softfloat.c 270.5 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84 85 86
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
#include "config.h"

87
#include "fpu/softfloat.h"
B
bellard 已提交
88

89 90 91
/* We only need stdlib for abort() */
#include <stdlib.h>

B
bellard 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
#include "softfloat-macros.h"

/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

109 110 111 112
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

113
static inline uint32_t extractFloat16Frac(float16 a)
114 115 116 117 118 119 120 121
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

122
static inline int_fast16_t extractFloat16Exp(float16 a)
123 124 125 126 127 128 129 130
{
    return (float16_val(a) >> 10) & 0x1f;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

131
static inline flag extractFloat16Sign(float16 a)
132 133 134 135
{
    return float16_val(a)>>15;
}

B
bellard 已提交
136 137 138 139 140 141 142 143 144 145 146
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

147
static int32 roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
148 149 150 151
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
152
    int32_t z;
B
bellard 已提交
153 154 155

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
156 157
    switch (roundingMode) {
    case float_round_nearest_even:
158
    case float_round_ties_away:
159 160 161 162 163 164 165 166 167 168 169 170 171
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
172 173 174 175 176 177 178 179
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
        float_raise( float_flag_invalid STATUS_VAR);
180
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

199 200
static int64 roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
                               float_status *status)
B
bellard 已提交
201 202 203
{
    int8 roundingMode;
    flag roundNearestEven, increment;
204
    int64_t z;
B
bellard 已提交
205 206 207

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
208 209
    switch (roundingMode) {
    case float_round_nearest_even:
210
    case float_round_ties_away:
211 212 213 214 215 216 217 218 219 220 221 222 223
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
224 225 226 227
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
228
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
229 230 231 232 233 234 235
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
        float_raise( float_flag_invalid STATUS_VAR);
        return
236
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
237 238 239 240 241 242 243
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
    if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

T
Tom Musta 已提交
244 245 246 247 248 249 250 251 252 253 254
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

static int64 roundAndPackUint64(flag zSign, uint64_t absZ0,
255
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
256 257 258 259 260 261
{
    int8 roundingMode;
    flag roundNearestEven, increment;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = (roundingMode == float_round_nearest_even);
262 263
    switch (roundingMode) {
    case float_round_nearest_even:
264
    case float_round_ties_away:
265 266 267 268 269 270 271 272 273 274 275 276 277
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
        float_raise(float_flag_invalid STATUS_VAR);
        return 0;
    }

    if (absZ1) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return absZ0;
}

B
bellard 已提交
299 300 301 302
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

303
static inline uint32_t extractFloat32Frac( float32 a )
B
bellard 已提交
304 305
{

P
pbrook 已提交
306
    return float32_val(a) & 0x007FFFFF;
B
bellard 已提交
307 308 309 310 311 312 313

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

314
static inline int_fast16_t extractFloat32Exp(float32 a)
B
bellard 已提交
315 316
{

P
pbrook 已提交
317
    return ( float32_val(a)>>23 ) & 0xFF;
B
bellard 已提交
318 319 320 321 322 323 324

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

325
static inline flag extractFloat32Sign( float32 a )
B
bellard 已提交
326 327
{

P
pbrook 已提交
328
    return float32_val(a)>>31;
B
bellard 已提交
329 330 331

}

332 333 334 335
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
336
float32 float32_squash_input_denormal(float32 a, float_status *status)
337 338 339 340 341 342 343 344 345 346
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
347 348 349 350 351 352 353 354
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
355
 normalizeFloat32Subnormal(uint32_t aSig, int_fast16_t *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| single-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

376
static inline float32 packFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig)
B
bellard 已提交
377 378
{

P
pbrook 已提交
379
    return make_float32(
380
          ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
B
bellard 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

406 407
static float32 roundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig,
                                   float_status *status)
B
bellard 已提交
408 409 410 411 412 413 414 415
{
    int8 roundingMode;
    flag roundNearestEven;
    int8 roundIncrement, roundBits;
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
416 417
    switch (roundingMode) {
    case float_round_nearest_even:
418
    case float_round_ties_away:
419 420 421 422 423 424 425 426 427 428 429 430 431 432
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
433 434
    }
    roundBits = zSig & 0x7F;
435
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
436 437
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
438
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
439 440
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
441
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
442 443
        }
        if ( zExp < 0 ) {
444 445 446 447
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
476 477
 normalizeRoundAndPackFloat32(flag zSign, int_fast16_t zExp, uint32_t zSig,
                              float_status *status)
B
bellard 已提交
478 479 480 481 482 483 484 485 486 487 488 489
{
    int8 shiftCount;

    shiftCount = countLeadingZeros32( zSig ) - 1;
    return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

490
static inline uint64_t extractFloat64Frac( float64 a )
B
bellard 已提交
491 492
{

P
pbrook 已提交
493
    return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
B
bellard 已提交
494 495 496 497 498 499 500

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

501
static inline int_fast16_t extractFloat64Exp(float64 a)
B
bellard 已提交
502 503
{

P
pbrook 已提交
504
    return ( float64_val(a)>>52 ) & 0x7FF;
B
bellard 已提交
505 506 507 508 509 510 511

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

512
static inline flag extractFloat64Sign( float64 a )
B
bellard 已提交
513 514
{

P
pbrook 已提交
515
    return float64_val(a)>>63;
B
bellard 已提交
516 517 518

}

519 520 521 522
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
523
float64 float64_squash_input_denormal(float64 a, float_status *status)
524 525 526 527 528 529 530 531 532 533
{
    if (STATUS(flush_inputs_to_zero)) {
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
            float_raise(float_flag_input_denormal STATUS_VAR);
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
534 535 536 537 538 539 540 541
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
542
 normalizeFloat64Subnormal(uint64_t aSig, int_fast16_t *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

563
static inline float64 packFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig)
B
bellard 已提交
564 565
{

P
pbrook 已提交
566
    return make_float64(
567
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
568 569 570 571 572 573 574 575 576 577 578

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
579 580 581
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
582 583 584 585 586 587 588 589 590 591 592
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

593 594
static float64 roundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig,
                                   float_status *status)
B
bellard 已提交
595 596 597
{
    int8 roundingMode;
    flag roundNearestEven;
598
    int_fast16_t roundIncrement, roundBits;
B
bellard 已提交
599 600 601 602
    flag isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
603 604
    switch (roundingMode) {
    case float_round_nearest_even:
605
    case float_round_ties_away:
606 607 608 609 610 611 612 613 614 615 616 617 618
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
    default:
        abort();
B
bellard 已提交
619 620
    }
    roundBits = zSig & 0x3FF;
621
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
622 623
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
624
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
625 626
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
P
pbrook 已提交
627
            return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
B
bellard 已提交
628 629
        }
        if ( zExp < 0 ) {
630 631 632 633
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
662 663
 normalizeRoundAndPackFloat64(flag zSign, int_fast16_t zExp, uint64_t zSig,
                              float_status *status)
B
bellard 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( zSig ) - 1;
    return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

677
static inline uint64_t extractFloatx80Frac( floatx80 a )
B
bellard 已提交
678 679 680 681 682 683 684 685 686 687 688
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

689
static inline int32 extractFloatx80Exp( floatx80 a )
B
bellard 已提交
690 691 692 693 694 695 696 697 698 699 700
{

    return a.high & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

701
static inline flag extractFloatx80Sign( floatx80 a )
B
bellard 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715
{

    return a.high>>15;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
716
 normalizeFloatx80Subnormal( uint64_t aSig, int32 *zExpPtr, uint64_t *zSigPtr )
B
bellard 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730
{
    int8 shiftCount;

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

731
static inline floatx80 packFloatx80( flag zSign, int32 zExp, uint64_t zSig )
B
bellard 已提交
732 733 734 735
{
    floatx80 z;

    z.low = zSig;
736
    z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
B
bellard 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

765 766 767
static floatx80 roundAndPackFloatx80(int8 roundingPrecision, flag zSign,
                                     int32 zExp, uint64_t zSig0, uint64_t zSig1,
                                     float_status *status)
B
bellard 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;
    int64 roundIncrement, roundMask, roundBits;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
788 789
    switch (roundingMode) {
    case float_round_nearest_even:
790
    case float_round_ties_away:
791 792 793 794 795 796 797 798 799 800 801 802
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
803 804
    }
    roundBits = zSig0 & roundMask;
805
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
806 807 808 809 810 811
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
812 813 814 815
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
816 817 818 819 820 821 822 823 824 825
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
            if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
            if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
            zSig0 += roundIncrement;
826
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
849 850
    switch (roundingMode) {
    case float_round_nearest_even:
851
    case float_round_ties_away:
852 853 854 855 856 857 858 859 860 861 862 863 864
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
865
    }
866
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
            if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
            if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
894 895
            switch (roundingMode) {
            case float_round_nearest_even:
896
            case float_round_ties_away:
897 898 899 900 901 902 903 904 905 906 907 908 909
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
910 911 912 913
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
914 915
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
916 917 918 919 920 921 922 923 924 925 926 927
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
    if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
928
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

947 948 949 950
static floatx80 normalizeRoundAndPackFloatx80(int8 roundingPrecision,
                                              flag zSign, int32 zExp,
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
{
    int8 shiftCount;

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
    return
        roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

972
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
973 974 975 976 977 978 979 980 981 982 983
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

984
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
985 986 987 988 989 990 991 992 993 994 995
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

996
static inline int32 extractFloat128Exp( float128 a )
B
bellard 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

1007
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
1026 1027
     uint64_t aSig0,
     uint64_t aSig1,
B
bellard 已提交
1028
     int32 *zExpPtr,
1029 1030
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
 )
{
    int8 shiftCount;

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

1068
static inline float128
1069
 packFloat128( flag zSign, int32 zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
1070 1071 1072 1073
{
    float128 z;

    z.low = zSig1;
1074
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1100 1101 1102
static float128 roundAndPackFloat128(flag zSign, int32 zExp,
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
1103 1104 1105 1106 1107 1108
{
    int8 roundingMode;
    flag roundNearestEven, increment, isTiny;

    roundingMode = STATUS(float_rounding_mode);
    roundNearestEven = ( roundingMode == float_round_nearest_even );
1109 1110
    switch (roundingMode) {
    case float_round_nearest_even:
1111
    case float_round_ties_away:
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
    default:
        abort();
B
bellard 已提交
1125
    }
1126
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
            float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
1154 1155 1156 1157
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
            isTiny =
                   ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
            if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
1172 1173
            switch (roundingMode) {
            case float_round_nearest_even:
1174
            case float_round_ties_away:
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
            default:
                abort();
B
bellard 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
            }
        }
    }
    if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

1213 1214 1215
static float128 normalizeRoundAndPackFloat128(flag zSign, int32 zExp,
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
1216 1217
{
    int8 shiftCount;
1218
    uint64_t zSig2;
B
bellard 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1245
float32 int32_to_float32(int32_t a, float_status *status)
B
bellard 已提交
1246 1247 1248
{
    flag zSign;

P
pbrook 已提交
1249
    if ( a == 0 ) return float32_zero;
1250
    if ( a == (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
B
bellard 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1262
float64 int32_to_float64(int32_t a, float_status *status)
B
bellard 已提交
1263 1264 1265 1266
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1267
    uint64_t zSig;
B
bellard 已提交
1268

P
pbrook 已提交
1269
    if ( a == 0 ) return float64_zero;
B
bellard 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 21;
    zSig = absA;
    return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1285
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
1286 1287 1288 1289
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1290
    uint64_t zSig;
B
bellard 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1307
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
1308 1309 1310 1311
{
    flag zSign;
    uint32 absA;
    int8 shiftCount;
1312
    uint64_t zSig0;
B
bellard 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1329
float32 int64_to_float32(int64_t a, float_status *status)
B
bellard 已提交
1330 1331 1332 1333 1334
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

P
pbrook 已提交
1335
    if ( a == 0 ) return float32_zero;
B
bellard 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) - 40;
    if ( 0 <= shiftCount ) {
        return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
    }
    else {
        shiftCount += 7;
        if ( shiftCount < 0 ) {
            shift64RightJamming( absA, - shiftCount, &absA );
        }
        else {
            absA <<= shiftCount;
        }
        return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1361
float64 int64_to_float64(int64_t a, float_status *status)
B
bellard 已提交
1362 1363 1364
{
    flag zSign;

P
pbrook 已提交
1365
    if ( a == 0 ) return float64_zero;
1366
    if ( a == (int64_t) LIT64( 0x8000000000000000 ) ) {
B
bellard 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        return packFloat64( 1, 0x43E, 0 );
    }
    zSign = ( a < 0 );
    return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1381
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1401
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
1402 1403 1404 1405 1406
{
    flag zSign;
    uint64 absA;
    int8 shiftCount;
    int32 zExp;
1407
    uint64_t zSig0, zSig1;
B
bellard 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

1428 1429 1430 1431 1432 1433
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the single-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1434
float32 uint64_to_float32(uint64_t a, float_status *status)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
{
    int shiftcount;

    if (a == 0) {
        return float32_zero;
    }

    /* Determine (left) shift needed to put first set bit into bit posn 23
     * (since packFloat32() expects the binary point between bits 23 and 22);
     * this is the fast case for smallish numbers.
     */
    shiftcount = countLeadingZeros64(a) - 40;
    if (shiftcount >= 0) {
        return packFloat32(0, 0x95 - shiftcount, a << shiftcount);
    }
    /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
     * expects the binary point between bits 30 and 29, hence the + 7.
     */
    shiftcount += 7;
    if (shiftcount < 0) {
        shift64RightJamming(a, -shiftcount, &a);
    } else {
        a <<= shiftcount;
    }

    return roundAndPackFloat32(0, 0x9c - shiftcount, a STATUS_VAR);
}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the double-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1469
float64 uint64_to_float64(uint64_t a, float_status *status)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
{
    int exp = 0x43C;
    int shiftcount;

    if (a == 0) {
        return float64_zero;
    }

    shiftcount = countLeadingZeros64(a) - 1;
    if (shiftcount < 0) {
        shift64RightJamming(a, -shiftcount, &a);
    } else {
        a <<= shiftcount;
    }
    return roundAndPackFloat64(0, exp - shiftcount, a STATUS_VAR);
}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1493
float128 uint64_to_float128(uint64_t a, float_status *status)
1494 1495 1496 1497 1498 1499 1500
{
    if (a == 0) {
        return float128_zero;
    }
    return normalizeRoundAndPackFloat128(0, 0x406E, a, 0 STATUS_VAR);
}

B
bellard 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

1511
int32 float32_to_int32(float32 a, float_status *status)
B
bellard 已提交
1512 1513
{
    flag aSign;
1514
    int_fast16_t aExp, shiftCount;
1515 1516
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1517

1518
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= 0x00800000;
    shiftCount = 0xAF - aExp;
    aSig64 = aSig;
    aSig64 <<= 32;
    if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
    return roundAndPackInt32( aSign, aSig64 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

1542
int32 float32_to_int32_round_to_zero(float32 a, float_status *status)
B
bellard 已提交
1543 1544
{
    flag aSign;
1545
    int_fast16_t aExp, shiftCount;
1546
    uint32_t aSig;
1547
    int32_t z;
1548
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1549 1550 1551 1552 1553 1554

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x9E;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1555
        if ( float32_val(a) != 0xCF000000 ) {
B
bellard 已提交
1556 1557 1558
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
        }
1559
        return (int32_t) 0x80000000;
B
bellard 已提交
1560 1561 1562 1563 1564 1565 1566
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1567
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
B
bellard 已提交
1568 1569 1570 1571 1572 1573 1574
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

1585
int_fast16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
1586 1587
{
    flag aSign;
1588
    int_fast16_t aExp, shiftCount;
1589
    uint32_t aSig;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    int32 z;

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0x8E;
    if ( 0 <= shiftCount ) {
        if ( float32_val(a) != 0xC7000000 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return 0x7FFF;
            }
        }
1603
        return (int32_t) 0xffff8000;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    shiftCount -= 0x10;
    aSig = ( aSig | 0x00800000 )<<8;
    z = aSig>>( - shiftCount );
1614
    if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
1615 1616 1617 1618 1619 1620 1621 1622 1623
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) {
        z = - z;
    }
    return z;

}

B
bellard 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

1634
int64 float32_to_int64(float32 a, float_status *status)
B
bellard 已提交
1635 1636
{
    flag aSign;
1637
    int_fast16_t aExp, shiftCount;
1638 1639
    uint32_t aSig;
    uint64_t aSig64, aSigExtra;
1640
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = 0xBE - aExp;
    if ( shiftCount < 0 ) {
        float_raise( float_flag_invalid STATUS_VAR);
        if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
            return LIT64( 0x7FFFFFFFFFFFFFFF );
        }
1651
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660
    }
    if ( aExp ) aSig |= 0x00800000;
    aSig64 = aSig;
    aSig64 <<= 40;
    shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
    return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );

}

T
Tom Musta 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| unsigned integer is returned.  Otherwise, if the conversion overflows, the
| largest unsigned integer is returned.  If the 'a' is negative, the result
| is rounded and zero is returned; values that do not round to zero will
| raise the inexact exception flag.
*----------------------------------------------------------------------------*/

1673
uint64 float32_to_uint64(float32 a, float_status *status)
T
Tom Musta 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
    flag aSign;
    int_fast16_t aExp, shiftCount;
    uint32_t aSig;
    uint64_t aSig64, aSigExtra;
    a = float32_squash_input_denormal(a STATUS_VAR);

    aSig = extractFloat32Frac(a);
    aExp = extractFloat32Exp(a);
    aSign = extractFloat32Sign(a);
    if ((aSign) && (aExp > 126)) {
        float_raise(float_flag_invalid STATUS_VAR);
        if (float32_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    shiftCount = 0xBE - aExp;
    if (aExp) {
        aSig |= 0x00800000;
    }
    if (shiftCount < 0) {
        float_raise(float_flag_invalid STATUS_VAR);
        return LIT64(0xFFFFFFFFFFFFFFFF);
    }

    aSig64 = aSig;
    aSig64 <<= 40;
    shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
    return roundAndPackUint64(aSign, aSig64, aSigExtra STATUS_VAR);
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest unsigned integer is returned.  Otherwise, if the
| conversion overflows, the largest unsigned integer is returned.  If the
| 'a' is negative, the result is rounded and zero is returned; values that do
| not round to zero will raise the inexact flag.
*----------------------------------------------------------------------------*/

1718
uint64 float32_to_uint64_round_to_zero(float32 a, float_status *status)
1719 1720 1721 1722 1723 1724 1725 1726
{
    signed char current_rounding_mode = STATUS(float_rounding_mode);
    set_float_rounding_mode(float_round_to_zero STATUS_VAR);
    int64_t v = float32_to_uint64(a STATUS_VAR);
    set_float_rounding_mode(current_rounding_mode STATUS_VAR);
    return v;
}

B
bellard 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

1737
int64 float32_to_int64_round_to_zero(float32 a, float_status *status)
B
bellard 已提交
1738 1739
{
    flag aSign;
1740
    int_fast16_t aExp, shiftCount;
1741 1742
    uint32_t aSig;
    uint64_t aSig64;
B
bellard 已提交
1743
    int64 z;
1744
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1745 1746 1747 1748 1749 1750

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    shiftCount = aExp - 0xBE;
    if ( 0 <= shiftCount ) {
P
pbrook 已提交
1751
        if ( float32_val(a) != 0xDF000000 ) {
B
bellard 已提交
1752 1753 1754 1755 1756
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
1757
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
1758 1759 1760 1761 1762 1763 1764 1765
    }
    else if ( aExp <= 0x7E ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig64 = aSig | 0x00800000;
    aSig64 <<= 40;
    z = aSig64>>( - shiftCount );
1766
    if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1781
float64 float32_to_float64(float32 a, float_status *status)
B
bellard 已提交
1782 1783
{
    flag aSign;
1784
    int_fast16_t aExp;
1785
    uint32_t aSig;
1786
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1787 1788 1789 1790 1791

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1792
        if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1793 1794 1795 1796 1797 1798 1799
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1800
    return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
B
bellard 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1811
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
1812 1813
{
    flag aSign;
1814
    int_fast16_t aExp;
1815
    uint32_t aSig;
B
bellard 已提交
1816

1817
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1818 1819 1820 1821
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1822
        if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1823 1824 1825 1826 1827 1828 1829
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
1830
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

1841
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
1842 1843
{
    flag aSign;
1844
    int_fast16_t aExp;
1845
    uint32_t aSig;
B
bellard 已提交
1846

1847
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1848 1849 1850 1851
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
1852
        if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
1853 1854 1855 1856 1857 1858 1859
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
1860
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

}

/*----------------------------------------------------------------------------
| Rounds the single-precision floating-point value `a' to an integer, and
| returns the result as a single-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1871
float32 float32_round_to_int(float32 a, float_status *status)
B
bellard 已提交
1872 1873
{
    flag aSign;
1874
    int_fast16_t aExp;
1875 1876
    uint32_t lastBitMask, roundBitsMask;
    uint32_t z;
1877
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886

    aExp = extractFloat32Exp( a );
    if ( 0x96 <= aExp ) {
        if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp <= 0x7E ) {
1887
        if ( (uint32_t) ( float32_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
1888 1889 1890 1891 1892 1893 1894 1895
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat32Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
                return packFloat32( aSign, 0x7F, 0 );
            }
            break;
1896 1897 1898 1899 1900
        case float_round_ties_away:
            if (aExp == 0x7E) {
                return packFloat32(aSign, 0x7F, 0);
            }
            break;
B
bellard 已提交
1901
         case float_round_down:
P
pbrook 已提交
1902
            return make_float32(aSign ? 0xBF800000 : 0);
B
bellard 已提交
1903
         case float_round_up:
P
pbrook 已提交
1904
            return make_float32(aSign ? 0x80000000 : 0x3F800000);
B
bellard 已提交
1905 1906 1907 1908 1909 1910
        }
        return packFloat32( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x96 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
1911
    z = float32_val(a);
1912 1913
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
B
bellard 已提交
1914
        z += lastBitMask>>1;
1915 1916 1917 1918
        if ((z & roundBitsMask) == 0) {
            z &= ~lastBitMask;
        }
        break;
1919 1920 1921
    case float_round_ties_away:
        z += lastBitMask >> 1;
        break;
1922 1923 1924 1925 1926 1927 1928 1929 1930
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloat32Sign(make_float32(z))) {
            z += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloat32Sign(make_float32(z))) {
B
bellard 已提交
1931 1932
            z += roundBitsMask;
        }
1933 1934 1935
        break;
    default:
        abort();
B
bellard 已提交
1936 1937
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
1938 1939
    if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float32(z);
B
bellard 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the single-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

1951 1952
static float32 addFloat32Sigs(float32 a, float32 b, flag zSign,
                              float_status *status)
B
bellard 已提交
1953
{
1954
    int_fast16_t aExp, bExp, zExp;
1955
    uint32_t aSig, bSig, zSig;
1956
    int_fast16_t expDiff;
B
bellard 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 6;
    bSig <<= 6;
    if ( 0 < expDiff ) {
        if ( aExp == 0xFF ) {
            if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= 0x20000000;
        }
        shift32RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return packFloat32( zSign, 0xFF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= 0x20000000;
        }
        shift32RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0xFF ) {
            if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            return a;
        }
1998
        if ( aExp == 0 ) {
1999 2000 2001 2002 2003 2004
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat32(zSign, 0, 0);
            }
2005 2006
            return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
        }
B
bellard 已提交
2007 2008 2009 2010 2011 2012 2013
        zSig = 0x40000000 + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= 0x20000000;
    zSig = ( aSig + bSig )<<1;
    --zExp;
2014
    if ( (int32_t) zSig < 0 ) {
B
bellard 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the single-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2031 2032
static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
                              float_status *status)
B
bellard 已提交
2033
{
2034
    int_fast16_t aExp, bExp, zExp;
2035
    uint32_t aSig, bSig, zSig;
2036
    int_fast16_t expDiff;
B
bellard 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 7;
    bSig <<= 7;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0xFF ) {
        if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign ^ 1, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= 0x40000000;
    }
    shift32RightJamming( aSig, - expDiff, &aSig );
    bSig |= 0x40000000;
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= 0x40000000;
    }
    shift32RightJamming( bSig, expDiff, &bSig );
    aSig |= 0x40000000;
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the single-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2105
float32 float32_add(float32 a, float32 b, float_status *status)
B
bellard 已提交
2106 2107
{
    flag aSign, bSign;
2108 2109
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return addFloat32Sigs( a, b, aSign STATUS_VAR);
    }
    else {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2128
float32 float32_sub(float32 a, float32 b, float_status *status)
B
bellard 已提交
2129 2130
{
    flag aSign, bSign;
2131 2132
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    if ( aSign == bSign ) {
        return subFloat32Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat32Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2151
float32 float32_mul(float32 a, float32 b, float_status *status)
B
bellard 已提交
2152 2153
{
    flag aSign, bSign, zSign;
2154
    int_fast16_t aExp, bExp, zExp;
2155 2156 2157
    uint32_t aSig, bSig;
    uint64_t zSig64;
    uint32_t zSig;
B
bellard 已提交
2158

2159 2160 2161
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x7F;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
2198
    shift64RightJamming( ( (uint64_t) aSig ) * bSig, 32, &zSig64 );
B
bellard 已提交
2199
    zSig = zSig64;
2200
    if ( 0 <= (int32_t) ( zSig<<1 ) ) {
B
bellard 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
        zSig <<= 1;
        --zExp;
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the single-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2214
float32 float32_div(float32 a, float32 b, float_status *status)
B
bellard 已提交
2215 2216
{
    flag aSign, bSign, zSign;
2217
    int_fast16_t aExp, bExp, zExp;
2218
    uint32_t aSig, bSig, zSig;
2219 2220
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    bSign = extractFloat32Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        if ( bExp == 0xFF ) {
            if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        return packFloat32( zSign, 0xFF, 0 );
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return packFloat32( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float32_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat32( zSign, 0xFF, 0 );
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x7D;
    aSig = ( aSig | 0x00800000 )<<7;
    bSig = ( bSig | 0x00800000 )<<8;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
2264
    zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2265
    if ( ( zSig & 0x3F ) == 0 ) {
2266
        zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
B
bellard 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    }
    return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2278
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
2279
{
2280
    flag aSign, zSign;
2281
    int_fast16_t aExp, bExp, expDiff;
2282 2283 2284 2285 2286
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
2287 2288
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
            return propagateFloat32NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( bExp == 0xFF ) {
        if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
2330
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
2342 2343
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
2362
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
2363 2364 2365 2366
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
2367
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
2368 2369 2370 2371 2372
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
/*----------------------------------------------------------------------------
| Returns the result of multiplying the single-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

2384 2385
float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
                       float_status *status)
2386 2387
{
    flag aSign, bSign, cSign, zSign;
2388
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
    uint32_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig64, cSig64, zSig64;
    uint32_t pSig;
    int shiftcount;
    flag signflip, infzero;

    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
    c = float32_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat32Frac(a);
    aExp = extractFloat32Exp(a);
    aSign = extractFloat32Sign(a);
    bSig = extractFloat32Frac(b);
    bExp = extractFloat32Exp(b);
    bSign = extractFloat32Sign(b);
    cSig = extractFloat32Frac(c);
    cExp = extractFloat32Exp(c);
    cSign = extractFloat32Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
               (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0xff) && aSig) ||
        ((bExp == 0xff) && bSig) ||
        ((cExp == 0xff) && cSig)) {
        return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0xff) || (bExp == 0xff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0xff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float32_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat32(cSign ^ signflip, 0xff, 0);
    }

    if (pInf) {
        return packFloat32(pSign ^ signflip, 0xff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat32(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat32(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
        if (flags & float_muladd_halve_result) {
            if (cExp == 0) {
                normalizeFloat32Subnormal(cSig, &cExp, &cSig);
            }
            /* Subtract one to halve, and one again because roundAndPackFloat32
             * wants one less than the true exponent.
             */
            cExp -= 2;
            cSig = (cSig | 0x00800000) << 7;
            return roundAndPackFloat32(cSign ^ signflip, cExp, cSig STATUS_VAR);
        }
2487
        return packFloat32(cSign ^ signflip, cExp, cSig);
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
    }

    if (aExp == 0) {
        normalizeFloat32Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat32Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat32() takes.
     */
    pExp = aExp + bExp - 0x7e;
    aSig = (aSig | 0x00800000) << 7;
    bSig = (bSig | 0x00800000) << 8;
    pSig64 = (uint64_t)aSig * bSig;
    if ((int64_t)(pSig64 << 1) >= 0) {
        pSig64 <<= 1;
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now pSig64 is the significand of the multiply, with the explicit bit in
     * position 62.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift64RightJamming(pSig64, 32, &pSig64);
            pSig = pSig64;
2523 2524 2525
            if (flags & float_muladd_halve_result) {
                pExp--;
            }
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
            return roundAndPackFloat32(zSign, pExp - 1,
                                       pSig STATUS_VAR);
        }
        normalizeFloat32Subnormal(cSig, &cExp, &cSig);
    }

    cSig64 = (uint64_t)cSig << (62 - 23);
    cSig64 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 62 */
        zSig64 = pSig64 + cSig64;
        if ((int64_t)zSig64 < 0) {
            shift64RightJamming(zSig64, 1, &zSig64);
        } else {
            zExp--;
        }
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift64RightJamming(cSig64, expDiff, &cSig64);
            zSig64 = pSig64 - cSig64;
            zExp = pExp;
        } else if (expDiff < 0) {
            shift64RightJamming(pSig64, -expDiff, &pSig64);
            zSig64 = cSig64 - pSig64;
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (cSig64 < pSig64) {
                zSig64 = pSig64 - cSig64;
            } else if (pSig64 < cSig64) {
                zSig64 = cSig64 - pSig64;
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat32(zSign, 0, 0);
            }
        }
        --zExp;
        /* Normalize to put the explicit bit back into bit 62. */
        shiftcount = countLeadingZeros64(zSig64) - 1;
        zSig64 <<= shiftcount;
        zExp -= shiftcount;
    }
2590 2591 2592 2593
    if (flags & float_muladd_halve_result) {
        zExp--;
    }

2594 2595 2596 2597 2598
    shift64RightJamming(zSig64, 32, &zSig64);
    return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR);
}


B
bellard 已提交
2599 2600 2601 2602 2603 2604
/*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2605
float32 float32_sqrt(float32 a, float_status *status)
B
bellard 已提交
2606 2607
{
    flag aSign;
2608
    int_fast16_t aExp, zExp;
2609 2610
    uint32_t aSig, zSig;
    uint64_t rem, term;
2611
    a = float32_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
2612 2613 2614 2615 2616

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
pbrook 已提交
2617
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
B
bellard 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
2628
        if ( aSig == 0 ) return float32_zero;
B
bellard 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
    aSig = ( aSig | 0x00800000 )<<8;
    zSig = estimateSqrt32( aExp, aSig ) + 2;
    if ( ( zSig & 0x7F ) <= 5 ) {
        if ( zSig < 2 ) {
            zSig = 0x7FFFFFFF;
            goto roundAndPack;
        }
        aSig >>= aExp & 1;
2640 2641 2642
        term = ( (uint64_t) zSig ) * zSig;
        rem = ( ( (uint64_t) aSig )<<32 ) - term;
        while ( (int64_t) rem < 0 ) {
B
bellard 已提交
2643
            --zSig;
2644
            rem += ( ( (uint64_t) zSig )<<1 ) | 1;
B
bellard 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653
        }
        zSig |= ( rem != 0 );
    }
    shift32RightJamming( zSig, 1, &zSig );
 roundAndPack:
    return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );

}

A
Aurelien Jarno 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
2689 2690
};

2691
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
2692 2693
{
    flag aSign;
2694
    int_fast16_t aExp;
2695
    uint32_t aSig;
A
Aurelien Jarno 已提交
2696 2697
    float64 r, x, xn;
    int i;
2698
    a = float32_squash_input_denormal(a STATUS_VAR);
A
Aurelien Jarno 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

    float_raise( float_flag_inexact STATUS_VAR);

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
    x = float32_to_float64(a STATUS_VAR);
    x = float64_mul(x, float64_ln2 STATUS_VAR);

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

        f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR);
        r = float64_add(r, f STATUS_VAR);

        xn = float64_mul(xn, x STATUS_VAR);
    }

    return float64_to_float32(r, status);
}

2734 2735 2736 2737 2738
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
2739
float32 float32_log2(float32 a, float_status *status)
2740 2741
{
    flag aSign, zSign;
2742
    int_fast16_t aExp;
2743
    uint32_t aSig, zSig, i;
2744

2745
    a = float32_squash_input_denormal(a STATUS_VAR);
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float32_default_nan;
    }
    if ( aExp == 0xFF ) {
        if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
2769
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

    return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR );
}

B
bellard 已提交
2782 2783
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2784 2785
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
2786 2787 2788
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2789
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
2790
{
2791
    uint32_t av, bv;
2792 2793
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2794 2795 2796 2797

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2798
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
2799 2800
        return 0;
    }
2801 2802 2803
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
2804 2805 2806 2807
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2808 2809 2810
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2811 2812
*----------------------------------------------------------------------------*/

2813
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
2814 2815
{
    flag aSign, bSign;
2816
    uint32_t av, bv;
2817 2818
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2828 2829
    av = float32_val(a);
    bv = float32_val(b);
2830
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2831
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2832 2833 2834 2835 2836

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
2837 2838 2839
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
2840 2841
*----------------------------------------------------------------------------*/

2842
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
2843 2844
{
    flag aSign, bSign;
2845
    uint32_t av, bv;
2846 2847
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2857 2858
    av = float32_val(a);
    bv = float32_val(b);
2859
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2860
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2861 2862 2863

}

2864 2865
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
2866 2867 2868
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
2869 2870
*----------------------------------------------------------------------------*/

2871
int float32_unordered(float32 a, float32 b, float_status *status)
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}
2884

B
bellard 已提交
2885 2886
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
2887 2888 2889
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
2890 2891
*----------------------------------------------------------------------------*/

2892
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
2893
{
2894 2895
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2896 2897 2898 2899

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
2900 2901 2902
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
2903 2904
        return 0;
    }
2905 2906
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2916
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
2917 2918
{
    flag aSign, bSign;
2919
    uint32_t av, bv;
2920 2921
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2933 2934
    av = float32_val(a);
    bv = float32_val(b);
2935
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
2936
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2947
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
2948 2949
{
    flag aSign, bSign;
2950
    uint32_t av, bv;
2951 2952
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
2964 2965
    av = float32_val(a);
    bv = float32_val(b);
2966
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
2967
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
2968 2969 2970

}

2971 2972 2973 2974 2975 2976 2977
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2978
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
{
    a = float32_squash_input_denormal(a STATUS_VAR);
    b = float32_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

3004
int32 float64_to_int32(float64 a, float_status *status)
B
bellard 已提交
3005 3006
{
    flag aSign;
3007
    int_fast16_t aExp, shiftCount;
3008
    uint64_t aSig;
3009
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x42C - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 32-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

3032
int32 float64_to_int32_round_to_zero(float64 a, float_status *status)
B
bellard 已提交
3033 3034
{
    flag aSign;
3035
    int_fast16_t aExp, shiftCount;
3036
    uint64_t aSig, savedASig;
3037
    int32_t z;
3038
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x41E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
3060
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
3061 3062 3063 3064 3065 3066 3067 3068
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 16-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

3079
int_fast16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
3080 3081
{
    flag aSign;
3082
    int_fast16_t aExp, shiftCount;
3083
    uint64_t aSig, savedASig;
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
    int32 z;

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( 0x40E < aExp ) {
        if ( ( aExp == 0x7FF ) && aSig ) {
            aSign = 0;
        }
        goto invalid;
    }
    else if ( aExp < 0x3FF ) {
        if ( aExp || aSig ) {
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
        return 0;
    }
    aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) {
        z = - z;
    }
    if ( ( (int16_t)z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
3112
        return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
3113 3114 3115 3116 3117 3118 3119
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;
}

B
bellard 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

3130
int64 float64_to_int64(float64 a, float_status *status)
B
bellard 已提交
3131 3132
{
    flag aSign;
3133
    int_fast16_t aExp, shiftCount;
3134
    uint64_t aSig, aSigExtra;
3135
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = 0x433 - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x43E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FF )
                      && ( aSig != LIT64( 0x0010000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
3151
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
        }
        aSigExtra = 0;
        aSig <<= - shiftCount;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit two's complement integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

3173
int64 float64_to_int64_round_to_zero(float64 a, float_status *status)
B
bellard 已提交
3174 3175
{
    flag aSign;
3176
    int_fast16_t aExp, shiftCount;
3177
    uint64_t aSig;
B
bellard 已提交
3178
    int64 z;
3179
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3180 3181 3182 3183 3184 3185 3186 3187

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
    shiftCount = aExp - 0x433;
    if ( 0 <= shiftCount ) {
        if ( 0x43E <= aExp ) {
P
pbrook 已提交
3188
            if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
B
bellard 已提交
3189 3190 3191 3192 3193 3194 3195 3196
                float_raise( float_flag_invalid STATUS_VAR);
                if (    ! aSign
                     || (    ( aExp == 0x7FF )
                          && ( aSig != LIT64( 0x0010000000000000 ) ) )
                   ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
3197
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206
        }
        z = aSig<<shiftCount;
    }
    else {
        if ( aExp < 0x3FE ) {
            if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
            return 0;
        }
        z = aSig>>( - shiftCount );
3207
        if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3223
float32 float64_to_float32(float64 a, float_status *status)
B
bellard 已提交
3224 3225
{
    flag aSign;
3226
    int_fast16_t aExp;
3227 3228
    uint64_t aSig;
    uint32_t zSig;
3229
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3230 3231 3232 3233 3234

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3235
        if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

P
Paul Brook 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| half-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
3259
static float16 packFloat16(flag zSign, int_fast16_t zExp, uint16_t zSig)
P
Paul Brook 已提交
3260
{
3261
    return make_float16(
3262
        (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
P
Paul Brook 已提交
3263 3264
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper half-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the half-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal half-
| precision floating-point number.
| The `ieee' flag indicates whether to use IEEE standard half precision, or
| ARM-style "alternative representation", which omits the NaN and Inf
| encodings in order to raise the maximum representable exponent by one.
|     The input significand `zSig' has its binary point between bits 22
| and 23, which is 13 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| Note the slightly odd position of the binary point in zSig compared with the
| other roundAndPackFloat functions. This should probably be fixed if we
| need to implement more float16 routines than just conversion.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

static float32 roundAndPackFloat16(flag zSign, int_fast16_t zExp,
3294 3295
                                   uint32_t zSig, flag ieee,
                                   float_status *status)
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
{
    int maxexp = ieee ? 29 : 30;
    uint32_t mask;
    uint32_t increment;
    bool rounding_bumps_exp;
    bool is_tiny = false;

    /* Calculate the mask of bits of the mantissa which are not
     * representable in half-precision and will be lost.
     */
    if (zExp < 1) {
        /* Will be denormal in halfprec */
        mask = 0x00ffffff;
        if (zExp >= -11) {
            mask >>= 11 + zExp;
        }
    } else {
        /* Normal number in halfprec */
        mask = 0x00001fff;
    }

3317
    switch (STATUS(float_rounding_mode)) {
3318 3319 3320 3321 3322 3323
    case float_round_nearest_even:
        increment = (mask + 1) >> 1;
        if ((zSig & mask) == increment) {
            increment = zSig & (increment << 1);
        }
        break;
3324 3325 3326
    case float_round_ties_away:
        increment = (mask + 1) >> 1;
        break;
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
    case float_round_up:
        increment = zSign ? 0 : mask;
        break;
    case float_round_down:
        increment = zSign ? mask : 0;
        break;
    default: /* round_to_zero */
        increment = 0;
        break;
    }

    rounding_bumps_exp = (zSig + increment >= 0x01000000);

    if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
        if (ieee) {
            float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
            return packFloat16(zSign, 0x1f, 0);
        } else {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(zSign, 0x1f, 0x3ff);
        }
    }

    if (zExp < 0) {
        /* Note that flush-to-zero does not affect half-precision results */
        is_tiny =
            (STATUS(float_detect_tininess) == float_tininess_before_rounding)
            || (zExp < -1)
            || (!rounding_bumps_exp);
    }
    if (zSig & mask) {
        float_raise(float_flag_inexact STATUS_VAR);
        if (is_tiny) {
            float_raise(float_flag_underflow STATUS_VAR);
        }
    }

    zSig += increment;
    if (rounding_bumps_exp) {
        zSig >>= 1;
        zExp++;
    }

    if (zExp < -10) {
        return packFloat16(zSign, 0, 0);
    }
    if (zExp < 0) {
        zSig >>= -zExp;
        zExp = 0;
    }
    return packFloat16(zSign, zExp, zSig >> 13);
}

static void normalizeFloat16Subnormal(uint32_t aSig, int_fast16_t *zExpPtr,
                                      uint32_t *zSigPtr)
{
    int8_t shiftCount = countLeadingZeros32(aSig) - 21;
    *zSigPtr = aSig << shiftCount;
    *zExpPtr = 1 - shiftCount;
}

P
Paul Brook 已提交
3388 3389
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
   The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3390

3391
float32 float16_to_float32(float16 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3392 3393
{
    flag aSign;
3394
    int_fast16_t aExp;
3395
    uint32_t aSig;
P
Paul Brook 已提交
3396

3397 3398 3399
    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);
P
Paul Brook 已提交
3400 3401 3402

    if (aExp == 0x1f && ieee) {
        if (aSig) {
3403
            return commonNaNToFloat32(float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3404
        }
3405
        return packFloat32(aSign, 0xff, 0);
P
Paul Brook 已提交
3406 3407 3408 3409 3410 3411
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat32(aSign, 0, 0);
        }

3412 3413
        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
P
Paul Brook 已提交
3414 3415 3416 3417
    }
    return packFloat32( aSign, aExp + 0x70, aSig << 13);
}

3418
float16 float32_to_float16(float32 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3419 3420
{
    flag aSign;
3421
    int_fast16_t aExp;
3422
    uint32_t aSig;
3423

3424
    a = float32_squash_input_denormal(a STATUS_VAR);
P
Paul Brook 已提交
3425 3426 3427 3428 3429 3430

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if (aSig) {
3431 3432
            /* Input is a NaN */
            if (!ieee) {
3433
                float_raise(float_flag_invalid STATUS_VAR);
3434 3435
                return packFloat16(aSign, 0, 0);
            }
3436 3437
            return commonNaNToFloat16(
                float32ToCommonNaN(a STATUS_VAR) STATUS_VAR);
P
Paul Brook 已提交
3438
        }
3439 3440 3441 3442 3443 3444
        /* Infinity */
        if (!ieee) {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
P
Paul Brook 已提交
3445
    }
3446
    if (aExp == 0 && aSig == 0) {
P
Paul Brook 已提交
3447 3448
        return packFloat16(aSign, 0, 0);
    }
3449 3450 3451 3452 3453 3454 3455
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
P
Paul Brook 已提交
3456
    aSig |= 0x00800000;
3457
    aExp -= 0x71;
P
Paul Brook 已提交
3458

3459
    return roundAndPackFloat16(aSign, aExp, aSig, ieee STATUS_VAR);
P
Paul Brook 已提交
3460 3461
}

3462
float64 float16_to_float64(float16 a, flag ieee, float_status *status)
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
{
    flag aSign;
    int_fast16_t aExp;
    uint32_t aSig;

    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);

    if (aExp == 0x1f && ieee) {
        if (aSig) {
            return commonNaNToFloat64(
                float16ToCommonNaN(a STATUS_VAR) STATUS_VAR);
        }
        return packFloat64(aSign, 0x7ff, 0);
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat64(aSign, 0, 0);
        }

        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
    }
    return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
}

3490
float16 float64_to_float16(float64 a, flag ieee, float_status *status)
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
{
    flag aSign;
    int_fast16_t aExp;
    uint64_t aSig;
    uint32_t zSig;

    a = float64_squash_input_denormal(a STATUS_VAR);

    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aExp == 0x7FF) {
        if (aSig) {
            /* Input is a NaN */
            if (!ieee) {
                float_raise(float_flag_invalid STATUS_VAR);
                return packFloat16(aSign, 0, 0);
            }
            return commonNaNToFloat16(
                float64ToCommonNaN(a STATUS_VAR) STATUS_VAR);
        }
        /* Infinity */
        if (!ieee) {
            float_raise(float_flag_invalid STATUS_VAR);
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
    }
    shift64RightJamming(aSig, 29, &aSig);
    zSig = aSig;
    if (aExp == 0 && zSig == 0) {
        return packFloat16(aSign, 0, 0);
    }
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
    zSig |= 0x00800000;
    aExp -= 0x3F1;

    return roundAndPackFloat16(aSign, aExp, zSig, ieee STATUS_VAR);
}

B
bellard 已提交
3537 3538 3539 3540 3541 3542 3543
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3544
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
3545 3546
{
    flag aSign;
3547
    int_fast16_t aExp;
3548
    uint64_t aSig;
B
bellard 已提交
3549

3550
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3551 3552 3553 3554
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3555
        if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3575
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
3576 3577
{
    flag aSign;
3578
    int_fast16_t aExp;
3579
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
3580

3581
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3582 3583 3584 3585
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
3586
        if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the double-precision floating-point value `a' to an integer, and
| returns the result as a double-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3606
float64 float64_round_to_int(float64 a, float_status *status)
B
bellard 已提交
3607 3608
{
    flag aSign;
3609
    int_fast16_t aExp;
3610 3611
    uint64_t lastBitMask, roundBitsMask;
    uint64_t z;
3612
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621

    aExp = extractFloat64Exp( a );
    if ( 0x433 <= aExp ) {
        if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FF ) {
3622
        if ( (uint64_t) ( float64_val(a)<<1 ) == 0 ) return a;
B
bellard 已提交
3623 3624 3625 3626 3627 3628 3629 3630
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloat64Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
            if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
                return packFloat64( aSign, 0x3FF, 0 );
            }
            break;
3631 3632 3633 3634 3635
        case float_round_ties_away:
            if (aExp == 0x3FE) {
                return packFloat64(aSign, 0x3ff, 0);
            }
            break;
B
bellard 已提交
3636
         case float_round_down:
P
pbrook 已提交
3637
            return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
B
bellard 已提交
3638
         case float_round_up:
P
pbrook 已提交
3639 3640
            return make_float64(
            aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
B
bellard 已提交
3641 3642 3643 3644 3645 3646
        }
        return packFloat64( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x433 - aExp;
    roundBitsMask = lastBitMask - 1;
P
pbrook 已提交
3647
    z = float64_val(a);
3648 3649 3650 3651 3652 3653 3654
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
        z += lastBitMask >> 1;
        if ((z & roundBitsMask) == 0) {
            z &= ~lastBitMask;
        }
        break;
3655 3656 3657
    case float_round_ties_away:
        z += lastBitMask >> 1;
        break;
3658 3659 3660 3661 3662 3663 3664 3665 3666
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloat64Sign(make_float64(z))) {
            z += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloat64Sign(make_float64(z))) {
B
bellard 已提交
3667 3668
            z += roundBitsMask;
        }
3669 3670 3671
        break;
    default:
        abort();
B
bellard 已提交
3672 3673
    }
    z &= ~ roundBitsMask;
P
pbrook 已提交
3674 3675 3676
    if ( z != float64_val(a) )
        STATUS(float_exception_flags) |= float_flag_inexact;
    return make_float64(z);
B
bellard 已提交
3677 3678 3679

}

3680
float64 float64_trunc_to_int(float64 a, float_status *status)
P
pbrook 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
{
    int oldmode;
    float64 res;
    oldmode = STATUS(float_rounding_mode);
    STATUS(float_rounding_mode) = float_round_to_zero;
    res = float64_round_to_int(a STATUS_VAR);
    STATUS(float_rounding_mode) = oldmode;
    return res;
}

B
bellard 已提交
3691 3692 3693 3694 3695 3696 3697 3698
/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the double-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3699 3700
static float64 addFloat64Sigs(float64 a, float64 b, flag zSign,
                              float_status *status)
B
bellard 已提交
3701
{
3702
    int_fast16_t aExp, bExp, zExp;
3703
    uint64_t aSig, bSig, zSig;
3704
    int_fast16_t expDiff;
B
bellard 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 9;
    bSig <<= 9;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FF ) {
            if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( bSig, expDiff, &bSig );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return packFloat64( zSign, 0x7FF, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig |= LIT64( 0x2000000000000000 );
        }
        shift64RightJamming( aSig, - expDiff, &aSig );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FF ) {
            if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            return a;
        }
3746
        if ( aExp == 0 ) {
3747 3748 3749 3750 3751 3752
            if (STATUS(flush_to_zero)) {
                if (aSig | bSig) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat64(zSign, 0, 0);
            }
3753 3754
            return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
        }
B
bellard 已提交
3755 3756 3757 3758 3759 3760 3761
        zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
        zExp = aExp;
        goto roundAndPack;
    }
    aSig |= LIT64( 0x2000000000000000 );
    zSig = ( aSig + bSig )<<1;
    --zExp;
3762
    if ( (int64_t) zSig < 0 ) {
B
bellard 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
        zSig = aSig + bSig;
        ++zExp;
    }
 roundAndPack:
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3779 3780
static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
                              float_status *status)
B
bellard 已提交
3781
{
3782
    int_fast16_t aExp, bExp, zExp;
3783
    uint64_t aSig, bSig, zSig;
3784
    int_fast16_t expDiff;
B
bellard 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    expDiff = aExp - bExp;
    aSig <<= 10;
    bSig <<= 10;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FF ) {
        if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign ^ 1, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( aSig, - expDiff, &aSig );
    bSig |= LIT64( 0x4000000000000000 );
 bBigger:
    zSig = bSig - aSig;
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig |= LIT64( 0x4000000000000000 );
    }
    shift64RightJamming( bSig, expDiff, &bSig );
    aSig |= LIT64( 0x4000000000000000 );
 aBigger:
    zSig = aSig - bSig;
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the double-precision floating-point values `a'
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3853
float64 float64_add(float64 a, float64 b, float_status *status)
B
bellard 已提交
3854 3855
{
    flag aSign, bSign;
3856 3857
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3876
float64 float64_sub(float64 a, float64 b, float_status *status)
B
bellard 已提交
3877 3878
{
    flag aSign, bSign;
3879 3880
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898

    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
    if ( aSign == bSign ) {
        return subFloat64Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat64Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3899
float64 float64_mul(float64 a, float64 b, float_status *status)
B
bellard 已提交
3900 3901
{
    flag aSign, bSign, zSign;
3902
    int_fast16_t aExp, bExp, zExp;
3903
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
3904

3905 3906 3907
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

B
bellard 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig ) == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FF;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
    zSig0 |= ( zSig1 != 0 );
3946
    if ( 0 <= (int64_t) ( zSig0<<1 ) ) {
B
bellard 已提交
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
        zSig0 <<= 1;
        --zExp;
    }
    return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the double-precision floating-point value `a'
| by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3960
float64 float64_div(float64 a, float64 b, float_status *status)
B
bellard 已提交
3961 3962
{
    flag aSign, bSign, zSign;
3963
    int_fast16_t aExp, bExp, zExp;
3964 3965 3966
    uint64_t aSig, bSig, zSig;
    uint64_t rem0, rem1;
    uint64_t term0, term1;
3967 3968
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    bSign = extractFloat64Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FF ) {
            if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        return packFloat64( zSign, 0x7FF, 0 );
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return packFloat64( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
                float_raise( float_flag_invalid STATUS_VAR);
                return float64_default_nan;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat64( zSign, 0x7FF, 0 );
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FD;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( bSig <= ( aSig + aSig ) ) {
        aSig >>= 1;
        ++zExp;
    }
    zSig = estimateDiv128To64( aSig, 0, bSig );
    if ( ( zSig & 0x1FF ) <= 2 ) {
        mul64To128( bSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4016
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
            --zSig;
            add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
        }
        zSig |= ( rem1 != 0 );
    }
    return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4032
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4033
{
4034
    flag aSign, zSign;
4035
    int_fast16_t aExp, bExp, expDiff;
4036 4037 4038
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4039

4040 4041
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
            return propagateFloat64NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( bExp == 0x7FF ) {
        if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            float_raise( float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4101
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4102 4103 4104 4105
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4106
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4107 4108 4109 4110 4111
    if ( zSign ) aSig = - aSig;
    return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );

}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
/*----------------------------------------------------------------------------
| Returns the result of multiplying the double-precision floating-point values
| `a' and `b' then adding 'c', with no intermediate rounding step after the
| multiplication.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic 754-2008.
| The flags argument allows the caller to select negation of the
| addend, the intermediate product, or the final result. (The difference
| between this and having the caller do a separate negation is that negating
| externally will flip the sign bit on NaNs.)
*----------------------------------------------------------------------------*/

4123 4124
float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
                       float_status *status)
4125 4126
{
    flag aSign, bSign, cSign, zSign;
4127
    int_fast16_t aExp, bExp, cExp, pExp, zExp, expDiff;
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
    uint64_t aSig, bSig, cSig;
    flag pInf, pZero, pSign;
    uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
    int shiftcount;
    flag signflip, infzero;

    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
    c = float64_squash_input_denormal(c STATUS_VAR);
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    bSig = extractFloat64Frac(b);
    bExp = extractFloat64Exp(b);
    bSign = extractFloat64Sign(b);
    cSig = extractFloat64Frac(c);
    cExp = extractFloat64Exp(c);
    cSign = extractFloat64Sign(c);

    infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
               (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (((aExp == 0x7ff) && aSig) ||
        ((bExp == 0x7ff) && bSig) ||
        ((cExp == 0x7ff) && cSig)) {
        return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR);
    }

    if (infzero) {
        float_raise(float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }

    if (flags & float_muladd_negate_c) {
        cSign ^= 1;
    }

    signflip = (flags & float_muladd_negate_result) ? 1 : 0;

    /* Work out the sign and type of the product */
    pSign = aSign ^ bSign;
    if (flags & float_muladd_negate_product) {
        pSign ^= 1;
    }
    pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
    pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);

    if (cExp == 0x7ff) {
        if (pInf && (pSign ^ cSign)) {
            /* addition of opposite-signed infinities => InvalidOperation */
            float_raise(float_flag_invalid STATUS_VAR);
            return float64_default_nan;
        }
        /* Otherwise generate an infinity of the same sign */
        return packFloat64(cSign ^ signflip, 0x7ff, 0);
    }

    if (pInf) {
        return packFloat64(pSign ^ signflip, 0x7ff, 0);
    }

    if (pZero) {
        if (cExp == 0) {
            if (cSig == 0) {
                /* Adding two exact zeroes */
                if (pSign == cSign) {
                    zSign = pSign;
                } else if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign = 1;
                } else {
                    zSign = 0;
                }
                return packFloat64(zSign ^ signflip, 0, 0);
            }
            /* Exact zero plus a denorm */
            if (STATUS(flush_to_zero)) {
                float_raise(float_flag_output_denormal STATUS_VAR);
                return packFloat64(cSign ^ signflip, 0, 0);
            }
        }
        /* Zero plus something non-zero : just return the something */
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
        if (flags & float_muladd_halve_result) {
            if (cExp == 0) {
                normalizeFloat64Subnormal(cSig, &cExp, &cSig);
            }
            /* Subtract one to halve, and one again because roundAndPackFloat64
             * wants one less than the true exponent.
             */
            cExp -= 2;
            cSig = (cSig | 0x0010000000000000ULL) << 10;
            return roundAndPackFloat64(cSign ^ signflip, cExp, cSig STATUS_VAR);
        }
4225
        return packFloat64(cSign ^ signflip, cExp, cSig);
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
    }

    if (aExp == 0) {
        normalizeFloat64Subnormal(aSig, &aExp, &aSig);
    }
    if (bExp == 0) {
        normalizeFloat64Subnormal(bSig, &bExp, &bSig);
    }

    /* Calculate the actual result a * b + c */

    /* Multiply first; this is easy. */
    /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
     * because we want the true exponent, not the "one-less-than"
     * flavour that roundAndPackFloat64() takes.
     */
    pExp = aExp + bExp - 0x3fe;
    aSig = (aSig | LIT64(0x0010000000000000))<<10;
    bSig = (bSig | LIT64(0x0010000000000000))<<11;
    mul64To128(aSig, bSig, &pSig0, &pSig1);
    if ((int64_t)(pSig0 << 1) >= 0) {
        shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
        pExp--;
    }

    zSign = pSign ^ signflip;

    /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
     * bit in position 126.
     */
    if (cExp == 0) {
        if (!cSig) {
            /* Throw out the special case of c being an exact zero now */
            shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
4260 4261 4262
            if (flags & float_muladd_halve_result) {
                pExp--;
            }
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
            return roundAndPackFloat64(zSign, pExp - 1,
                                       pSig1 STATUS_VAR);
        }
        normalizeFloat64Subnormal(cSig, &cExp, &cSig);
    }

    /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
     * significand of the addend, with the explicit bit in position 126.
     */
    cSig0 = cSig << (126 - 64 - 52);
    cSig1 = 0;
    cSig0 |= LIT64(0x4000000000000000);
    expDiff = pExp - cExp;

    if (pSign == cSign) {
        /* Addition */
        if (expDiff > 0) {
            /* scale c to match p */
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            /* scale p to match c */
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            zExp = cExp;
        } else {
            /* no scaling needed */
            zExp = cExp;
        }
        /* Add significands and make sure explicit bit ends up in posn 126 */
        add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
        if ((int64_t)zSig0 < 0) {
            shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
        } else {
            zExp--;
        }
        shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
4299 4300 4301
        if (flags & float_muladd_halve_result) {
            zExp--;
        }
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
        return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR);
    } else {
        /* Subtraction */
        if (expDiff > 0) {
            shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
            sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            zExp = pExp;
        } else if (expDiff < 0) {
            shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
            sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
            zExp = cExp;
            zSign ^= 1;
        } else {
            zExp = pExp;
            if (lt128(cSig0, cSig1, pSig0, pSig1)) {
                sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
            } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
                sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
                zSign ^= 1;
            } else {
                /* Exact zero */
                zSign = signflip;
                if (STATUS(float_rounding_mode) == float_round_down) {
                    zSign ^= 1;
                }
                return packFloat64(zSign, 0, 0);
            }
        }
        --zExp;
        /* Do the equivalent of normalizeRoundAndPackFloat64() but
         * starting with the significand in a pair of uint64_t.
         */
        if (zSig0) {
            shiftcount = countLeadingZeros64(zSig0) - 1;
            shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
            if (zSig1) {
                zSig0 |= 1;
            }
            zExp -= shiftcount;
        } else {
4342 4343 4344 4345 4346 4347 4348 4349 4350
            shiftcount = countLeadingZeros64(zSig1);
            if (shiftcount == 0) {
                zSig0 = (zSig1 >> 1) | (zSig1 & 1);
                zExp -= 63;
            } else {
                shiftcount--;
                zSig0 = zSig1 << shiftcount;
                zExp -= (shiftcount + 64);
            }
4351
        }
4352 4353 4354
        if (flags & float_muladd_halve_result) {
            zExp--;
        }
4355 4356 4357 4358
        return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR);
    }
}

B
bellard 已提交
4359 4360 4361 4362 4363 4364
/*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4365
float64 float64_sqrt(float64 a, float_status *status)
B
bellard 已提交
4366 4367
{
    flag aSign;
4368
    int_fast16_t aExp, zExp;
4369 4370
    uint64_t aSig, zSig, doubleZSig;
    uint64_t rem0, rem1, term0, term1;
4371
    a = float64_squash_input_denormal(a STATUS_VAR);
B
bellard 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
4388
        if ( aSig == 0 ) return float64_zero;
B
bellard 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
    aSig |= LIT64( 0x0010000000000000 );
    zSig = estimateSqrt32( aExp, aSig>>21 );
    aSig <<= 9 - ( aExp & 1 );
    zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
    if ( ( zSig & 0x1FF ) <= 5 ) {
        doubleZSig = zSig<<1;
        mul64To128( zSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4400
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
            --zSig;
            doubleZSig -= 2;
            add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
        }
        zSig |= ( ( rem0 | rem1 ) != 0 );
    }
    return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );

}

4411 4412 4413 4414 4415
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4416
float64 float64_log2(float64 a, float_status *status)
4417 4418
{
    flag aSign, zSign;
4419
    int_fast16_t aExp;
4420
    uint64_t aSig, aSig0, aSig1, zSig, i;
4421
    a = float64_squash_input_denormal(a STATUS_VAR);
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return float64_default_nan;
    }
    if ( aExp == 0x7FF ) {
        if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR );
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4443
    zSig = (uint64_t)aExp << 52;
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
    return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR );
}

B
bellard 已提交
4458 4459
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4460 4461
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4462 4463 4464
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4465
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4466
{
4467
    uint64_t av, bv;
4468 4469
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4470 4471 4472 4473

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4474
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
4475 4476
        return 0;
    }
P
pbrook 已提交
4477
    av = float64_val(a);
P
pbrook 已提交
4478
    bv = float64_val(b);
4479
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4480 4481 4482 4483 4484

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4485 4486 4487
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4488 4489
*----------------------------------------------------------------------------*/

4490
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4491 4492
{
    flag aSign, bSign;
4493
    uint64_t av, bv;
4494 4495
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4505
    av = float64_val(a);
P
pbrook 已提交
4506
    bv = float64_val(b);
4507
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4508
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4509 4510 4511 4512 4513

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4514 4515 4516
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4517 4518
*----------------------------------------------------------------------------*/

4519
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4520 4521
{
    flag aSign, bSign;
4522
    uint64_t av, bv;
B
bellard 已提交
4523

4524 4525
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4526 4527 4528 4529 4530 4531 4532 4533
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4534
    av = float64_val(a);
P
pbrook 已提交
4535
    bv = float64_val(b);
4536
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4537
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4538 4539 4540

}

4541 4542
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4543 4544 4545
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4546 4547
*----------------------------------------------------------------------------*/

4548
int float64_unordered(float64 a, float64 b, float_status *status)
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
4562 4563
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4564 4565 4566
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4567 4568
*----------------------------------------------------------------------------*/

4569
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4570
{
4571
    uint64_t av, bv;
4572 4573
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4574 4575 4576 4577

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4578 4579 4580
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
4581 4582
        return 0;
    }
P
pbrook 已提交
4583
    av = float64_val(a);
P
pbrook 已提交
4584
    bv = float64_val(b);
4585
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4596
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4597 4598
{
    flag aSign, bSign;
4599
    uint64_t av, bv;
4600 4601
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4613
    av = float64_val(a);
P
pbrook 已提交
4614
    bv = float64_val(b);
4615
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4616
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4627
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4628 4629
{
    flag aSign, bSign;
4630
    uint64_t av, bv;
4631 4632
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);
B
bellard 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4644
    av = float64_val(a);
P
pbrook 已提交
4645
    bv = float64_val(b);
4646
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4647
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4648 4649 4650

}

4651 4652 4653 4654 4655 4656 4657
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4658
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
{
    a = float64_squash_input_denormal(a STATUS_VAR);
    b = float64_squash_input_denormal(b STATUS_VAR);

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4684
int32 floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
4685 4686 4687
{
    flag aSign;
    int32 aExp, shiftCount;
4688
    uint64_t aSig;
B
bellard 已提交
4689 4690 4691 4692

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4693
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
    return roundAndPackInt32( aSign, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4711
int32 floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4712 4713 4714
{
    flag aSign;
    int32 aExp, shiftCount;
4715
    uint64_t aSig, savedASig;
4716
    int32_t z;
B
bellard 已提交
4717 4718 4719 4720 4721

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4722
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
4737
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4756
int64 floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
4757 4758 4759
{
    flag aSign;
    int32 aExp, shiftCount;
4760
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig != LIT64( 0x8000000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4775
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
    return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4796
int64 floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4797 4798 4799
{
    flag aSign;
    int32 aExp, shiftCount;
4800
    uint64_t aSig;
B
bellard 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
    int64 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4815
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4816 4817 4818 4819 4820 4821
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    z = aSig>>( - shiftCount );
4822
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
B
bellard 已提交
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4837
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
4838 4839 4840
{
    flag aSign;
    int32 aExp;
4841
    uint64_t aSig;
B
bellard 已提交
4842 4843 4844 4845 4846

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4847
        if ( (uint64_t) ( aSig<<1 ) ) {
4848
            return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
    return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4865
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
4866 4867 4868
{
    flag aSign;
    int32 aExp;
4869
    uint64_t aSig, zSig;
B
bellard 已提交
4870 4871 4872 4873 4874

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4875
        if ( (uint64_t) ( aSig<<1 ) ) {
4876
            return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
    return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4893
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
4894 4895
{
    flag aSign;
4896
    int_fast16_t aExp;
4897
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4898 4899 4900 4901

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4902
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
4903
        return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4917
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
4918 4919 4920
{
    flag aSign;
    int32 aExp;
4921
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4922 4923 4924 4925
    floatx80 z;

    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4926
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
B
bellard 已提交
4927 4928 4929 4930 4931 4932
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4933
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4934 4935 4936 4937 4938 4939
            return a;
        }
        STATUS(float_exception_flags) |= float_flag_inexact;
        aSign = extractFloatx80Sign( a );
        switch ( STATUS(float_rounding_mode) ) {
         case float_round_nearest_even:
4940
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4941 4942 4943 4944 4945
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4946 4947 4948 4949 4950
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4967 4968
    switch (STATUS(float_rounding_mode)) {
    case float_round_nearest_even:
B
bellard 已提交
4969
        z.low += lastBitMask>>1;
4970 4971 4972 4973
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4974 4975 4976
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4977 4978 4979 4980 4981 4982 4983 4984 4985
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4986 4987
            z.low += roundBitsMask;
        }
4988 4989 4990
        break;
    default:
        abort();
B
bellard 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
    if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5010 5011
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5012 5013
{
    int32 aExp, bExp, zExp;
5014
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023
    int32 expDiff;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
5024
            if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5025 5026 5027 5028 5029 5030 5031 5032
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
5033
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5034 5035 5036 5037 5038 5039 5040 5041
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
5042
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
                return propagateFloatx80NaN( a, b STATUS_VAR );
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
5057
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5077 5078
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5079 5080
{
    int32 aExp, bExp, zExp;
5081
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
    int32 expDiff;
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5093
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
B
bellard 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
    return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
5111
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
5123
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    return
        normalizeRoundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5144
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5165
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
{
    flag aSign, bSign;

    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
        return subFloatx80Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloatx80Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5186
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5187 5188 5189
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
5190
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5201 5202
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
5203 5204 5205 5206 5207 5208
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
5209
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5229
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5245
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5246 5247 5248
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
5249 5250
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
    floatx80 z;

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5261
        if ( (uint64_t) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5262
        if ( bExp == 0x7FFF ) {
5263
            if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5264 5265 5266 5267 5268
            goto invalid;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
5269
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = floatx80_default_nan_low;
                z.high = floatx80_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5299
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5300 5301 5302 5303
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5304
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5305 5306
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5307
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5325
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5326
{
5327
    flag aSign, zSign;
B
bellard 已提交
5328
    int32 aExp, bExp, expDiff;
5329 5330
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5331 5332 5333 5334 5335 5336 5337 5338
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5339 5340
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
B
bellard 已提交
5341 5342 5343 5344 5345
            return propagateFloatx80NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
5346
        if ( (uint64_t) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
B
bellard 已提交
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = floatx80_default_nan_low;
            z.high = floatx80_default_nan_high;
            return z;
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5360
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
            80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5421
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5422 5423 5424
{
    flag aSign;
    int32 aExp, zExp;
5425 5426
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5427 5428 5429 5430 5431 5432
    floatx80 z;

    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
5433
        if ( (uint64_t) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
B
bellard 已提交
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5456
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5468
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
    return
        roundAndPackFloatx80(
            STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
5486 5487 5488 5489
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5490 5491
*----------------------------------------------------------------------------*/

5492
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5493 5494 5495
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5496
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5497
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5498
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5499
       ) {
5500
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
5501 5502 5503 5504 5505 5506
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5507
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5508 5509 5510 5511 5512 5513 5514
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5515 5516 5517
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5518 5519
*----------------------------------------------------------------------------*/

5520
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5521 5522 5523 5524
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5525
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5526
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5527
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5537
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5548 5549 5550
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5551 5552
*----------------------------------------------------------------------------*/

5553
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5554 5555 5556 5557
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5558
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5559
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5560
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5570
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5571 5572 5573 5574 5575 5576 5577 5578
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5579 5580
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5581 5582 5583
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5584
*----------------------------------------------------------------------------*/
5585
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
5598
/*----------------------------------------------------------------------------
5599
| Returns 1 if the extended double-precision floating-point value `a' is
5600 5601 5602
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5603 5604
*----------------------------------------------------------------------------*/

5605
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5606 5607 5608
{

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5609
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5610
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5611
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5612
       ) {
5613 5614 5615 5616
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
5617 5618 5619 5620 5621 5622
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5623
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5635
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5636 5637 5638 5639
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5640
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5641
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5642
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5655
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5671
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5672 5673 5674 5675
{
    flag aSign, bSign;

    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5676
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5677
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5678
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5691
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5692 5693 5694 5695 5696 5697 5698 5699
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5700 5701 5702 5703 5704 5705
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
5706
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
{
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
        if (    floatx80_is_signaling_nan( a )
             || floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5732
int32 float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
5733 5734 5735
{
    flag aSign;
    int32 aExp, shiftCount;
5736
    uint64_t aSig0, aSig1;
B
bellard 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
    return roundAndPackInt32( aSign, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5761
int32 float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5762 5763 5764
{
    flag aSign;
    int32 aExp, shiftCount;
5765
    uint64_t aSig0, aSig1, savedASig;
5766
    int32_t z;
B
bellard 已提交
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
        if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
5790
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5809
int64 float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
5810 5811 5812
{
    flag aSign;
    int32 aExp, shiftCount;
5813
    uint64_t aSig0, aSig1;
B
bellard 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
            float_raise( float_flag_invalid STATUS_VAR);
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5831
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
    return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5852
int64 float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5853 5854 5855
{
    flag aSign;
    int32 aExp, shiftCount;
5856
    uint64_t aSig0, aSig1;
B
bellard 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
    int64 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
                if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
            }
            else {
                float_raise( float_flag_invalid STATUS_VAR);
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5878
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5879 5880
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5881
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
B
bellard 已提交
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
                STATUS(float_exception_flags) |= float_flag_inexact;
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5894
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
B
bellard 已提交
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
            STATUS(float_exception_flags) |= float_flag_inexact;
        }
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5910
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
5911 5912 5913
{
    flag aSign;
    int32 aExp;
5914 5915
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5916 5917 5918 5919 5920 5921 5922

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5923
            return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
    return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5945
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
5946 5947 5948
{
    flag aSign;
    int32 aExp;
5949
    uint64_t aSig0, aSig1;
B
bellard 已提交
5950 5951 5952 5953 5954 5955 5956

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5957
            return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
    return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5978
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
5979 5980 5981
{
    flag aSign;
    int32 aExp;
5982
    uint64_t aSig0, aSig1;
B
bellard 已提交
5983 5984 5985 5986 5987 5988 5989

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
5990
            return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) STATUS_VAR );
B
bellard 已提交
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
        }
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
    return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6013
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
6014 6015 6016
{
    flag aSign;
    int32 aExp;
6017
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
                return propagateFloat128NaN( a, a STATUS_VAR );
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
6034 6035
        switch (STATUS(float_rounding_mode)) {
        case float_round_nearest_even:
B
bellard 已提交
6036 6037 6038 6039 6040
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
6041
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
6042
                    ++z.high;
6043
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
6044 6045
                }
            }
6046
            break;
6047 6048 6049 6050 6051 6052 6053 6054 6055
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6066
            }
6067 6068 6069
            break;
        default:
            abort();
B
bellard 已提交
6070 6071 6072 6073 6074
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6075
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
B
bellard 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
            STATUS(float_exception_flags) |= float_flag_inexact;
            aSign = extractFloat128Sign( a );
            switch ( STATUS(float_rounding_mode) ) {
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6087 6088 6089 6090 6091
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6108 6109
        switch (STATUS(float_rounding_mode)) {
        case float_round_nearest_even:
B
bellard 已提交
6110 6111 6112 6113
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6114
            break;
6115 6116 6117
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6118 6119 6120 6121
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6122 6123 6124
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6125 6126 6127 6128 6129 6130 6131 6132 6133
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
        STATUS(float_exception_flags) |= float_flag_inexact;
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6152 6153
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6154 6155
{
    int32 aExp, bExp, zExp;
6156
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
B
bellard 已提交
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
    int32 expDiff;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
                return propagateFloat128NaN( a, b STATUS_VAR );
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6204
        if ( aExp == 0 ) {
6205 6206 6207 6208 6209 6210
            if (STATUS(flush_to_zero)) {
                if (zSig0 | zSig1) {
                    float_raise(float_flag_output_denormal STATUS_VAR);
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6211 6212
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6239 6240
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6241 6242
{
    int32 aExp, bExp, zExp;
6243
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
B
bellard 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
    int32 expDiff;
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
    return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
 bExpBigger:
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
    return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6322
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6343
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
        return subFloat128Sigs( a, b, aSign STATUS_VAR );
    }
    else {
        return addFloat128Sigs( a, b, aSign STATUS_VAR );
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6364
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6365 6366 6367
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
6368
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6428
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6429 6430 6431
{
    flag aSign, bSign, zSign;
    int32 aExp, bExp, zExp;
6432 6433
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        if ( bExp == 0x7FFF ) {
            if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
                float_raise( float_flag_invalid STATUS_VAR);
                z.low = float128_default_nan_low;
                z.high = float128_default_nan_high;
                return z;
            }
            float_raise( float_flag_divbyzero STATUS_VAR);
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6487
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6488 6489 6490 6491 6492 6493 6494
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6495
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6512
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
6513
{
6514
    flag aSign, zSign;
B
bellard 已提交
6515
    int32 aExp, bExp, expDiff;
6516 6517 6518
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
            return propagateFloat128NaN( a, b STATUS_VAR );
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
        if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
            float_raise( float_flag_invalid STATUS_VAR);
            z.low = float128_default_nan_low;
            z.high = float128_default_nan_high;
            return z;
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6600
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6601
    add128(
6602
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6603 6604 6605 6606 6607
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6608
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
    return
        normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6621
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
6622 6623 6624
{
    flag aSign;
    int32 aExp, zExp;
6625 6626
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
    float128 z;

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
        float_raise( float_flag_invalid STATUS_VAR);
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6658
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6670
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
    return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6686 6687
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6688 6689 6690
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6691
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
6692 6693 6694 6695 6696 6697 6698
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6699
        float_raise( float_flag_invalid STATUS_VAR);
B
bellard 已提交
6700 6701 6702 6703 6704 6705
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6706
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6707 6708 6709 6710 6711 6712
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6713 6714 6715
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6716 6717
*----------------------------------------------------------------------------*/

6718
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6735
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6746 6747 6748
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6749 6750
*----------------------------------------------------------------------------*/

6751
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6768
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6769 6770 6771 6772 6773 6774 6775 6776
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6777 6778
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6779 6780 6781
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6782 6783
*----------------------------------------------------------------------------*/

6784
int float128_unordered(float128 a, float128 b, float_status *status)
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        float_raise( float_flag_invalid STATUS_VAR);
        return 1;
    }
    return 0;
}

B
bellard 已提交
6797 6798
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6799 6800 6801
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6802 6803
*----------------------------------------------------------------------------*/

6804
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6805 6806 6807 6808 6809 6810 6811
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6812 6813 6814 6815
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
B
bellard 已提交
6816 6817 6818 6819 6820 6821
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6822
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6834
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6854
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6870
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6890
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6891 6892 6893 6894 6895 6896 6897 6898
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6899 6900 6901 6902 6903 6904 6905
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6906
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
        if (    float128_is_signaling_nan( a )
             || float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
6922
/* misc functions */
6923
float32 uint32_to_float32(uint32_t a, float_status *status)
B
bellard 已提交
6924 6925 6926 6927
{
    return int64_to_float32(a STATUS_VAR);
}

6928
float64 uint32_to_float64(uint32_t a, float_status *status)
B
bellard 已提交
6929 6930 6931 6932
{
    return int64_to_float64(a STATUS_VAR);
}

6933
uint32 float32_to_uint32(float32 a, float_status *status)
B
bellard 已提交
6934 6935
{
    int64_t v;
6936
    uint32 res;
6937
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6938 6939 6940 6941 6942 6943 6944

    v = float32_to_int64(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6945
        return v;
B
bellard 已提交
6946
    }
6947 6948
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6949 6950 6951
    return res;
}

6952
uint32 float32_to_uint32_round_to_zero(float32 a, float_status *status)
B
bellard 已提交
6953 6954
{
    int64_t v;
6955
    uint32 res;
6956
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
6957 6958 6959 6960 6961 6962 6963

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
6964
        return v;
B
bellard 已提交
6965
    }
6966 6967
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
6968 6969 6970
    return res;
}

6971
int_fast16_t float32_to_int16(float32 a, float_status *status)
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
{
    int32_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

6991
uint_fast16_t float32_to_uint16(float32 a, float_status *status)
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010
{
    int32_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float32_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

7011
uint_fast16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
7012 7013
{
    int64_t v;
7014
    uint_fast16_t res;
7015
    int old_exc_flags = get_float_exception_flags(status);
7016 7017 7018 7019 7020 7021 7022

    v = float32_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
7023
        return v;
7024
    }
7025 7026
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
7027 7028 7029
    return res;
}

7030
uint32 float64_to_uint32(float64 a, float_status *status)
B
bellard 已提交
7031
{
T
Tom Musta 已提交
7032
    uint64_t v;
7033
    uint32 res;
T
Tom Musta 已提交
7034
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
7035

T
Tom Musta 已提交
7036 7037
    v = float64_to_uint64(a STATUS_VAR);
    if (v > 0xffffffff) {
B
bellard 已提交
7038 7039
        res = 0xffffffff;
    } else {
T
Tom Musta 已提交
7040
        return v;
B
bellard 已提交
7041
    }
T
Tom Musta 已提交
7042 7043
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
7044 7045 7046
    return res;
}

7047
uint32 float64_to_uint32_round_to_zero(float64 a, float_status *status)
B
bellard 已提交
7048
{
7049
    uint64_t v;
7050
    uint32 res;
7051
    int old_exc_flags = get_float_exception_flags(status);
B
bellard 已提交
7052

7053 7054
    v = float64_to_uint64_round_to_zero(a STATUS_VAR);
    if (v > 0xffffffff) {
B
bellard 已提交
7055 7056
        res = 0xffffffff;
    } else {
7057
        return v;
B
bellard 已提交
7058
    }
7059 7060
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
B
bellard 已提交
7061 7062 7063
    return res;
}

7064
int_fast16_t float64_to_int16(float64 a, float_status *status)
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
{
    int64_t v;
    int_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < -0x8000) {
        res = -0x8000;
    } else if (v > 0x7fff) {
        res = 0x7fff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

7084
uint_fast16_t float64_to_uint16(float64 a, float_status *status)
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
{
    int64_t v;
    uint_fast16_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float64_to_int32(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
        return v;
    }

    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
    return res;
}

7104
uint_fast16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
7105 7106
{
    int64_t v;
7107
    uint_fast16_t res;
7108
    int old_exc_flags = get_float_exception_flags(status);
7109 7110 7111 7112 7113 7114 7115

    v = float64_to_int64_round_to_zero(a STATUS_VAR);
    if (v < 0) {
        res = 0;
    } else if (v > 0xffff) {
        res = 0xffff;
    } else {
7116
        return v;
7117
    }
7118 7119
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid STATUS_VAR);
7120 7121 7122
    return res;
}

T
Tom Musta 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/
J
j_mayer 已提交
7134

7135
uint64_t float64_to_uint64(float64 a, float_status *status)
T
Tom Musta 已提交
7136 7137 7138 7139 7140
{
    flag aSign;
    int_fast16_t aExp, shiftCount;
    uint64_t aSig, aSigExtra;
    a = float64_squash_input_denormal(a STATUS_VAR);
J
j_mayer 已提交
7141

T
Tom Musta 已提交
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aSign && (aExp > 1022)) {
        float_raise(float_flag_invalid STATUS_VAR);
        if (float64_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig |= LIT64(0x0010000000000000);
    }
    shiftCount = 0x433 - aExp;
    if (shiftCount <= 0) {
        if (0x43E < aExp) {
            float_raise(float_flag_invalid STATUS_VAR);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        aSigExtra = 0;
        aSig <<= -shiftCount;
    } else {
        shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
    }
    return roundAndPackUint64(aSign, aSig, aSigExtra STATUS_VAR);
J
j_mayer 已提交
7168 7169
}

7170
uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
J
j_mayer 已提交
7171
{
7172 7173 7174 7175 7176
    signed char current_rounding_mode = STATUS(float_rounding_mode);
    set_float_rounding_mode(float_round_to_zero STATUS_VAR);
    int64_t v = float64_to_uint64(a STATUS_VAR);
    set_float_rounding_mode(current_rounding_mode STATUS_VAR);
    return v;
J
j_mayer 已提交
7177 7178
}

B
bellard 已提交
7179
#define COMPARE(s, nan_exp)                                                  \
7180 7181
static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
                                      int is_quiet, float_status *status)    \
B
bellard 已提交
7182 7183
{                                                                            \
    flag aSign, bSign;                                                       \
7184
    uint ## s ## _t av, bv;                                                  \
7185 7186
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);                  \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);                  \
B
bellard 已提交
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
                                                                             \
    if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \
         extractFloat ## s ## Frac( a ) ) ||                                 \
        ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
          extractFloat ## s ## Frac( b ) )) {                                \
        if (!is_quiet ||                                                     \
            float ## s ## _is_signaling_nan( a ) ||                          \
            float ## s ## _is_signaling_nan( b ) ) {                         \
            float_raise( float_flag_invalid STATUS_VAR);                     \
        }                                                                    \
        return float_relation_unordered;                                     \
    }                                                                        \
    aSign = extractFloat ## s ## Sign( a );                                  \
    bSign = extractFloat ## s ## Sign( b );                                  \
P
pbrook 已提交
7201
    av = float ## s ## _val(a);                                              \
7202
    bv = float ## s ## _val(b);                                              \
B
bellard 已提交
7203
    if ( aSign != bSign ) {                                                  \
7204
        if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) {                   \
B
bellard 已提交
7205 7206 7207 7208 7209 7210
            /* zero case */                                                  \
            return float_relation_equal;                                     \
        } else {                                                             \
            return 1 - (2 * aSign);                                          \
        }                                                                    \
    } else {                                                                 \
P
pbrook 已提交
7211
        if (av == bv) {                                                      \
B
bellard 已提交
7212 7213
            return float_relation_equal;                                     \
        } else {                                                             \
P
pbrook 已提交
7214
            return 1 - 2 * (aSign ^ ( av < bv ));                            \
B
bellard 已提交
7215 7216 7217 7218
        }                                                                    \
    }                                                                        \
}                                                                            \
                                                                             \
7219
int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \
B
bellard 已提交
7220 7221 7222 7223
{                                                                            \
    return float ## s ## _compare_internal(a, b, 0 STATUS_VAR);              \
}                                                                            \
                                                                             \
7224 7225
int float ## s ## _compare_quiet(float ## s a, float ## s b,                 \
                                 float_status *status)                       \
B
bellard 已提交
7226 7227 7228 7229 7230 7231
{                                                                            \
    return float ## s ## _compare_internal(a, b, 1 STATUS_VAR);              \
}

COMPARE(32, 0xff)
COMPARE(64, 0x7ff)
P
pbrook 已提交
7232

7233 7234
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
{
    flag aSign, bSign;

    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
            floatx80_is_signaling_nan( a ) ||
            floatx80_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7269
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7270 7271 7272 7273
{
    return floatx80_compare_internal(a, b, 0 STATUS_VAR);
}

7274
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7275 7276 7277 7278
{
    return floatx80_compare_internal(a, b, 1 STATUS_VAR);
}

7279 7280
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
            float128_is_signaling_nan( a ) ||
            float128_is_signaling_nan( b ) ) {
            float_raise( float_flag_invalid STATUS_VAR);
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7313
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7314 7315 7316 7317
{
    return float128_compare_internal(a, b, 0 STATUS_VAR);
}

7318
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7319 7320 7321 7322
{
    return float128_compare_internal(a, b, 1 STATUS_VAR);
}

7323 7324 7325
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
7326 7327 7328 7329 7330 7331 7332
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
7333 7334 7335
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
7336
 */
7337
#define MINMAX(s)                                                       \
7338
static inline float ## s float ## s ## _minmax(float ## s a, float ## s b,     \
7339
                                               int ismin, int isieee,   \
7340 7341
                                               int ismag,               \
                                               float_status *status)    \
7342 7343
{                                                                       \
    flag aSign, bSign;                                                  \
7344
    uint ## s ## _t av, bv, aav, abv;                                   \
7345 7346 7347 7348
    a = float ## s ## _squash_input_denormal(a STATUS_VAR);             \
    b = float ## s ## _squash_input_denormal(b STATUS_VAR);             \
    if (float ## s ## _is_any_nan(a) ||                                 \
        float ## s ## _is_any_nan(b)) {                                 \
7349 7350 7351 7352 7353 7354 7355 7356 7357
        if (isieee) {                                                   \
            if (float ## s ## _is_quiet_nan(a) &&                       \
                !float ## s ##_is_any_nan(b)) {                         \
                return b;                                               \
            } else if (float ## s ## _is_quiet_nan(b) &&                \
                       !float ## s ## _is_any_nan(a)) {                 \
                return a;                                               \
            }                                                           \
        }                                                               \
7358 7359 7360 7361 7362 7363
        return propagateFloat ## s ## NaN(a, b STATUS_VAR);             \
    }                                                                   \
    aSign = extractFloat ## s ## Sign(a);                               \
    bSign = extractFloat ## s ## Sign(b);                               \
    av = float ## s ## _val(a);                                         \
    bv = float ## s ## _val(b);                                         \
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
    if (ismag) {                                                        \
        aav = float ## s ## _abs(av);                                   \
        abv = float ## s ## _abs(bv);                                   \
        if (aav != abv) {                                               \
            if (ismin) {                                                \
                return (aav < abv) ? a : b;                             \
            } else {                                                    \
                return (aav < abv) ? b : a;                             \
            }                                                           \
        }                                                               \
    }                                                                   \
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
    if (aSign != bSign) {                                               \
        if (ismin) {                                                    \
            return aSign ? a : b;                                       \
        } else {                                                        \
            return aSign ? b : a;                                       \
        }                                                               \
    } else {                                                            \
        if (ismin) {                                                    \
            return (aSign ^ (av < bv)) ? a : b;                         \
        } else {                                                        \
            return (aSign ^ (av < bv)) ? b : a;                         \
        }                                                               \
    }                                                                   \
}                                                                       \
                                                                        \
7390 7391
float ## s float ## s ## _min(float ## s a, float ## s b,               \
                              float_status *status)                     \
7392
{                                                                       \
7393
    return float ## s ## _minmax(a, b, 1, 0, 0 STATUS_VAR);             \
7394 7395
}                                                                       \
                                                                        \
7396 7397
float ## s float ## s ## _max(float ## s a, float ## s b,               \
                              float_status *status)                     \
7398
{                                                                       \
7399
    return float ## s ## _minmax(a, b, 0, 0, 0 STATUS_VAR);             \
7400 7401
}                                                                       \
                                                                        \
7402 7403
float ## s float ## s ## _minnum(float ## s a, float ## s b,            \
                                 float_status *status)                  \
7404
{                                                                       \
7405
    return float ## s ## _minmax(a, b, 1, 1, 0 STATUS_VAR);             \
7406 7407
}                                                                       \
                                                                        \
7408 7409
float ## s float ## s ## _maxnum(float ## s a, float ## s b,            \
                                 float_status *status)                  \
7410
{                                                                       \
7411 7412 7413
    return float ## s ## _minmax(a, b, 0, 1, 0 STATUS_VAR);             \
}                                                                       \
                                                                        \
7414 7415
float ## s float ## s ## _minnummag(float ## s a, float ## s b,         \
                                    float_status *status)               \
7416 7417 7418 7419
{                                                                       \
    return float ## s ## _minmax(a, b, 1, 1, 1 STATUS_VAR);             \
}                                                                       \
                                                                        \
7420 7421
float ## s float ## s ## _maxnummag(float ## s a, float ## s b,         \
                                    float_status *status)               \
7422 7423
{                                                                       \
    return float ## s ## _minmax(a, b, 0, 1, 1 STATUS_VAR);             \
7424 7425
}

7426 7427
MINMAX(32)
MINMAX(64)
7428 7429


P
pbrook 已提交
7430
/* Multiply A by 2 raised to the power N.  */
7431
float32 float32_scalbn(float32 a, int n, float_status *status)
P
pbrook 已提交
7432 7433
{
    flag aSign;
7434
    int16_t aExp;
7435
    uint32_t aSig;
P
pbrook 已提交
7436

7437
    a = float32_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
7438 7439 7440 7441 7442
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF ) {
7443 7444 7445
        if ( aSig ) {
            return propagateFloat32NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7446 7447
        return a;
    }
7448
    if (aExp != 0) {
7449
        aSig |= 0x00800000;
7450
    } else if (aSig == 0) {
7451
        return a;
7452 7453 7454
    } else {
        aExp++;
    }
7455

7456 7457 7458 7459 7460 7461
    if (n > 0x200) {
        n = 0x200;
    } else if (n < -0x200) {
        n = -0x200;
    }

7462 7463 7464
    aExp += n - 1;
    aSig <<= 7;
    return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7465 7466
}

7467
float64 float64_scalbn(float64 a, int n, float_status *status)
P
pbrook 已提交
7468 7469
{
    flag aSign;
7470
    int16_t aExp;
7471
    uint64_t aSig;
P
pbrook 已提交
7472

7473
    a = float64_squash_input_denormal(a STATUS_VAR);
P
pbrook 已提交
7474 7475 7476 7477 7478
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0x7FF ) {
7479 7480 7481
        if ( aSig ) {
            return propagateFloat64NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7482 7483
        return a;
    }
7484
    if (aExp != 0) {
7485
        aSig |= LIT64( 0x0010000000000000 );
7486
    } else if (aSig == 0) {
7487
        return a;
7488 7489 7490
    } else {
        aExp++;
    }
7491

7492 7493 7494 7495 7496 7497
    if (n > 0x1000) {
        n = 0x1000;
    } else if (n < -0x1000) {
        n = -0x1000;
    }

7498 7499 7500
    aExp += n - 1;
    aSig <<= 10;
    return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
P
pbrook 已提交
7501 7502
}

7503
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
7504 7505
{
    flag aSign;
7506
    int32_t aExp;
7507
    uint64_t aSig;
P
pbrook 已提交
7508 7509 7510 7511 7512

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7513 7514 7515 7516
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
            return propagateFloatx80NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7517 7518
        return a;
    }
7519

7520 7521 7522 7523 7524 7525
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7526

7527 7528 7529 7530 7531 7532
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7533
    aExp += n;
7534 7535
    return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
                                          aSign, aExp, aSig, 0 STATUS_VAR );
P
pbrook 已提交
7536 7537
}

7538
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7539 7540
{
    flag aSign;
7541
    int32_t aExp;
7542
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7543 7544 7545 7546 7547 7548

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7549 7550 7551
        if ( aSig0 | aSig1 ) {
            return propagateFloat128NaN( a, a STATUS_VAR );
        }
P
pbrook 已提交
7552 7553
        return a;
    }
7554
    if (aExp != 0) {
7555
        aSig0 |= LIT64( 0x0001000000000000 );
7556
    } else if (aSig0 == 0 && aSig1 == 0) {
7557
        return a;
7558 7559 7560
    } else {
        aExp++;
    }
7561

7562 7563 7564 7565 7566 7567
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7568 7569 7570
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
                                          STATUS_VAR );
P
pbrook 已提交
7571 7572

}