float_raise(float_flag_invalid, status);
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

6921
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
6922
{
P
Peter Maydell 已提交
6923
    return floatx80_compare_internal(a, b, 0, status);
6924 6925
}

6926
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
6927
{
P
Peter Maydell 已提交
6928
    return floatx80_compare_internal(a, b, 1, status);
6929 6930
}

6931 6932
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
6933 6934 6935 6936 6937 6938 6939 6940
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
6941 6942
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6943
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

6965
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
6966
{
P
Peter Maydell 已提交
6967
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
6968 6969
}

6970
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
6971
{
P
Peter Maydell 已提交
6972
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
6973 6974
}

6975
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
6976 6977
{
    flag aSign;
6978
    int32_t aExp;
6979
    uint64_t aSig;
P
pbrook 已提交
6980

6981 6982 6983 6984
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
6985 6986 6987 6988
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

6989 6990
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
6991
            return propagateFloatx80NaN(a, a, status);
6992
        }
P
pbrook 已提交
6993 6994
        return a;
    }
6995

6996 6997 6998 6999 7000 7001
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7002

7003 7004 7005 7006 7007 7008
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7009
    aExp += n;
7010 7011
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
7012 7013
}

7014
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7015 7016
{
    flag aSign;
7017
    int32_t aExp;
7018
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7019 7020 7021 7022 7023 7024

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7025
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
7026
            return propagateFloat128NaN(a, a, status);
7027
        }
P
pbrook 已提交
7028 7029
        return a;
    }
7030
    if (aExp != 0) {
7031
        aSig0 |= LIT64( 0x0001000000000000 );
7032
    } else if (aSig0 == 0 && aSig1 == 0) {
7033
        return a;
7034 7035 7036
    } else {
        aExp++;
    }
7037

7038 7039 7040 7041 7042 7043
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7044 7045
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
7046
                                         , status);
P
pbrook 已提交
7047 7048

}