softfloat.c 257.8 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
E
Emilio G. Cota 已提交
86
#include <math.h>
A
Alex Bennée 已提交
87
#include "qemu/bitops.h"
88
#include "fpu/softfloat.h"
B
bellard 已提交
89

90 91
/* We only need stdlib for abort() */

B
bellard 已提交
92 93 94 95 96
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
97
#include "fpu/softfloat-macros.h"
B
bellard 已提交
98

E
Emilio G. Cota 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * Hardfloat
 *
 * Fast emulation of guest FP instructions is challenging for two reasons.
 * First, FP instruction semantics are similar but not identical, particularly
 * when handling NaNs. Second, emulating at reasonable speed the guest FP
 * exception flags is not trivial: reading the host's flags register with a
 * feclearexcept & fetestexcept pair is slow [slightly slower than soft-fp],
 * and trapping on every FP exception is not fast nor pleasant to work with.
 *
 * We address these challenges by leveraging the host FPU for a subset of the
 * operations. To do this we expand on the idea presented in this paper:
 *
 * Guo, Yu-Chuan, et al. "Translating the ARM Neon and VFP instructions in a
 * binary translator." Software: Practice and Experience 46.12 (2016):1591-1615.
 *
 * The idea is thus to leverage the host FPU to (1) compute FP operations
 * and (2) identify whether FP exceptions occurred while avoiding
 * expensive exception flag register accesses.
 *
 * An important optimization shown in the paper is that given that exception
 * flags are rarely cleared by the guest, we can avoid recomputing some flags.
 * This is particularly useful for the inexact flag, which is very frequently
 * raised in floating-point workloads.
 *
 * We optimize the code further by deferring to soft-fp whenever FP exception
 * detection might get hairy. Two examples: (1) when at least one operand is
 * denormal/inf/NaN; (2) when operands are not guaranteed to lead to a 0 result
 * and the result is < the minimum normal.
 */
#define GEN_INPUT_FLUSH__NOCHECK(name, soft_t)                          \
    static inline void name(soft_t *a, float_status *s)                 \
    {                                                                   \
        if (unlikely(soft_t ## _is_denormal(*a))) {                     \
            *a = soft_t ## _set_sign(soft_t ## _zero,                   \
                                     soft_t ## _is_neg(*a));            \
            s->float_exception_flags |= float_flag_input_denormal;      \
        }                                                               \
    }

GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32)
GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64)
#undef GEN_INPUT_FLUSH__NOCHECK

#define GEN_INPUT_FLUSH1(name, soft_t)                  \
    static inline void name(soft_t *a, float_status *s) \
    {                                                   \
        if (likely(!s->flush_inputs_to_zero)) {         \
            return;                                     \
        }                                               \
        soft_t ## _input_flush__nocheck(a, s);          \
    }

GEN_INPUT_FLUSH1(float32_input_flush1, float32)
GEN_INPUT_FLUSH1(float64_input_flush1, float64)
#undef GEN_INPUT_FLUSH1

#define GEN_INPUT_FLUSH2(name, soft_t)                                  \
    static inline void name(soft_t *a, soft_t *b, float_status *s)      \
    {                                                                   \
        if (likely(!s->flush_inputs_to_zero)) {                         \
            return;                                                     \
        }                                                               \
        soft_t ## _input_flush__nocheck(a, s);                          \
        soft_t ## _input_flush__nocheck(b, s);                          \
    }

GEN_INPUT_FLUSH2(float32_input_flush2, float32)
GEN_INPUT_FLUSH2(float64_input_flush2, float64)
#undef GEN_INPUT_FLUSH2

#define GEN_INPUT_FLUSH3(name, soft_t)                                  \
    static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \
    {                                                                   \
        if (likely(!s->flush_inputs_to_zero)) {                         \
            return;                                                     \
        }                                                               \
        soft_t ## _input_flush__nocheck(a, s);                          \
        soft_t ## _input_flush__nocheck(b, s);                          \
        soft_t ## _input_flush__nocheck(c, s);                          \
    }

GEN_INPUT_FLUSH3(float32_input_flush3, float32)
GEN_INPUT_FLUSH3(float64_input_flush3, float64)
#undef GEN_INPUT_FLUSH3

/*
 * Choose whether to use fpclassify or float32/64_* primitives in the generated
 * hardfloat functions. Each combination of number of inputs and float size
 * gets its own value.
 */
#if defined(__x86_64__)
# define QEMU_HARDFLOAT_1F32_USE_FP 0
# define QEMU_HARDFLOAT_1F64_USE_FP 1
# define QEMU_HARDFLOAT_2F32_USE_FP 0
# define QEMU_HARDFLOAT_2F64_USE_FP 1
# define QEMU_HARDFLOAT_3F32_USE_FP 0
# define QEMU_HARDFLOAT_3F64_USE_FP 1
#else
# define QEMU_HARDFLOAT_1F32_USE_FP 0
# define QEMU_HARDFLOAT_1F64_USE_FP 0
# define QEMU_HARDFLOAT_2F32_USE_FP 0
# define QEMU_HARDFLOAT_2F64_USE_FP 0
# define QEMU_HARDFLOAT_3F32_USE_FP 0
# define QEMU_HARDFLOAT_3F64_USE_FP 0
#endif

/*
 * QEMU_HARDFLOAT_USE_ISINF chooses whether to use isinf() over
 * float{32,64}_is_infinity when !USE_FP.
 * On x86_64/aarch64, using the former over the latter can yield a ~6% speedup.
 * On power64 however, using isinf() reduces fp-bench performance by up to 50%.
 */
#if defined(__x86_64__) || defined(__aarch64__)
# define QEMU_HARDFLOAT_USE_ISINF   1
#else
# define QEMU_HARDFLOAT_USE_ISINF   0
#endif

/*
 * Some targets clear the FP flags before most FP operations. This prevents
 * the use of hardfloat, since hardfloat relies on the inexact flag being
 * already set.
 */
#if defined(TARGET_PPC) || defined(__FAST_MATH__)
# if defined(__FAST_MATH__)
#  warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \
    IEEE implementation
# endif
# define QEMU_NO_HARDFLOAT 1
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN
#else
# define QEMU_NO_HARDFLOAT 0
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline))
#endif

static inline bool can_use_fpu(const float_status *s)
{
    if (QEMU_NO_HARDFLOAT) {
        return false;
    }
    return likely(s->float_exception_flags & float_flag_inexact &&
                  s->float_rounding_mode == float_round_nearest_even);
}

/*
 * Hardfloat generation functions. Each operation can have two flavors:
 * either using softfloat primitives (e.g. float32_is_zero_or_normal) for
 * most condition checks, or native ones (e.g. fpclassify).
 *
 * The flavor is chosen by the callers. Instead of using macros, we rely on the
 * compiler to propagate constants and inline everything into the callers.
 *
 * We only generate functions for operations with two inputs, since only
 * these are common enough to justify consolidating them into common code.
 */

typedef union {
    float32 s;
    float h;
} union_float32;

typedef union {
    float64 s;
    double h;
} union_float64;

typedef bool (*f32_check_fn)(union_float32 a, union_float32 b);
typedef bool (*f64_check_fn)(union_float64 a, union_float64 b);

typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s);
typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s);
typedef float   (*hard_f32_op2_fn)(float a, float b);
typedef double  (*hard_f64_op2_fn)(double a, double b);

/* 2-input is-zero-or-normal */
static inline bool f32_is_zon2(union_float32 a, union_float32 b)
{
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
        /*
         * Not using a temp variable for consecutive fpclassify calls ends up
         * generating faster code.
         */
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
    }
    return float32_is_zero_or_normal(a.s) &&
           float32_is_zero_or_normal(b.s);
}

static inline bool f64_is_zon2(union_float64 a, union_float64 b)
{
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
    }
    return float64_is_zero_or_normal(a.s) &&
           float64_is_zero_or_normal(b.s);
}

/* 3-input is-zero-or-normal */
static inline
bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c)
{
    if (QEMU_HARDFLOAT_3F32_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
    }
    return float32_is_zero_or_normal(a.s) &&
           float32_is_zero_or_normal(b.s) &&
           float32_is_zero_or_normal(c.s);
}

static inline
bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c)
{
    if (QEMU_HARDFLOAT_3F64_USE_FP) {
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
    }
    return float64_is_zero_or_normal(a.s) &&
           float64_is_zero_or_normal(b.s) &&
           float64_is_zero_or_normal(c.s);
}

static inline bool f32_is_inf(union_float32 a)
{
    if (QEMU_HARDFLOAT_USE_ISINF) {
        return isinf(a.h);
    }
    return float32_is_infinity(a.s);
}

static inline bool f64_is_inf(union_float64 a)
{
    if (QEMU_HARDFLOAT_USE_ISINF) {
        return isinf(a.h);
    }
    return float64_is_infinity(a.s);
}

/* Note: @fast_test and @post can be NULL */
static inline float32
float32_gen2(float32 xa, float32 xb, float_status *s,
             hard_f32_op2_fn hard, soft_f32_op2_fn soft,
             f32_check_fn pre, f32_check_fn post,
             f32_check_fn fast_test, soft_f32_op2_fn fast_op)
{
    union_float32 ua, ub, ur;

    ua.s = xa;
    ub.s = xb;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float32_input_flush2(&ua.s, &ub.s, s);
    if (unlikely(!pre(ua, ub))) {
        goto soft;
    }
    if (fast_test && fast_test(ua, ub)) {
        return fast_op(ua.s, ub.s, s);
    }

    ur.h = hard(ua.h, ub.h);
    if (unlikely(f32_is_inf(ur))) {
        s->float_exception_flags |= float_flag_overflow;
    } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
        if (post == NULL || post(ua, ub)) {
            goto soft;
        }
    }
    return ur.s;

 soft:
    return soft(ua.s, ub.s, s);
}

static inline float64
float64_gen2(float64 xa, float64 xb, float_status *s,
             hard_f64_op2_fn hard, soft_f64_op2_fn soft,
             f64_check_fn pre, f64_check_fn post,
             f64_check_fn fast_test, soft_f64_op2_fn fast_op)
{
    union_float64 ua, ub, ur;

    ua.s = xa;
    ub.s = xb;

    if (unlikely(!can_use_fpu(s))) {
        goto soft;
    }

    float64_input_flush2(&ua.s, &ub.s, s);
    if (unlikely(!pre(ua, ub))) {
        goto soft;
    }
    if (fast_test && fast_test(ua, ub)) {
        return fast_op(ua.s, ub.s, s);
    }

    ur.h = hard(ua.h, ub.h);
    if (unlikely(f64_is_inf(ur))) {
        s->float_exception_flags |= float_flag_overflow;
    } else if (unlikely(fabs(ur.h) <= DBL_MIN)) {
        if (post == NULL || post(ua, ub)) {
            goto soft;
        }
    }
    return ur.s;

 soft:
    return soft(ua.s, ub.s, s);
}

417 418 419 420
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

421
static inline uint32_t extractFloat16Frac(float16 a)
422 423 424 425 426 427 428 429
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

430
static inline int extractFloat16Exp(float16 a)
431 432 433 434
{
    return (float16_val(a) >> 10) & 0x1f;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
} FloatClass;

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/* Simple helpers for checking if, or what kind of, NaN we have */
static inline __attribute__((unused)) bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}

static inline __attribute__((unused)) bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}

static inline __attribute__((unused)) bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
549
 *   frac_lsbm1: the bit below the least significant bit (for rounding)
550
 *   round_mask/roundeven_mask: masks used for rounding
551 552
 * The following optional modifiers are available:
 *   arm_althp: handle ARM Alternative Half Precision
553 554 555 556 557 558 559 560 561 562 563
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
564
    bool arm_althp;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

583 584 585 586 587
static const FloatFmt float16_params_ahp = {
    FLOAT_PARAMS(5, 10),
    .arm_althp = true
};

588 589 590 591 592 593 594 595
static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

647 648 649 650 651 652 653 654 655 656
/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

A
Alex Bennée 已提交
657
/* Canonicalize EXP and FRAC, setting CLS.  */
658 659
static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm,
                                  float_status *status)
A
Alex Bennée 已提交
660
{
661
    if (part.exp == parm->exp_max && !parm->arm_althp) {
A
Alex Bennée 已提交
662 663 664
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
665
            part.frac <<= parm->frac_shift;
666 667
            part.cls = (parts_is_snan_frac(part.frac, status)
                        ? float_class_snan : float_class_qnan);
A
Alex Bennée 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

750 751 752 753 754 755 756 757 758
            if (parm->arm_althp) {
                /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
                if (unlikely(exp > exp_max)) {
                    /* Overflow.  Return the maximum normal.  */
                    flags = float_flag_invalid;
                    exp = exp_max;
                    frac = -1;
                }
            } else if (unlikely(exp >= exp_max)) {
A
Alex Bennée 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
809
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
810 811 812 813 814 815
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
816
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
817
        exp = exp_max;
818
        frac >>= parm->frac_shift;
A
Alex Bennée 已提交
819 820 821 822 823 824 825 826 827 828 829 830
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

831 832 833 834
/* Explicit FloatFmt version */
static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
                                            const FloatFmt *params)
{
835
    return sf_canonicalize(float16_unpack_raw(f), params, s);
836 837
}

A
Alex Bennée 已提交
838 839
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
840 841 842 843 844 845 846
    return float16a_unpack_canonical(f, s, &float16_params);
}

static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
                                             const FloatFmt *params)
{
    return float16_pack_raw(round_canonical(p, s, params));
A
Alex Bennée 已提交
847 848 849 850
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
851
    return float16a_round_pack_canonical(p, s, &float16_params);
A
Alex Bennée 已提交
852 853 854 855
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
856
    return sf_canonicalize(float32_unpack_raw(f), &float32_params, s);
A
Alex Bennée 已提交
857 858 859 860
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
861
    return float32_pack_raw(round_canonical(p, s, &float32_params));
A
Alex Bennée 已提交
862 863 864 865
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
866
    return sf_canonicalize(float64_unpack_raw(f), &float64_params, s);
A
Alex Bennée 已提交
867 868 869 870
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
871
    return float64_pack_raw(round_canonical(p, s, &float64_params));
A
Alex Bennée 已提交
872 873
}

874 875 876 877 878
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
879
        a = parts_silence_nan(a, s);
880 881 882
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
883
            return parts_default_nan(s);
884 885 886 887 888 889 890 891 892
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
893 894 895 896 897 898 899
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
900
        return parts_default_nan(s);
A
Alex Bennée 已提交
901
    } else {
902
        if (pickNaN(a.cls, b.cls,
A
Alex Bennée 已提交
903 904 905 906
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
907 908 909
        if (is_snan(a.cls)) {
            return parts_silence_nan(a, s);
        }
A
Alex Bennée 已提交
910 911 912 913
    }
    return a;
}

A
Alex Bennée 已提交
914 915 916
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
917 918
    int which;

A
Alex Bennée 已提交
919 920 921 922
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

923
    which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
924

A
Alex Bennée 已提交
925
    if (s->default_nan_mode) {
926 927 928
        /* Note that this check is after pickNaNMulAdd so that function
         * has an opportunity to set the Invalid flag.
         */
929
        which = 3;
930
    }
A
Alex Bennée 已提交
931

932 933 934 935 936 937 938 939 940 941
    switch (which) {
    case 0:
        break;
    case 1:
        a = b;
        break;
    case 2:
        a = c;
        break;
    case 3:
942
        return parts_default_nan(s);
943 944
    default:
        g_assert_not_reached();
A
Alex Bennée 已提交
945
    }
946

947 948 949
    if (is_snan(a.cls)) {
        return parts_silence_nan(a, s);
    }
A
Alex Bennée 已提交
950 951 952
    return a;
}

A
Alex Bennée 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
997
                return parts_default_nan(s);
A
Alex Bennée 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
1023
                shift64RightJamming(a.frac, 1, &a.frac);
A
Alex Bennée 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

1048
float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
1049 1050 1051 1052 1053 1054 1055 1056
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

1057
float32 QEMU_FLATTEN float32_add(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
1058 1059 1060 1061 1062 1063 1064 1065
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float32_round_pack_canonical(pr, status);
}

1066
float64 QEMU_FLATTEN float64_add(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1067 1068 1069 1070 1071 1072 1073 1074
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float64_round_pack_canonical(pr, status);
}

1075
float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
1076 1077 1078 1079 1080 1081 1082 1083
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

1084
float32 QEMU_FLATTEN float32_sub(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
1085 1086 1087 1088 1089 1090 1091 1092
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float32_round_pack_canonical(pr, status);
}

1093
float64 QEMU_FLATTEN float64_sub(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1094 1095 1096 1097 1098 1099 1100 1101
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
1137
        return parts_default_nan(s);
A
Alex Bennée 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

1151
float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
1152 1153 1154 1155 1156 1157 1158 1159
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

1160
float32 QEMU_FLATTEN float32_mul(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
1161 1162 1163 1164 1165 1166 1167 1168
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

1169
float64 QEMU_FLATTEN float64_mul(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
1170 1171 1172 1173 1174 1175 1176 1177
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
1212
        return parts_default_nan(s);
A
Alex Bennée 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
1236
            return parts_default_nan(s);
A
Alex Bennée 已提交
1237 1238 1239
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
1240
            return a;
A
Alex Bennée 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        }
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

1381
float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c,
A
Alex Bennée 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

1392
float32 QEMU_FLATTEN float32_muladd(float32 a, float32 b, float32 c,
A
Alex Bennée 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
                                                int flags, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

1403
float64 QEMU_FLATTEN float64_muladd(float64 a, float64 b, float64 c,
A
Alex Bennée 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                                                int flags, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
R
Richard Henderson 已提交
1425
        uint64_t n0, n1, q, r;
A
Alex Bennée 已提交
1426
        int exp = a.exp - b.exp;
R
Richard Henderson 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

        /*
         * We want a 2*N / N-bit division to produce exactly an N-bit
         * result, so that we do not lose any precision and so that we
         * do not have to renormalize afterward.  If A.frac < B.frac,
         * then division would produce an (N-1)-bit result; shift A left
         * by one to produce the an N-bit result, and decrement the
         * exponent to match.
         *
         * The udiv_qrnnd algorithm that we're using requires normalization,
         * i.e. the msb of the denominator must be set.  Since we know that
         * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left
         * by one (more), and the remainder must be shifted right by one.
         */
A
Alex Bennée 已提交
1441 1442
        if (a.frac < b.frac) {
            exp -= 1;
R
Richard Henderson 已提交
1443
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
A
Alex Bennée 已提交
1444
        } else {
R
Richard Henderson 已提交
1445
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
A
Alex Bennée 已提交
1446
        }
R
Richard Henderson 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        q = udiv_qrnnd(&r, n1, n0, b.frac << 1);

        /*
         * Set lsb if there is a remainder, to set inexact.
         * As mentioned above, to find the actual value of the remainder we
         * would need to shift right, but (1) we are only concerned about
         * non-zero-ness, and (2) the remainder will always be even because
         * both inputs to the division primitive are even.
         */
        a.frac = q | (r != 0);
A
Alex Bennée 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
1470
        return parts_default_nan(s);
A
Alex Bennée 已提交
1471
    }
1472 1473 1474 1475 1476
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
A
Alex Bennée 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 float32_div(float32 a, float32 b, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 float64_div(float64 a, float64 b, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * Float to Float conversions
 *
 * Returns the result of converting one float format to another. The
 * conversion is performed according to the IEC/IEEE Standard for
 * Binary Floating-Point Arithmetic.
 *
 * The float_to_float helper only needs to take care of raising
 * invalid exceptions and handling the conversion on NaNs.
 */

static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
                                 float_status *s)
{
    if (dstf->arm_althp) {
        switch (a.cls) {
        case float_class_qnan:
        case float_class_snan:
            /* There is no NaN in the destination format.  Raise Invalid
             * and return a zero with the sign of the input NaN.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_zero;
            a.frac = 0;
            a.exp = 0;
            break;

        case float_class_inf:
            /* There is no Inf in the destination format.  Raise Invalid
             * and return the maximum normal with the correct sign.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_normal;
            a.exp = dstf->exp_max;
            a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
            break;

        default:
            break;
        }
    } else if (is_nan(a.cls)) {
        if (is_snan(a.cls)) {
            s->float_exception_flags |= float_flag_invalid;
            a = parts_silence_nan(a, s);
        }
        if (s->default_nan_mode) {
            return parts_default_nan(s);
        }
    }
    return a;
}

float32 float16_to_float32(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float16_to_float64(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float32_to_float16(float32 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float64 float32_to_float64(float32 a, float_status *s)
{
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float64_to_float16(float64 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float32 float64_to_float32(float64 a, float_status *s)
{
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

1618 1619 1620 1621 1622 1623 1624
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

1625 1626
static FloatParts round_to_int(FloatParts a, int rmode,
                               int scale, float_status *s)
1627
{
1628 1629 1630
    switch (a.cls) {
    case float_class_qnan:
    case float_class_snan:
1631 1632 1633 1634 1635 1636
        return return_nan(a, s);

    case float_class_zero:
    case float_class_inf:
        /* already "integral" */
        break;
1637

1638
    case float_class_normal:
1639 1640 1641
        scale = MIN(MAX(scale, -0x10000), 0x10000);
        a.exp += scale;

1642 1643 1644 1645 1646 1647 1648 1649
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
1650
            switch (rmode) {
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

1683
            switch (rmode) {
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
1723
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1724 1725 1726 1727 1728 1729
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
1730
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1731 1732 1733 1734 1735 1736
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
1737
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1738 1739 1740
    return float64_round_pack_canonical(pr, s);
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

1752
static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
1753 1754 1755 1756 1757
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
1758
    FloatParts p = round_to_int(in, rmode, scale, s);
1759 1760 1761 1762

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
1763
        s->float_exception_flags = orig_flags | float_flag_invalid;
1764 1765
        return max;
    case float_class_inf:
1766
        s->float_exception_flags = orig_flags | float_flag_invalid;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
1779
            if (r <= -(uint64_t) min) {
1780 1781 1782 1783 1784 1785
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
1786
            if (r <= max) {
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float16_to_int16(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float16_to_int32(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float16_to_int64(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float32_to_int16(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float32_to_int32(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float32_to_int64(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float64_to_int16(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float64_to_int32(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float64_to_int64(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float16_to_int16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, float_round_to_zero, 0, s);
}

int32_t float16_to_int32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float16_to_int64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, float_round_to_zero, 0, s);
1919 1920
}

1921 1922 1923 1924
int16_t float32_to_int16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
int32_t float32_to_int32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float32_to_int64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, float_round_to_zero, 0, s);
}

int16_t float64_to_int16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
1940

1941 1942 1943 1944
int32_t float64_to_int32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, float_round_to_zero, 0, s);
}
1945

1946 1947 1948 1949
int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, float_round_to_zero, 0, s);
}
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

1964 1965
static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
                                       uint64_t max, float_status *s)
1966 1967
{
    int orig_flags = get_float_exception_flags(s);
1968 1969
    FloatParts p = round_to_int(in, rmode, scale, s);
    uint64_t r;
1970 1971 1972 1973 1974 1975 1976

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
1977
        s->float_exception_flags = orig_flags | float_flag_invalid;
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }
2004
        return r;
2005 2006 2007 2008 2009
    default:
        g_assert_not_reached();
    }
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float16_to_uint16(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float16_to_uint32(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float16_to_uint64(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float32_to_uint16(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float32_to_uint32(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float32_to_uint64(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float64_to_uint16(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float64_to_uint32(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float64_to_uint64(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}
2162

2163 2164 2165 2166 2167 2168 2169 2170
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

2171
static FloatParts int_to_float(int64_t a, int scale, float_status *status)
2172
{
2173 2174
    FloatParts r = { .sign = false };

2175 2176 2177
    if (a == 0) {
        r.cls = float_class_zero;
    } else {
2178 2179 2180 2181
        uint64_t f = a;
        int shift;

        r.cls = float_class_normal;
2182
        if (a < 0) {
2183
            f = -f;
2184 2185
            r.sign = true;
        }
2186 2187 2188 2189 2190
        shift = clz64(f) - 1;
        scale = MIN(MAX(scale, -0x10000), 0x10000);

        r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
        r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift);
2191 2192 2193 2194 2195
    }

    return r;
}

2196
float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
2197
{
2198
    FloatParts pa = int_to_float(a, scale, status);
2199 2200 2201
    return float16_round_pack_canonical(pa, status);
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    return int64_to_float16_scalbn(a, 0, status);
}

2217 2218
float16 int32_to_float16(int32_t a, float_status *status)
{
2219
    return int64_to_float16_scalbn(a, 0, status);
2220 2221 2222 2223
}

float16 int16_to_float16(int16_t a, float_status *status)
{
2224
    return int64_to_float16_scalbn(a, 0, status);
2225 2226
}

2227
float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
2228
{
2229
    FloatParts pa = int_to_float(a, scale, status);
2230 2231 2232
    return float32_round_pack_canonical(pa, status);
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    return int64_to_float32_scalbn(a, 0, status);
}

2248 2249
float32 int32_to_float32(int32_t a, float_status *status)
{
2250
    return int64_to_float32_scalbn(a, 0, status);
2251 2252 2253 2254
}

float32 int16_to_float32(int16_t a, float_status *status)
{
2255
    return int64_to_float32_scalbn(a, 0, status);
2256 2257
}

2258
float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
2259
{
2260
    FloatParts pa = int_to_float(a, scale, status);
2261 2262 2263
    return float64_round_pack_canonical(pa, status);
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    return int64_to_float64_scalbn(a, 0, status);
}

2279 2280
float64 int32_to_float64(int32_t a, float_status *status)
{
2281
    return int64_to_float64_scalbn(a, 0, status);
2282 2283 2284 2285
}

float64 int16_to_float64(int16_t a, float_status *status)
{
2286
    return int64_to_float64_scalbn(a, 0, status);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

2298
static FloatParts uint_to_float(uint64_t a, int scale, float_status *status)
2299
{
2300
    FloatParts r = { .sign = false };
2301 2302 2303 2304

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
2305
        scale = MIN(MAX(scale, -0x10000), 0x10000);
2306
        r.cls = float_class_normal;
2307 2308 2309
        if ((int64_t)a < 0) {
            r.exp = DECOMPOSED_BINARY_POINT + 1 + scale;
            shift64RightJamming(a, 1, &a);
2310 2311
            r.frac = a;
        } else {
2312 2313 2314
            int shift = clz64(a) - 1;
            r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
            r.frac = a << shift;
2315 2316 2317 2318 2319 2320
        }
    }

    return r;
}

2321
float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status)
2322
{
2323
    FloatParts pa = uint_to_float(a, scale, status);
2324 2325 2326
    return float16_round_pack_canonical(pa, status);
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    return uint64_to_float16_scalbn(a, 0, status);
}

2342 2343
float16 uint32_to_float16(uint32_t a, float_status *status)
{
2344
    return uint64_to_float16_scalbn(a, 0, status);
2345 2346 2347 2348
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
2349
    return uint64_to_float16_scalbn(a, 0, status);
2350 2351
}

2352
float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status)
2353
{
2354
    FloatParts pa = uint_to_float(a, scale, status);
2355 2356 2357
    return float32_round_pack_canonical(pa, status);
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    return uint64_to_float32_scalbn(a, 0, status);
}

2373 2374
float32 uint32_to_float32(uint32_t a, float_status *status)
{
2375
    return uint64_to_float32_scalbn(a, 0, status);
2376 2377 2378 2379
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
2380
    return uint64_to_float32_scalbn(a, 0, status);
2381 2382
}

2383
float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status)
2384
{
2385
    FloatParts pa = uint_to_float(a, scale, status);
2386 2387 2388
    return float64_round_pack_canonical(pa, status);
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    return uint64_to_float64_scalbn(a, 0, status);
}

2404 2405
float64 uint32_to_float64(uint32_t a, float_status *status)
{
2406
    return uint64_to_float64_scalbn(a, 0, status);
2407 2408 2409 2410
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
2411
    return uint64_to_float64_scalbn(a, 0, status);
2412 2413
}

A
Alex Bennée 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

2481 2482 2483 2484 2485 2486
        if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2487 2488
        }

2489
        if (a.sign == b.sign) {
A
Alex Bennée 已提交
2490 2491 2492 2493
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
2494
            return a.sign ^ a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2495
        } else {
2496
            return a.sign ^ ismin ? b : a;
A
Alex Bennée 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
2615 2616 2617 2618 2619 2620 2621
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
2622 2623 2624 2625 2626 2627
        /* The largest float type (even though not supported by FloatParts)
         * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
         * still allows rounding to infinity, without allowing overflow
         * within the int32_t that backs FloatParts.exp.
         */
        n = MIN(MAX(n, -0x10000), 0x10000);
A
Alex Bennée 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
/*
 * Square Root
 *
 * The old softfloat code did an approximation step before zeroing in
 * on the final result. However for simpleness we just compute the
 * square root by iterating down from the implicit bit to enough extra
 * bits to ensure we get a correctly rounded result.
 *
 * This does mean however the calculation is slower than before,
 * especially for 64 bit floats.
 */

static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
{
    uint64_t a_frac, r_frac, s_frac;
    int bit, last_bit;

    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_zero) {
        return a;  /* sqrt(+-0) = +-0 */
    }
    if (a.sign) {
        s->float_exception_flags |= float_flag_invalid;
2679
        return parts_default_nan(s);
A
Alex Bennée 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
    }
    if (a.cls == float_class_inf) {
        return a;  /* sqrt(+inf) = +inf */
    }

    assert(a.cls == float_class_normal);

    /* We need two overflow bits at the top. Adding room for that is a
     * right shift. If the exponent is odd, we can discard the low bit
     * by multiplying the fraction by 2; that's a left shift. Combine
     * those and we shift right if the exponent is even.
     */
    a_frac = a.frac;
    if (!(a.exp & 1)) {
        a_frac >>= 1;
    }
    a.exp >>= 1;

    /* Bit-by-bit computation of sqrt.  */
    r_frac = 0;
    s_frac = 0;

    /* Iterate from implicit bit down to the 3 extra bits to compute a
     * properly rounded result. Remember we've inserted one more bit
     * at the top, so these positions are one less.
     */
    bit = DECOMPOSED_BINARY_POINT - 1;
    last_bit = MAX(p->frac_shift - 4, 0);
    do {
        uint64_t q = 1ULL << bit;
        uint64_t t_frac = s_frac + q;
        if (t_frac <= a_frac) {
            s_frac = t_frac + q;
            a_frac -= t_frac;
            r_frac += q;
        }
        a_frac <<= 1;
    } while (--bit >= last_bit);

    /* Undo the right shift done above. If there is any remaining
     * fraction, the result is inexact. Set the sticky bit.
     */
    a.frac = (r_frac << 1) + (a_frac != 0);

    return a;
}

2727
float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status)
A
Alex Bennée 已提交
2728 2729 2730 2731 2732 2733
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float16_params);
    return float16_round_pack_canonical(pr, status);
}

2734
float32 QEMU_FLATTEN float32_sqrt(float32 a, float_status *status)
A
Alex Bennée 已提交
2735 2736 2737 2738 2739 2740
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float32_params);
    return float32_round_pack_canonical(pr, status);
}

2741
float64 QEMU_FLATTEN float64_sqrt(float64 a, float_status *status)
A
Alex Bennée 已提交
2742 2743 2744 2745 2746 2747
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float64_params);
    return float64_round_pack_canonical(pr, status);
}

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/*----------------------------------------------------------------------------
| The pattern for a default generated NaN.
*----------------------------------------------------------------------------*/

float16 float16_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

float128 float128_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    float128 r;

    /* Extrapolate from the choices made by parts_default_nan to fill
     * in the quad-floating format.  If the low bit is set, assume we
     * want to set all non-snan bits.
     */
    r.low = -(p.frac & 1);
    r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
    r.high |= LIT64(0x7FFF000000000000);
    r.high |= (uint64_t)p.sign << 63;

    return r;
}
A
Alex Bennée 已提交
2789

B
bellard 已提交
2790
/*----------------------------------------------------------------------------
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
| Returns a quiet NaN from a signalling NaN for the floating point value `a'.
*----------------------------------------------------------------------------*/

float16 float16_silence_nan(float16 a, float_status *status)
{
    FloatParts p = float16_unpack_raw(a);
    p.frac <<= float16_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_silence_nan(float32 a, float_status *status)
{
    FloatParts p = float32_unpack_raw(a);
    p.frac <<= float32_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_silence_nan(float64 a, float_status *status)
{
    FloatParts p = float64_unpack_raw(a);
    p.frac <<= float64_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

/*----------------------------------------------------------------------------
B
bellard 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

2832
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
2833
{
2834
    int8_t roundingMode;
B
bellard 已提交
2835
    flag roundNearestEven;
2836
    int8_t roundIncrement, roundBits;
2837
    int32_t z;
B
bellard 已提交
2838

2839
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2840
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2841 2842
    switch (roundingMode) {
    case float_round_nearest_even:
2843
    case float_round_ties_away:
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
2857 2858 2859 2860 2861 2862 2863
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
2864
        float_raise(float_flag_invalid, status);
2865
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2866
    }
2867 2868 2869
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

2886
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
2887
                               float_status *status)
B
bellard 已提交
2888
{
2889
    int8_t roundingMode;
B
bellard 已提交
2890
    flag roundNearestEven, increment;
2891
    int64_t z;
B
bellard 已提交
2892

2893
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2894
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2895 2896
    switch (roundingMode) {
    case float_round_nearest_even:
2897
    case float_round_ties_away:
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
2911 2912 2913 2914
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
2915
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2916 2917 2918 2919 2920
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
2921
        float_raise(float_flag_invalid, status);
B
bellard 已提交
2922
        return
2923
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
2924 2925
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
2926 2927 2928
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2929 2930 2931 2932
    return z;

}

T
Tom Musta 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

2943
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
2944
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
2945
{
2946
    int8_t roundingMode;
T
Tom Musta 已提交
2947 2948
    flag roundNearestEven, increment;

2949
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
2950
    roundNearestEven = (roundingMode == float_round_nearest_even);
2951 2952
    switch (roundingMode) {
    case float_round_nearest_even:
2953
    case float_round_ties_away:
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
2967 2968 2969 2970
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
2971
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2972 2973 2974 2975 2976 2977
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
2978
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2979 2980 2981 2982
        return 0;
    }

    if (absZ1) {
2983
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
2984 2985 2986 2987
    }
    return absZ0;
}

2988 2989 2990 2991
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2992
float32 float32_squash_input_denormal(float32 a, float_status *status)
2993
{
2994
    if (status->flush_inputs_to_zero) {
2995
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
2996
            float_raise(float_flag_input_denormal, status);
2997 2998 2999 3000 3001 3002
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
3003 3004 3005 3006 3007 3008 3009 3010
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
3011
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
3012
{
3013
    int8_t shiftCount;
B
bellard 已提交
3014

3015
    shiftCount = clz32(aSig) - 8;
B
bellard 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3043
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3044
                                   float_status *status)
B
bellard 已提交
3045
{
3046
    int8_t roundingMode;
B
bellard 已提交
3047
    flag roundNearestEven;
3048
    int8_t roundIncrement, roundBits;
B
bellard 已提交
3049 3050
    flag isTiny;

3051
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3052
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3053 3054
    switch (roundingMode) {
    case float_round_nearest_even:
3055
    case float_round_ties_away:
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
3070 3071
    }
    roundBits = zSig & 0x7F;
3072
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
3073 3074
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
3075
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
3076
           ) {
P
Peter Maydell 已提交
3077
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
3078
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
3079 3080
        }
        if ( zExp < 0 ) {
3081
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3082
                float_raise(float_flag_output_denormal, status);
3083 3084
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
3085
            isTiny =
3086 3087
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
3088 3089 3090 3091 3092
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
3093 3094 3095
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
3096 3097
        }
    }
3098 3099 3100
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
3118
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
3119
                              float_status *status)
B
bellard 已提交
3120
{
3121
    int8_t shiftCount;
B
bellard 已提交
3122

3123
    shiftCount = clz32(zSig) - 1;
P
Peter Maydell 已提交
3124 3125
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
3126 3127 3128

}

3129 3130 3131 3132
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
3133
float64 float64_squash_input_denormal(float64 a, float_status *status)
3134
{
3135
    if (status->flush_inputs_to_zero) {
3136
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
3137
            float_raise(float_flag_input_denormal, status);
3138 3139 3140 3141 3142 3143
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
3144 3145 3146 3147 3148 3149 3150 3151
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
3152
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
3153
{
3154
    int8_t shiftCount;
B
bellard 已提交
3155

3156
    shiftCount = clz64(aSig) - 11;
B
bellard 已提交
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

3173
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
3174 3175
{

P
pbrook 已提交
3176
    return make_float64(
3177
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
3189 3190 3191
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3203
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3204
                                   float_status *status)
B
bellard 已提交
3205
{
3206
    int8_t roundingMode;
B
bellard 已提交
3207
    flag roundNearestEven;
3208
    int roundIncrement, roundBits;
B
bellard 已提交
3209 3210
    flag isTiny;

3211
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3212
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3213 3214
    switch (roundingMode) {
    case float_round_nearest_even:
3215
    case float_round_ties_away:
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
3227 3228 3229
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
3230 3231
    default:
        abort();
B
bellard 已提交
3232 3233
    }
    roundBits = zSig & 0x3FF;
3234
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
3235 3236
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
3237
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
3238
           ) {
3239 3240
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
3241
            float_raise(float_flag_overflow | float_flag_inexact, status);
3242
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
3243 3244
        }
        if ( zExp < 0 ) {
3245
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3246
                float_raise(float_flag_output_denormal, status);
3247 3248
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
3249
            isTiny =
3250 3251
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3252 3253 3254 3255 3256
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
3257 3258 3259
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
3260 3261 3262 3263 3264 3265 3266
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
3267 3268
        }
    }
3269 3270 3271
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
3289
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
3290
                              float_status *status)
B
bellard 已提交
3291
{
3292
    int8_t shiftCount;
B
bellard 已提交
3293

3294
    shiftCount = clz64(zSig) - 1;
P
Peter Maydell 已提交
3295 3296
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

3307 3308
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr)
B
bellard 已提交
3309
{
3310
    int8_t shiftCount;
B
bellard 已提交
3311

3312
    shiftCount = clz64(aSig);
B
bellard 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;
}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3341 3342 3343
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status)
B
bellard 已提交
3344
{
3345
    int8_t roundingMode;
B
bellard 已提交
3346
    flag roundNearestEven, increment, isTiny;
3347
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
3348

3349
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
3364 3365
    switch (roundingMode) {
    case float_round_nearest_even:
3366
    case float_round_ties_away:
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
3379 3380
    }
    roundBits = zSig0 & roundMask;
3381
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3382 3383 3384 3385 3386 3387
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
3388
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3389
                float_raise(float_flag_output_denormal, status);
3390 3391
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
3392
            isTiny =
3393 3394
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3395 3396 3397 3398 3399
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
3400 3401 3402
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
3403 3404 3405
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
3406
            zSig0 += roundIncrement;
3407
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3408 3409 3410 3411 3412 3413 3414 3415
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3416 3417 3418
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
3432 3433
    switch (roundingMode) {
    case float_round_nearest_even:
3434
    case float_round_ties_away:
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
3448
    }
3449
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3450 3451 3452 3453 3454 3455 3456 3457
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
3458
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3459 3460 3461 3462 3463 3464
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
3465 3466 3467
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
3468 3469 3470
        }
        if ( zExp <= 0 ) {
            isTiny =
3471 3472
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3473 3474 3475 3476 3477
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
3478 3479 3480
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
3481 3482 3483
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
3484 3485
            switch (roundingMode) {
            case float_round_nearest_even:
3486
            case float_round_ties_away:
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
3500 3501 3502 3503
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
3504 3505
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3506 3507 3508 3509
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3510 3511 3512
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3513 3514 3515 3516 3517 3518 3519
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
3520
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

3539 3540 3541 3542
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status)
B
bellard 已提交
3543
{
3544
    int8_t shiftCount;
B
bellard 已提交
3545 3546 3547 3548 3549 3550

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
3551
    shiftCount = clz64(zSig0);
B
bellard 已提交
3552 3553
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
3554 3555
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
3556 3557 3558 3559 3560 3561 3562 3563

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3564
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3576
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

3588
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

3599
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
3618 3619
     uint64_t aSig0,
     uint64_t aSig1,
3620
     int32_t *zExpPtr,
3621 3622
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
3623 3624
 )
{
3625
    int8_t shiftCount;
B
bellard 已提交
3626 3627

    if ( aSig0 == 0 ) {
3628
        shiftCount = clz64(aSig1) - 15;
B
bellard 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
3640
        shiftCount = clz64(aSig0) - 15;
B
bellard 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

3660
static inline float128
3661
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
3662 3663 3664 3665
{
    float128 z;

    z.low = zSig1;
3666
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3692
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
3693 3694
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
3695
{
3696
    int8_t roundingMode;
B
bellard 已提交
3697 3698
    flag roundNearestEven, increment, isTiny;

3699
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3700
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3701 3702
    switch (roundingMode) {
    case float_round_nearest_even:
3703
    case float_round_ties_away:
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
3715 3716 3717
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
3718 3719
    default:
        abort();
B
bellard 已提交
3720
    }
3721
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
3733
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3734 3735 3736
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
3737
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
3750
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3751
                float_raise(float_flag_output_denormal, status);
3752 3753
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
3754
            isTiny =
3755 3756
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
3768 3769 3770
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
3771 3772
            switch (roundingMode) {
            case float_round_nearest_even:
3773
            case float_round_ties_away:
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
3785 3786 3787
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
3788 3789
            default:
                abort();
B
bellard 已提交
3790 3791 3792
            }
        }
    }
3793 3794 3795
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

3817
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
3818 3819
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
3820
{
3821
    int8_t shiftCount;
3822
    uint64_t zSig2;
B
bellard 已提交
3823 3824 3825 3826 3827 3828

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
3829
    shiftCount = clz64(zSig0) - 15;
B
bellard 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
3839
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3851
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
3852 3853
{
    flag zSign;
3854
    uint32_t absA;
3855
    int8_t shiftCount;
3856
    uint64_t zSig;
B
bellard 已提交
3857 3858 3859 3860

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3861
    shiftCount = clz32(absA) + 32;
B
bellard 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3873
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
3874 3875
{
    flag zSign;
3876
    uint32_t absA;
3877
    int8_t shiftCount;
3878
    uint64_t zSig0;
B
bellard 已提交
3879 3880 3881 3882

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3883
    shiftCount = clz32(absA) + 17;
B
bellard 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3896
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
3897 3898
{
    flag zSign;
3899
    uint64_t absA;
3900
    int8_t shiftCount;
B
bellard 已提交
3901 3902 3903 3904

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3905
    shiftCount = clz64(absA);
B
bellard 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3916
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
3917 3918
{
    flag zSign;
3919
    uint64_t absA;
3920
    int8_t shiftCount;
3921
    int32_t zExp;
3922
    uint64_t zSig0, zSig1;
B
bellard 已提交
3923 3924 3925 3926

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3927
    shiftCount = clz64(absA) + 49;
B
bellard 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

3943 3944 3945 3946 3947 3948
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3949
float128 uint64_to_float128(uint64_t a, float_status *status)
3950 3951 3952 3953
{
    if (a == 0) {
        return float128_zero;
    }
3954
    return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
3955 3956
}

B
bellard 已提交
3957 3958 3959 3960 3961 3962 3963
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3964
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
3965 3966
{
    flag aSign;
3967
    int aExp;
3968
    uint32_t aSig;
B
bellard 已提交
3969

P
Peter Maydell 已提交
3970
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3971 3972 3973 3974
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3975 3976 3977
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
3978 3979 3980
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
3981 3982 3983 3984 3985 3986
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
3987
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3998
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
3999 4000
{
    flag aSign;
4001
    int aExp;
4002
    uint32_t aSig;
B
bellard 已提交
4003

P
Peter Maydell 已提交
4004
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
4005 4006 4007 4008
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4009 4010 4011
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4012 4013 4014 4015 4016 4017 4018
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
4019
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4029
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
4030
{
4031
    flag aSign, zSign;
4032
    int aExp, bExp, expDiff;
4033 4034 4035 4036 4037
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
4038 4039
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4040 4041 4042 4043 4044 4045 4046 4047

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
4048
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
4049
        }
P
Peter Maydell 已提交
4050
        float_raise(float_flag_invalid, status);
4051
        return float32_default_nan(status);
B
bellard 已提交
4052 4053
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
4054 4055 4056
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
4057 4058 4059 4060
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4061
            float_raise(float_flag_invalid, status);
4062
            return float32_default_nan(status);
B
bellard 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
4083
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
4095 4096
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4115
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
4116 4117 4118 4119
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4120
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
4121
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4122
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4123 4124
}

4125

B
bellard 已提交
4126

A
Aurelien Jarno 已提交
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
4162 4163
};

4164
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
4165 4166
{
    flag aSign;
4167
    int aExp;
4168
    uint32_t aSig;
A
Aurelien Jarno 已提交
4169 4170
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
4171
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
4172 4173 4174 4175 4176 4177

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
4178 4179 4180
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
4181 4182 4183 4184 4185 4186
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
4187
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
4188 4189 4190 4191

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
4192 4193
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
4194 4195 4196 4197 4198 4199

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
4200 4201
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
4202

P
Peter Maydell 已提交
4203
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
4204 4205 4206 4207 4208
    }

    return float64_to_float32(r, status);
}

4209 4210 4211 4212 4213
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4214
float32 float32_log2(float32 a, float_status *status)
4215 4216
{
    flag aSign, zSign;
4217
    int aExp;
4218
    uint32_t aSig, zSig, i;
4219

P
Peter Maydell 已提交
4220
    a = float32_squash_input_denormal(a, status);
4221 4222 4223 4224 4225 4226 4227 4228 4229
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4230
        float_raise(float_flag_invalid, status);
4231
        return float32_default_nan(status);
4232 4233
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
4234 4235 4236
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
4237 4238 4239 4240 4241 4242 4243 4244 4245
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
4246
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
4247 4248 4249 4250 4251 4252 4253 4254 4255
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
4256
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
4257 4258
}

B
bellard 已提交
4259 4260
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
4261 4262
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4263 4264 4265
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4266
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
4267
{
4268
    uint32_t av, bv;
P
Peter Maydell 已提交
4269 4270
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4271 4272 4273 4274

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4275
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4276 4277
        return 0;
    }
4278 4279 4280
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4281 4282 4283 4284
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
4285 4286 4287
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4288 4289
*----------------------------------------------------------------------------*/

4290
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
4291 4292
{
    flag aSign, bSign;
4293
    uint32_t av, bv;
P
Peter Maydell 已提交
4294 4295
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4296 4297 4298 4299

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4300
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4301 4302 4303 4304
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4305 4306
    av = float32_val(a);
    bv = float32_val(b);
4307
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4308
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4309 4310 4311 4312 4313

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
4314 4315 4316
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4317 4318
*----------------------------------------------------------------------------*/

4319
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
4320 4321
{
    flag aSign, bSign;
4322
    uint32_t av, bv;
P
Peter Maydell 已提交
4323 4324
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4325 4326 4327 4328

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4329
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4330 4331 4332 4333
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4334 4335
    av = float32_val(a);
    bv = float32_val(b);
4336
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4337
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4338 4339 4340

}

4341 4342
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
4343 4344 4345
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4346 4347
*----------------------------------------------------------------------------*/

4348
int float32_unordered(float32 a, float32 b, float_status *status)
4349
{
P
Peter Maydell 已提交
4350 4351
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
4352 4353 4354 4355

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4356
        float_raise(float_flag_invalid, status);
4357 4358 4359 4360
        return 1;
    }
    return 0;
}
4361

B
bellard 已提交
4362 4363
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
4364 4365 4366
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4367 4368
*----------------------------------------------------------------------------*/

4369
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4370
{
P
Peter Maydell 已提交
4371 4372
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4373 4374 4375 4376

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4377 4378
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4379
            float_raise(float_flag_invalid, status);
4380
        }
B
bellard 已提交
4381 4382
        return 0;
    }
4383 4384
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4394
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4395 4396
{
    flag aSign, bSign;
4397
    uint32_t av, bv;
P
Peter Maydell 已提交
4398 4399
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4400 4401 4402 4403

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4404 4405
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4406
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4407 4408 4409 4410 4411
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4412 4413
    av = float32_val(a);
    bv = float32_val(b);
4414
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4415
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4416 4417 4418 4419 4420 4421 4422

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
4423
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4424 4425
*----------------------------------------------------------------------------*/

4426
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4427
{
4428 4429 4430 4431
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4432

4433 4434 4435 4436 4437
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4438
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4439
        }
4440
        return 0;
B
bellard 已提交
4441
    }
4442 4443 4444 4445 4446 4447
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4448 4449 4450 4451

}

/*----------------------------------------------------------------------------
4452 4453 4454 4455
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
4456 4457
*----------------------------------------------------------------------------*/

4458
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4459
{
4460 4461
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4462

4463 4464 4465 4466 4467 4468
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4469
        }
4470
        return 1;
B
bellard 已提交
4471
    }
4472
    return 0;
B
bellard 已提交
4473 4474
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

B
bellard 已提交
4490 4491 4492 4493 4494 4495 4496
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4497
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
4498 4499
{
    flag aSign;
4500
    int aExp;
4501
    uint64_t aSig;
B
bellard 已提交
4502

P
Peter Maydell 已提交
4503
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4504 4505 4506 4507
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4508 4509 4510
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
4511 4512 4513
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4532
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
4533 4534
{
    flag aSign;
4535
    int aExp;
4536
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4537

P
Peter Maydell 已提交
4538
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4539 4540 4541 4542
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4543 4544 4545
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4565
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4566
{
4567
    flag aSign, zSign;
4568
    int aExp, bExp, expDiff;
4569 4570 4571
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4572

P
Peter Maydell 已提交
4573 4574
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4575 4576 4577 4578 4579 4580 4581
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
4582
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
4583
        }
P
Peter Maydell 已提交
4584
        float_raise(float_flag_invalid, status);
4585
        return float64_default_nan(status);
B
bellard 已提交
4586 4587
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
4588 4589 4590
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
4591 4592 4593 4594
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4595
            float_raise(float_flag_invalid, status);
4596
            return float64_default_nan(status);
B
bellard 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4636
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4637 4638 4639 4640
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4641
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4642
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4643
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4644 4645 4646

}

4647 4648 4649 4650 4651
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4652
float64 float64_log2(float64 a, float_status *status)
4653 4654
{
    flag aSign, zSign;
4655
    int aExp;
4656
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
4657
    a = float64_squash_input_denormal(a, status);
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4668
        float_raise(float_flag_invalid, status);
4669
        return float64_default_nan(status);
4670 4671
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4672 4673 4674
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
4675 4676 4677 4678 4679 4680
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4681
    zSig = (uint64_t)aExp << 52;
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
4693
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4694 4695
}

B
bellard 已提交
4696 4697
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4698 4699
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4700 4701 4702
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4703
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4704
{
4705
    uint64_t av, bv;
P
Peter Maydell 已提交
4706 4707
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4708 4709 4710 4711

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4712
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4713 4714
        return 0;
    }
P
pbrook 已提交
4715
    av = float64_val(a);
P
pbrook 已提交
4716
    bv = float64_val(b);
4717
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4718 4719 4720 4721 4722

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4723 4724 4725
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4726 4727
*----------------------------------------------------------------------------*/

4728
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4729 4730
{
    flag aSign, bSign;
4731
    uint64_t av, bv;
P
Peter Maydell 已提交
4732 4733
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4734 4735 4736 4737

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4738
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4739 4740 4741 4742
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4743
    av = float64_val(a);
P
pbrook 已提交
4744
    bv = float64_val(b);
4745
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4746
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4747 4748 4749 4750 4751

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4752 4753 4754
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4755 4756
*----------------------------------------------------------------------------*/

4757
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4758 4759
{
    flag aSign, bSign;
4760
    uint64_t av, bv;
B
bellard 已提交
4761

P
Peter Maydell 已提交
4762 4763
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4764 4765 4766
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4767
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4768 4769 4770 4771
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4772
    av = float64_val(a);
P
pbrook 已提交
4773
    bv = float64_val(b);
4774
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4775
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4776 4777 4778

}

4779 4780
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4781 4782 4783
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4784 4785
*----------------------------------------------------------------------------*/

4786
int float64_unordered(float64 a, float64 b, float_status *status)
4787
{
P
Peter Maydell 已提交
4788 4789
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4790 4791 4792 4793

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4794
        float_raise(float_flag_invalid, status);
4795 4796 4797 4798 4799
        return 1;
    }
    return 0;
}

B
bellard 已提交
4800 4801
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4802 4803 4804
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4805 4806
*----------------------------------------------------------------------------*/

4807
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4808
{
4809
    uint64_t av, bv;
P
Peter Maydell 已提交
4810 4811
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4812 4813 4814 4815

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4816 4817
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4818
            float_raise(float_flag_invalid, status);
4819
        }
B
bellard 已提交
4820 4821
        return 0;
    }
P
pbrook 已提交
4822
    av = float64_val(a);
P
pbrook 已提交
4823
    bv = float64_val(b);
4824
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4835
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4836 4837
{
    flag aSign, bSign;
4838
    uint64_t av, bv;
P
Peter Maydell 已提交
4839 4840
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4841 4842 4843 4844

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4845 4846
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4847
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4848 4849 4850 4851 4852
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4853
    av = float64_val(a);
P
pbrook 已提交
4854
    bv = float64_val(b);
4855
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4856
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4867
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4868 4869
{
    flag aSign, bSign;
4870
    uint64_t av, bv;
P
Peter Maydell 已提交
4871 4872
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4873 4874 4875 4876

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4877 4878
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4879
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4880 4881 4882 4883 4884
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4885
    av = float64_val(a);
P
pbrook 已提交
4886
    bv = float64_val(b);
4887
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4888
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4889 4890 4891

}

4892 4893 4894 4895 4896 4897 4898
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4899
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4900
{
P
Peter Maydell 已提交
4901 4902
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4903 4904 4905 4906

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4907 4908
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4909
            float_raise(float_flag_invalid, status);
4910 4911 4912 4913 4914 4915
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4926
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
4927 4928
{
    flag aSign;
4929
    int32_t aExp, shiftCount;
4930
    uint64_t aSig;
B
bellard 已提交
4931

4932 4933 4934 4935
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4936 4937 4938
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4939
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4940 4941 4942
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
4943
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4957
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4958 4959
{
    flag aSign;
4960
    int32_t aExp, shiftCount;
4961
    uint64_t aSig, savedASig;
4962
    int32_t z;
B
bellard 已提交
4963

4964 4965 4966 4967
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4968 4969 4970 4971
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4972
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4973 4974 4975
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
4976 4977 4978
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
4988
        float_raise(float_flag_invalid, status);
4989
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4990 4991
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
4992
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5008
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
5009 5010
{
    flag aSign;
5011
    int32_t aExp, shiftCount;
5012
    uint64_t aSig, aSigExtra;
B
bellard 已提交
5013

5014 5015 5016 5017
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
5018 5019 5020 5021 5022 5023
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
5024
            float_raise(float_flag_invalid, status);
5025
            if (!aSign || floatx80_is_any_nan(a)) {
B
bellard 已提交
5026 5027
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5028
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5029 5030 5031 5032 5033 5034
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
5035
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

5049
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
5050 5051
{
    flag aSign;
5052
    int32_t aExp, shiftCount;
5053
    uint64_t aSig;
5054
    int64_t z;
B
bellard 已提交
5055

5056 5057 5058 5059
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
5060 5061 5062 5063 5064 5065 5066
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
5067
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5068 5069 5070 5071
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
5072
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5073 5074
    }
    else if ( aExp < 0x3FFF ) {
5075 5076 5077
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5078 5079 5080
        return 0;
    }
    z = aSig>>( - shiftCount );
5081
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
5082
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5096
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
5097 5098
{
    flag aSign;
5099
    int32_t aExp;
5100
    uint64_t aSig;
B
bellard 已提交
5101

5102 5103 5104 5105
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
5106 5107 5108 5109
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5110
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5111
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5112 5113 5114 5115 5116
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
5117
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5128
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
5129 5130
{
    flag aSign;
5131
    int32_t aExp;
5132
    uint64_t aSig, zSig;
B
bellard 已提交
5133

5134 5135 5136 5137
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
5138 5139 5140 5141
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5142
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5143
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5144 5145 5146 5147 5148
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
5149
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5160
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
5161 5162
{
    flag aSign;
5163
    int aExp;
5164
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
5165

5166 5167 5168 5169
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
5170 5171 5172
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
5173
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
5174
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
5175 5176 5177 5178 5179 5180
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
5197 5198 5199 5200 5201 5202 5203
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5204
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
5205 5206
{
    flag aSign;
5207
    int32_t aExp;
5208
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5209 5210
    floatx80 z;

5211 5212 5213 5214
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5215 5216
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
5217
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
5218
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
5219 5220 5221 5222 5223
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
5224
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
5225 5226
            return a;
        }
5227
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5228
        aSign = extractFloatx80Sign( a );
5229
        switch (status->float_rounding_mode) {
B
bellard 已提交
5230
         case float_round_nearest_even:
5231
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
5232 5233 5234 5235 5236
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
5237 5238 5239 5240 5241
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
5258
    switch (status->float_rounding_mode) {
5259
    case float_round_nearest_even:
B
bellard 已提交
5260
        z.low += lastBitMask>>1;
5261 5262 5263 5264
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
5265 5266 5267
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
5268 5269 5270 5271 5272 5273 5274 5275 5276
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
5277 5278
            z.low += roundBitsMask;
        }
5279 5280 5281
        break;
    default:
        abort();
B
bellard 已提交
5282 5283 5284 5285 5286 5287
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
5288 5289 5290
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5303 5304
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5305
{
5306
    int32_t aExp, bExp, zExp;
5307
    uint64_t aSig, bSig, zSig0, zSig1;
5308
    int32_t expDiff;
B
bellard 已提交
5309 5310 5311 5312 5313 5314 5315 5316

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5317 5318 5319
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5320 5321 5322 5323 5324 5325 5326 5327
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5328 5329 5330
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
5331 5332 5333
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
5334 5335 5336 5337 5338 5339 5340
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
5341
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5342
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
5356
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
5357 5358 5359 5360 5361
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
5362
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5363
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5374 5375
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5376
{
5377
    int32_t aExp, bExp, zExp;
5378
    uint64_t aSig, bSig, zSig0, zSig1;
5379
    int32_t expDiff;
B
bellard 已提交
5380 5381 5382 5383 5384 5385 5386 5387 5388

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5389
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5390
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5391
        }
P
Peter Maydell 已提交
5392
        float_raise(float_flag_invalid, status);
5393
        return floatx80_default_nan(status);
B
bellard 已提交
5394 5395 5396 5397 5398 5399 5400 5401
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
5402
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
5403 5404
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5405 5406 5407
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
5408 5409
        return packFloatx80(zSign ^ 1, floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5420 5421 5422
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5423 5424 5425 5426 5427 5428 5429 5430
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
5431
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5432
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5433 5434 5435 5436 5437 5438 5439 5440
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5441
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5442 5443 5444
{
    flag aSign, bSign;

5445 5446 5447 5448
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5449 5450 5451
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5452
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5453 5454
    }
    else {
P
Peter Maydell 已提交
5455
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5466
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5467 5468 5469
{
    flag aSign, bSign;

5470 5471 5472 5473
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5474 5475 5476
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5477
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5478 5479
    }
    else {
P
Peter Maydell 已提交
5480
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5491
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5492 5493
{
    flag aSign, bSign, zSign;
5494
    int32_t aExp, bExp, zExp;
5495
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5496

5497 5498 5499 5500
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5501 5502 5503 5504 5505 5506 5507 5508
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5509 5510
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5511
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5512 5513
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
5514 5515
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5516 5517
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5518 5519 5520
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5521 5522
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5523
            float_raise(float_flag_invalid, status);
5524
            return floatx80_default_nan(status);
B
bellard 已提交
5525
        }
5526 5527
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5539
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5540 5541 5542
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
5543
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5544
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5545 5546 5547 5548 5549 5550 5551 5552
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5553
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5554 5555
{
    flag aSign, bSign, zSign;
5556
    int32_t aExp, bExp, zExp;
5557 5558
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5559

5560 5561 5562 5563
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5564 5565 5566 5567 5568 5569 5570 5571
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5572 5573 5574
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5575
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5576 5577 5578
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5579 5580
            goto invalid;
        }
5581 5582
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5583 5584
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5585 5586 5587
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5588 5589 5590 5591 5592 5593
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5594
                float_raise(float_flag_invalid, status);
5595
                return floatx80_default_nan(status);
B
bellard 已提交
5596
            }
P
Peter Maydell 已提交
5597
            float_raise(float_flag_divbyzero, status);
5598 5599
            return packFloatx80(zSign, floatx80_infinity_high,
                                       floatx80_infinity_low);
B
bellard 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5616
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5617 5618 5619 5620
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5621
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5622 5623
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5624
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5625 5626 5627 5628 5629
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
5630
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5631
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5632 5633 5634 5635 5636 5637 5638 5639
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5640
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5641
{
5642
    flag aSign, zSign;
5643
    int32_t aExp, bExp, expDiff;
5644 5645
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5646

5647 5648 5649 5650
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5651 5652 5653 5654 5655 5656
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5657 5658
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5659
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5660 5661 5662 5663
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5664 5665 5666
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5667 5668 5669 5670 5671
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
5672
            float_raise(float_flag_invalid, status);
5673
            return floatx80_default_nan(status);
B
bellard 已提交
5674 5675 5676 5677
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5678
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
5729
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
5730 5731 5732 5733 5734 5735 5736 5737 5738

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5739
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5740 5741
{
    flag aSign;
5742
    int32_t aExp, zExp;
5743 5744
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5745

5746 5747 5748 5749
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5750 5751 5752 5753
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5754 5755 5756
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
5757 5758 5759 5760 5761 5762
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
5763
        float_raise(float_flag_invalid, status);
5764
        return floatx80_default_nan(status);
B
bellard 已提交
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5777
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5789
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
5800 5801
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
5802 5803 5804
}

/*----------------------------------------------------------------------------
5805 5806 5807 5808
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5809 5810
*----------------------------------------------------------------------------*/

5811
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5812 5813
{

5814 5815 5816 5817 5818
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5819
       ) {
P
Peter Maydell 已提交
5820
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5821 5822 5823 5824 5825 5826
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5827
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5828 5829 5830 5831 5832 5833 5834
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5835 5836 5837
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5838 5839
*----------------------------------------------------------------------------*/

5840
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5841 5842 5843
{
    flag aSign, bSign;

5844 5845 5846 5847 5848
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5849
       ) {
P
Peter Maydell 已提交
5850
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5851 5852 5853 5854 5855 5856 5857
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5858
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5869 5870 5871
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5872 5873
*----------------------------------------------------------------------------*/

5874
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5875 5876 5877
{
    flag aSign, bSign;

5878 5879 5880 5881 5882
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5883
       ) {
P
Peter Maydell 已提交
5884
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5885 5886 5887 5888 5889 5890 5891
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5892
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5893 5894 5895 5896 5897 5898 5899 5900
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5901 5902
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5903 5904 5905
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5906
*----------------------------------------------------------------------------*/
5907
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5908
{
5909 5910 5911 5912 5913
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
5914
       ) {
P
Peter Maydell 已提交
5915
        float_raise(float_flag_invalid, status);
5916 5917 5918 5919 5920
        return 1;
    }
    return 0;
}

B
bellard 已提交
5921
/*----------------------------------------------------------------------------
5922
| Returns 1 if the extended double-precision floating-point value `a' is
5923 5924 5925
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5926 5927
*----------------------------------------------------------------------------*/

5928
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5929 5930
{

5931 5932 5933 5934
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5935
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5936
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5937
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5938
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5939
       ) {
5940 5941
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5942
            float_raise(float_flag_invalid, status);
5943
        }
B
bellard 已提交
5944 5945 5946 5947 5948 5949
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5950
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5962
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5963 5964 5965
{
    flag aSign, bSign;

5966 5967 5968 5969
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5970
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5971
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5972
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5973
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5974
       ) {
5975 5976
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5977
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5978 5979 5980 5981 5982 5983 5984 5985
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5986
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6002
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
6003 6004 6005
{
    flag aSign, bSign;

6006 6007 6008 6009
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
6010
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
6011
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
6012
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
6013
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
6014
       ) {
6015 6016
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6017
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6018 6019 6020 6021 6022 6023 6024 6025
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6026
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6027 6028 6029 6030 6031 6032 6033 6034
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6035 6036 6037 6038 6039 6040
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
6041
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
6042
{
6043 6044 6045 6046
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
6047 6048 6049 6050 6051
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
6052 6053
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6054
            float_raise(float_flag_invalid, status);
6055 6056 6057 6058 6059 6060
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

6071
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
6072 6073
{
    flag aSign;
6074
    int32_t aExp, shiftCount;
6075
    uint64_t aSig0, aSig1;
B
bellard 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
6086
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

6100
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
6101 6102
{
    flag aSign;
6103
    int32_t aExp, shiftCount;
6104
    uint64_t aSig0, aSig1, savedASig;
6105
    int32_t z;
B
bellard 已提交
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
6117 6118 6119
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
6130
        float_raise(float_flag_invalid, status);
6131
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
6132 6133
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
6134
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

6150
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
6151 6152
{
    flag aSign;
6153
    int32_t aExp, shiftCount;
6154
    uint64_t aSig0, aSig1;
B
bellard 已提交
6155 6156 6157 6158 6159 6160 6161 6162 6163

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
6164
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6165 6166 6167 6168 6169 6170 6171
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
6172
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
6173 6174 6175 6176 6177 6178
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
6179
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

6193
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
6194 6195
{
    flag aSign;
6196
    int32_t aExp, shiftCount;
6197
    uint64_t aSig0, aSig1;
6198
    int64_t z;
B
bellard 已提交
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
6211 6212 6213
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
6214 6215
            }
            else {
P
Peter Maydell 已提交
6216
                float_raise(float_flag_invalid, status);
B
bellard 已提交
6217 6218 6219 6220
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
6221
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
6222 6223
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
6224
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
6225
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6226 6227 6228 6229 6230
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
6231
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6232 6233 6234 6235 6236
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
6237
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
6238
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6239 6240 6241 6242 6243 6244 6245
        }
    }
    if ( aSign ) z = - z;
    return z;

}

6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
6305 6306
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
6335 6336 6337 6338 6339
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6340
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
6341 6342
{
    flag aSign;
6343
    int32_t aExp;
6344 6345
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
6346 6347 6348 6349 6350 6351 6352

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6353
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
6364
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6375
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
6376 6377
{
    flag aSign;
6378
    int32_t aExp;
6379
    uint64_t aSig0, aSig1;
B
bellard 已提交
6380 6381 6382 6383 6384 6385 6386

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6387
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6388 6389 6390 6391 6392 6393 6394 6395 6396
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
6397
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6408
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
6409 6410
{
    flag aSign;
6411
    int32_t aExp;
6412
    uint64_t aSig0, aSig1;
B
bellard 已提交
6413 6414 6415 6416 6417 6418 6419

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6420
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6421
        }
6422 6423
        return packFloatx80(aSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
6424 6425 6426 6427 6428 6429 6430 6431 6432
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6433
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6444
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
6445 6446
{
    flag aSign;
6447
    int32_t aExp;
6448
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
6449 6450 6451 6452 6453 6454 6455 6456
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
6457
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
6458 6459 6460 6461 6462 6463 6464
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
6465
        switch (status->float_rounding_mode) {
6466
        case float_round_nearest_even:
B
bellard 已提交
6467 6468 6469 6470 6471
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
6472
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
6473
                    ++z.high;
6474
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
6475 6476
                }
            }
6477
            break;
6478 6479 6480 6481 6482 6483 6484 6485 6486
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6497
            }
6498 6499 6500
            break;
        default:
            abort();
B
bellard 已提交
6501 6502 6503 6504 6505
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6506
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6507
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6508
            aSign = extractFloat128Sign( a );
6509
            switch (status->float_rounding_mode) {
B
bellard 已提交
6510 6511 6512 6513 6514 6515 6516 6517
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6518 6519 6520 6521 6522
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6539
        switch (status->float_rounding_mode) {
6540
        case float_round_nearest_even:
B
bellard 已提交
6541 6542 6543 6544
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6545
            break;
6546 6547 6548
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6549 6550 6551 6552
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6553 6554 6555
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6556 6557 6558 6559 6560 6561 6562 6563 6564
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6565 6566 6567 6568
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6569
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6583 6584
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6585
{
6586
    int32_t aExp, bExp, zExp;
6587
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6588
    int32_t expDiff;
B
bellard 已提交
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6599 6600 6601
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6616 6617 6618
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6634
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6635 6636 6637 6638
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6639
        if ( aExp == 0 ) {
6640
            if (status->flush_to_zero) {
6641
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
6642
                    float_raise(float_flag_output_denormal, status);
6643 6644 6645
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6646 6647
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
6662
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6674 6675
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6676
{
6677
    int32_t aExp, bExp, zExp;
6678
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
6679
    int32_t expDiff;
B
bellard 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6694
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6695
        }
P
Peter Maydell 已提交
6696
        float_raise(float_flag_invalid, status);
6697
        return float128_default_nan(status);
B
bellard 已提交
6698 6699 6700 6701 6702 6703 6704 6705 6706
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
6707 6708
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
6709 6710
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6711 6712 6713
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6731 6732 6733
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
6749 6750
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
6751 6752 6753 6754 6755 6756 6757 6758 6759

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6760
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6761 6762 6763 6764 6765 6766
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6767
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6768 6769
    }
    else {
P
Peter Maydell 已提交
6770
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6781
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6782 6783 6784 6785 6786 6787
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6788
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6789 6790
    }
    else {
P
Peter Maydell 已提交
6791
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6802
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6803 6804
{
    flag aSign, bSign, zSign;
6805
    int32_t aExp, bExp, zExp;
6806
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6820
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6821 6822 6823 6824 6825
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6826 6827 6828
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6829 6830
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6831
            float_raise(float_flag_invalid, status);
6832
            return float128_default_nan(status);
B
bellard 已提交
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
6855
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6865
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6866 6867
{
    flag aSign, bSign, zSign;
6868
    int32_t aExp, bExp, zExp;
6869 6870
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6882 6883 6884
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6885
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6886 6887 6888
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6889 6890 6891 6892 6893
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6894 6895 6896
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6897 6898 6899 6900 6901 6902
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6903
                float_raise(float_flag_invalid, status);
6904
                return float128_default_nan(status);
B
bellard 已提交
6905
            }
P
Peter Maydell 已提交
6906
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6927
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6928 6929 6930 6931 6932 6933 6934
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6935
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6936 6937 6938 6939 6940 6941
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6942
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6943 6944 6945 6946 6947 6948 6949 6950 6951

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6952
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
6953
{
6954
    flag aSign, zSign;
6955
    int32_t aExp, bExp, expDiff;
6956 6957 6958
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6970
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6971 6972 6973 6974
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6975 6976 6977
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6978 6979 6980 6981 6982
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6983
            float_raise(float_flag_invalid, status);
6984
            return float128_default_nan(status);
B
bellard 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
7039
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
7040
    add128(
7041
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
7042 7043 7044 7045 7046
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
7047
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
7048
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
7049 7050
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
7051 7052 7053 7054 7055 7056 7057 7058
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7059
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
7060 7061
{
    flag aSign;
7062
    int32_t aExp, zExp;
7063 7064
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
7065 7066 7067 7068 7069 7070

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
7071 7072 7073
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
7074 7075 7076 7077 7078 7079
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
7080
        float_raise(float_flag_invalid, status);
7081
        return float128_default_nan(status);
B
bellard 已提交
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
7095
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
7107
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
7117
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
7118 7119 7120 7121 7122

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
7123 7124
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
7125 7126 7127
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7128
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
7129 7130 7131 7132 7133 7134 7135
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7136
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7137 7138 7139 7140 7141 7142
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
7143
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
7144 7145 7146 7147 7148 7149
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
7150 7151 7152
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
7153 7154
*----------------------------------------------------------------------------*/

7155
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
7156 7157 7158 7159 7160 7161 7162 7163
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7164
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7165 7166 7167 7168 7169 7170 7171
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7172
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
7183 7184 7185
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
7186 7187
*----------------------------------------------------------------------------*/

7188
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
7189 7190 7191 7192 7193 7194 7195 7196
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7197
        float_raise(float_flag_invalid, status);
B
bellard 已提交
7198 7199 7200 7201 7202 7203 7204
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7205
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7206 7207 7208 7209 7210 7211 7212 7213
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

7214 7215
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
7216 7217 7218
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
7219 7220
*----------------------------------------------------------------------------*/

7221
int float128_unordered(float128 a, float128 b, float_status *status)
7222 7223 7224 7225 7226 7227
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
7228
        float_raise(float_flag_invalid, status);
7229 7230 7231 7232 7233
        return 1;
    }
    return 0;
}

B
bellard 已提交
7234 7235
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
7236 7237 7238
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
7239 7240
*----------------------------------------------------------------------------*/

7241
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7242 7243 7244 7245 7246 7247 7248
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7249 7250
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7251
            float_raise(float_flag_invalid, status);
7252
        }
B
bellard 已提交
7253 7254 7255 7256 7257 7258
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
7259
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7271
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7272 7273 7274 7275 7276 7277 7278 7279
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7280 7281
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7282
            float_raise(float_flag_invalid, status);
B
bellard 已提交
7283 7284 7285 7286 7287 7288 7289 7290
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7291
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7307
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
7308 7309 7310 7311 7312 7313 7314 7315
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7316 7317
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7318
            float_raise(float_flag_invalid, status);
B
bellard 已提交
7319 7320 7321 7322 7323 7324 7325 7326
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7327
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7328 7329 7330 7331 7332 7333 7334 7335
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

7336 7337 7338 7339 7340 7341 7342
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7343
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
7344 7345 7346 7347 7348 7349
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7350 7351
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7352
            float_raise(float_flag_invalid, status);
7353 7354 7355 7356 7357 7358
        }
        return 1;
    }
    return 0;
}

7359 7360
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
7361 7362 7363
{
    flag aSign, bSign;

7364 7365 7366 7367
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
7368 7369 7370 7371 7372
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
7373 7374
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7375
            float_raise(float_flag_invalid, status);
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7399
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7400
{
P
Peter Maydell 已提交
7401
    return floatx80_compare_internal(a, b, 0, status);
7402 7403
}

7404
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7405
{
P
Peter Maydell 已提交
7406
    return floatx80_compare_internal(a, b, 1, status);
7407 7408
}

7409 7410
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
7411 7412 7413 7414 7415 7416 7417 7418
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
7419 7420
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7421
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7443
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7444
{
P
Peter Maydell 已提交
7445
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
7446 7447
}

7448
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7449
{
P
Peter Maydell 已提交
7450
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
7451 7452
}

7453
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
7454 7455
{
    flag aSign;
7456
    int32_t aExp;
7457
    uint64_t aSig;
P
pbrook 已提交
7458

7459 7460 7461 7462
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
7463 7464 7465 7466
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7467 7468
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
7469
            return propagateFloatx80NaN(a, a, status);
7470
        }
P
pbrook 已提交
7471 7472
        return a;
    }
7473

7474 7475 7476 7477 7478 7479
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7480

7481 7482 7483 7484 7485 7486
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7487
    aExp += n;
7488 7489
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
7490 7491
}

7492
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7493 7494
{
    flag aSign;
7495
    int32_t aExp;
7496
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7497 7498 7499 7500 7501 7502

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7503
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
7504
            return propagateFloat128NaN(a, a, status);
7505
        }
P
pbrook 已提交
7506 7507
        return a;
    }
7508
    if (aExp != 0) {
7509
        aSig0 |= LIT64( 0x0001000000000000 );
7510
    } else if (aSig0 == 0 && aSig1 == 0) {
7511
        return a;
7512 7513 7514
    } else {
        aExp++;
    }
7515

7516 7517 7518 7519 7520 7521
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7522 7523
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
7524
                                         , status);
P
pbrook 已提交
7525 7526

}