softfloat.c 251.9 KB
Newer Older
1 2 3 4 5
/*
 * QEMU float support
 *
 * Derived from SoftFloat.
 */
B
bellard 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*============================================================================

This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
Package, Release 2b.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.

=============================================================================*/

38 39 40 41 42
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
#include "config.h"

43
#include "fpu/softfloat.h"
B
bellard 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
#include "softfloat-macros.h"

/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

void set_float_rounding_mode(int val STATUS_PARAM)
{
    STATUS(float_rounding_mode) = val;
}

B
bellard 已提交
67 68 69 70 71
void set_float_exception_flags(int val STATUS_PARAM)
{
    STATUS(float_exception_flags) = val;
}

B
bellard 已提交
72 73 74 75 76
void set_floatx80_rounding_precision(int val STATUS_PARAM)
{
    STATUS(floatx80_rounding_precision) = val;
}

77 78 79 80 81 82 83 84 85 86 87 88 89
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

INLINE uint32_t extractFloat16Frac(float16 a)
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

90
INLINE int_fast16_t extractFloat16Exp(float16 a)
91 92 93 94 95 96 97 98 99 100 101 102 103
{
    return (float16_val(a) >> 10) & 0x1f;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

INLINE flag extractFloat16Sign(float16 a)
{
    return float16_val(a)>>15;
}

B
bellard 已提交
104 105 106 107 108 109 110 111 112 113 114
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

115
static int32 roundAndPackInt32( flag zSign, uint64_t absZ STATUS_PARAM)
B
bellard 已提交
116 117 118 119
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
120
    int32_t z;
B
bellard 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    roundIncrement = 0x40;
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = 0x7F;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
        float_raise( float_flag_invalid STATUS_VAR);
146
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

165
static int64 roundAndPackInt64( flag zSign, uint64_t absZ0, uint64_t absZ1 STATUS_PARAM)
B
bellard 已提交
166 167 168
{
    int8 roundingMode;
    flag roundNearestEven, increment;
169
    int64_t z;
B
bellard 已提交
170 171 172

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
173
    increment = ( (int64_t) absZ1 < 0 );
B
bellard 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            increment = 0;
        }
        else {
            if ( zSign ) {
                increment = ( roundingMode == float_round_down ) && absZ1;
            }
            else {
                increment = ( roundingMode == float_round_up ) && absZ1;
            }
        }
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
190
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
191 192 193 194 195 196 197
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
        float_raise( float_flag_invalid STATUS_VAR);
        return
198
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
199 200 201 202 203 204 205
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
    if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

T
Tom Musta 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

static int64 roundAndPackUint64(flag zSign, uint64_t absZ0,
                                uint64_t absZ1 STATUS_PARAM)
{
    int8 roundingMode;
    flag roundNearestEven, increment;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = (roundingMode == float_round_nearest_even);
    increment = ((int64_t)absZ1 < 0);
    if (!roundNearestEven) {
        if (roundingMode == float_round_to_zero) {
            increment = 0;
        } else if (absZ1) {
            if (zSign) {
                increment = (roundingMode == float_round_down) && absZ1;
            } else {
                increment = (roundingMode == float_round_up) && absZ1;
            }
        }
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
        float_raise(float_flag_invalid STATUS_VAR);
        return 0;
    }

    if (absZ1) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return absZ0;
}

B
bellard 已提交
256 257 258 259
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

260
INLINE uint32_t extractFloat32Frac( float32 a )
B
bellard 已提交
261 262
{

P
pbrook 已提交
263
    return float32_val(a) & 0x007FFFFF;
B
bellard 已提交
264 265 266 267 268 269 270

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

271
INLINE int_fast16_t extractFloat32Exp(float32 a)
B
bellard 已提交
272 273
{

P
pbrook 已提交
274
    return ( float32_val(a)>>23 ) & 0xFF;
B
bellard 已提交
275 276 277 278 279 280 281 282 283 284

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

INLINE flag extractFloat32Sign( float32 a )
{

P
pbrook 已提交
285
    return float32_val(a)>>31;
B
bellard 已提交
286 287 288

}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
static float32 float32_squash_input_denormal(float32 a STATUS_PARAM)
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
304 305 306 307 308 309 310 311
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
312
 normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| single-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

333
INLINE float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig)
B
bellard 已提交
334 335
{

P
pbrook 已提交
336
    return make_float32(
337
          ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
B
bellard 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

363
static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
B
bellard 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    roundIncrement = 0x40;
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = 0x7F;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig & 0x7F;
388
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
389 390
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
391
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
392 393
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
394
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
395 396
        }
        if ( zExp < 0 ) {
397 398 399 400
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
429
 normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig STATUS_PARAM)
B
bellard 已提交
430 431 432 433 434 435 436 437 438 439 440 441
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( zSig ) - 1;
    return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

442
INLINE uint64_t extractFloat64Frac( float64 a )
B
bellard 已提交
443 444
{

P
pbrook 已提交
445
    return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
B
bellard 已提交
446 447 448 449 450 451 452

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

453
INLINE int_fast16_t extractFloat64Exp(float64 a)
B
bellard 已提交
454 455
{

P
pbrook 已提交
456
    return ( float64_val(a)>>52 ) & 0x7FF;
B
bellard 已提交
457 458 459 460 461 462 463 464 465 466

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

INLINE flag extractFloat64Sign( float64 a )
{

P
pbrook 已提交
467
    return float64_val(a)>>63;
B
bellard 已提交
468 469 470

}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
static float64 float64_squash_input_denormal(float64 a STATUS_PARAM)
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
486 487 488 489 490 491 492 493
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
494
 normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

515
INLINE float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig)
B
bellard 已提交
516 517
{

P
pbrook 已提交
518
    return make_float64(
519
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded
| to a subnormal number, and the underflow and inexact exceptions are raised
| if the abstract input cannot be represented exactly as a subnormal double-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

545
static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
B
bellard 已提交
546 547 548
{
    int8 roundingMode;
    flag roundNearestEven;
549
    int_fast16_t roundIncrement, roundBits;
B
bellard 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    roundIncrement = 0x200;
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = 0x3FF;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig & 0x3FF;
570
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
571 572
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
573
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
574 575
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
576
            return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
B
bellard 已提交
577 578
        }
        if ( zExp < 0 ) {
579 580 581 582
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
611
 normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig STATUS_PARAM)
B
bellard 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( zSig ) - 1;
    return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

625
INLINE uint64_t extractFloatx80Frac( floatx80 a )
B
bellard 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

INLINE int32 extractFloatx80Exp( floatx80 a )
{

    return a.high & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

INLINE flag extractFloatx80Sign( floatx80 a )
{

    return a.high>>15;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
664
 normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr )
B
bellard 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

679
INLINE floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig )
B
bellard 已提交
680 681 682 683
{
    floatx80 z;

    z.low = zSig;
684
    z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
B
bellard 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80
 roundAndPackFloatx80(
715
     int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
B
bellard 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
 STATUS_PARAM)
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;
    int64 roundIncrement, roundMask, roundBits;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            roundIncrement = 0;
        }
        else {
            roundIncrement = roundMask;
            if ( zSign ) {
                if ( roundingMode == float_round_up ) roundIncrement = 0;
            }
            else {
                if ( roundingMode == float_round_down ) roundIncrement = 0;
            }
        }
    }
    roundBits = zSig0 & roundMask;
752
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
753 754 755 756 757 758
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
759 760 761 762
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
763 764 765 766 767 768 769 770 771 772
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
            if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
            zSig0 += roundIncrement;
773
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
796
    increment = ( (int64_t) zSig1 < 0 );
B
bellard 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            increment = 0;
        }
        else {
            if ( zSign ) {
                increment = ( roundingMode == float_round_down ) && zSig1;
            }
            else {
                increment = ( roundingMode == float_round_up ) && zSig1;
            }
        }
    }
810
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
            if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
            if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
            if ( roundNearestEven ) {
839
                increment = ( (int64_t) zSig1 < 0 );
B
bellard 已提交
840 841 842 843 844 845 846 847 848 849 850 851
            }
            else {
                if ( zSign ) {
                    increment = ( roundingMode == float_round_down ) && zSig1;
                }
                else {
                    increment = ( roundingMode == float_round_up ) && zSig1;
                }
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
852 853
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
854 855 856 857 858 859 860 861 862 863 864 865
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
866
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

static floatx80
 normalizeRoundAndPackFloatx80(
887
     int8 roundingPrecision, flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1
B
bellard 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
 STATUS_PARAM)
{
    int8 shiftCount;

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
    return
        roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

910
INLINE uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
911 912 913 914 915 916 917 918 919 920 921
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

922
INLINE uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

INLINE int32 extractFloat128Exp( float128 a )
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

INLINE flag extractFloat128Sign( float128 a )
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
964 965
     uint64_t aSig0,
     uint64_t aSig1,
B
bellard 已提交
966
     int32 *zExpPtr,
967 968
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
 )
{
    int8 shiftCount;

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

INLINE float128
1007
 packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
1008 1009 1010 1011
{
    float128 z;

    z.low = zSig1;
1012
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128
 roundAndPackFloat128(
1040
     flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1, uint64_t zSig2 STATUS_PARAM)
B
bellard 已提交
1041 1042 1043 1044 1045 1046
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
1047
    increment = ( (int64_t) zSig2 < 0 );
B
bellard 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    if ( ! roundNearestEven ) {
        if ( roundingMode == float_round_to_zero ) {
            increment = 0;
        }
        else {
            if ( zSign ) {
                increment = ( roundingMode == float_round_down ) && zSig2;
            }
            else {
                increment = ( roundingMode == float_round_up ) && zSig2;
            }
        }
    }
1061
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
1089 1090 1091 1092
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
            if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
            if ( roundNearestEven ) {
1108
                increment = ( (int64_t) zSig2 < 0 );
B
bellard 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
            }
            else {
                if ( zSign ) {
                    increment = ( roundingMode == float_round_down ) && zSig2;
                }
                else {
                    increment = ( roundingMode == float_round_up ) && zSig2;
                }
            }
        }
    }
    if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

static float128
 normalizeRoundAndPackFloat128(
1144
     flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 STATUS_PARAM)
B
bellard 已提交
1145 1146
{
    int8 shiftCount;
1147
    uint64_t zSig2;
B
bellard 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1174
float32 int32_to_float32(int32_t a STATUS_PARAM)
B
bellard 已提交
1175 1176 1177
{
    flag zSign;

P
pbrook 已提交
1178
    if ( a == 0 ) return float32_zero;
1179
    if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
B
bellard 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1191
float64 int32_to_float64(int32_t a STATUS_PARAM)
B
bellard 已提交
1192 1193 1194 1195
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1196
    uint64_t zSig;
B
bellard 已提交
1197

P
pbrook 已提交
1198
    if ( a == 0 ) return float64_zero;
B
bellard 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 21;
    zSig = absA;
    return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1214
floatx80 int32_to_floatx80(int32_t a STATUS_PARAM)
B
bellard 已提交
1215 1216 1217 1218
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1219
    uint64_t zSig;
B
bellard 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1236
float128 int32_to_float128(int32_t a STATUS_PARAM)
B
bellard 已提交
1237 1238 1239 1240
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1241
    uint64_t zSig0;
B
bellard 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1258
float32 int64_to_float32(int64_t a STATUS_PARAM)
B
bellard 已提交
1259 1260 1261 1262 1263
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

P
pbrook 已提交
1264
    if ( a == 0 ) return float32_zero;
B
bellard 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) - 40;
    if ( 0 <= shiftCount ) {
        return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
    }
    else {
        shiftCount += 7;
        if ( shiftCount < 0 ) {
            shift64RightJamming( absA, - shiftCount, &absA );
        }
        else {
            absA <<= shiftCount;
        }
        return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
    }

}

1284
float32 uint64_to_float32(uint64_t a STATUS_PARAM)
J
j_mayer 已提交
1285 1286 1287
{
    int8 shiftCount;

P
pbrook 已提交
1288
    if ( a == 0 ) return float32_zero;
J
j_mayer 已提交
1289 1290
    shiftCount = countLeadingZeros64( a ) - 40;
    if ( 0 <= shiftCount ) {
1291
        return packFloat32(0, 0x95 - shiftCount, a<<shiftCount);
J
j_mayer 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300
    }
    else {
        shiftCount += 7;
        if ( shiftCount < 0 ) {
            shift64RightJamming( a, - shiftCount, &a );
        }
        else {
            a <<= shiftCount;
        }
1301
        return roundAndPackFloat32(0, 0x9C - shiftCount, a STATUS_VAR);
J
j_mayer 已提交
1302 1303 1304
    }
}

B
bellard 已提交
1305 1306 1307 1308 1309 1310
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1311
float64 int64_to_float64(int64_t a STATUS_PARAM)
B
bellard 已提交
1312 1313 1314
{
    flag zSign;

P
pbrook 已提交
1315
    if ( a == 0 ) return float64_zero;
1316
    if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
B
bellard 已提交
1317 1318 1319 1320 1321 1322 1323
        return packFloat64( 1, 0x43E, 0 );
    }
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );

}

1324
float64 uint64_to_float64(uint64_t a STATUS_PARAM)
J
j_mayer 已提交
1325
{
1326
    int exp =  0x43C;
J
j_mayer 已提交
1327

1328 1329 1330 1331 1332 1333 1334 1335
    if (a == 0) {
        return float64_zero;
    }
    if ((int64_t)a < 0) {
        shift64RightJamming(a, 1, &a);
        exp += 1;
    }
    return normalizeRoundAndPackFloat64(0, exp, a STATUS_VAR);
J
j_mayer 已提交
1336 1337
}

B
bellard 已提交
1338 1339 1340 1341 1342 1343 1344
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1345
floatx80 int64_to_floatx80(int64_t a STATUS_PARAM)
B
bellard 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1365
float128 int64_to_float128(int64_t a STATUS_PARAM)
B
bellard 已提交
1366 1367 1368 1369 1370
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;
    int32 zExp;
1371
    uint64_t zSig0, zSig1;
B
bellard 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

1392
float128 uint64_to_float128(uint64_t a STATUS_PARAM)
1393 1394 1395 1396 1397 1398 1399
{
    if (a == 0) {
        return float128_zero;
    }
    return normalizeRoundAndPackFloat128(0, 0x406E, a, 0 STATUS_VAR);
}

B
bellard 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float32_to_int32( float32 a STATUS_PARAM )
{
    flag aSign;
1413
    int_fast16_t aExp, shiftCount;
1414 1415
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1416

1417
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= 0x00800000;
    shiftCount = 0xAF - aExp;
    aSig64 = aSig;
    aSig64 <<= 32;
    if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
    return roundAndPackInt32( aSign, aSig64 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
{
    flag aSign;
1444
    int_fast16_t aExp, shiftCount;
1445
    uint32_t aSig;
1446
    int32_t z;
1447
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1448 1449 1450 1451 1452 1453

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x9E;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1454
        if ( float32_val(a) != 0xCF000000 ) {
B
bellard 已提交
1455 1456 1457
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
        }
1458
        return (int32_t) 0x80000000;
B
bellard 已提交
1459 1460 1461 1462 1463 1464 1465
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1466
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
B
bellard 已提交
1467 1468 1469 1470 1471 1472 1473
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

1484
int_fast16_t float32_to_int16_round_to_zero(float32 a STATUS_PARAM)
1485 1486
{
    flag aSign;
1487
    int_fast16_t aExp, shiftCount;
1488
    uint32_t aSig;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    int32 z;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x8E;
    if ( 0 <= shiftCount ) {
        if ( float32_val(a) != 0xC7000000 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return 0x7FFF;
            }
        }
1502
        return (int32_t) 0xffff8000;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    shiftCount -= 0x10;
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1513
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
1514 1515 1516 1517 1518 1519 1520 1521 1522
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) {
        z = - z;
    }
    return z;

}

B
bellard 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float32_to_int64( float32 a STATUS_PARAM )
{
    flag aSign;
1536
    int_fast16_t aExp, shiftCount;
1537 1538
    uint32_t aSig;
    uint64_t aSig64, aSigExtra;
1539
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = 0xBE - aExp;
    if ( shiftCount < 0 ) {
        float_raise( float_flag_invalid STATUS_VAR);
        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
            return LIT64( 0x7FFFFFFFFFFFFFFF );
        }
1550
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    }
    if ( aExp ) aSig |= 0x00800000;
    aSig64 = aSig;
    aSig64 <<= 40;
    shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
    return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
{
    flag aSign;
1573
    int_fast16_t aExp, shiftCount;
1574 1575
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1576
    int64 z;
1577
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1578 1579 1580 1581 1582 1583

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0xBE;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1584
        if ( float32_val(a) != 0xDF000000 ) {
B
bellard 已提交
1585 1586 1587 1588 1589
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
1590
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1591 1592 1593 1594 1595 1596 1597 1598
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig64 = aSig | 0x00800000;
    aSig64 <<= 40;
    z = aSig64>>( - shiftCount );
1599
    if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float64 float32_to_float64( float32 a STATUS_PARAM )
{
    flag aSign;
1617
    int_fast16_t aExp;
1618
    uint32_t aSig;
1619
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1620 1621 1622 1623 1624

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1625
        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1626 1627 1628 1629 1630 1631 1632
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1633
    return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
B
bellard 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
{
    flag aSign;
1647
    int_fast16_t aExp;
1648
    uint32_t aSig;
B
bellard 已提交
1649

1650
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1651 1652 1653 1654
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1655
        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1656 1657 1658 1659 1660 1661 1662
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
1663
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float128 float32_to_float128( float32 a STATUS_PARAM )
{
    flag aSign;
1677
    int_fast16_t aExp;
1678
    uint32_t aSig;
B
bellard 已提交
1679

1680
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1681 1682 1683 1684
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1685
        if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1686 1687 1688 1689 1690 1691 1692
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1693
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

}

/*----------------------------------------------------------------------------
| Rounds the single-precision floating-point value `a' to an integer, and
| returns the result as a single-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_round_to_int( float32 a STATUS_PARAM)
{
    flag aSign;
1707
    int_fast16_t aExp;
1708
    uint32_t lastBitMask, roundBitsMask;
B
bellard 已提交
1709
    int8 roundingMode;
1710
    uint32_t z;
1711
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720

    aExp = extractFloat32Exp( a );
    if ( 0x96 <= aExp ) {
        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp <= 0x7E ) {
1721
        if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat32Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
                return packFloat32( aSign, 0x7F, 0 );
            }
            break;
         case float_round_down:
P
pbrook 已提交
1731
            return make_float32(aSign ? 0xBF800000 : 0);
B
bellard 已提交
1732
         case float_round_up:
P
pbrook 已提交
1733
            return make_float32(aSign ? 0x80000000 : 0x3F800000);
B
bellard 已提交
1734 1735 1736 1737 1738 1739
        }
        return packFloat32( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x96 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
1740
    z = float32_val(a);
B
bellard 已提交
1741 1742 1743 1744 1745 1746
    roundingMode = STATUS(float_rounding_mode);
    if ( roundingMode == float_round_nearest_even ) {
        z += lastBitMask>>1;
        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
    }
    else if ( roundingMode != float_round_to_zero ) {
P
pbrook 已提交
1747
        if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) {
B
bellard 已提交
1748 1749 1750 1751
            z += roundBitsMask;
        }
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
1752 1753
    if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float32(z);
B
bellard 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the single-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
1767
    int_fast16_t aExp, bExp, zExp;
1768
    uint32_t aSig, bSig, zSig;
1769
    int_fast16_t expDiff;
B
bellard 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 6;
    bSig <<= 6;
    if ( 0 < expDiff ) {
        if ( aExp == 0xFF ) {
            if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= 0x20000000;
        }
        shift32RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return packFloat32( zSign, 0xFF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= 0x20000000;
        }
        shift32RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0xFF ) {
            if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
1811
        if ( aExp == 0 ) {
1812 1813 1814 1815 1816 1817
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat32(zSign, 0, 0);
            }
1818 1819
            return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
        }
B
bellard 已提交
1820 1821 1822 1823 1824 1825 1826
        zSig = 0x40000000 + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= 0x20000000;
    zSig = ( aSig + bSig )<<1;
    --zExp;
1827
    if ( (int32_t) zSig < 0 ) {
B
bellard 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the single-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
{
1846
    int_fast16_t aExp, bExp, zExp;
1847
    uint32_t aSig, bSig, zSig;
1848
    int_fast16_t expDiff;
B
bellard 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 7;
    bSig <<= 7;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0xFF ) {
        if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign ^ 1, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= 0x40000000;
    }
    shift32RightJamming( aSig, - expDiff, &aSig );
    bSig |= 0x40000000;
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= 0x40000000;
    }
    shift32RightJamming( bSig, expDiff, &bSig );
    aSig |= 0x40000000;
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the single-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_add( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign;
1920 1921
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return addFloat32Sigs( a, b, aSign STATUS_VAR);
    }
    else {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_sub( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign;
1943 1944
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_mul( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
1966
    int_fast16_t aExp, bExp, zExp;
1967 1968 1969
    uint32_t aSig, bSig;
    uint64_t zSig64;
    uint32_t zSig;
B
bellard 已提交
1970

1971 1972 1973
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x7F;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
2010
    shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
B
bellard 已提交
2011
    zSig = zSig64;
2012
    if ( 0 <= (int32_t) ( zSig<<1 ) ) {
B
bellard 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
        zSig <<= 1;
        --zExp;
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the single-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_div( float32 a, float32 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
2029
    int_fast16_t aExp, bExp, zExp;
2030
    uint32_t aSig, bSig, zSig;
2031 2032
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float32_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat32( zSign, 0xFF, 0 );
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x7D;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
2076
    zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2077
    if ( ( zSig & 0x3F ) == 0 ) {
2078
        zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
B
bellard 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_rem( float32 a, float32 b STATUS_PARAM )
{
2092
    flag aSign, zSign;
2093
    int_fast16_t aExp, bExp, expDiff;
2094 2095 2096 2097 2098
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
2099 2100
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
2142
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
2154 2155
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
2174
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
2175 2176 2177 2178
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
2179
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
2180 2181 2182 2183 2184
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM)
{
    flag aSign, bSign, cSign, zSign;
2199
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    uint32_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig64, cSig64, zSig64;
    uint32_t pSig;
    int shiftcount;
    flag signflip, infzero;

    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
    c = float32_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat32Frac(a);
    aExp = extractFloat32Exp(a);
    aSign = extractFloat32Sign(a);
    bSig = extractFloat32Frac(b);
    bExp = extractFloat32Exp(b);
    bSign = extractFloat32Sign(b);
    cSig = extractFloat32Frac(c);
    cExp = extractFloat32Exp(c);
    cSign = extractFloat32Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
               (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0xff) && aSig) ||
        ((bExp == 0xff) && bSig) ||
        ((cExp == 0xff) && cSig)) {
        return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0xff) || (bExp == 0xff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0xff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat32(cSign ^ signflip, 0xff, 0);
    }

    if (pInf) {
        return packFloat32(pSign ^ signflip, 0xff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat32(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
2287
        return packFloat32(cSign ^ signflip, cExp, cSig);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    }

    if (aExp == 0) {
        normalizeFloat32Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat32Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat32() takes.
     */
    pExp = aExp + bExp - 0x7e;
    aSig = (aSig | 0x00800000) << 7;
    bSig = (bSig | 0x00800000) << 8;
    pSig64 = (uint64_t)aSig * bSig;
    if ((int64_t)(pSig64 << 1) >= 0) {
        pSig64 <<= 1;
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now pSig64 is the significand of the multiply, with the explicit bit in
     * position 62.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift64RightJamming(pSig64, 32, &pSig64);
            pSig = pSig64;
            return roundAndPackFloat32(zSign, pExp - 1,
                                       pSig STATUS_VAR);
        }
        normalizeFloat32Subnormal(cSig, &cExp, &cSig);
    }

    cSig64 = (uint64_t)cSig << (62 - 23);
    cSig64 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 62 */
        zSig64 = pSig64 + cSig64;
        if ((int64_t)zSig64 < 0) {
            shift64RightJamming(zSig64, 1, &zSig64);
        } else {
            zExp--;
        }
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zSig64 = pSig64 - cSig64;
            zExp = pExp;
        } else if (expDiff < 0) {
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zSig64 = cSig64 - pSig64;
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (cSig64 < pSig64) {
                zSig64 = pSig64 - cSig64;
            } else if (pSig64 < cSig64) {
                zSig64 = cSig64 - pSig64;
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat32(zSign, 0, 0);
            }
        }
        --zExp;
        /* Normalize to put the explicit bit back into bit 62. */
        shiftcount = countLeadingZeros64(zSig64) - 1;
        zSig64 <<= shiftcount;
        zExp -= shiftcount;
    }
    shift64RightJamming(zSig64, 32, &zSig64);
    return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR);
}


B
bellard 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400
/*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 float32_sqrt( float32 a STATUS_PARAM )
{
    flag aSign;
2401
    int_fast16_t aExp, zExp;
2402 2403
    uint32_t aSig, zSig;
    uint64_t rem, term;
2404
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2405 2406 2407 2408 2409

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
pbrook 已提交
2410
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
B
bellard 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
2421
        if ( aSig == 0 ) return float32_zero;
B
bellard 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
    aSig = ( aSig | 0x00800000 )<<8;
    zSig = estimateSqrt32( aExp, aSig ) + 2;
    if ( ( zSig & 0x7F ) <= 5 ) {
        if ( zSig < 2 ) {
            zSig = 0x7FFFFFFF;
            goto roundAndPack;
        }
        aSig >>= aExp & 1;
2433 2434 2435
        term = ( (uint64_t) zSig ) * zSig;
        rem = ( ( (uint64_t) aSig )<<32 ) - term;
        while ( (int64_t) rem < 0 ) {
B
bellard 已提交
2436
            --zSig;
2437
            rem += ( ( (uint64_t) zSig )<<1 ) | 1;
B
bellard 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446
        }
        zSig |= ( rem != 0 );
    }
    shift32RightJamming( zSig, 1, &zSig );
 roundAndPack:
    return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );

}

A
Aurelien Jarno 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
2482 2483 2484 2485 2486
};

float32 float32_exp2( float32 a STATUS_PARAM )
{
    flag aSign;
2487
    int_fast16_t aExp;
2488
    uint32_t aSig;
A
Aurelien Jarno 已提交
2489 2490
    float64 r, x, xn;
    int i;
2491
    a = float32_squash_input_denormal(a STATUS_VAR);
A
Aurelien Jarno 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

    float_raise( float_flag_inexact STATUS_VAR);

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
    x = float32_to_float64(a STATUS_VAR);
    x = float64_mul(x, float64_ln2 STATUS_VAR);

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

        f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR);
        r = float64_add(r, f STATUS_VAR);

        xn = float64_mul(xn, x STATUS_VAR);
    }

    return float64_to_float32(r, status);
}

2527 2528 2529 2530 2531 2532 2533 2534
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
float32 float32_log2( float32 a STATUS_PARAM )
{
    flag aSign, zSign;
2535
    int_fast16_t aExp;
2536
    uint32_t aSig, zSig, i;
2537

2538
    a = float32_squash_input_denormal(a STATUS_VAR);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
2562
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

    return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR );
}

B
bellard 已提交
2575 2576
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2577 2578
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
2579 2580 2581
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2582
int float32_eq( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2583
{
2584
    uint32_t av, bv;
2585 2586
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2587 2588 2589 2590

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2591
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
2592 2593
        return 0;
    }
2594 2595 2596
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
2597 2598 2599 2600
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2601 2602 2603
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2604 2605
*----------------------------------------------------------------------------*/

2606
int float32_le( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2607 2608
{
    flag aSign, bSign;
2609
    uint32_t av, bv;
2610 2611
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2621 2622
    av = float32_val(a);
    bv = float32_val(b);
2623
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2624
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2625 2626 2627 2628 2629

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2630 2631 2632
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2633 2634
*----------------------------------------------------------------------------*/

2635
int float32_lt( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2636 2637
{
    flag aSign, bSign;
2638
    uint32_t av, bv;
2639 2640
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2650 2651
    av = float32_val(a);
    bv = float32_val(b);
2652
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2653
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2654 2655 2656

}

2657 2658
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
2659 2660 2661
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
*----------------------------------------------------------------------------*/

int float32_unordered( float32 a, float32 b STATUS_PARAM )
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}
2677

B
bellard 已提交
2678 2679
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2680 2681 2682
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
2683 2684
*----------------------------------------------------------------------------*/

2685
int float32_eq_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2686
{
2687 2688
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2689 2690 2691 2692

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2693 2694 2695
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
2696 2697
        return 0;
    }
2698 2699
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2709
int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2710 2711
{
    flag aSign, bSign;
2712
    uint32_t av, bv;
2713 2714
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2726 2727
    av = float32_val(a);
    bv = float32_val(b);
2728
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2729
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2740
int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
B
bellard 已提交
2741 2742
{
    flag aSign, bSign;
2743
    uint32_t av, bv;
2744 2745
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2757 2758
    av = float32_val(a);
    bv = float32_val(b);
2759
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2760
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2761 2762 2763

}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float32_unordered_quiet( float32 a, float32 b STATUS_PARAM )
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float64_to_int32( float64 a STATUS_PARAM )
{
    flag aSign;
2800
    int_fast16_t aExp, shiftCount;
2801
    uint64_t aSig;
2802
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x42C - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
{
    flag aSign;
2828
    int_fast16_t aExp, shiftCount;
2829
    uint64_t aSig, savedASig;
2830
    int32_t z;
2831
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x41E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
2853
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2854 2855 2856 2857 2858 2859 2860 2861
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

2872
int_fast16_t float64_to_int16_round_to_zero(float64 a STATUS_PARAM)
2873 2874
{
    flag aSign;
2875
    int_fast16_t aExp, shiftCount;
2876
    uint64_t aSig, savedASig;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    int32 z;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x40E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) {
            aSign = 0;
        }
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) {
        z = - z;
    }
    if ( ( (int16_t)z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
2905
        return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
2906 2907 2908 2909 2910 2911 2912
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;
}

B
bellard 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float64_to_int64( float64 a STATUS_PARAM )
{
    flag aSign;
2926
    int_fast16_t aExp, shiftCount;
2927
    uint64_t aSig, aSigExtra;
2928
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x43E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FF )
                      && ( aSig != LIT64( 0x0010000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
2944
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
        }
        aSigExtra = 0;
        aSig <<= - shiftCount;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
{
    flag aSign;
2969
    int_fast16_t aExp, shiftCount;
2970
    uint64_t aSig;
B
bellard 已提交
2971
    int64 z;
2972
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2973 2974 2975 2976 2977 2978 2979 2980

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = aExp - 0x433;
    if ( 0 <= shiftCount ) {
        if ( 0x43E <= aExp ) {
P
pbrook 已提交
2981
            if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
B
bellard 已提交
2982 2983 2984 2985 2986 2987 2988 2989
                float_raise( float_flag_invalid STATUS_VAR);
                if (    ! aSign
                     || (    ( aExp == 0x7FF )
                          && ( aSig != LIT64( 0x0010000000000000 ) ) )
                   ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
2990
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999
        }
        z = aSig<<shiftCount;
    }
    else {
        if ( aExp < 0x3FE ) {
            if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
            return 0;
        }
        z = aSig>>( - shiftCount );
3000
        if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float32 float64_to_float32( float64 a STATUS_PARAM )
{
    flag aSign;
3019
    int_fast16_t aExp;
3020 3021
    uint64_t aSig;
    uint32_t zSig;
3022
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3023 3024 3025 3026 3027

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3028
        if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

P
Paul Brook 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| half-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
3052
static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig)
P
Paul Brook 已提交
3053
{
3054
    return make_float16(
3055
        (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
P
Paul Brook 已提交
3056 3057 3058 3059
}

/* Half precision floats come in two formats: standard IEEE and "ARM" format.
   The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3060 3061

float32 float16_to_float32(float16 a, flag ieee STATUS_PARAM)
P
Paul Brook 已提交
3062 3063
{
    flag aSign;
3064
    int_fast16_t aExp;
3065
    uint32_t aSig;
P
Paul Brook 已提交
3066

3067 3068 3069
    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);
P
Paul Brook 已提交
3070 3071 3072

    if (aExp == 0x1f && ieee) {
        if (aSig) {
3073
            return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3074
        }
3075
        return packFloat32(aSign, 0xff, 0);
P
Paul Brook 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
    }
    if (aExp == 0) {
        int8 shiftCount;

        if (aSig == 0) {
            return packFloat32(aSign, 0, 0);
        }

        shiftCount = countLeadingZeros32( aSig ) - 21;
        aSig = aSig << shiftCount;
        aExp = -shiftCount;
    }
    return packFloat32( aSign, aExp + 0x70, aSig << 13);
}

3091
float16 float32_to_float16(float32 a, flag ieee STATUS_PARAM)
P
Paul Brook 已提交
3092 3093
{
    flag aSign;
3094
    int_fast16_t aExp;
3095 3096 3097
    uint32_t aSig;
    uint32_t mask;
    uint32_t increment;
P
Paul Brook 已提交
3098
    int8 roundingMode;
3099 3100 3101 3102
    int maxexp = ieee ? 15 : 16;
    bool rounding_bumps_exp;
    bool is_tiny = false;

3103
    a = float32_squash_input_denormal(a STATUS_VAR);
P
Paul Brook 已提交
3104 3105 3106 3107 3108 3109

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if (aSig) {
3110 3111
            /* Input is a NaN */
            if (!ieee) {
3112
                float_raise(float_flag_invalid STATUS_VAR);
3113 3114
                return packFloat16(aSign, 0, 0);
            }
3115 3116
            return commonNaNToFloat16(
                float32ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3117
        }
3118 3119 3120 3121 3122 3123
        /* Infinity */
        if (!ieee) {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
P
Paul Brook 已提交
3124
    }
3125
    if (aExp == 0 && aSig == 0) {
P
Paul Brook 已提交
3126 3127
        return packFloat16(aSign, 0, 0);
    }
3128 3129 3130 3131 3132 3133 3134
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
P
Paul Brook 已提交
3135 3136
    aSig |= 0x00800000;
    aExp -= 0x7f;
3137 3138 3139
    /* Calculate the mask of bits of the mantissa which are not
     * representable in half-precision and will be lost.
     */
P
Paul Brook 已提交
3140
    if (aExp < -14) {
3141
        /* Will be denormal in halfprec */
3142 3143 3144
        mask = 0x00ffffff;
        if (aExp >= -24) {
            mask >>= 25 + aExp;
P
Paul Brook 已提交
3145 3146
        }
    } else {
3147
        /* Normal number in halfprec */
P
Paul Brook 已提交
3148 3149 3150
        mask = 0x00001fff;
    }

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    roundingMode = STATUS(float_rounding_mode);
    switch (roundingMode) {
    case float_round_nearest_even:
        increment = (mask + 1) >> 1;
        if ((aSig & mask) == increment) {
            increment = aSig & (increment << 1);
        }
        break;
    case float_round_up:
        increment = aSign ? 0 : mask;
        break;
    case float_round_down:
        increment = aSign ? mask : 0;
        break;
    default: /* round_to_zero */
        increment = 0;
        break;
    }

    rounding_bumps_exp = (aSig + increment >= 0x01000000);

    if (aExp > maxexp || (aExp == maxexp && rounding_bumps_exp)) {
        if (ieee) {
            float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
P
Paul Brook 已提交
3175
            return packFloat16(aSign, 0x1f, 0);
3176 3177
        } else {
            float_raise(float_flag_invalid STATUS_VAR);
P
Paul Brook 已提交
3178 3179 3180
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
    }
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

    if (aExp < -14) {
        /* Note that flush-to-zero does not affect half-precision results */
        is_tiny =
            (STATUS(float_detect_tininess) == float_tininess_before_rounding)
            || (aExp < -15)
            || (!rounding_bumps_exp);
    }
    if (aSig & mask) {
        float_raise(float_flag_inexact STATUS_VAR);
        if (is_tiny) {
            float_raise(float_flag_underflow STATUS_VAR);
        }
    }

    aSig += increment;
    if (rounding_bumps_exp) {
        aSig >>= 1;
        aExp++;
    }

P
Paul Brook 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
    if (aExp < -24) {
        return packFloat16(aSign, 0, 0);
    }
    if (aExp < -14) {
        aSig >>= -14 - aExp;
        aExp = -14;
    }
    return packFloat16(aSign, aExp + 14, aSig >> 13);
}

B
bellard 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
{
    flag aSign;
3222
    int_fast16_t aExp;
3223
    uint64_t aSig;
B
bellard 已提交
3224

3225
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3226 3227 3228 3229
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3230
        if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float128 float64_to_float128( float64 a STATUS_PARAM )
{
    flag aSign;
3253
    int_fast16_t aExp;
3254
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
3255

3256
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3257 3258 3259 3260
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3261
        if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the double-precision floating-point value `a' to an integer, and
| returns the result as a double-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_round_to_int( float64 a STATUS_PARAM )
{
    flag aSign;
3284
    int_fast16_t aExp;
3285
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
3286
    int8 roundingMode;
3287
    uint64_t z;
3288
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297

    aExp = extractFloat64Exp( a );
    if ( 0x433 <= aExp ) {
        if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FF ) {
3298
        if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat64Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
                return packFloat64( aSign, 0x3FF, 0 );
            }
            break;
         case float_round_down:
P
pbrook 已提交
3308
            return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
B
bellard 已提交
3309
         case float_round_up:
P
pbrook 已提交
3310 3311
            return make_float64(
            aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
B
bellard 已提交
3312 3313 3314 3315 3316 3317
        }
        return packFloat64( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x433 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
3318
    z = float64_val(a);
B
bellard 已提交
3319 3320 3321 3322 3323 3324
    roundingMode = STATUS(float_rounding_mode);
    if ( roundingMode == float_round_nearest_even ) {
        z += lastBitMask>>1;
        if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
    }
    else if ( roundingMode != float_round_to_zero ) {
P
pbrook 已提交
3325
        if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) {
B
bellard 已提交
3326 3327 3328 3329
            z += roundBitsMask;
        }
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
3330 3331 3332
    if ( z != float64_val(a) )
        STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float64(z);
B
bellard 已提交
3333 3334 3335

}

P
pbrook 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
float64 float64_trunc_to_int( float64 a STATUS_PARAM)
{
    int oldmode;
    float64 res;
    oldmode = STATUS(float_rounding_mode);
    STATUS(float_rounding_mode) = float_round_to_zero;
    res = float64_round_to_int(a STATUS_VAR);
    STATUS(float_rounding_mode) = oldmode;
    return res;
}

B
bellard 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the double-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
3357
    int_fast16_t aExp, bExp, zExp;
3358
    uint64_t aSig, bSig, zSig;
3359
    int_fast16_t expDiff;
B
bellard 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 9;
    bSig <<= 9;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FF ) {
            if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return packFloat64( zSign, 0x7FF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FF ) {
            if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
3401
        if ( aExp == 0 ) {
3402 3403 3404 3405 3406 3407
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat64(zSign, 0, 0);
            }
3408 3409
            return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
        }
B
bellard 已提交
3410 3411 3412 3413 3414 3415 3416
        zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= LIT64( 0x2000000000000000 );
    zSig = ( aSig + bSig )<<1;
    --zExp;
3417
    if ( (int64_t) zSig < 0 ) {
B
bellard 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
{
3436
    int_fast16_t aExp, bExp, zExp;
3437
    uint64_t aSig, bSig, zSig;
3438
    int_fast16_t expDiff;
B
bellard 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 10;
    bSig <<= 10;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FF ) {
        if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign ^ 1, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( aSig, - expDiff, &aSig );
    bSig |= LIT64( 0x4000000000000000 );
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( bSig, expDiff, &bSig );
    aSig |= LIT64( 0x4000000000000000 );
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the double-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_add( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign;
3510 3511
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_sub( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign;
3533 3534
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_mul( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
3556
    int_fast16_t aExp, bExp, zExp;
3557
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
3558

3559 3560 3561
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FF;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
    zSig0 |= ( zSig1 != 0 );
3600
    if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
B
bellard 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        zSig0 <<= 1;
        --zExp;
    }
    return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the double-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_div( float64 a, float64 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
3617
    int_fast16_t aExp, bExp, zExp;
3618 3619 3620
    uint64_t aSig, bSig, zSig;
    uint64_t rem0, rem1;
    uint64_t term0, term1;
3621 3622
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float64_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat64( zSign, 0x7FF, 0 );
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FD;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
    zSig = estimateDiv128To64( aSig, 0, bSig );
    if ( ( zSig & 0x1FF ) <= 2 ) {
        mul64To128( bSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
3670
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
            --zSig;
            add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
        }
        zSig |= ( rem1 != 0 );
    }
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_rem( float64 a, float64 b STATUS_PARAM )
{
3688
    flag aSign, zSign;
3689
    int_fast16_t aExp, bExp, expDiff;
3690 3691 3692
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
3693

3694 3695
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
3755
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
3756 3757 3758 3759
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
3760
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
3761 3762 3763 3764 3765
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM)
{
    flag aSign, bSign, cSign, zSign;
3780
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
    uint64_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
    int shiftcount;
    flag signflip, infzero;

    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
    c = float64_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    bSig = extractFloat64Frac(b);
    bExp = extractFloat64Exp(b);
    bSign = extractFloat64Sign(b);
    cSig = extractFloat64Frac(c);
    cExp = extractFloat64Exp(c);
    cSign = extractFloat64Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
               (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0x7ff) && aSig) ||
        ((bExp == 0x7ff) && bSig) ||
        ((cExp == 0x7ff) && cSig)) {
        return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0x7ff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat64(cSign ^ signflip, 0x7ff, 0);
    }

    if (pInf) {
        return packFloat64(pSign ^ signflip, 0x7ff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat64(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
3867
        return packFloat64(cSign ^ signflip, cExp, cSig);
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
    }

    if (aExp == 0) {
        normalizeFloat64Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat64Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat64() takes.
     */
    pExp = aExp + bExp - 0x3fe;
    aSig = (aSig | LIT64(0x0010000000000000))<<10;
    bSig = (bSig | LIT64(0x0010000000000000))<<11;
    mul64To128(aSig, bSig, &pSig0, &pSig1);
    if ((int64_t)(pSig0 << 1) >= 0) {
        shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
     * bit in position 126.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
            return roundAndPackFloat64(zSign, pExp - 1,
                                       pSig1 STATUS_VAR);
        }
        normalizeFloat64Subnormal(cSig, &cExp, &cSig);
    }

    /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
     * significand of the addend, with the explicit bit in position 126.
     */
    cSig0 = cSig << (126 - 64 - 52);
    cSig1 = 0;
    cSig0 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 126 */
        add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
        if ((int64_t)zSig0 < 0) {
            shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
        } else {
            zExp--;
        }
        shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
        return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR);
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (lt128(cSig0, cSig1, pSig0, pSig1)) {
                sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
                sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat64(zSign, 0, 0);
            }
        }
        --zExp;
        /* Do the equivalent of normalizeRoundAndPackFloat64() but
         * starting with the significand in a pair of uint64_t.
         */
        if (zSig0) {
            shiftcount = countLeadingZeros64(zSig0) - 1;
            shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
            if (zSig1) {
                zSig0 |= 1;
            }
            zExp -= shiftcount;
        } else {
3978 3979 3980 3981 3982 3983 3984 3985 3986
            shiftcount = countLeadingZeros64(zSig1);
            if (shiftcount == 0) {
                zSig0 = (zSig1 >> 1) | (zSig1 & 1);
                zExp -= 63;
            } else {
                shiftcount--;
                zSig0 = zSig1 << shiftcount;
                zExp -= (shiftcount + 64);
            }
3987 3988 3989 3990 3991
        }
        return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR);
    }
}

B
bellard 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000
/*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 float64_sqrt( float64 a STATUS_PARAM )
{
    flag aSign;
4001
    int_fast16_t aExp, zExp;
4002 4003
    uint64_t aSig, zSig, doubleZSig;
    uint64_t rem0, rem1, term0, term1;
4004
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
4021
        if ( aSig == 0 ) return float64_zero;
B
bellard 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
    aSig |= LIT64( 0x0010000000000000 );
    zSig = estimateSqrt32( aExp, aSig>>21 );
    aSig <<= 9 - ( aExp & 1 );
    zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
    if ( ( zSig & 0x1FF ) <= 5 ) {
        doubleZSig = zSig<<1;
        mul64To128( zSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4033
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
            --zSig;
            doubleZSig -= 2;
            add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
        }
        zSig |= ( ( rem0 | rem1 ) != 0 );
    }
    return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );

}

4044 4045 4046 4047 4048 4049 4050 4051
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
float64 float64_log2( float64 a STATUS_PARAM )
{
    flag aSign, zSign;
4052
    int_fast16_t aExp;
4053
    uint64_t aSig, aSig0, aSig1, zSig, i;
4054
    a = float64_squash_input_denormal(a STATUS_VAR);
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4076
    zSig = (uint64_t)aExp << 52;
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
    return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR );
}

B
bellard 已提交
4091 4092
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4093 4094
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4095 4096 4097
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4098
int float64_eq( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4099
{
4100
    uint64_t av, bv;
4101 4102
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4103 4104 4105 4106

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4107
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
4108 4109
        return 0;
    }
P
pbrook 已提交
4110
    av = float64_val(a);
P
pbrook 已提交
4111
    bv = float64_val(b);
4112
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4113 4114 4115 4116 4117

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4118 4119 4120
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4121 4122
*----------------------------------------------------------------------------*/

4123
int float64_le( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4124 4125
{
    flag aSign, bSign;
4126
    uint64_t av, bv;
4127 4128
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4138
    av = float64_val(a);
P
pbrook 已提交
4139
    bv = float64_val(b);
4140
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4141
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4142 4143 4144 4145 4146

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4147 4148 4149
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4150 4151
*----------------------------------------------------------------------------*/

4152
int float64_lt( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4153 4154
{
    flag aSign, bSign;
4155
    uint64_t av, bv;
B
bellard 已提交
4156

4157 4158
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4159 4160 4161 4162 4163 4164 4165 4166
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4167
    av = float64_val(a);
P
pbrook 已提交
4168
    bv = float64_val(b);
4169
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4170
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4171 4172 4173

}

4174 4175
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4176 4177 4178
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
*----------------------------------------------------------------------------*/

int float64_unordered( float64 a, float64 b STATUS_PARAM )
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
4195 4196
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4197 4198 4199
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4200 4201
*----------------------------------------------------------------------------*/

4202
int float64_eq_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4203
{
4204
    uint64_t av, bv;
4205 4206
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4207 4208 4209 4210

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4211 4212 4213
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
4214 4215
        return 0;
    }
P
pbrook 已提交
4216
    av = float64_val(a);
P
pbrook 已提交
4217
    bv = float64_val(b);
4218
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4229
int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4230 4231
{
    flag aSign, bSign;
4232
    uint64_t av, bv;
4233 4234
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4246
    av = float64_val(a);
P
pbrook 已提交
4247
    bv = float64_val(b);
4248
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4249
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4260
int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
B
bellard 已提交
4261 4262
{
    flag aSign, bSign;
4263
    uint64_t av, bv;
4264 4265
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4277
    av = float64_val(a);
P
pbrook 已提交
4278
    bv = float64_val(b);
4279
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4280
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4281 4282 4283

}

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float64_unordered_quiet( float64 a, float64 b STATUS_PARAM )
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4321
    uint64_t aSig;
B
bellard 已提交
4322 4323 4324 4325

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4326
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4348
    uint64_t aSig, savedASig;
4349
    int32_t z;
B
bellard 已提交
4350 4351 4352 4353 4354

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4355
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
4370
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4393
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig != LIT64( 0x8000000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4408
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
4433
    uint64_t aSig;
B
bellard 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
    int64 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4448
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4449 4450 4451 4452 4453 4454
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    z = aSig>>( - shiftCount );
4455
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4474
    uint64_t aSig;
B
bellard 已提交
4475 4476 4477 4478 4479

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4480
        if ( (uint64_t) ( aSig<<1 ) ) {
4481
            return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
    return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4502
    uint64_t aSig, zSig;
B
bellard 已提交
4503 4504 4505 4506 4507

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4508
        if ( (uint64_t) ( aSig<<1 ) ) {
4509
            return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
    return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
{
    flag aSign;
4529
    int_fast16_t aExp;
4530
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4531 4532 4533 4534

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4535
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
4536
        return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
4554
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4555 4556 4557 4558 4559
    int8 roundingMode;
    floatx80 z;

    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4560
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
B
bellard 已提交
4561 4562 4563 4564 4565 4566
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4567
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4568 4569 4570 4571 4572 4573
            return a;
        }
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloatx80Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
4574
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
    roundingMode = STATUS(float_rounding_mode);
    if ( roundingMode == float_round_nearest_even ) {
        z.low += lastBitMask>>1;
        if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
    }
    else if ( roundingMode != float_round_to_zero ) {
        if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
            z.low += roundBitsMask;
        }
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
    if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
4627
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636
    int32 expDiff;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
4637
            if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4638 4639 4640 4641 4642 4643 4644 4645
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
4646
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4647 4648 4649 4650 4651 4652 4653 4654
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
4655
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
                return propagateFloatx80NaN( a, b STATUS_VAR );
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
4670
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
{
    int32 aExp, bExp, zExp;
4693
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
    int32 expDiff;
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
4705
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
4723
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
4735
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    return
        normalizeRoundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
4802
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
4813 4814
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
4815 4816 4817 4818 4819 4820
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
4821
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
4841
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
4861 4862
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
4873
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4874
        if ( bExp == 0x7FFF ) {
4875
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4876 4877 4878 4879 4880
            goto invalid;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
4881
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = floatx80_default_nan_low;
                z.high = floatx80_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
4911
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4912 4913 4914 4915
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
4916
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
4917 4918
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
4919
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
{
4939
    flag aSign, zSign;
B
bellard 已提交
4940
    int32 aExp, bExp, expDiff;
4941 4942
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
4943 4944 4945 4946 4947 4948 4949 4950
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
4951 4952
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
4953 4954 4955 4956 4957
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
4958
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
4972
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
            80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, zExp;
5037 5038
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5039 5040 5041 5042 5043 5044
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5045
        if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
B
bellard 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5068
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5080
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
5098 5099 5100 5101
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5102 5103
*----------------------------------------------------------------------------*/

5104
int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5105 5106 5107
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5108
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5109
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5110
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5111
       ) {
5112
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
5113 5114 5115 5116 5117 5118
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5119
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5120 5121 5122 5123 5124 5125 5126
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5127 5128 5129
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5130 5131
*----------------------------------------------------------------------------*/

5132
int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5133 5134 5135 5136
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5137
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5138
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5139
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5149
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5160 5161 5162
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5163 5164
*----------------------------------------------------------------------------*/

5165
int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5166 5167 5168 5169
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5170
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5171
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5172
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5182
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5183 5184 5185 5186 5187 5188 5189 5190
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5191 5192
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5193 5194 5195
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
*----------------------------------------------------------------------------*/
int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM )
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
5210
/*----------------------------------------------------------------------------
5211
| Returns 1 if the extended double-precision floating-point value `a' is
5212 5213 5214
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5215 5216
*----------------------------------------------------------------------------*/

5217
int floatx80_eq_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5218 5219 5220
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5221
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5222
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5223
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5224
       ) {
5225 5226 5227 5228
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
5229 5230 5231 5232 5233 5234
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5235
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5247
int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5248 5249 5250 5251
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5252
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5253
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5254
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5267
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5283
int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
B
bellard 已提交
5284 5285 5286 5287
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5288
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5289
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5290
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5303
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5304 5305 5306 5307 5308 5309 5310 5311
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
int floatx80_unordered_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int32 float128_to_int32( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5348
    uint64_t aSig0, aSig1;
B
bellard 已提交
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
    return roundAndPackInt32( aSign, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5377
    uint64_t aSig0, aSig1, savedASig;
5378
    int32_t z;
B
bellard 已提交
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
5402
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

int64 float128_to_int64( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5425
    uint64_t aSig0, aSig1;
B
bellard 已提交
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5443
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
    return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, shiftCount;
5468
    uint64_t aSig0, aSig1;
B
bellard 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
    int64 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
                if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
            }
            else {
                float_raise( float_flag_invalid STATUS_VAR);
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5490
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5491 5492
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5493
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
B
bellard 已提交
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
                STATUS(float_exception_flags) |= float_flag_inexact;
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5506
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
B
bellard 已提交
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float32 float128_to_float32( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5526 5527
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5528 5529 5530 5531 5532 5533 5534

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5535
            return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

float64 float128_to_float64( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5561
    uint64_t aSig0, aSig1;
B
bellard 已提交
5562 5563 5564 5565 5566 5567 5568

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5569
            return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
    return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5594
    uint64_t aSig0, aSig1;
B
bellard 已提交
5595 5596 5597 5598 5599 5600 5601

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5602
            return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
        }
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
    return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_round_to_int( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp;
5629
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
    int8 roundingMode;
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
                return propagateFloat128NaN( a, a STATUS_VAR );
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
        roundingMode = STATUS(float_rounding_mode);
        if ( roundingMode == float_round_nearest_even ) {
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
5654
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
5655
                    ++z.high;
5656
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
                }
            }
        }
        else if ( roundingMode != float_round_to_zero ) {
            if (   extractFloat128Sign( z )
                 ^ ( roundingMode == float_round_up ) ) {
                add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
            }
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
5670
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
B
bellard 已提交
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
            STATUS(float_exception_flags) |= float_flag_inexact;
            aSign = extractFloat128Sign( a );
            switch ( STATUS(float_rounding_mode) ) {
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
        roundingMode = STATUS(float_rounding_mode);
        if ( roundingMode == float_round_nearest_even ) {
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
        }
        else if ( roundingMode != float_round_to_zero ) {
            if (   extractFloat128Sign( z )
                 ^ ( roundingMode == float_round_up ) ) {
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
5732
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
B
bellard 已提交
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
    int32 expDiff;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
                return propagateFloat128NaN( a, b STATUS_VAR );
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
5780
        if ( aExp == 0 ) {
5781 5782 5783 5784 5785 5786
            if (STATUS(flush_to_zero)) {
                if (zSig0 | zSig1) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat128(zSign, 0, 0, 0);
            }
5787 5788
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
{
    int32 aExp, bExp, zExp;
5818
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
B
bellard 已提交
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
    int32 expDiff;
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
    return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_add( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_sub( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_mul( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
5943
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_div( float128 a, float128 b STATUS_PARAM )
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
6007 6008
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = float128_default_nan_low;
                z.high = float128_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6062
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6063 6064 6065 6066 6067 6068 6069
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6070
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_rem( float128 a, float128 b STATUS_PARAM )
{
6089
    flag aSign, zSign;
B
bellard 已提交
6090
    int32 aExp, bExp, expDiff;
6091 6092 6093
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6175
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6176
    add128(
6177
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6178 6179 6180 6181 6182
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6183
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
    return
        normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

float128 float128_sqrt( float128 a STATUS_PARAM )
{
    flag aSign;
    int32 aExp, zExp;
6200 6201
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6233
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6245
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6261 6262
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6263 6264 6265
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6266
int float128_eq( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6267 6268 6269 6270 6271 6272 6273
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6274
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
6275 6276 6277 6278 6279 6280
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6281
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6282 6283 6284 6285 6286 6287
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6288 6289 6290
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6291 6292
*----------------------------------------------------------------------------*/

6293
int float128_le( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6310
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6321 6322 6323
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6324 6325
*----------------------------------------------------------------------------*/

6326
int float128_lt( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6343
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6344 6345 6346 6347 6348 6349 6350 6351
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6352 6353
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6354 6355 6356
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
*----------------------------------------------------------------------------*/

int float128_unordered( float128 a, float128 b STATUS_PARAM )
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
6372 6373
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6374 6375 6376
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6377 6378
*----------------------------------------------------------------------------*/

6379
int float128_eq_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6380 6381 6382 6383 6384 6385 6386
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6387 6388 6389 6390
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
6391 6392 6393 6394 6395 6396
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6397
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6409
int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6429
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6445
int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
B
bellard 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6465
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6466 6467 6468 6469 6470 6471 6472 6473
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

int float128_unordered_quiet( float128 a, float128 b STATUS_PARAM )
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
6497
/* misc functions */
6498
float32 uint32_to_float32(uint32_t a STATUS_PARAM)
B
bellard 已提交
6499 6500 6501 6502
{
    return int64_to_float32(a STATUS_VAR);
}

6503
float64 uint32_to_float64(uint32_t a STATUS_PARAM)
B
bellard 已提交
6504 6505 6506 6507
{
    return int64_to_float64(a STATUS_VAR);
}

6508
uint32 float32_to_uint32( float32 a STATUS_PARAM )
B
bellard 已提交
6509 6510
{
    int64_t v;
6511
    uint32 res;
6512
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6513 6514 6515 6516 6517 6518 6519

    v = float32_to_int64(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6520
        return v;
B
bellard 已提交
6521
    }
6522 6523
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6524 6525 6526
    return res;
}

6527
uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
B
bellard 已提交
6528 6529
{
    int64_t v;
6530
    uint32 res;
6531
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6532 6533 6534 6535 6536 6537 6538

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6539
        return v;
B
bellard 已提交
6540
    }
6541 6542
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6543 6544 6545
    return res;
}

6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
int_fast16_t float32_to_int16(float32 a STATUS_PARAM)
{
    int32_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

uint_fast16_t float32_to_uint16(float32 a STATUS_PARAM)
{
    int32_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

6586
uint_fast16_t float32_to_uint16_round_to_zero(float32 a STATUS_PARAM)
6587 6588
{
    int64_t v;
6589
    uint_fast16_t res;
6590
    int old_exc_flags = get_float_exception_flags(status);
6591 6592 6593 6594 6595 6596 6597

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
6598
        return v;
6599
    }
6600 6601
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
6602 6603 6604
    return res;
}

6605
uint32 float64_to_uint32( float64 a STATUS_PARAM )
B
bellard 已提交
6606 6607
{
    int64_t v;
6608
    uint32 res;
B
bellard 已提交
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622

    v = float64_to_int64(a STATUS_VAR);
    if (v < 0) {
        res = 0;
        float_raise( float_flag_invalid STATUS_VAR);
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
        float_raise( float_flag_invalid STATUS_VAR);
    } else {
        res = v;
    }
    return res;
}

6623
uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
B
bellard 已提交
6624 6625
{
    int64_t v;
6626
    uint32 res;
B
bellard 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640

    v = float64_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
        float_raise( float_flag_invalid STATUS_VAR);
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
        float_raise( float_flag_invalid STATUS_VAR);
    } else {
        res = v;
    }
    return res;
}

6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
int_fast16_t float64_to_int16(float64 a STATUS_PARAM)
{
    int64_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

uint_fast16_t float64_to_uint16(float64 a STATUS_PARAM)
{
    int64_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

6681
uint_fast16_t float64_to_uint16_round_to_zero(float64 a STATUS_PARAM)
6682 6683
{
    int64_t v;
6684
    uint_fast16_t res;
6685
    int old_exc_flags = get_float_exception_flags(status);
6686 6687 6688 6689 6690 6691 6692

    v = float64_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
6693
        return v;
6694
    }
6695 6696
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
6697 6698 6699
    return res;
}

T
Tom Musta 已提交
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/
J
j_mayer 已提交
6711

T
Tom Musta 已提交
6712 6713 6714 6715 6716 6717
uint64_t float64_to_uint64(float64 a STATUS_PARAM)
{
    flag aSign;
    int_fast16_t aExp, shiftCount;
    uint64_t aSig, aSigExtra;
    a = float64_squash_input_denormal(a STATUS_VAR);
J
j_mayer 已提交
6718

T
Tom Musta 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aSign && (aExp > 1022)) {
        float_raise(float_flag_invalid STATUS_VAR);
        if (float64_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig |= LIT64(0x0010000000000000);
    }
    shiftCount = 0x433 - aExp;
    if (shiftCount <= 0) {
        if (0x43E < aExp) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        aSigExtra = 0;
        aSig <<= -shiftCount;
    } else {
        shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
    }
    return roundAndPackUint64(aSign, aSig, aSigExtra STATUS_VAR);
J
j_mayer 已提交
6745 6746 6747 6748 6749 6750
}

uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
{
    int64_t v;

P
pbrook 已提交
6751 6752 6753
    v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR));
    v += float64_val(a);
    v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR);
J
j_mayer 已提交
6754 6755 6756 6757

    return v - INT64_MIN;
}

B
bellard 已提交
6758
#define COMPARE(s, nan_exp)                                                  \
6759
INLINE int float ## s ## _compare_internal( float ## s a, float ## s b,      \
B
bellard 已提交
6760 6761 6762
                                      int is_quiet STATUS_PARAM )            \
{                                                                            \
    flag aSign, bSign;                                                       \
6763
    uint ## s ## _t av, bv;                                                  \
6764 6765
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);                  \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);                  \
B
bellard 已提交
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
                                                                             \
    if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \
         extractFloat ## s ## Frac( a ) ) ||                                 \
        ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
          extractFloat ## s ## Frac( b ) )) {                                \
        if (!is_quiet ||                                                     \
            float ## s ## _is_signaling_nan( a ) ||                          \
            float ## s ## _is_signaling_nan( b ) ) {                         \
            float_raise( float_flag_invalid STATUS_VAR);                     \
        }                                                                    \
        return float_relation_unordered;                                     \
    }                                                                        \
    aSign = extractFloat ## s ## Sign( a );                                  \
    bSign = extractFloat ## s ## Sign( b );                                  \
P
pbrook 已提交
6780
    av = float ## s ## _val(a);                                              \
6781
    bv = float ## s ## _val(b);                                              \
B
bellard 已提交
6782
    if ( aSign != bSign ) {                                                  \
6783
        if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) {                   \
B
bellard 已提交
6784 6785 6786 6787 6788 6789
            /* zero case */                                                  \
            return float_relation_equal;                                     \
        } else {                                                             \
            return 1 - (2 * aSign);                                          \
        }                                                                    \
    } else {                                                                 \
P
pbrook 已提交
6790
        if (av == bv) {                                                      \
B
bellard 已提交
6791 6792
            return float_relation_equal;                                     \
        } else {                                                             \
P
pbrook 已提交
6793
            return 1 - 2 * (aSign ^ ( av < bv ));                            \
B
bellard 已提交
6794 6795 6796 6797
        }                                                                    \
    }                                                                        \
}                                                                            \
                                                                             \
6798
int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM )        \
B
bellard 已提交
6799 6800 6801 6802
{                                                                            \
    return float ## s ## _compare_internal(a, b, 0 STATUS_VAR);              \
}                                                                            \
                                                                             \
6803
int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM )  \
B
bellard 已提交
6804 6805 6806 6807 6808 6809
{                                                                            \
    return float ## s ## _compare_internal(a, b, 1 STATUS_VAR);              \
}

COMPARE(32, 0xff)
COMPARE(64, 0x7ff)
P
pbrook 已提交
6810

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
INLINE int floatx80_compare_internal( floatx80 a, floatx80 b,
                                      int is_quiet STATUS_PARAM )
{
    flag aSign, bSign;

    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
            floatx80_is_signaling_nan( a ) ||
            floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
{
    return floatx80_compare_internal(a, b, 0 STATUS_VAR);
}

int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
    return floatx80_compare_internal(a, b, 1 STATUS_VAR);
}

B
blueswir1 已提交
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
INLINE int float128_compare_internal( float128 a, float128 b,
                                      int is_quiet STATUS_PARAM )
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
            float128_is_signaling_nan( a ) ||
            float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

int float128_compare( float128 a, float128 b STATUS_PARAM )
{
    return float128_compare_internal(a, b, 0 STATUS_VAR);
}

int float128_compare_quiet( float128 a, float128 b STATUS_PARAM )
{
    return float128_compare_internal(a, b, 1 STATUS_VAR);
}

6901 6902 6903
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
6904 6905 6906 6907 6908 6909 6910
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
6911
 */
6912
#define MINMAX(s)                                                       \
6913
INLINE float ## s float ## s ## _minmax(float ## s a, float ## s b,     \
6914
                                        int ismin, int isieee STATUS_PARAM) \
6915 6916 6917 6918 6919 6920 6921
{                                                                       \
    flag aSign, bSign;                                                  \
    uint ## s ## _t av, bv;                                             \
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);             \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);             \
    if (float ## s ## _is_any_nan(a) ||                                 \
        float ## s ## _is_any_nan(b)) {                                 \
6922 6923 6924 6925 6926 6927 6928 6929 6930
        if (isieee) {                                                   \
            if (float ## s ## _is_quiet_nan(a) &&                       \
                !float ## s ##_is_any_nan(b)) {                         \
                return b;                                               \
            } else if (float ## s ## _is_quiet_nan(b) &&                \
                       !float ## s ## _is_any_nan(a)) {                 \
                return a;                                               \
            }                                                           \
        }                                                               \
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
        return propagateFloat ## s ## NaN(a, b STATUS_VAR);             \
    }                                                                   \
    aSign = extractFloat ## s ## Sign(a);                               \
    bSign = extractFloat ## s ## Sign(b);                               \
    av = float ## s ## _val(a);                                         \
    bv = float ## s ## _val(b);                                         \
    if (aSign != bSign) {                                               \
        if (ismin) {                                                    \
            return aSign ? a : b;                                       \
        } else {                                                        \
            return aSign ? b : a;                                       \
        }                                                               \
    } else {                                                            \
        if (ismin) {                                                    \
            return (aSign ^ (av < bv)) ? a : b;                         \
        } else {                                                        \
            return (aSign ^ (av < bv)) ? b : a;                         \
        }                                                               \
    }                                                                   \
}                                                                       \
                                                                        \
float ## s float ## s ## _min(float ## s a, float ## s b STATUS_PARAM)  \
{                                                                       \
6954
    return float ## s ## _minmax(a, b, 1, 0 STATUS_VAR);                \
6955 6956 6957 6958
}                                                                       \
                                                                        \
float ## s float ## s ## _max(float ## s a, float ## s b STATUS_PARAM)  \
{                                                                       \
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
    return float ## s ## _minmax(a, b, 0, 0 STATUS_VAR);                \
}                                                                       \
                                                                        \
float ## s float ## s ## _minnum(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
    return float ## s ## _minmax(a, b, 1, 1 STATUS_VAR);                \
}                                                                       \
                                                                        \
float ## s float ## s ## _maxnum(float ## s a, float ## s b STATUS_PARAM) \
{                                                                       \
    return float ## s ## _minmax(a, b, 0, 1 STATUS_VAR);                \
6970 6971
}

6972 6973
MINMAX(32)
MINMAX(64)
6974 6975


P
pbrook 已提交
6976 6977 6978 6979
/* Multiply A by 2 raised to the power N.  */
float32 float32_scalbn( float32 a, int n STATUS_PARAM )
{
    flag aSign;
6980
    int16_t aExp;
6981
    uint32_t aSig;
P
pbrook 已提交
6982

6983
    a = float32_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
6984 6985 6986 6987 6988
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF ) {
6989 6990 6991
        if ( aSig ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
6992 6993
        return a;
    }
6994 6995 6996 6997 6998
    if ( aExp != 0 )
        aSig |= 0x00800000;
    else if ( aSig == 0 )
        return a;

6999 7000 7001 7002 7003 7004
    if (n > 0x200) {
        n = 0x200;
    } else if (n < -0x200) {
        n = -0x200;
    }

7005 7006 7007
    aExp += n - 1;
    aSig <<= 7;
    return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7008 7009 7010 7011 7012
}

float64 float64_scalbn( float64 a, int n STATUS_PARAM )
{
    flag aSign;
7013
    int16_t aExp;
7014
    uint64_t aSig;
P
pbrook 已提交
7015

7016
    a = float64_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
7017 7018 7019 7020 7021
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0x7FF ) {
7022 7023 7024
        if ( aSig ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7025 7026
        return a;
    }
7027 7028 7029 7030 7031
    if ( aExp != 0 )
        aSig |= LIT64( 0x0010000000000000 );
    else if ( aSig == 0 )
        return a;

7032 7033 7034 7035 7036 7037
    if (n > 0x1000) {
        n = 0x1000;
    } else if (n < -0x1000) {
        n = -0x1000;
    }

7038 7039 7040
    aExp += n - 1;
    aSig <<= 10;
    return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7041 7042 7043 7044 7045
}

floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
{
    flag aSign;
7046
    int32_t aExp;
7047
    uint64_t aSig;
P
pbrook 已提交
7048 7049 7050 7051 7052

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7053 7054 7055 7056
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7057 7058
        return a;
    }
7059

7060 7061 7062
    if (aExp == 0 && aSig == 0)
        return a;

7063 7064 7065 7066 7067 7068
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7069
    aExp += n;
7070 7071
    return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
                                          aSign, aExp, aSig, 0 STATUS_VAR );
P
pbrook 已提交
7072 7073 7074 7075 7076
}

float128 float128_scalbn( float128 a, int n STATUS_PARAM )
{
    flag aSign;
7077
    int32_t aExp;
7078
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7079 7080 7081 7082 7083 7084

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7085 7086 7087
        if ( aSig0 | aSig1 ) {
            return propagateFloat128NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7088 7089
        return a;
    }
7090 7091 7092 7093 7094
    if ( aExp != 0 )
        aSig0 |= LIT64( 0x0001000000000000 );
    else if ( aSig0 == 0 && aSig1 == 0 )
        return a;

7095 7096 7097 7098 7099 7100
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7101 7102 7103
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
                                          STATUS_VAR );
P
pbrook 已提交
7104 7105

}