softfloat.c 246.1 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
A
Alex Bennée 已提交
86
#include "qemu/bitops.h"
87
#include "fpu/softfloat.h"
B
bellard 已提交
88

89 90
/* We only need stdlib for abort() */

B
bellard 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
#include "softfloat-macros.h"

/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

108 109 110 111
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

112
static inline uint32_t extractFloat16Frac(float16 a)
113 114 115 116 117 118 119 120
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

121
static inline int extractFloat16Exp(float16 a)
122 123 124 125 126 127 128 129
{
    return (float16_val(a) >> 10) & 0x1f;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

130
static inline flag extractFloat16Sign(float16 a)
131 132 133 134
{
    return float16_val(a)>>15;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
    float_class_dnan,
    float_class_msnan, /* maybe silenced */
} FloatClass;

/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
 *   fram_lsbm1: the bit bellow the least significant bit (for rounding)
 *   round_mask/roundeven_mask: masks used for rounding
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

/* Canonicalize EXP and FRAC, setting CLS.  */
static FloatParts canonicalize(FloatParts part, const FloatFmt *parm,
                               float_status *status)
{
    if (part.exp == parm->exp_max) {
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
#ifdef NO_SIGNALING_NANS
            part.cls = float_class_qnan;
#else
            int64_t msb = part.frac << (parm->frac_shift + 2);
            if ((msb < 0) == status->snan_bit_is_one) {
                part.cls = float_class_snan;
            } else {
                part.cls = float_class_qnan;
            }
#endif
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

            if (unlikely(exp >= exp_max)) {
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
        exp = exp_max;
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
    return canonicalize(float16_unpack_raw(f), &float16_params, s);
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float16_default_nan(s);
    case float_class_msnan:
        return float16_maybe_silence_nan(float16_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float16_params);
        return float16_pack_raw(p);
    }
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
    return canonicalize(float32_unpack_raw(f), &float32_params, s);
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float32_default_nan(s);
    case float_class_msnan:
        return float32_maybe_silence_nan(float32_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float32_params);
        return float32_pack_raw(p);
    }
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
    return canonicalize(float64_unpack_raw(f), &float64_params, s);
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float64_default_nan(s);
    case float_class_msnan:
        return float64_maybe_silence_nan(float64_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float64_params);
        return float64_pack_raw(p);
    }
}

/* Simple helpers for checking if what NaN we have */
static bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}
static bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}
static bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_msnan;
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
            a.cls = float_class_dnan;
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
        a.cls = float_class_dnan;
    } else {
        if (pickNaN(is_qnan(a.cls), is_snan(a.cls),
                    is_qnan(b.cls), is_snan(b.cls),
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
        a.cls = float_class_msnan;
    }
    return a;
}

A
Alex Bennée 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
        a.cls = float_class_dnan;
    } else {
        switch (pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls),
                              is_qnan(b.cls), is_snan(b.cls),
                              is_qnan(c.cls), is_snan(c.cls),
                              inf_zero, s)) {
        case 0:
            break;
        case 1:
            a = b;
            break;
        case 2:
            a = c;
            break;
        case 3:
            a.cls = float_class_dnan;
            return a;
        default:
            g_assert_not_reached();
        }

        a.cls = float_class_msnan;
    }
    return a;
}

A
Alex Bennée 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
                a.cls = float_class_dnan;
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                a.frac >>= 1;
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

float16  __attribute__((flatten)) float16_add(float16 a, float16 b,
                                              float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_add(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_add(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float64_round_pack_canonical(pr, status);
}

float16 __attribute__((flatten)) float16_sub(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_sub(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_sub(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        a.sign = sign;
        return a;
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

float16 __attribute__((flatten)) float16_mul(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_mul(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_dnan;
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
        }
        return a;
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t temp_lo, temp_hi;
        int exp = a.exp - b.exp;
        if (a.frac < b.frac) {
            exp -= 1;
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1,
                              &temp_hi, &temp_lo);
        } else {
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT,
                              &temp_hi, &temp_lo);
        }
        /* LSB of quot is set if inexact which roundandpack will use
         * to set flags. Yet again we re-use a for the result */
        a.frac = div128To64(temp_lo, temp_hi, b.frac);
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 float32_div(float32 a, float32 b, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 float64_div(float64 a, float64 b, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s)
{
    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }

    switch (a.cls) {
    case float_class_zero:
    case float_class_inf:
    case float_class_qnan:
        /* already "integral" */
        break;
    case float_class_normal:
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
            switch (rounding_mode) {
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

            switch (rounding_mode) {
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float64_round_pack_canonical(pr, s);
}

float64 float64_trunc_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, float_round_to_zero, s);
    return float64_round_pack_canonical(pr, s);
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

static int64_t round_to_int_and_pack(FloatParts in, int rmode,
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        return max;
    case float_class_inf:
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
            if (r < -(uint64_t) min) {
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
            if (r < max) {
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_INT(fsz, isz)                                          \
int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a,         \
                                                float_status *s)        \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, s->float_rounding_mode,             \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}                                                                       \
                                                                        \
int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero       \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, float_round_to_zero,                \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}

FLOAT_TO_INT(16, 16)
FLOAT_TO_INT(16, 32)
FLOAT_TO_INT(16, 64)

FLOAT_TO_INT(32, 16)
FLOAT_TO_INT(32, 32)
FLOAT_TO_INT(32, 64)

FLOAT_TO_INT(64, 16)
FLOAT_TO_INT(64, 32)
FLOAT_TO_INT(64, 64)

#undef FLOAT_TO_INT

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max,
                                       float_status *s)
{
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
    {
        uint64_t r;
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        } else {
            return r;
        }
    }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_UINT(fsz, isz) \
uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a,       \
                                                  float_status *s)      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_uint_and_pack(p, s->float_rounding_mode,            \
                                 UINT ## isz ## _MAX, s);               \
}                                                                       \
                                                                        \
uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero     \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_uint_and_pack(p, s->float_rounding_mode,            \
                                 UINT ## isz ## _MAX, s);               \
}

FLOAT_TO_UINT(16, 16)
FLOAT_TO_UINT(16, 32)
FLOAT_TO_UINT(16, 64)

FLOAT_TO_UINT(32, 16)
FLOAT_TO_UINT(32, 32)
FLOAT_TO_UINT(32, 64)

FLOAT_TO_UINT(64, 16)
FLOAT_TO_UINT(64, 32)
FLOAT_TO_UINT(64, 64)

#undef FLOAT_TO_UINT

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts int_to_float(int64_t a, float_status *status)
{
    FloatParts r;
    if (a == 0) {
        r.cls = float_class_zero;
        r.sign = false;
    } else if (a == (1ULL << 63)) {
        r.cls = float_class_normal;
        r.sign = true;
        r.frac = DECOMPOSED_IMPLICIT_BIT;
        r.exp = 63;
    } else {
        uint64_t f;
        if (a < 0) {
            f = -a;
            r.sign = true;
        } else {
            f = a;
            r.sign = false;
        }
        int shift = clz64(f) - 1;
        r.cls = float_class_normal;
        r.exp = (DECOMPOSED_BINARY_POINT - shift);
        r.frac = f << shift;
    }

    return r;
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 int32_to_float16(int32_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float16 int16_to_float16(int16_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 int32_to_float32(int32_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float32 int16_to_float32(int16_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 int32_to_float64(int32_t a, float_status *status)
{
    return int64_to_float64(a, status);
}

float64 int16_to_float64(int16_t a, float_status *status)
{
    return int64_to_float64(a, status);
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts uint_to_float(uint64_t a, float_status *status)
{
    FloatParts r = { .sign = false};

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
        int spare_bits = clz64(a) - 1;
        r.cls = float_class_normal;
        r.exp = DECOMPOSED_BINARY_POINT - spare_bits;
        if (spare_bits < 0) {
            shift64RightJamming(a, -spare_bits, &a);
            r.frac = a;
        } else {
            r.frac = a << spare_bits;
        }
    }

    return r;
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 uint32_to_float16(uint32_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 uint32_to_float32(uint32_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 uint32_to_float64(uint32_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

A
Alex Bennée 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;
        bool a_sign, b_sign;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

        a_sign = a.sign;
        b_sign = b.sign;
        if (ismag) {
            a_sign = b_sign = 0;
        }

        if (a_sign == b_sign) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_sign ^ a_less ^ ismin ? b : a;
        } else {
            return a_sign ^ ismin ? b : a;
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

B
bellard 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

1910
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
1911
{
1912
    int8_t roundingMode;
B
bellard 已提交
1913
    flag roundNearestEven;
1914
    int8_t roundIncrement, roundBits;
1915
    int32_t z;
B
bellard 已提交
1916

1917
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
1918
    roundNearestEven = ( roundingMode == float_round_nearest_even );
1919 1920
    switch (roundingMode) {
    case float_round_nearest_even:
1921
    case float_round_ties_away:
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
1935 1936 1937 1938 1939 1940 1941
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
1942
        float_raise(float_flag_invalid, status);
1943
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
1944
    }
1945 1946 1947
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

1964
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
1965
                               float_status *status)
B
bellard 已提交
1966
{
1967
    int8_t roundingMode;
B
bellard 已提交
1968
    flag roundNearestEven, increment;
1969
    int64_t z;
B
bellard 已提交
1970

1971
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
1972
    roundNearestEven = ( roundingMode == float_round_nearest_even );
1973 1974
    switch (roundingMode) {
    case float_round_nearest_even:
1975
    case float_round_ties_away:
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
1989 1990 1991 1992
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
1993
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
1994 1995 1996 1997 1998
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
1999
        float_raise(float_flag_invalid, status);
B
bellard 已提交
2000
        return
2001
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
2002 2003
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
2004 2005 2006
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2007 2008 2009 2010
    return z;

}

T
Tom Musta 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

2021
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
2022
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
2023
{
2024
    int8_t roundingMode;
T
Tom Musta 已提交
2025 2026
    flag roundNearestEven, increment;

2027
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
2028
    roundNearestEven = (roundingMode == float_round_nearest_even);
2029 2030
    switch (roundingMode) {
    case float_round_nearest_even:
2031
    case float_round_ties_away:
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
2045 2046 2047 2048
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
2049
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2050 2051 2052 2053 2054 2055
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
2056
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2057 2058 2059 2060
        return 0;
    }

    if (absZ1) {
2061
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
2062 2063 2064 2065
    }
    return absZ0;
}

2066 2067 2068 2069
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2070
float32 float32_squash_input_denormal(float32 a, float_status *status)
2071
{
2072
    if (status->flush_inputs_to_zero) {
2073
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
2074
            float_raise(float_flag_input_denormal, status);
2075 2076 2077 2078 2079 2080
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
2081 2082 2083 2084 2085 2086 2087 2088
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2089
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
2090
{
2091
    int8_t shiftCount;
B
bellard 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| single-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2110
static inline float32 packFloat32(flag zSign, int zExp, uint32_t zSig)
B
bellard 已提交
2111 2112
{

P
pbrook 已提交
2113
    return make_float32(
2114
          ( ( (uint32_t) zSign )<<31 ) + ( ( (uint32_t) zExp )<<23 ) + zSig);
B
bellard 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2140
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2141
                                   float_status *status)
B
bellard 已提交
2142
{
2143
    int8_t roundingMode;
B
bellard 已提交
2144
    flag roundNearestEven;
2145
    int8_t roundIncrement, roundBits;
B
bellard 已提交
2146 2147
    flag isTiny;

2148
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2149
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2150 2151
    switch (roundingMode) {
    case float_round_nearest_even:
2152
    case float_round_ties_away:
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
2167 2168
    }
    roundBits = zSig & 0x7F;
2169
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
2170 2171
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
2172
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2173
           ) {
P
Peter Maydell 已提交
2174
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
2175
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
2176 2177
        }
        if ( zExp < 0 ) {
2178
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2179
                float_raise(float_flag_output_denormal, status);
2180 2181
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
2182
            isTiny =
2183 2184
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
2185 2186 2187 2188 2189
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
2190 2191 2192
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
2193 2194
        }
    }
2195 2196 2197
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
2215
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2216
                              float_status *status)
B
bellard 已提交
2217
{
2218
    int8_t shiftCount;
B
bellard 已提交
2219 2220

    shiftCount = countLeadingZeros32( zSig ) - 1;
P
Peter Maydell 已提交
2221 2222
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2223 2224 2225

}

2226 2227 2228 2229
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2230
float64 float64_squash_input_denormal(float64 a, float_status *status)
2231
{
2232
    if (status->flush_inputs_to_zero) {
2233
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
2234
            float_raise(float_flag_input_denormal, status);
2235 2236 2237 2238 2239 2240
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
2241 2242 2243 2244 2245 2246 2247 2248
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2249
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
2250
{
2251
    int8_t shiftCount;
B
bellard 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2270
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
2271 2272
{

P
pbrook 已提交
2273
    return make_float64(
2274
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
2286 2287 2288
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2300
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2301
                                   float_status *status)
B
bellard 已提交
2302
{
2303
    int8_t roundingMode;
B
bellard 已提交
2304
    flag roundNearestEven;
2305
    int roundIncrement, roundBits;
B
bellard 已提交
2306 2307
    flag isTiny;

2308
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2309
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2310 2311
    switch (roundingMode) {
    case float_round_nearest_even:
2312
    case float_round_ties_away:
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
2324 2325 2326
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
2327 2328
    default:
        abort();
B
bellard 已提交
2329 2330
    }
    roundBits = zSig & 0x3FF;
2331
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
2332 2333
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
2334
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2335
           ) {
2336 2337
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
2338
            float_raise(float_flag_overflow | float_flag_inexact, status);
2339
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
2340 2341
        }
        if ( zExp < 0 ) {
2342
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2343
                float_raise(float_flag_output_denormal, status);
2344 2345
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
2346
            isTiny =
2347 2348
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2349 2350 2351 2352 2353
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
2354 2355 2356
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2357 2358 2359 2360 2361 2362 2363
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
2364 2365
        }
    }
2366 2367 2368
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
2386
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2387
                              float_status *status)
B
bellard 已提交
2388
{
2389
    int8_t shiftCount;
B
bellard 已提交
2390 2391

    shiftCount = countLeadingZeros64( zSig ) - 1;
P
Peter Maydell 已提交
2392 2393
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2394 2395 2396 2397 2398 2399 2400 2401

}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

2402
static inline uint64_t extractFloatx80Frac( floatx80 a )
B
bellard 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/

2414
static inline int32_t extractFloatx80Exp( floatx80 a )
B
bellard 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
{

    return a.high & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

2426
static inline flag extractFloatx80Sign( floatx80 a )
B
bellard 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
{

    return a.high>>15;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2441
 normalizeFloatx80Subnormal( uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr )
B
bellard 已提交
2442
{
2443
    int8_t shiftCount;
B
bellard 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
| extended double-precision floating-point value, returning the result.
*----------------------------------------------------------------------------*/

2456
static inline floatx80 packFloatx80( flag zSign, int32_t zExp, uint64_t zSig )
B
bellard 已提交
2457 2458 2459 2460
{
    floatx80 z;

    z.low = zSig;
2461
    z.high = ( ( (uint16_t) zSign )<<15 ) + zExp;
B
bellard 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2490
static floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
2491
                                     int32_t zExp, uint64_t zSig0, uint64_t zSig1,
2492
                                     float_status *status)
B
bellard 已提交
2493
{
2494
    int8_t roundingMode;
B
bellard 已提交
2495
    flag roundNearestEven, increment, isTiny;
2496
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
2497

2498
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
2513 2514
    switch (roundingMode) {
    case float_round_nearest_even:
2515
    case float_round_ties_away:
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
2528 2529
    }
    roundBits = zSig0 & roundMask;
2530
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2531 2532 2533 2534 2535 2536
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
2537
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2538
                float_raise(float_flag_output_denormal, status);
2539 2540
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
2541
            isTiny =
2542 2543
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2544 2545 2546 2547 2548
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
2549 2550 2551
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2552 2553 2554
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
2555
            zSig0 += roundIncrement;
2556
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2557 2558 2559 2560 2561 2562 2563 2564
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2565 2566 2567
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
2581 2582
    switch (roundingMode) {
    case float_round_nearest_even:
2583
    case float_round_ties_away:
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
2597
    }
2598
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2599 2600 2601 2602 2603 2604 2605 2606
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
2607
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( zExp <= 0 ) {
            isTiny =
2618 2619
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2620 2621 2622 2623 2624
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
2625 2626 2627
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
2628 2629 2630
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
2631 2632
            switch (roundingMode) {
            case float_round_nearest_even:
2633
            case float_round_ties_away:
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
2647 2648 2649 2650
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
2651 2652
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2653 2654 2655 2656
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2657 2658 2659
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2660 2661 2662 2663 2664 2665 2666
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
2667
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

2686
static floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
2687
                                              flag zSign, int32_t zExp,
2688 2689
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
2690
{
2691
    int8_t shiftCount;
B
bellard 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
2701 2702
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
2703 2704 2705 2706 2707 2708 2709 2710

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2711
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2723
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

2735
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

2746
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
2765 2766
     uint64_t aSig0,
     uint64_t aSig1,
2767
     int32_t *zExpPtr,
2768 2769
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
2770 2771
 )
{
2772
    int8_t shiftCount;
B
bellard 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2807
static inline float128
2808
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
2809 2810 2811 2812
{
    float128 z;

    z.low = zSig1;
2813
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2839
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
2840 2841
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
2842
{
2843
    int8_t roundingMode;
B
bellard 已提交
2844 2845
    flag roundNearestEven, increment, isTiny;

2846
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2847
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2848 2849
    switch (roundingMode) {
    case float_round_nearest_even:
2850
    case float_round_ties_away:
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
2862 2863 2864
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
2865 2866
    default:
        abort();
B
bellard 已提交
2867
    }
2868
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
2880
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
2881 2882 2883
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
2884
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
2897
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2898
                float_raise(float_flag_output_denormal, status);
2899 2900
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
2901
            isTiny =
2902 2903
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
2915 2916 2917
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
2918 2919
            switch (roundingMode) {
            case float_round_nearest_even:
2920
            case float_round_ties_away:
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
2932 2933 2934
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
2935 2936
            default:
                abort();
B
bellard 已提交
2937 2938 2939
            }
        }
    }
2940 2941 2942
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

2964
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
2965 2966
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
2967
{
2968
    int8_t shiftCount;
2969
    uint64_t zSig2;
B
bellard 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
2986
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

2998
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
2999 3000
{
    flag zSign;
3001
    uint32_t absA;
3002
    int8_t shiftCount;
3003
    uint64_t zSig;
B
bellard 已提交
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3020
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
3021 3022
{
    flag zSign;
3023
    uint32_t absA;
3024
    int8_t shiftCount;
3025
    uint64_t zSig0;
B
bellard 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3043
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
3044 3045
{
    flag zSign;
3046
    uint64_t absA;
3047
    int8_t shiftCount;
B
bellard 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3063
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
3064 3065
{
    flag zSign;
3066
    uint64_t absA;
3067
    int8_t shiftCount;
3068
    int32_t zExp;
3069
    uint64_t zSig0, zSig1;
B
bellard 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

3090 3091 3092 3093 3094 3095
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3096
float128 uint64_to_float128(uint64_t a, float_status *status)
3097 3098 3099 3100
{
    if (a == 0) {
        return float128_zero;
    }
P
Peter Maydell 已提交
3101
    return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
3102 3103
}

B
bellard 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113



/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3114
float64 float32_to_float64(float32 a, float_status *status)
B
bellard 已提交
3115 3116
{
    flag aSign;
3117
    int aExp;
3118
    uint32_t aSig;
P
Peter Maydell 已提交
3119
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3120 3121 3122 3123 3124

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3125 3126 3127
        if (aSig) {
            return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3128 3129 3130 3131 3132 3133 3134
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3135
    return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
B
bellard 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3146
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
3147 3148
{
    flag aSign;
3149
    int aExp;
3150
    uint32_t aSig;
B
bellard 已提交
3151

P
Peter Maydell 已提交
3152
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3153 3154 3155 3156
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3157 3158 3159
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3160 3161 3162 3163 3164 3165 3166
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
3167
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3178
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
3179 3180
{
    flag aSign;
3181
    int aExp;
3182
    uint32_t aSig;
B
bellard 已提交
3183

P
Peter Maydell 已提交
3184
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3185 3186 3187 3188
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3189 3190 3191
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3192 3193 3194 3195 3196 3197 3198
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3199
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3209
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
3210
{
3211
    flag aSign, zSign;
3212
    int aExp, bExp, expDiff;
3213 3214 3215 3216 3217
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
3218 3219
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3220 3221 3222 3223 3224 3225 3226 3227

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
3228
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
3229
        }
P
Peter Maydell 已提交
3230
        float_raise(float_flag_invalid, status);
3231
        return float32_default_nan(status);
B
bellard 已提交
3232 3233
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
3234 3235 3236
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
3237 3238 3239 3240
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
3241
            float_raise(float_flag_invalid, status);
3242
            return float32_default_nan(status);
B
bellard 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
3263
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
3275 3276
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
3295
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
3296 3297 3298 3299
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
3300
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
3301
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
3302
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
3303 3304
}

3305

B
bellard 已提交
3306 3307 3308 3309 3310 3311
/*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3312
float32 float32_sqrt(float32 a, float_status *status)
B
bellard 已提交
3313 3314
{
    flag aSign;
3315
    int aExp, zExp;
3316 3317
    uint32_t aSig, zSig;
    uint64_t rem, term;
P
Peter Maydell 已提交
3318
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3319 3320 3321 3322 3323

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3324 3325 3326
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
B
bellard 已提交
3327
        if ( ! aSign ) return a;
P
Peter Maydell 已提交
3328
        float_raise(float_flag_invalid, status);
3329
        return float32_default_nan(status);
B
bellard 已提交
3330 3331 3332
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
P
Peter Maydell 已提交
3333
        float_raise(float_flag_invalid, status);
3334
        return float32_default_nan(status);
B
bellard 已提交
3335 3336
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
3337
        if ( aSig == 0 ) return float32_zero;
B
bellard 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
    aSig = ( aSig | 0x00800000 )<<8;
    zSig = estimateSqrt32( aExp, aSig ) + 2;
    if ( ( zSig & 0x7F ) <= 5 ) {
        if ( zSig < 2 ) {
            zSig = 0x7FFFFFFF;
            goto roundAndPack;
        }
        aSig >>= aExp & 1;
3349 3350 3351
        term = ( (uint64_t) zSig ) * zSig;
        rem = ( ( (uint64_t) aSig )<<32 ) - term;
        while ( (int64_t) rem < 0 ) {
B
bellard 已提交
3352
            --zSig;
3353
            rem += ( ( (uint64_t) zSig )<<1 ) | 1;
B
bellard 已提交
3354 3355 3356 3357 3358
        }
        zSig |= ( rem != 0 );
    }
    shift32RightJamming( zSig, 1, &zSig );
 roundAndPack:
P
Peter Maydell 已提交
3359
    return roundAndPackFloat32(0, zExp, zSig, status);
B
bellard 已提交
3360 3361 3362

}

A
Aurelien Jarno 已提交
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
3398 3399
};

3400
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
3401 3402
{
    flag aSign;
3403
    int aExp;
3404
    uint32_t aSig;
A
Aurelien Jarno 已提交
3405 3406
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
3407
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
3408 3409 3410 3411 3412 3413

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
3414 3415 3416
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
3417 3418 3419 3420 3421 3422
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
3423
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
3424 3425 3426 3427

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
3428 3429
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
3430 3431 3432 3433 3434 3435

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
3436 3437
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
3438

P
Peter Maydell 已提交
3439
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
3440 3441 3442 3443 3444
    }

    return float64_to_float32(r, status);
}

3445 3446 3447 3448 3449
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
3450
float32 float32_log2(float32 a, float_status *status)
3451 3452
{
    flag aSign, zSign;
3453
    int aExp;
3454
    uint32_t aSig, zSig, i;
3455

P
Peter Maydell 已提交
3456
    a = float32_squash_input_denormal(a, status);
3457 3458 3459 3460 3461 3462 3463 3464 3465
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
3466
        float_raise(float_flag_invalid, status);
3467
        return float32_default_nan(status);
3468 3469
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3470 3471 3472
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
3473 3474 3475 3476 3477 3478 3479 3480 3481
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
3482
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
3483 3484 3485 3486 3487 3488 3489 3490 3491
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
3492
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
3493 3494
}

B
bellard 已提交
3495 3496
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3497 3498
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
3499 3500 3501
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3502
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
3503
{
3504
    uint32_t av, bv;
P
Peter Maydell 已提交
3505 3506
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3507 3508 3509 3510

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3511
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3512 3513
        return 0;
    }
3514 3515 3516
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
3517 3518 3519 3520
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3521 3522 3523
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3524 3525
*----------------------------------------------------------------------------*/

3526
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
3527 3528
{
    flag aSign, bSign;
3529
    uint32_t av, bv;
P
Peter Maydell 已提交
3530 3531
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3532 3533 3534 3535

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3536
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3537 3538 3539 3540
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3541 3542
    av = float32_val(a);
    bv = float32_val(b);
3543
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3544
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3545 3546 3547 3548 3549

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3550 3551 3552
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3553 3554
*----------------------------------------------------------------------------*/

3555
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
3556 3557
{
    flag aSign, bSign;
3558
    uint32_t av, bv;
P
Peter Maydell 已提交
3559 3560
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3561 3562 3563 3564

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3565
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3566 3567 3568 3569
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3570 3571
    av = float32_val(a);
    bv = float32_val(b);
3572
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
3573
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3574 3575 3576

}

3577 3578
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
3579 3580 3581
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
3582 3583
*----------------------------------------------------------------------------*/

3584
int float32_unordered(float32 a, float32 b, float_status *status)
3585
{
P
Peter Maydell 已提交
3586 3587
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
3588 3589 3590 3591

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3592
        float_raise(float_flag_invalid, status);
3593 3594 3595 3596
        return 1;
    }
    return 0;
}
3597

B
bellard 已提交
3598 3599
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3600 3601 3602
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
3603 3604
*----------------------------------------------------------------------------*/

3605
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3606
{
P
Peter Maydell 已提交
3607 3608
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3609 3610 3611 3612

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3613 3614
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3615
            float_raise(float_flag_invalid, status);
3616
        }
B
bellard 已提交
3617 3618
        return 0;
    }
3619 3620
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3630
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3631 3632
{
    flag aSign, bSign;
3633
    uint32_t av, bv;
P
Peter Maydell 已提交
3634 3635
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3636 3637 3638 3639

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3640 3641
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3642
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3643 3644 3645 3646 3647
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3648 3649
    av = float32_val(a);
    bv = float32_val(b);
3650
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3651
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3652 3653 3654 3655 3656 3657 3658

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
3659
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3660 3661
*----------------------------------------------------------------------------*/

3662
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3663
{
3664 3665 3666 3667
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3668

3669 3670 3671 3672 3673
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3674
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3675
        }
3676
        return 0;
B
bellard 已提交
3677
    }
3678 3679 3680 3681 3682 3683
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3684 3685 3686 3687

}

/*----------------------------------------------------------------------------
3688 3689 3690 3691
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
3692 3693
*----------------------------------------------------------------------------*/

3694
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3695
{
3696 3697
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3698

3699 3700 3701 3702 3703 3704
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3705
        }
3706
        return 1;
B
bellard 已提交
3707
    }
3708
    return 0;
B
bellard 已提交
3709 3710
}

3711

B
bellard 已提交
3712 3713 3714 3715 3716 3717 3718
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3719
float32 float64_to_float32(float64 a, float_status *status)
B
bellard 已提交
3720 3721
{
    flag aSign;
3722
    int aExp;
3723 3724
    uint64_t aSig;
    uint32_t zSig;
P
Peter Maydell 已提交
3725
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
3726 3727 3728 3729 3730

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
3731 3732 3733
        if (aSig) {
            return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3734 3735 3736 3737 3738 3739 3740 3741
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
P
Peter Maydell 已提交
3742
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
3743 3744 3745

}

P
Paul Brook 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| half-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
3757
static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
P
Paul Brook 已提交
3758
{
3759
    return make_float16(
3760
        (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
P
Paul Brook 已提交
3761 3762
}

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper half-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the half-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal half-
| precision floating-point number.
| The `ieee' flag indicates whether to use IEEE standard half precision, or
| ARM-style "alternative representation", which omits the NaN and Inf
| encodings in order to raise the maximum representable exponent by one.
|     The input significand `zSig' has its binary point between bits 22
| and 23, which is 13 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| Note the slightly odd position of the binary point in zSig compared with the
| other roundAndPackFloat functions. This should probably be fixed if we
| need to implement more float16 routines than just conversion.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3791
static float16 roundAndPackFloat16(flag zSign, int zExp,
3792 3793
                                   uint32_t zSig, flag ieee,
                                   float_status *status)
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
{
    int maxexp = ieee ? 29 : 30;
    uint32_t mask;
    uint32_t increment;
    bool rounding_bumps_exp;
    bool is_tiny = false;

    /* Calculate the mask of bits of the mantissa which are not
     * representable in half-precision and will be lost.
     */
    if (zExp < 1) {
        /* Will be denormal in halfprec */
        mask = 0x00ffffff;
        if (zExp >= -11) {
            mask >>= 11 + zExp;
        }
    } else {
        /* Normal number in halfprec */
        mask = 0x00001fff;
    }

3815
    switch (status->float_rounding_mode) {
3816 3817 3818 3819 3820 3821
    case float_round_nearest_even:
        increment = (mask + 1) >> 1;
        if ((zSig & mask) == increment) {
            increment = zSig & (increment << 1);
        }
        break;
3822 3823 3824
    case float_round_ties_away:
        increment = (mask + 1) >> 1;
        break;
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
    case float_round_up:
        increment = zSign ? 0 : mask;
        break;
    case float_round_down:
        increment = zSign ? mask : 0;
        break;
    default: /* round_to_zero */
        increment = 0;
        break;
    }

    rounding_bumps_exp = (zSig + increment >= 0x01000000);

    if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
        if (ieee) {
P
Peter Maydell 已提交
3840
            float_raise(float_flag_overflow | float_flag_inexact, status);
3841 3842
            return packFloat16(zSign, 0x1f, 0);
        } else {
P
Peter Maydell 已提交
3843
            float_raise(float_flag_invalid, status);
3844 3845 3846 3847 3848 3849 3850
            return packFloat16(zSign, 0x1f, 0x3ff);
        }
    }

    if (zExp < 0) {
        /* Note that flush-to-zero does not affect half-precision results */
        is_tiny =
3851
            (status->float_detect_tininess == float_tininess_before_rounding)
3852 3853 3854 3855
            || (zExp < -1)
            || (!rounding_bumps_exp);
    }
    if (zSig & mask) {
P
Peter Maydell 已提交
3856
        float_raise(float_flag_inexact, status);
3857
        if (is_tiny) {
P
Peter Maydell 已提交
3858
            float_raise(float_flag_underflow, status);
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
        }
    }

    zSig += increment;
    if (rounding_bumps_exp) {
        zSig >>= 1;
        zExp++;
    }

    if (zExp < -10) {
        return packFloat16(zSign, 0, 0);
    }
    if (zExp < 0) {
        zSig >>= -zExp;
        zExp = 0;
    }
    return packFloat16(zSign, zExp, zSig >> 13);
}

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

3893
static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
3894 3895 3896 3897 3898 3899 3900
                                      uint32_t *zSigPtr)
{
    int8_t shiftCount = countLeadingZeros32(aSig) - 21;
    *zSigPtr = aSig << shiftCount;
    *zExpPtr = 1 - shiftCount;
}

P
Paul Brook 已提交
3901 3902
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
   The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3903

3904
float32 float16_to_float32(float16 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3905 3906
{
    flag aSign;
3907
    int aExp;
3908
    uint32_t aSig;
P
Paul Brook 已提交
3909

3910 3911 3912
    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);
P
Paul Brook 已提交
3913 3914 3915

    if (aExp == 0x1f && ieee) {
        if (aSig) {
P
Peter Maydell 已提交
3916
            return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
P
Paul Brook 已提交
3917
        }
3918
        return packFloat32(aSign, 0xff, 0);
P
Paul Brook 已提交
3919 3920 3921 3922 3923 3924
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat32(aSign, 0, 0);
        }

3925 3926
        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
P
Paul Brook 已提交
3927 3928 3929 3930
    }
    return packFloat32( aSign, aExp + 0x70, aSig << 13);
}

3931
float16 float32_to_float16(float32 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3932 3933
{
    flag aSign;
3934
    int aExp;
3935
    uint32_t aSig;
3936

P
Peter Maydell 已提交
3937
    a = float32_squash_input_denormal(a, status);
P
Paul Brook 已提交
3938 3939 3940 3941 3942 3943

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if (aSig) {
3944 3945
            /* Input is a NaN */
            if (!ieee) {
P
Peter Maydell 已提交
3946
                float_raise(float_flag_invalid, status);
3947 3948
                return packFloat16(aSign, 0, 0);
            }
3949
            return commonNaNToFloat16(
P
Peter Maydell 已提交
3950
                float32ToCommonNaN(a, status), status);
P
Paul Brook 已提交
3951
        }
3952 3953
        /* Infinity */
        if (!ieee) {
P
Peter Maydell 已提交
3954
            float_raise(float_flag_invalid, status);
3955 3956 3957
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
P
Paul Brook 已提交
3958
    }
3959
    if (aExp == 0 && aSig == 0) {
P
Paul Brook 已提交
3960 3961
        return packFloat16(aSign, 0, 0);
    }
3962 3963 3964 3965 3966 3967 3968
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
P
Paul Brook 已提交
3969
    aSig |= 0x00800000;
3970
    aExp -= 0x71;
P
Paul Brook 已提交
3971

P
Peter Maydell 已提交
3972
    return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
P
Paul Brook 已提交
3973 3974
}

3975
float64 float16_to_float64(float16 a, flag ieee, float_status *status)
3976 3977
{
    flag aSign;
3978
    int aExp;
3979 3980 3981 3982 3983 3984 3985 3986 3987
    uint32_t aSig;

    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);

    if (aExp == 0x1f && ieee) {
        if (aSig) {
            return commonNaNToFloat64(
P
Peter Maydell 已提交
3988
                float16ToCommonNaN(a, status), status);
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
        }
        return packFloat64(aSign, 0x7ff, 0);
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat64(aSign, 0, 0);
        }

        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
    }
    return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
}

4003
float16 float64_to_float16(float64 a, flag ieee, float_status *status)
4004 4005
{
    flag aSign;
4006
    int aExp;
4007 4008 4009
    uint64_t aSig;
    uint32_t zSig;

P
Peter Maydell 已提交
4010
    a = float64_squash_input_denormal(a, status);
4011 4012 4013 4014 4015 4016 4017 4018

    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aExp == 0x7FF) {
        if (aSig) {
            /* Input is a NaN */
            if (!ieee) {
P
Peter Maydell 已提交
4019
                float_raise(float_flag_invalid, status);
4020 4021 4022
                return packFloat16(aSign, 0, 0);
            }
            return commonNaNToFloat16(
P
Peter Maydell 已提交
4023
                float64ToCommonNaN(a, status), status);
4024 4025 4026
        }
        /* Infinity */
        if (!ieee) {
P
Peter Maydell 已提交
4027
            float_raise(float_flag_invalid, status);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
    }
    shift64RightJamming(aSig, 29, &aSig);
    zSig = aSig;
    if (aExp == 0 && zSig == 0) {
        return packFloat16(aSign, 0, 0);
    }
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
    zSig |= 0x00800000;
    aExp -= 0x3F1;

P
Peter Maydell 已提交
4047
    return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
4048 4049
}

B
bellard 已提交
4050 4051 4052 4053 4054 4055 4056
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4057
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
4058 4059
{
    flag aSign;
4060
    int aExp;
4061
    uint64_t aSig;
B
bellard 已提交
4062

P
Peter Maydell 已提交
4063
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4064 4065 4066 4067
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4068 4069 4070
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4090
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
4091 4092
{
    flag aSign;
4093
    int aExp;
4094
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4095

P
Peter Maydell 已提交
4096
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4097 4098 4099 4100
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4101 4102 4103
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4123
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4124
{
4125
    flag aSign, zSign;
4126
    int aExp, bExp, expDiff;
4127 4128 4129
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4130

P
Peter Maydell 已提交
4131 4132
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4133 4134 4135 4136 4137 4138 4139
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
4140
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
4141
        }
P
Peter Maydell 已提交
4142
        float_raise(float_flag_invalid, status);
4143
        return float64_default_nan(status);
B
bellard 已提交
4144 4145
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
4146 4147 4148
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
4149 4150 4151 4152
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4153
            float_raise(float_flag_invalid, status);
4154
            return float64_default_nan(status);
B
bellard 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4194
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4195 4196 4197 4198
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4199
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4200
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4201
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4202 4203 4204

}

4205

B
bellard 已提交
4206 4207 4208 4209 4210 4211
/*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4212
float64 float64_sqrt(float64 a, float_status *status)
B
bellard 已提交
4213 4214
{
    flag aSign;
4215
    int aExp, zExp;
4216 4217
    uint64_t aSig, zSig, doubleZSig;
    uint64_t rem0, rem1, term0, term1;
P
Peter Maydell 已提交
4218
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4219 4220 4221 4222 4223

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4224 4225 4226
        if (aSig) {
            return propagateFloat64NaN(a, a, status);
        }
B
bellard 已提交
4227
        if ( ! aSign ) return a;
P
Peter Maydell 已提交
4228
        float_raise(float_flag_invalid, status);
4229
        return float64_default_nan(status);
B
bellard 已提交
4230 4231 4232
    }
    if ( aSign ) {
        if ( ( aExp | aSig ) == 0 ) return a;
P
Peter Maydell 已提交
4233
        float_raise(float_flag_invalid, status);
4234
        return float64_default_nan(status);
B
bellard 已提交
4235 4236
    }
    if ( aExp == 0 ) {
P
pbrook 已提交
4237
        if ( aSig == 0 ) return float64_zero;
B
bellard 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
    aSig |= LIT64( 0x0010000000000000 );
    zSig = estimateSqrt32( aExp, aSig>>21 );
    aSig <<= 9 - ( aExp & 1 );
    zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
    if ( ( zSig & 0x1FF ) <= 5 ) {
        doubleZSig = zSig<<1;
        mul64To128( zSig, zSig, &term0, &term1 );
        sub128( aSig, 0, term0, term1, &rem0, &rem1 );
4249
        while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4250 4251 4252 4253 4254 4255
            --zSig;
            doubleZSig -= 2;
            add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
        }
        zSig |= ( ( rem0 | rem1 ) != 0 );
    }
P
Peter Maydell 已提交
4256
    return roundAndPackFloat64(0, zExp, zSig, status);
B
bellard 已提交
4257 4258 4259

}

4260 4261 4262 4263 4264
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4265
float64 float64_log2(float64 a, float_status *status)
4266 4267
{
    flag aSign, zSign;
4268
    int aExp;
4269
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
4270
    a = float64_squash_input_denormal(a, status);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4281
        float_raise(float_flag_invalid, status);
4282
        return float64_default_nan(status);
4283 4284
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4285 4286 4287
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
4288 4289 4290 4291 4292 4293
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4294
    zSig = (uint64_t)aExp << 52;
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
4306
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4307 4308
}

B
bellard 已提交
4309 4310
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4311 4312
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4313 4314 4315
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4316
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4317
{
4318
    uint64_t av, bv;
P
Peter Maydell 已提交
4319 4320
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4321 4322 4323 4324

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4325
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4326 4327
        return 0;
    }
P
pbrook 已提交
4328
    av = float64_val(a);
P
pbrook 已提交
4329
    bv = float64_val(b);
4330
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4331 4332 4333 4334 4335

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4336 4337 4338
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4339 4340
*----------------------------------------------------------------------------*/

4341
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4342 4343
{
    flag aSign, bSign;
4344
    uint64_t av, bv;
P
Peter Maydell 已提交
4345 4346
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4347 4348 4349 4350

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4351
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4352 4353 4354 4355
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4356
    av = float64_val(a);
P
pbrook 已提交
4357
    bv = float64_val(b);
4358
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4359
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4360 4361 4362 4363 4364

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4365 4366 4367
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4368 4369
*----------------------------------------------------------------------------*/

4370
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4371 4372
{
    flag aSign, bSign;
4373
    uint64_t av, bv;
B
bellard 已提交
4374

P
Peter Maydell 已提交
4375 4376
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4377 4378 4379
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4380
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4381 4382 4383 4384
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4385
    av = float64_val(a);
P
pbrook 已提交
4386
    bv = float64_val(b);
4387
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4388
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4389 4390 4391

}

4392 4393
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4394 4395 4396
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4397 4398
*----------------------------------------------------------------------------*/

4399
int float64_unordered(float64 a, float64 b, float_status *status)
4400
{
P
Peter Maydell 已提交
4401 4402
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4403 4404 4405 4406

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4407
        float_raise(float_flag_invalid, status);
4408 4409 4410 4411 4412
        return 1;
    }
    return 0;
}

B
bellard 已提交
4413 4414
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4415 4416 4417
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4418 4419
*----------------------------------------------------------------------------*/

4420
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4421
{
4422
    uint64_t av, bv;
P
Peter Maydell 已提交
4423 4424
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4425 4426 4427 4428

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4429 4430
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4431
            float_raise(float_flag_invalid, status);
4432
        }
B
bellard 已提交
4433 4434
        return 0;
    }
P
pbrook 已提交
4435
    av = float64_val(a);
P
pbrook 已提交
4436
    bv = float64_val(b);
4437
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4448
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4449 4450
{
    flag aSign, bSign;
4451
    uint64_t av, bv;
P
Peter Maydell 已提交
4452 4453
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4454 4455 4456 4457

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4458 4459
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4460
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4461 4462 4463 4464 4465
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4466
    av = float64_val(a);
P
pbrook 已提交
4467
    bv = float64_val(b);
4468
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4469
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4480
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4481 4482
{
    flag aSign, bSign;
4483
    uint64_t av, bv;
P
Peter Maydell 已提交
4484 4485
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4486 4487 4488 4489

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4490 4491
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4492
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4493 4494 4495 4496 4497
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4498
    av = float64_val(a);
P
pbrook 已提交
4499
    bv = float64_val(b);
4500
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4501
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4502 4503 4504

}

4505 4506 4507 4508 4509 4510 4511
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4512
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4513
{
P
Peter Maydell 已提交
4514 4515
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4516 4517 4518 4519

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4520 4521
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4522
            float_raise(float_flag_invalid, status);
4523 4524 4525 4526 4527 4528
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4539
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
4540 4541
{
    flag aSign;
4542
    int32_t aExp, shiftCount;
4543
    uint64_t aSig;
B
bellard 已提交
4544

4545 4546 4547 4548
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4549 4550 4551
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4552
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4553 4554 4555
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
4556
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4570
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4571 4572
{
    flag aSign;
4573
    int32_t aExp, shiftCount;
4574
    uint64_t aSig, savedASig;
4575
    int32_t z;
B
bellard 已提交
4576

4577 4578 4579 4580
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4581 4582 4583 4584
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4585
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4586 4587 4588
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
4589 4590 4591
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
4601
        float_raise(float_flag_invalid, status);
4602
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4603 4604
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
4605
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4621
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
4622 4623
{
    flag aSign;
4624
    int32_t aExp, shiftCount;
4625
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4626

4627 4628 4629 4630
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4631 4632 4633 4634 4635 4636
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
4637
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4638 4639 4640 4641 4642 4643
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig != LIT64( 0x8000000000000000 ) ) )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4644
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4645 4646 4647 4648 4649 4650
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
4651
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4665
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4666 4667
{
    flag aSign;
4668
    int32_t aExp, shiftCount;
4669
    uint64_t aSig;
4670
    int64_t z;
B
bellard 已提交
4671

4672 4673 4674 4675
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4676 4677 4678 4679 4680 4681 4682
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
4683
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4684 4685 4686 4687
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4688
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4689 4690
    }
    else if ( aExp < 0x3FFF ) {
4691 4692 4693
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4694 4695 4696
        return 0;
    }
    z = aSig>>( - shiftCount );
4697
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
4698
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4712
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
4713 4714
{
    flag aSign;
4715
    int32_t aExp;
4716
    uint64_t aSig;
B
bellard 已提交
4717

4718 4719 4720 4721
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
4722 4723 4724 4725
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4726
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4727
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4728 4729 4730 4731 4732
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
4733
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4744
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
4745 4746
{
    flag aSign;
4747
    int32_t aExp;
4748
    uint64_t aSig, zSig;
B
bellard 已提交
4749

4750 4751 4752 4753
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
4754 4755 4756 4757
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4758
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4759
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4760 4761 4762 4763 4764
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
4765
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4776
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
4777 4778
{
    flag aSign;
4779
    int aExp;
4780
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4781

4782 4783 4784 4785
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
4786 4787 4788
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4789
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4790
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4791 4792 4793 4794 4795 4796
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
4813 4814 4815 4816 4817 4818 4819
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4820
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
4821 4822
{
    flag aSign;
4823
    int32_t aExp;
4824
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4825 4826
    floatx80 z;

4827 4828 4829 4830
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4831 4832
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4833
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
4834
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
4835 4836 4837 4838 4839
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4840
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4841 4842
            return a;
        }
4843
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4844
        aSign = extractFloatx80Sign( a );
4845
        switch (status->float_rounding_mode) {
B
bellard 已提交
4846
         case float_round_nearest_even:
4847
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4848 4849 4850 4851 4852
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4853 4854 4855 4856 4857
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4874
    switch (status->float_rounding_mode) {
4875
    case float_round_nearest_even:
B
bellard 已提交
4876
        z.low += lastBitMask>>1;
4877 4878 4879 4880
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4881 4882 4883
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4884 4885 4886 4887 4888 4889 4890 4891 4892
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4893 4894
            z.low += roundBitsMask;
        }
4895 4896 4897
        break;
    default:
        abort();
B
bellard 已提交
4898 4899 4900 4901 4902 4903
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
4904 4905 4906
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4919 4920
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4921
{
4922
    int32_t aExp, bExp, zExp;
4923
    uint64_t aSig, bSig, zSig0, zSig1;
4924
    int32_t expDiff;
B
bellard 已提交
4925 4926 4927 4928 4929 4930 4931 4932

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4933 4934 4935
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
4936 4937 4938 4939 4940 4941 4942 4943
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4944 4945 4946
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
4947 4948 4949 4950 4951 4952 4953 4954
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
4955
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
4956
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
4970
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
4971 4972 4973 4974 4975
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
4976
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4977
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4988 4989
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4990
{
4991
    int32_t aExp, bExp, zExp;
4992
    uint64_t aSig, bSig, zSig0, zSig1;
4993
    int32_t expDiff;
B
bellard 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5003
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5004
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5005
        }
P
Peter Maydell 已提交
5006
        float_raise(float_flag_invalid, status);
5007
        return floatx80_default_nan(status);
B
bellard 已提交
5008 5009 5010 5011 5012 5013 5014 5015
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
5016
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
5017 5018
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5019 5020 5021
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
        return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5033 5034 5035
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5036 5037 5038 5039 5040 5041 5042 5043
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
5044
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5045
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5046 5047 5048 5049 5050 5051 5052 5053
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5054
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5055 5056 5057
{
    flag aSign, bSign;

5058 5059 5060 5061
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5062 5063 5064
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5065
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5066 5067
    }
    else {
P
Peter Maydell 已提交
5068
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5079
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5080 5081 5082
{
    flag aSign, bSign;

5083 5084 5085 5086
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5087 5088 5089
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5090
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5091 5092
    }
    else {
P
Peter Maydell 已提交
5093
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5104
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5105 5106
{
    flag aSign, bSign, zSign;
5107
    int32_t aExp, bExp, zExp;
5108
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5109

5110 5111 5112 5113
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5114 5115 5116 5117 5118 5119 5120 5121
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5122 5123
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5124
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5125 5126 5127 5128 5129
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5130 5131 5132
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5133 5134
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5135
            float_raise(float_flag_invalid, status);
5136
            return floatx80_default_nan(status);
B
bellard 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5150
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5151 5152 5153
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
5154
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5155
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5156 5157 5158 5159 5160 5161 5162 5163
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5164
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5165 5166
{
    flag aSign, bSign, zSign;
5167
    int32_t aExp, bExp, zExp;
5168 5169
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5170

5171 5172 5173 5174
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5175 5176 5177 5178 5179 5180 5181 5182
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5183 5184 5185
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5186
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5187 5188 5189
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5190 5191 5192 5193 5194
            goto invalid;
        }
        return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5195 5196 5197
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5198 5199 5200 5201 5202 5203
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5204
                float_raise(float_flag_invalid, status);
5205
                return floatx80_default_nan(status);
B
bellard 已提交
5206
            }
P
Peter Maydell 已提交
5207
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
            return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5225
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5226 5227 5228 5229
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5230
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5231 5232
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5233
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5234 5235 5236 5237 5238
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
5239
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5240
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5241 5242 5243 5244 5245 5246 5247 5248
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5249
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5250
{
5251
    flag aSign, zSign;
5252
    int32_t aExp, bExp, expDiff;
5253 5254
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5255

5256 5257 5258 5259
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5260 5261 5262 5263 5264 5265
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5266 5267
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5268
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5269 5270 5271 5272
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5273 5274 5275
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5276 5277 5278 5279 5280
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
5281
            float_raise(float_flag_invalid, status);
5282
            return floatx80_default_nan(status);
B
bellard 已提交
5283 5284 5285 5286
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5287
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
5338
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5348
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5349 5350
{
    flag aSign;
5351
    int32_t aExp, zExp;
5352 5353
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5354

5355 5356 5357 5358
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5359 5360 5361 5362
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5363 5364 5365
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
5366 5367 5368 5369 5370 5371
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
5372
        float_raise(float_flag_invalid, status);
5373
        return floatx80_default_nan(status);
B
bellard 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5386
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5398
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
5409 5410
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
5411 5412 5413
}

/*----------------------------------------------------------------------------
5414 5415 5416 5417
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5418 5419
*----------------------------------------------------------------------------*/

5420
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5421 5422
{

5423 5424 5425 5426 5427
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5428
       ) {
P
Peter Maydell 已提交
5429
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5430 5431 5432 5433 5434 5435
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5436
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5437 5438 5439 5440 5441 5442 5443
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5444 5445 5446
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5447 5448
*----------------------------------------------------------------------------*/

5449
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5450 5451 5452
{
    flag aSign, bSign;

5453 5454 5455 5456 5457
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5458
       ) {
P
Peter Maydell 已提交
5459
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5460 5461 5462 5463 5464 5465 5466
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5467
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5478 5479 5480
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5481 5482
*----------------------------------------------------------------------------*/

5483
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5484 5485 5486
{
    flag aSign, bSign;

5487 5488 5489 5490 5491
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5492
       ) {
P
Peter Maydell 已提交
5493
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5494 5495 5496 5497 5498 5499 5500
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5501
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5502 5503 5504 5505 5506 5507 5508 5509
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5510 5511
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5512 5513 5514
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5515
*----------------------------------------------------------------------------*/
5516
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5517
{
5518 5519 5520 5521 5522
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
5523
       ) {
P
Peter Maydell 已提交
5524
        float_raise(float_flag_invalid, status);
5525 5526 5527 5528 5529
        return 1;
    }
    return 0;
}

B
bellard 已提交
5530
/*----------------------------------------------------------------------------
5531
| Returns 1 if the extended double-precision floating-point value `a' is
5532 5533 5534
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5535 5536
*----------------------------------------------------------------------------*/

5537
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5538 5539
{

5540 5541 5542 5543
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5544
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5545
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5546
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5547
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5548
       ) {
5549 5550
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5551
            float_raise(float_flag_invalid, status);
5552
        }
B
bellard 已提交
5553 5554 5555 5556 5557 5558
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5559
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5571
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5572 5573 5574
{
    flag aSign, bSign;

5575 5576 5577 5578
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5579
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5580
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5581
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5582
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5583
       ) {
5584 5585
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5586
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5587 5588 5589 5590 5591 5592 5593 5594
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5595
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5611
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5612 5613 5614
{
    flag aSign, bSign;

5615 5616 5617 5618
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5619
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5620
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5621
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5622
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5623
       ) {
5624 5625
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5626
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5627 5628 5629 5630 5631 5632 5633 5634
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5635
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5636 5637 5638 5639 5640 5641 5642 5643
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5644 5645 5646 5647 5648 5649
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
5650
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
5651
{
5652 5653 5654 5655
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
5656 5657 5658 5659 5660
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
5661 5662
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5663
            float_raise(float_flag_invalid, status);
5664 5665 5666 5667 5668 5669
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5680
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
5681 5682
{
    flag aSign;
5683
    int32_t aExp, shiftCount;
5684
    uint64_t aSig0, aSig1;
B
bellard 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
5695
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5709
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5710 5711
{
    flag aSign;
5712
    int32_t aExp, shiftCount;
5713
    uint64_t aSig0, aSig1, savedASig;
5714
    int32_t z;
B
bellard 已提交
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
5726 5727 5728
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
5739
        float_raise(float_flag_invalid, status);
5740
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5741 5742
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
5743
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5759
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
5760 5761
{
    flag aSign;
5762
    int32_t aExp, shiftCount;
5763
    uint64_t aSig0, aSig1;
B
bellard 已提交
5764 5765 5766 5767 5768 5769 5770 5771 5772

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
5773
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5774 5775 5776 5777 5778 5779 5780
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5781
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5782 5783 5784 5785 5786 5787
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
5788
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5802
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5803 5804
{
    flag aSign;
5805
    int32_t aExp, shiftCount;
5806
    uint64_t aSig0, aSig1;
5807
    int64_t z;
B
bellard 已提交
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
5820 5821 5822
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
5823 5824
            }
            else {
P
Peter Maydell 已提交
5825
                float_raise(float_flag_invalid, status);
B
bellard 已提交
5826 5827 5828 5829
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5830
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5831 5832
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5833
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
5834
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5835 5836 5837 5838 5839
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
5840
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5841 5842 5843 5844 5845
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5846
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
5847
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5848 5849 5850 5851 5852 5853 5854
        }
    }
    if ( aSign ) z = - z;
    return z;

}

5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
5914 5915
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
5944 5945 5946 5947 5948
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5949
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
5950 5951
{
    flag aSign;
5952
    int32_t aExp;
5953 5954
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5955 5956 5957 5958 5959 5960 5961

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5962
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
5973
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5984
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
5985 5986
{
    flag aSign;
5987
    int32_t aExp;
5988
    uint64_t aSig0, aSig1;
B
bellard 已提交
5989 5990 5991 5992 5993 5994 5995

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5996
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
6006
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6017
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
6018 6019
{
    flag aSign;
6020
    int32_t aExp;
6021
    uint64_t aSig0, aSig1;
B
bellard 已提交
6022 6023 6024 6025 6026 6027 6028

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6029
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
        }
        return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6041
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6052
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
6053 6054
{
    flag aSign;
6055
    int32_t aExp;
6056
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
6057 6058 6059 6060 6061 6062 6063 6064
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
6065
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
6066 6067 6068 6069 6070 6071 6072
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
6073
        switch (status->float_rounding_mode) {
6074
        case float_round_nearest_even:
B
bellard 已提交
6075 6076 6077 6078 6079
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
6080
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
6081
                    ++z.high;
6082
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
6083 6084
                }
            }
6085
            break;
6086 6087 6088 6089 6090 6091 6092 6093 6094
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6105
            }
6106 6107 6108
            break;
        default:
            abort();
B
bellard 已提交
6109 6110 6111 6112 6113
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6114
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6115
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6116
            aSign = extractFloat128Sign( a );
6117
            switch (status->float_rounding_mode) {
B
bellard 已提交
6118 6119 6120 6121 6122 6123 6124 6125
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6126 6127 6128 6129 6130
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6147
        switch (status->float_rounding_mode) {
6148
        case float_round_nearest_even:
B
bellard 已提交
6149 6150 6151 6152
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6153
            break;
6154 6155 6156
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6157 6158 6159 6160
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6161 6162 6163
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6164 6165 6166 6167 6168 6169 6170 6171 6172
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6173 6174 6175 6176
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6177
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6191 6192
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6193
{
6194
    int32_t aExp, bExp, zExp;
6195
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6196
    int32_t expDiff;
B
bellard 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6207 6208 6209
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6224 6225 6226
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6242
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6243 6244 6245 6246
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6247
        if ( aExp == 0 ) {
6248
            if (status->flush_to_zero) {
6249
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
6250
                    float_raise(float_flag_output_denormal, status);
6251 6252 6253
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6254 6255
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
6270
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6282 6283
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6284
{
6285
    int32_t aExp, bExp, zExp;
6286
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
6287
    int32_t expDiff;
B
bellard 已提交
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6302
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6303
        }
P
Peter Maydell 已提交
6304
        float_raise(float_flag_invalid, status);
6305
        return float128_default_nan(status);
B
bellard 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
6315 6316
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
6317 6318
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6319 6320 6321
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6339 6340 6341
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
6357 6358
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
6359 6360 6361 6362 6363 6364 6365 6366 6367

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6368
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6369 6370 6371 6372 6373 6374
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6375
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6376 6377
    }
    else {
P
Peter Maydell 已提交
6378
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6389
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6390 6391 6392 6393 6394 6395
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6396
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6397 6398
    }
    else {
P
Peter Maydell 已提交
6399
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6410
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6411 6412
{
    flag aSign, bSign, zSign;
6413
    int32_t aExp, bExp, zExp;
6414
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6428
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6429 6430 6431 6432 6433
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6434 6435 6436
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6437 6438
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6439
            float_raise(float_flag_invalid, status);
6440
            return float128_default_nan(status);
B
bellard 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
6463
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6473
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6474 6475
{
    flag aSign, bSign, zSign;
6476
    int32_t aExp, bExp, zExp;
6477 6478
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6490 6491 6492
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6493
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6494 6495 6496
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6497 6498 6499 6500 6501
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6502 6503 6504
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6505 6506 6507 6508 6509 6510
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6511
                float_raise(float_flag_invalid, status);
6512
                return float128_default_nan(status);
B
bellard 已提交
6513
            }
P
Peter Maydell 已提交
6514
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6535
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6536 6537 6538 6539 6540 6541 6542
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6543
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6544 6545 6546 6547 6548 6549
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6550
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6551 6552 6553 6554 6555 6556 6557 6558 6559

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6560
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
6561
{
6562
    flag aSign, zSign;
6563
    int32_t aExp, bExp, expDiff;
6564 6565 6566
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6578
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6579 6580 6581 6582
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6583 6584 6585
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6586 6587 6588 6589 6590
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6591
            float_raise(float_flag_invalid, status);
6592
            return float128_default_nan(status);
B
bellard 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6647
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6648
    add128(
6649
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6650 6651 6652 6653 6654
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6655
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6656
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6657 6658
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
6659 6660 6661 6662 6663 6664 6665 6666
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6667
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
6668 6669
{
    flag aSign;
6670
    int32_t aExp, zExp;
6671 6672
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6673 6674 6675 6676 6677 6678

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6679 6680 6681
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
6682 6683 6684 6685 6686 6687
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
6688
        float_raise(float_flag_invalid, status);
6689
        return float128_default_nan(status);
B
bellard 已提交
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6703
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6715
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6725
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6726 6727 6728 6729 6730

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6731 6732
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6733 6734 6735
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6736
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
6737 6738 6739 6740 6741 6742 6743
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6744
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6745 6746 6747 6748 6749 6750
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6751
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6752 6753 6754 6755 6756 6757
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6758 6759 6760
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6761 6762
*----------------------------------------------------------------------------*/

6763
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
6764 6765 6766 6767 6768 6769 6770 6771
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6772
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6773 6774 6775 6776 6777 6778 6779
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6780
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6791 6792 6793
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6794 6795
*----------------------------------------------------------------------------*/

6796
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
6797 6798 6799 6800 6801 6802 6803 6804
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6805
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6806 6807 6808 6809 6810 6811 6812
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6813
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6814 6815 6816 6817 6818 6819 6820 6821
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6822 6823
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6824 6825 6826
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6827 6828
*----------------------------------------------------------------------------*/

6829
int float128_unordered(float128 a, float128 b, float_status *status)
6830 6831 6832 6833 6834 6835
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6836
        float_raise(float_flag_invalid, status);
6837 6838 6839 6840 6841
        return 1;
    }
    return 0;
}

B
bellard 已提交
6842 6843
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6844 6845 6846
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6847 6848
*----------------------------------------------------------------------------*/

6849
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6850 6851 6852 6853 6854 6855 6856
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6857 6858
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6859
            float_raise(float_flag_invalid, status);
6860
        }
B
bellard 已提交
6861 6862 6863 6864 6865 6866
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6867
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6879
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6880 6881 6882 6883 6884 6885 6886 6887
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6888 6889
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6890
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6891 6892 6893 6894 6895 6896 6897 6898
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6899
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6915
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6916 6917 6918 6919 6920 6921 6922 6923
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6924 6925
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6926
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6927 6928 6929 6930 6931 6932 6933 6934
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6935
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6936 6937 6938 6939 6940 6941 6942 6943
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6944 6945 6946 6947 6948 6949 6950
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6951
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
6952 6953 6954 6955 6956 6957
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6958 6959
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6960
            float_raise(float_flag_invalid, status);
6961 6962 6963 6964 6965 6966
        }
        return 1;
    }
    return 0;
}

6967 6968
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
6969 6970 6971
{
    flag aSign, bSign;

6972 6973 6974 6975
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
6976 6977 6978 6979 6980
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
6981 6982
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6983
            float_raise(float_flag_invalid, status);
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7007
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7008
{
P
Peter Maydell 已提交
7009
    return floatx80_compare_internal(a, b, 0, status);
7010 7011
}

7012
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7013
{
P
Peter Maydell 已提交
7014
    return floatx80_compare_internal(a, b, 1, status);
7015 7016
}

7017 7018
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
7019 7020 7021 7022 7023 7024 7025 7026
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
7027 7028
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7029
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7051
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7052
{
P
Peter Maydell 已提交
7053
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
7054 7055
}

7056
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7057
{
P
Peter Maydell 已提交
7058
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
7059 7060
}

7061
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
7062 7063
{
    flag aSign;
7064
    int32_t aExp;
7065
    uint64_t aSig;
P
pbrook 已提交
7066

7067 7068 7069 7070
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
7071 7072 7073 7074
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7075 7076
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
7077
            return propagateFloatx80NaN(a, a, status);
7078
        }
P
pbrook 已提交
7079 7080
        return a;
    }
7081

7082 7083 7084 7085 7086 7087
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7088

7089 7090 7091 7092 7093 7094
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7095
    aExp += n;
7096 7097
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
7098 7099
}

7100
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7101 7102
{
    flag aSign;
7103
    int32_t aExp;
7104
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7105 7106 7107 7108 7109 7110

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7111
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
7112
            return propagateFloat128NaN(a, a, status);
7113
        }
P
pbrook 已提交
7114 7115
        return a;
    }
7116
    if (aExp != 0) {
7117
        aSig0 |= LIT64( 0x0001000000000000 );
7118
    } else if (aSig0 == 0 && aSig1 == 0) {
7119
        return a;
7120 7121 7122
    } else {
        aExp++;
    }
7123

7124 7125 7126 7127 7128 7129
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7130 7131
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
7132
                                         , status);
P
pbrook 已提交
7133 7134

}