softfloat.c 244.2 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
A
Alex Bennée 已提交
86
#include "qemu/bitops.h"
87
#include "fpu/softfloat.h"
B
bellard 已提交
88

89 90
/* We only need stdlib for abort() */

B
bellard 已提交
91 92 93 94 95
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
96
#include "fpu/softfloat-macros.h"
B
bellard 已提交
97

98 99 100 101
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

102
static inline uint32_t extractFloat16Frac(float16 a)
103 104 105 106 107 108 109 110
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

111
static inline int extractFloat16Exp(float16 a)
112 113 114 115 116 117 118 119
{
    return (float16_val(a) >> 10) & 0x1f;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

120
static inline flag extractFloat16Sign(float16 a)
121 122 123 124
{
    return float16_val(a)>>15;
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
    float_class_dnan,
    float_class_msnan, /* maybe silenced */
} FloatClass;

/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
 *   fram_lsbm1: the bit bellow the least significant bit (for rounding)
 *   round_mask/roundeven_mask: masks used for rounding
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

315 316 317 318 319 320 321 322 323 324
/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

A
Alex Bennée 已提交
325 326 327 328 329 330 331 332
/* Canonicalize EXP and FRAC, setting CLS.  */
static FloatParts canonicalize(FloatParts part, const FloatFmt *parm,
                               float_status *status)
{
    if (part.exp == parm->exp_max) {
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
333
            part.frac <<= parm->frac_shift;
334 335
            part.cls = (parts_is_snan_frac(part.frac, status)
                        ? float_class_snan : float_class_qnan);
A
Alex Bennée 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

            if (unlikely(exp >= exp_max)) {
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
        exp = exp_max;
476
        frac >>= parm->frac_shift;
A
Alex Bennée 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
    return canonicalize(float16_unpack_raw(f), &float16_params, s);
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float16_default_nan(s);
    case float_class_msnan:
500
        p.frac >>= float16_params.frac_shift;
A
Alex Bennée 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        return float16_maybe_silence_nan(float16_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float16_params);
        return float16_pack_raw(p);
    }
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
    return canonicalize(float32_unpack_raw(f), &float32_params, s);
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float32_default_nan(s);
    case float_class_msnan:
519
        p.frac >>= float32_params.frac_shift;
A
Alex Bennée 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        return float32_maybe_silence_nan(float32_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float32_params);
        return float32_pack_raw(p);
    }
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
    return canonicalize(float64_unpack_raw(f), &float64_params, s);
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
    switch (p.cls) {
    case float_class_dnan:
        return float64_default_nan(s);
    case float_class_msnan:
538
        p.frac >>= float64_params.frac_shift;
A
Alex Bennée 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        return float64_maybe_silence_nan(float64_pack_raw(p), s);
    default:
        p = round_canonical(p, s, &float64_params);
        return float64_pack_raw(p);
    }
}

/* Simple helpers for checking if what NaN we have */
static bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}
static bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}
static bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_msnan;
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
            a.cls = float_class_dnan;
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
        a.cls = float_class_dnan;
    } else {
        if (pickNaN(is_qnan(a.cls), is_snan(a.cls),
                    is_qnan(b.cls), is_snan(b.cls),
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
        a.cls = float_class_msnan;
    }
    return a;
}

A
Alex Bennée 已提交
599 600 601
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
602 603
    int which;

A
Alex Bennée 已提交
604 605 606 607
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

608 609 610 611 612
    which = pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls),
                          is_qnan(b.cls), is_snan(b.cls),
                          is_qnan(c.cls), is_snan(c.cls),
                          inf_zero, s);

A
Alex Bennée 已提交
613
    if (s->default_nan_mode) {
614 615 616
        /* Note that this check is after pickNaNMulAdd so that function
         * has an opportunity to set the Invalid flag.
         */
A
Alex Bennée 已提交
617
        a.cls = float_class_dnan;
618 619
        return a;
    }
A
Alex Bennée 已提交
620

621 622 623 624 625 626 627 628 629 630 631 632 633 634
    switch (which) {
    case 0:
        break;
    case 1:
        a = b;
        break;
    case 2:
        a = c;
        break;
    case 3:
        a.cls = float_class_dnan;
        return a;
    default:
        g_assert_not_reached();
A
Alex Bennée 已提交
635
    }
636 637
    a.cls = float_class_msnan;

A
Alex Bennée 已提交
638 639 640
    return a;
}

A
Alex Bennée 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
                a.cls = float_class_dnan;
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                a.frac >>= 1;
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

float16  __attribute__((flatten)) float16_add(float16 a, float16 b,
                                              float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_add(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_add(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float64_round_pack_canonical(pr, status);
}

float16 __attribute__((flatten)) float16_sub(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_sub(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_sub(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        a.sign = sign;
        return a;
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

float16 __attribute__((flatten)) float16_mul(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_mul(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_dnan;
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
        }
        return a;
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t temp_lo, temp_hi;
        int exp = a.exp - b.exp;
        if (a.frac < b.frac) {
            exp -= 1;
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1,
                              &temp_hi, &temp_lo);
        } else {
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT,
                              &temp_hi, &temp_lo);
        }
        /* LSB of quot is set if inexact which roundandpack will use
         * to set flags. Yet again we re-use a for the result */
        a.frac = div128To64(temp_lo, temp_hi, b.frac);
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }
1154 1155 1156 1157 1158
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
A
Alex Bennée 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 float32_div(float32 a, float32 b, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 float64_div(float64 a, float64 b, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s)
{
    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }

    switch (a.cls) {
    case float_class_zero:
    case float_class_inf:
    case float_class_qnan:
        /* already "integral" */
        break;
    case float_class_normal:
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
            switch (rounding_mode) {
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

            switch (rounding_mode) {
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float64_round_pack_canonical(pr, s);
}

float64 float64_trunc_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, float_round_to_zero, s);
    return float64_round_pack_canonical(pr, s);
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

static int64_t round_to_int_and_pack(FloatParts in, int rmode,
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
1350 1351
    case float_class_dnan:
    case float_class_msnan:
1352
        s->float_exception_flags = orig_flags | float_flag_invalid;
1353 1354
        return max;
    case float_class_inf:
1355
        s->float_exception_flags = orig_flags | float_flag_invalid;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
1368
            if (r <= -(uint64_t) min) {
1369 1370 1371 1372 1373 1374
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
1375
            if (r <= max) {
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_INT(fsz, isz)                                          \
int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a,         \
                                                float_status *s)        \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, s->float_rounding_mode,             \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}                                                                       \
                                                                        \
int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero       \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, float_round_to_zero,                \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}

FLOAT_TO_INT(16, 16)
FLOAT_TO_INT(16, 32)
FLOAT_TO_INT(16, 64)

FLOAT_TO_INT(32, 16)
FLOAT_TO_INT(32, 32)
FLOAT_TO_INT(32, 64)

FLOAT_TO_INT(64, 16)
FLOAT_TO_INT(64, 32)
FLOAT_TO_INT(64, 64)

#undef FLOAT_TO_INT

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max,
                                       float_status *s)
{
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
1442 1443
    case float_class_dnan:
    case float_class_msnan:
1444 1445 1446
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
1447
        s->float_exception_flags = orig_flags | float_flag_invalid;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
    {
        uint64_t r;
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        } else {
            return r;
        }
    }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_UINT(fsz, isz) \
uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a,       \
                                                  float_status *s)      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_uint_and_pack(p, s->float_rounding_mode,            \
                                 UINT ## isz ## _MAX, s);               \
}                                                                       \
                                                                        \
uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero     \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
1497 1498
    return round_to_uint_and_pack(p, float_round_to_zero,               \
                                  UINT ## isz ## _MAX, s);              \
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
}

FLOAT_TO_UINT(16, 16)
FLOAT_TO_UINT(16, 32)
FLOAT_TO_UINT(16, 64)

FLOAT_TO_UINT(32, 16)
FLOAT_TO_UINT(32, 32)
FLOAT_TO_UINT(32, 64)

FLOAT_TO_UINT(64, 16)
FLOAT_TO_UINT(64, 32)
FLOAT_TO_UINT(64, 64)

#undef FLOAT_TO_UINT

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts int_to_float(int64_t a, float_status *status)
{
1525
    FloatParts r = {};
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
    if (a == 0) {
        r.cls = float_class_zero;
        r.sign = false;
    } else if (a == (1ULL << 63)) {
        r.cls = float_class_normal;
        r.sign = true;
        r.frac = DECOMPOSED_IMPLICIT_BIT;
        r.exp = 63;
    } else {
        uint64_t f;
        if (a < 0) {
            f = -a;
            r.sign = true;
        } else {
            f = a;
            r.sign = false;
        }
        int shift = clz64(f) - 1;
        r.cls = float_class_normal;
        r.exp = (DECOMPOSED_BINARY_POINT - shift);
        r.frac = f << shift;
    }

    return r;
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 int32_to_float16(int32_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float16 int16_to_float16(int16_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 int32_to_float32(int32_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float32 int16_to_float32(int16_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 int32_to_float64(int32_t a, float_status *status)
{
    return int64_to_float64(a, status);
}

float64 int16_to_float64(int16_t a, float_status *status)
{
    return int64_to_float64(a, status);
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts uint_to_float(uint64_t a, float_status *status)
{
    FloatParts r = { .sign = false};

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
        int spare_bits = clz64(a) - 1;
        r.cls = float_class_normal;
        r.exp = DECOMPOSED_BINARY_POINT - spare_bits;
        if (spare_bits < 0) {
            shift64RightJamming(a, -spare_bits, &a);
            r.frac = a;
        } else {
            r.frac = a << spare_bits;
        }
    }

    return r;
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 uint32_to_float16(uint32_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 uint32_to_float32(uint32_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 uint32_to_float64(uint32_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

A
Alex Bennée 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

1745 1746 1747 1748 1749 1750
        if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
1751 1752
        }

1753
        if (a.sign == b.sign) {
A
Alex Bennée 已提交
1754 1755 1756 1757
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
1758
            return a.sign ^ a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
1759
        } else {
1760
            return a.sign ^ ismin ? b : a;
A
Alex Bennée 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
1879 1880 1881 1882 1883 1884 1885
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
1886 1887 1888 1889 1890 1891
        /* The largest float type (even though not supported by FloatParts)
         * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
         * still allows rounding to infinity, without allowing overflow
         * within the int32_t that backs FloatParts.exp.
         */
        n = MIN(MAX(n, -0x10000), 0x10000);
A
Alex Bennée 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/*
 * Square Root
 *
 * The old softfloat code did an approximation step before zeroing in
 * on the final result. However for simpleness we just compute the
 * square root by iterating down from the implicit bit to enough extra
 * bits to ensure we get a correctly rounded result.
 *
 * This does mean however the calculation is slower than before,
 * especially for 64 bit floats.
 */

static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
{
    uint64_t a_frac, r_frac, s_frac;
    int bit, last_bit;

    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_zero) {
        return a;  /* sqrt(+-0) = +-0 */
    }
    if (a.sign) {
        s->float_exception_flags |= float_flag_invalid;
        a.cls = float_class_dnan;
        return a;
    }
    if (a.cls == float_class_inf) {
        return a;  /* sqrt(+inf) = +inf */
    }

    assert(a.cls == float_class_normal);

    /* We need two overflow bits at the top. Adding room for that is a
     * right shift. If the exponent is odd, we can discard the low bit
     * by multiplying the fraction by 2; that's a left shift. Combine
     * those and we shift right if the exponent is even.
     */
    a_frac = a.frac;
    if (!(a.exp & 1)) {
        a_frac >>= 1;
    }
    a.exp >>= 1;

    /* Bit-by-bit computation of sqrt.  */
    r_frac = 0;
    s_frac = 0;

    /* Iterate from implicit bit down to the 3 extra bits to compute a
     * properly rounded result. Remember we've inserted one more bit
     * at the top, so these positions are one less.
     */
    bit = DECOMPOSED_BINARY_POINT - 1;
    last_bit = MAX(p->frac_shift - 4, 0);
    do {
        uint64_t q = 1ULL << bit;
        uint64_t t_frac = s_frac + q;
        if (t_frac <= a_frac) {
            s_frac = t_frac + q;
            a_frac -= t_frac;
            r_frac += q;
        }
        a_frac <<= 1;
    } while (--bit >= last_bit);

    /* Undo the right shift done above. If there is any remaining
     * fraction, the result is inexact. Set the sticky bit.
     */
    a.frac = (r_frac << 1) + (a_frac != 0);

    return a;
}

float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float16_params);
    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float32_params);
    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float64_params);
    return float64_round_pack_canonical(pr, status);
}


B
bellard 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

2025
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
2026
{
2027
    int8_t roundingMode;
B
bellard 已提交
2028
    flag roundNearestEven;
2029
    int8_t roundIncrement, roundBits;
2030
    int32_t z;
B
bellard 已提交
2031

2032
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2033
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2034 2035
    switch (roundingMode) {
    case float_round_nearest_even:
2036
    case float_round_ties_away:
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
2050 2051 2052 2053 2054 2055 2056
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
2057
        float_raise(float_flag_invalid, status);
2058
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2059
    }
2060 2061 2062
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

2079
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
2080
                               float_status *status)
B
bellard 已提交
2081
{
2082
    int8_t roundingMode;
B
bellard 已提交
2083
    flag roundNearestEven, increment;
2084
    int64_t z;
B
bellard 已提交
2085

2086
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2087
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2088 2089
    switch (roundingMode) {
    case float_round_nearest_even:
2090
    case float_round_ties_away:
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
2104 2105 2106 2107
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
2108
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2109 2110 2111 2112 2113
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
2114
        float_raise(float_flag_invalid, status);
B
bellard 已提交
2115
        return
2116
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
2117 2118
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
2119 2120 2121
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2122 2123 2124 2125
    return z;

}

T
Tom Musta 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

2136
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
2137
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
2138
{
2139
    int8_t roundingMode;
T
Tom Musta 已提交
2140 2141
    flag roundNearestEven, increment;

2142
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
2143
    roundNearestEven = (roundingMode == float_round_nearest_even);
2144 2145
    switch (roundingMode) {
    case float_round_nearest_even:
2146
    case float_round_ties_away:
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
2160 2161 2162 2163
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
2164
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2165 2166 2167 2168 2169 2170
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
2171
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2172 2173 2174 2175
        return 0;
    }

    if (absZ1) {
2176
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
2177 2178 2179 2180
    }
    return absZ0;
}

2181 2182 2183 2184
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2185
float32 float32_squash_input_denormal(float32 a, float_status *status)
2186
{
2187
    if (status->flush_inputs_to_zero) {
2188
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
2189
            float_raise(float_flag_input_denormal, status);
2190 2191 2192 2193 2194 2195
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
2196 2197 2198 2199 2200 2201 2202 2203
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2204
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
2205
{
2206
    int8_t shiftCount;
B
bellard 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2236
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2237
                                   float_status *status)
B
bellard 已提交
2238
{
2239
    int8_t roundingMode;
B
bellard 已提交
2240
    flag roundNearestEven;
2241
    int8_t roundIncrement, roundBits;
B
bellard 已提交
2242 2243
    flag isTiny;

2244
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2245
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2246 2247
    switch (roundingMode) {
    case float_round_nearest_even:
2248
    case float_round_ties_away:
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
2263 2264
    }
    roundBits = zSig & 0x7F;
2265
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
2266 2267
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
2268
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2269
           ) {
P
Peter Maydell 已提交
2270
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
2271
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
2272 2273
        }
        if ( zExp < 0 ) {
2274
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2275
                float_raise(float_flag_output_denormal, status);
2276 2277
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
2278
            isTiny =
2279 2280
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
2281 2282 2283 2284 2285
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
2286 2287 2288
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
2289 2290
        }
    }
2291 2292 2293
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
2311
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2312
                              float_status *status)
B
bellard 已提交
2313
{
2314
    int8_t shiftCount;
B
bellard 已提交
2315 2316

    shiftCount = countLeadingZeros32( zSig ) - 1;
P
Peter Maydell 已提交
2317 2318
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2319 2320 2321

}

2322 2323 2324 2325
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2326
float64 float64_squash_input_denormal(float64 a, float_status *status)
2327
{
2328
    if (status->flush_inputs_to_zero) {
2329
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
2330
            float_raise(float_flag_input_denormal, status);
2331 2332 2333 2334 2335 2336
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
2337 2338 2339 2340 2341 2342 2343 2344
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2345
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
2346
{
2347
    int8_t shiftCount;
B
bellard 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2366
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
2367 2368
{

P
pbrook 已提交
2369
    return make_float64(
2370
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
2382 2383 2384
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2396
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2397
                                   float_status *status)
B
bellard 已提交
2398
{
2399
    int8_t roundingMode;
B
bellard 已提交
2400
    flag roundNearestEven;
2401
    int roundIncrement, roundBits;
B
bellard 已提交
2402 2403
    flag isTiny;

2404
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2405
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2406 2407
    switch (roundingMode) {
    case float_round_nearest_even:
2408
    case float_round_ties_away:
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
2420 2421 2422
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
2423 2424
    default:
        abort();
B
bellard 已提交
2425 2426
    }
    roundBits = zSig & 0x3FF;
2427
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
2428 2429
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
2430
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2431
           ) {
2432 2433
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
2434
            float_raise(float_flag_overflow | float_flag_inexact, status);
2435
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
2436 2437
        }
        if ( zExp < 0 ) {
2438
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2439
                float_raise(float_flag_output_denormal, status);
2440 2441
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
2442
            isTiny =
2443 2444
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2445 2446 2447 2448 2449
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
2450 2451 2452
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2453 2454 2455 2456 2457 2458 2459
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
2460 2461
        }
    }
2462 2463 2464
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
2482
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2483
                              float_status *status)
B
bellard 已提交
2484
{
2485
    int8_t shiftCount;
B
bellard 已提交
2486 2487

    shiftCount = countLeadingZeros64( zSig ) - 1;
P
Peter Maydell 已提交
2488 2489
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

2500 2501
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr)
B
bellard 已提交
2502
{
2503
    int8_t shiftCount;
B
bellard 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;
}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2534 2535 2536
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status)
B
bellard 已提交
2537
{
2538
    int8_t roundingMode;
B
bellard 已提交
2539
    flag roundNearestEven, increment, isTiny;
2540
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
2541

2542
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
2557 2558
    switch (roundingMode) {
    case float_round_nearest_even:
2559
    case float_round_ties_away:
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
2572 2573
    }
    roundBits = zSig0 & roundMask;
2574
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2575 2576 2577 2578 2579 2580
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
2581
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2582
                float_raise(float_flag_output_denormal, status);
2583 2584
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
2585
            isTiny =
2586 2587
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2588 2589 2590 2591 2592
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
2593 2594 2595
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2596 2597 2598
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
2599
            zSig0 += roundIncrement;
2600
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2601 2602 2603 2604 2605 2606 2607 2608
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2609 2610 2611
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
2625 2626
    switch (roundingMode) {
    case float_round_nearest_even:
2627
    case float_round_ties_away:
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
2641
    }
2642
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2643 2644 2645 2646 2647 2648 2649 2650
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
2651
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
2652 2653 2654 2655 2656 2657
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
2658 2659 2660
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
2661 2662 2663
        }
        if ( zExp <= 0 ) {
            isTiny =
2664 2665
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2666 2667 2668 2669 2670
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
2671 2672 2673
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
2674 2675 2676
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
2677 2678
            switch (roundingMode) {
            case float_round_nearest_even:
2679
            case float_round_ties_away:
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
2693 2694 2695 2696
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
2697 2698
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2699 2700 2701 2702
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2703 2704 2705
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2706 2707 2708 2709 2710 2711 2712
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
2713
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

2732 2733 2734 2735
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status)
B
bellard 已提交
2736
{
2737
    int8_t shiftCount;
B
bellard 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
2747 2748
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
2749 2750 2751 2752 2753 2754 2755 2756

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2757
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2769
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

2781
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

2792
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
2811 2812
     uint64_t aSig0,
     uint64_t aSig1,
2813
     int32_t *zExpPtr,
2814 2815
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
2816 2817
 )
{
2818
    int8_t shiftCount;
B
bellard 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2853
static inline float128
2854
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
2855 2856 2857 2858
{
    float128 z;

    z.low = zSig1;
2859
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2885
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
2886 2887
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
2888
{
2889
    int8_t roundingMode;
B
bellard 已提交
2890 2891
    flag roundNearestEven, increment, isTiny;

2892
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2893
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2894 2895
    switch (roundingMode) {
    case float_round_nearest_even:
2896
    case float_round_ties_away:
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
2908 2909 2910
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
2911 2912
    default:
        abort();
B
bellard 已提交
2913
    }
2914
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
2926
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
2927 2928 2929
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
2930
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
2943
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2944
                float_raise(float_flag_output_denormal, status);
2945 2946
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
2947
            isTiny =
2948 2949
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
2961 2962 2963
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
2964 2965
            switch (roundingMode) {
            case float_round_nearest_even:
2966
            case float_round_ties_away:
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
2978 2979 2980
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
2981 2982
            default:
                abort();
B
bellard 已提交
2983 2984 2985
            }
        }
    }
2986 2987 2988
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

3010
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
3011 3012
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
3013
{
3014
    int8_t shiftCount;
3015
    uint64_t zSig2;
B
bellard 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
3032
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3044
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
3045 3046
{
    flag zSign;
3047
    uint32_t absA;
3048
    int8_t shiftCount;
3049
    uint64_t zSig;
B
bellard 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3066
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
3067 3068
{
    flag zSign;
3069
    uint32_t absA;
3070
    int8_t shiftCount;
3071
    uint64_t zSig0;
B
bellard 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3089
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
3090 3091
{
    flag zSign;
3092
    uint64_t absA;
3093
    int8_t shiftCount;
B
bellard 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3109
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
3110 3111
{
    flag zSign;
3112
    uint64_t absA;
3113
    int8_t shiftCount;
3114
    int32_t zExp;
3115
    uint64_t zSig0, zSig1;
B
bellard 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

3136 3137 3138 3139 3140 3141
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3142
float128 uint64_to_float128(uint64_t a, float_status *status)
3143 3144 3145 3146
{
    if (a == 0) {
        return float128_zero;
    }
3147
    return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
3148 3149
}

B
bellard 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159



/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3160
float64 float32_to_float64(float32 a, float_status *status)
B
bellard 已提交
3161 3162
{
    flag aSign;
3163
    int aExp;
3164
    uint32_t aSig;
P
Peter Maydell 已提交
3165
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3166 3167 3168 3169 3170

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3171 3172 3173
        if (aSig) {
            return commonNaNToFloat64(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3174 3175 3176 3177 3178 3179 3180
        return packFloat64( aSign, 0x7FF, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3181
    return packFloat64( aSign, aExp + 0x380, ( (uint64_t) aSig )<<29 );
B
bellard 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3192
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
3193 3194
{
    flag aSign;
3195
    int aExp;
3196
    uint32_t aSig;
B
bellard 已提交
3197

P
Peter Maydell 已提交
3198
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3199 3200 3201 3202
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3203 3204 3205
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
3206 3207 3208
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
3209 3210 3211 3212 3213 3214
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
3215
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3226
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
3227 3228
{
    flag aSign;
3229
    int aExp;
3230
    uint32_t aSig;
B
bellard 已提交
3231

P
Peter Maydell 已提交
3232
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3233 3234 3235 3236
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3237 3238 3239
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3240 3241 3242 3243 3244 3245 3246
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3247
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3257
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
3258
{
3259
    flag aSign, zSign;
3260
    int aExp, bExp, expDiff;
3261 3262 3263 3264 3265
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
3266 3267
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3268 3269 3270 3271 3272 3273 3274 3275

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
3276
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
3277
        }
P
Peter Maydell 已提交
3278
        float_raise(float_flag_invalid, status);
3279
        return float32_default_nan(status);
B
bellard 已提交
3280 3281
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
3282 3283 3284
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
3285 3286 3287 3288
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
3289
            float_raise(float_flag_invalid, status);
3290
            return float32_default_nan(status);
B
bellard 已提交
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
3311
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
3323 3324
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
3343
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
3344 3345 3346 3347
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
3348
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
3349
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
3350
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
3351 3352
}

3353

B
bellard 已提交
3354

A
Aurelien Jarno 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
3390 3391
};

3392
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
3393 3394
{
    flag aSign;
3395
    int aExp;
3396
    uint32_t aSig;
A
Aurelien Jarno 已提交
3397 3398
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
3399
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
3400 3401 3402 3403 3404 3405

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
3406 3407 3408
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
3409 3410 3411 3412 3413 3414
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
3415
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
3416 3417 3418 3419

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
3420 3421
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
3422 3423 3424 3425 3426 3427

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
3428 3429
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
3430

P
Peter Maydell 已提交
3431
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
3432 3433 3434 3435 3436
    }

    return float64_to_float32(r, status);
}

3437 3438 3439 3440 3441
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
3442
float32 float32_log2(float32 a, float_status *status)
3443 3444
{
    flag aSign, zSign;
3445
    int aExp;
3446
    uint32_t aSig, zSig, i;
3447

P
Peter Maydell 已提交
3448
    a = float32_squash_input_denormal(a, status);
3449 3450 3451 3452 3453 3454 3455 3456 3457
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
3458
        float_raise(float_flag_invalid, status);
3459
        return float32_default_nan(status);
3460 3461
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3462 3463 3464
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
3465 3466 3467 3468 3469 3470 3471 3472 3473
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
3474
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
3475 3476 3477 3478 3479 3480 3481 3482 3483
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
3484
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
3485 3486
}

B
bellard 已提交
3487 3488
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3489 3490
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
3491 3492 3493
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3494
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
3495
{
3496
    uint32_t av, bv;
P
Peter Maydell 已提交
3497 3498
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3499 3500 3501 3502

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3503
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3504 3505
        return 0;
    }
3506 3507 3508
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
3509 3510 3511 3512
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3513 3514 3515
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3516 3517
*----------------------------------------------------------------------------*/

3518
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
3519 3520
{
    flag aSign, bSign;
3521
    uint32_t av, bv;
P
Peter Maydell 已提交
3522 3523
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3524 3525 3526 3527

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3528
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3529 3530 3531 3532
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3533 3534
    av = float32_val(a);
    bv = float32_val(b);
3535
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3536
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3537 3538 3539 3540 3541

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3542 3543 3544
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3545 3546
*----------------------------------------------------------------------------*/

3547
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
3548 3549
{
    flag aSign, bSign;
3550
    uint32_t av, bv;
P
Peter Maydell 已提交
3551 3552
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3553 3554 3555 3556

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3557
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3558 3559 3560 3561
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3562 3563
    av = float32_val(a);
    bv = float32_val(b);
3564
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
3565
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3566 3567 3568

}

3569 3570
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
3571 3572 3573
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
3574 3575
*----------------------------------------------------------------------------*/

3576
int float32_unordered(float32 a, float32 b, float_status *status)
3577
{
P
Peter Maydell 已提交
3578 3579
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
3580 3581 3582 3583

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3584
        float_raise(float_flag_invalid, status);
3585 3586 3587 3588
        return 1;
    }
    return 0;
}
3589

B
bellard 已提交
3590 3591
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3592 3593 3594
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
3595 3596
*----------------------------------------------------------------------------*/

3597
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3598
{
P
Peter Maydell 已提交
3599 3600
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3601 3602 3603 3604

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3605 3606
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3607
            float_raise(float_flag_invalid, status);
3608
        }
B
bellard 已提交
3609 3610
        return 0;
    }
3611 3612
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3622
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3623 3624
{
    flag aSign, bSign;
3625
    uint32_t av, bv;
P
Peter Maydell 已提交
3626 3627
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3628 3629 3630 3631

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3632 3633
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3634
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3635 3636 3637 3638 3639
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3640 3641
    av = float32_val(a);
    bv = float32_val(b);
3642
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3643
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3644 3645 3646 3647 3648 3649 3650

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
3651
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3652 3653
*----------------------------------------------------------------------------*/

3654
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3655
{
3656 3657 3658 3659
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3660

3661 3662 3663 3664 3665
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3666
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3667
        }
3668
        return 0;
B
bellard 已提交
3669
    }
3670 3671 3672 3673 3674 3675
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3676 3677 3678 3679

}

/*----------------------------------------------------------------------------
3680 3681 3682 3683
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
3684 3685
*----------------------------------------------------------------------------*/

3686
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3687
{
3688 3689
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3690

3691 3692 3693 3694 3695 3696
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3697
        }
3698
        return 1;
B
bellard 已提交
3699
    }
3700
    return 0;
B
bellard 已提交
3701 3702
}

3703

B
bellard 已提交
3704 3705 3706 3707 3708 3709 3710
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the single-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3711
float32 float64_to_float32(float64 a, float_status *status)
B
bellard 已提交
3712 3713
{
    flag aSign;
3714
    int aExp;
3715 3716
    uint64_t aSig;
    uint32_t zSig;
P
Peter Maydell 已提交
3717
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
3718 3719 3720 3721 3722

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
3723 3724 3725
        if (aSig) {
            return commonNaNToFloat32(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3726 3727 3728 3729 3730 3731 3732 3733
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 22, &aSig );
    zSig = aSig;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x381;
    }
P
Peter Maydell 已提交
3734
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
3735 3736 3737

}

P
Paul Brook 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| half-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/
3749
static float16 packFloat16(flag zSign, int zExp, uint16_t zSig)
P
Paul Brook 已提交
3750
{
3751
    return make_float16(
3752
        (((uint32_t)zSign) << 15) + (((uint32_t)zExp) << 10) + zSig);
P
Paul Brook 已提交
3753 3754
}

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper half-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the half-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal half-
| precision floating-point number.
| The `ieee' flag indicates whether to use IEEE standard half precision, or
| ARM-style "alternative representation", which omits the NaN and Inf
| encodings in order to raise the maximum representable exponent by one.
|     The input significand `zSig' has its binary point between bits 22
| and 23, which is 13 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| Note the slightly odd position of the binary point in zSig compared with the
| other roundAndPackFloat functions. This should probably be fixed if we
| need to implement more float16 routines than just conversion.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3783
static float16 roundAndPackFloat16(flag zSign, int zExp,
3784 3785
                                   uint32_t zSig, flag ieee,
                                   float_status *status)
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
{
    int maxexp = ieee ? 29 : 30;
    uint32_t mask;
    uint32_t increment;
    bool rounding_bumps_exp;
    bool is_tiny = false;

    /* Calculate the mask of bits of the mantissa which are not
     * representable in half-precision and will be lost.
     */
    if (zExp < 1) {
        /* Will be denormal in halfprec */
        mask = 0x00ffffff;
        if (zExp >= -11) {
            mask >>= 11 + zExp;
        }
    } else {
        /* Normal number in halfprec */
        mask = 0x00001fff;
    }

3807
    switch (status->float_rounding_mode) {
3808 3809 3810 3811 3812 3813
    case float_round_nearest_even:
        increment = (mask + 1) >> 1;
        if ((zSig & mask) == increment) {
            increment = zSig & (increment << 1);
        }
        break;
3814 3815 3816
    case float_round_ties_away:
        increment = (mask + 1) >> 1;
        break;
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
    case float_round_up:
        increment = zSign ? 0 : mask;
        break;
    case float_round_down:
        increment = zSign ? mask : 0;
        break;
    default: /* round_to_zero */
        increment = 0;
        break;
    }

    rounding_bumps_exp = (zSig + increment >= 0x01000000);

    if (zExp > maxexp || (zExp == maxexp && rounding_bumps_exp)) {
        if (ieee) {
P
Peter Maydell 已提交
3832
            float_raise(float_flag_overflow | float_flag_inexact, status);
3833 3834
            return packFloat16(zSign, 0x1f, 0);
        } else {
P
Peter Maydell 已提交
3835
            float_raise(float_flag_invalid, status);
3836 3837 3838 3839 3840 3841 3842
            return packFloat16(zSign, 0x1f, 0x3ff);
        }
    }

    if (zExp < 0) {
        /* Note that flush-to-zero does not affect half-precision results */
        is_tiny =
3843
            (status->float_detect_tininess == float_tininess_before_rounding)
3844 3845 3846 3847
            || (zExp < -1)
            || (!rounding_bumps_exp);
    }
    if (zSig & mask) {
P
Peter Maydell 已提交
3848
        float_raise(float_flag_inexact, status);
3849
        if (is_tiny) {
P
Peter Maydell 已提交
3850
            float_raise(float_flag_underflow, status);
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
        }
    }

    zSig += increment;
    if (rounding_bumps_exp) {
        zSig >>= 1;
        zExp++;
    }

    if (zExp < -10) {
        return packFloat16(zSign, 0, 0);
    }
    if (zExp < 0) {
        zSig >>= -zExp;
        zExp = 0;
    }
    return packFloat16(zSign, zExp, zSig >> 13);
}

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

3885
static void normalizeFloat16Subnormal(uint32_t aSig, int *zExpPtr,
3886 3887 3888 3889 3890 3891 3892
                                      uint32_t *zSigPtr)
{
    int8_t shiftCount = countLeadingZeros32(aSig) - 21;
    *zSigPtr = aSig << shiftCount;
    *zExpPtr = 1 - shiftCount;
}

P
Paul Brook 已提交
3893 3894
/* Half precision floats come in two formats: standard IEEE and "ARM" format.
   The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
3895

3896
float32 float16_to_float32(float16 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3897 3898
{
    flag aSign;
3899
    int aExp;
3900
    uint32_t aSig;
P
Paul Brook 已提交
3901

3902 3903 3904
    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);
P
Paul Brook 已提交
3905 3906 3907

    if (aExp == 0x1f && ieee) {
        if (aSig) {
P
Peter Maydell 已提交
3908
            return commonNaNToFloat32(float16ToCommonNaN(a, status), status);
P
Paul Brook 已提交
3909
        }
3910
        return packFloat32(aSign, 0xff, 0);
P
Paul Brook 已提交
3911 3912 3913 3914 3915 3916
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat32(aSign, 0, 0);
        }

3917 3918
        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
P
Paul Brook 已提交
3919 3920 3921 3922
    }
    return packFloat32( aSign, aExp + 0x70, aSig << 13);
}

3923
float16 float32_to_float16(float32 a, flag ieee, float_status *status)
P
Paul Brook 已提交
3924 3925
{
    flag aSign;
3926
    int aExp;
3927
    uint32_t aSig;
3928

P
Peter Maydell 已提交
3929
    a = float32_squash_input_denormal(a, status);
P
Paul Brook 已提交
3930 3931 3932 3933 3934 3935

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
        if (aSig) {
3936 3937
            /* Input is a NaN */
            if (!ieee) {
P
Peter Maydell 已提交
3938
                float_raise(float_flag_invalid, status);
3939 3940
                return packFloat16(aSign, 0, 0);
            }
3941
            return commonNaNToFloat16(
P
Peter Maydell 已提交
3942
                float32ToCommonNaN(a, status), status);
P
Paul Brook 已提交
3943
        }
3944 3945
        /* Infinity */
        if (!ieee) {
P
Peter Maydell 已提交
3946
            float_raise(float_flag_invalid, status);
3947 3948 3949
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
P
Paul Brook 已提交
3950
    }
3951
    if (aExp == 0 && aSig == 0) {
P
Paul Brook 已提交
3952 3953
        return packFloat16(aSign, 0, 0);
    }
3954 3955 3956 3957 3958 3959 3960
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
P
Paul Brook 已提交
3961
    aSig |= 0x00800000;
3962
    aExp -= 0x71;
P
Paul Brook 已提交
3963

P
Peter Maydell 已提交
3964
    return roundAndPackFloat16(aSign, aExp, aSig, ieee, status);
P
Paul Brook 已提交
3965 3966
}

3967
float64 float16_to_float64(float16 a, flag ieee, float_status *status)
3968 3969
{
    flag aSign;
3970
    int aExp;
3971 3972 3973 3974 3975 3976 3977 3978 3979
    uint32_t aSig;

    aSign = extractFloat16Sign(a);
    aExp = extractFloat16Exp(a);
    aSig = extractFloat16Frac(a);

    if (aExp == 0x1f && ieee) {
        if (aSig) {
            return commonNaNToFloat64(
P
Peter Maydell 已提交
3980
                float16ToCommonNaN(a, status), status);
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
        }
        return packFloat64(aSign, 0x7ff, 0);
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloat64(aSign, 0, 0);
        }

        normalizeFloat16Subnormal(aSig, &aExp, &aSig);
        aExp--;
    }
    return packFloat64(aSign, aExp + 0x3f0, ((uint64_t)aSig) << 42);
}

3995
float16 float64_to_float16(float64 a, flag ieee, float_status *status)
3996 3997
{
    flag aSign;
3998
    int aExp;
3999 4000 4001
    uint64_t aSig;
    uint32_t zSig;

P
Peter Maydell 已提交
4002
    a = float64_squash_input_denormal(a, status);
4003 4004 4005 4006 4007 4008 4009 4010

    aSig = extractFloat64Frac(a);
    aExp = extractFloat64Exp(a);
    aSign = extractFloat64Sign(a);
    if (aExp == 0x7FF) {
        if (aSig) {
            /* Input is a NaN */
            if (!ieee) {
P
Peter Maydell 已提交
4011
                float_raise(float_flag_invalid, status);
4012 4013 4014
                return packFloat16(aSign, 0, 0);
            }
            return commonNaNToFloat16(
P
Peter Maydell 已提交
4015
                float64ToCommonNaN(a, status), status);
4016 4017 4018
        }
        /* Infinity */
        if (!ieee) {
P
Peter Maydell 已提交
4019
            float_raise(float_flag_invalid, status);
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
            return packFloat16(aSign, 0x1f, 0x3ff);
        }
        return packFloat16(aSign, 0x1f, 0);
    }
    shift64RightJamming(aSig, 29, &aSig);
    zSig = aSig;
    if (aExp == 0 && zSig == 0) {
        return packFloat16(aSign, 0, 0);
    }
    /* Decimal point between bits 22 and 23. Note that we add the 1 bit
     * even if the input is denormal; however this is harmless because
     * the largest possible single-precision denormal is still smaller
     * than the smallest representable half-precision denormal, and so we
     * will end up ignoring aSig and returning via the "always return zero"
     * codepath.
     */
    zSig |= 0x00800000;
    aExp -= 0x3F1;

P
Peter Maydell 已提交
4039
    return roundAndPackFloat16(aSign, aExp, zSig, ieee, status);
4040 4041
}

B
bellard 已提交
4042 4043 4044 4045 4046 4047 4048
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4049
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
4050 4051
{
    flag aSign;
4052
    int aExp;
4053
    uint64_t aSig;
B
bellard 已提交
4054

P
Peter Maydell 已提交
4055
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4056 4057 4058 4059
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4060 4061 4062
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
4063 4064 4065
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4084
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
4085 4086
{
    flag aSign;
4087
    int aExp;
4088
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4089

P
Peter Maydell 已提交
4090
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4091 4092 4093 4094
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4095 4096 4097
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4117
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4118
{
4119
    flag aSign, zSign;
4120
    int aExp, bExp, expDiff;
4121 4122 4123
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4124

P
Peter Maydell 已提交
4125 4126
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4127 4128 4129 4130 4131 4132 4133
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
4134
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
4135
        }
P
Peter Maydell 已提交
4136
        float_raise(float_flag_invalid, status);
4137
        return float64_default_nan(status);
B
bellard 已提交
4138 4139
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
4140 4141 4142
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
4143 4144 4145 4146
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4147
            float_raise(float_flag_invalid, status);
4148
            return float64_default_nan(status);
B
bellard 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4188
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4189 4190 4191 4192
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4193
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4194
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4195
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4196 4197 4198

}

4199 4200 4201 4202 4203
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4204
float64 float64_log2(float64 a, float_status *status)
4205 4206
{
    flag aSign, zSign;
4207
    int aExp;
4208
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
4209
    a = float64_squash_input_denormal(a, status);
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4220
        float_raise(float_flag_invalid, status);
4221
        return float64_default_nan(status);
4222 4223
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4224 4225 4226
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
4227 4228 4229 4230 4231 4232
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4233
    zSig = (uint64_t)aExp << 52;
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
4245
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4246 4247
}

B
bellard 已提交
4248 4249
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4250 4251
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4252 4253 4254
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4255
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4256
{
4257
    uint64_t av, bv;
P
Peter Maydell 已提交
4258 4259
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4260 4261 4262 4263

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4264
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4265 4266
        return 0;
    }
P
pbrook 已提交
4267
    av = float64_val(a);
P
pbrook 已提交
4268
    bv = float64_val(b);
4269
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4270 4271 4272 4273 4274

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4275 4276 4277
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4278 4279
*----------------------------------------------------------------------------*/

4280
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4281 4282
{
    flag aSign, bSign;
4283
    uint64_t av, bv;
P
Peter Maydell 已提交
4284 4285
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4286 4287 4288 4289

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4290
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4291 4292 4293 4294
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4295
    av = float64_val(a);
P
pbrook 已提交
4296
    bv = float64_val(b);
4297
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4298
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4299 4300 4301 4302 4303

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4304 4305 4306
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4307 4308
*----------------------------------------------------------------------------*/

4309
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4310 4311
{
    flag aSign, bSign;
4312
    uint64_t av, bv;
B
bellard 已提交
4313

P
Peter Maydell 已提交
4314 4315
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4316 4317 4318
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4319
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4320 4321 4322 4323
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4324
    av = float64_val(a);
P
pbrook 已提交
4325
    bv = float64_val(b);
4326
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4327
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4328 4329 4330

}

4331 4332
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4333 4334 4335
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4336 4337
*----------------------------------------------------------------------------*/

4338
int float64_unordered(float64 a, float64 b, float_status *status)
4339
{
P
Peter Maydell 已提交
4340 4341
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4342 4343 4344 4345

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4346
        float_raise(float_flag_invalid, status);
4347 4348 4349 4350 4351
        return 1;
    }
    return 0;
}

B
bellard 已提交
4352 4353
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4354 4355 4356
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4357 4358
*----------------------------------------------------------------------------*/

4359
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4360
{
4361
    uint64_t av, bv;
P
Peter Maydell 已提交
4362 4363
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4364 4365 4366 4367

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4368 4369
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4370
            float_raise(float_flag_invalid, status);
4371
        }
B
bellard 已提交
4372 4373
        return 0;
    }
P
pbrook 已提交
4374
    av = float64_val(a);
P
pbrook 已提交
4375
    bv = float64_val(b);
4376
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4387
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4388 4389
{
    flag aSign, bSign;
4390
    uint64_t av, bv;
P
Peter Maydell 已提交
4391 4392
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4393 4394 4395 4396

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4397 4398
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4399
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4400 4401 4402 4403 4404
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4405
    av = float64_val(a);
P
pbrook 已提交
4406
    bv = float64_val(b);
4407
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4408
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4419
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4420 4421
{
    flag aSign, bSign;
4422
    uint64_t av, bv;
P
Peter Maydell 已提交
4423 4424
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4425 4426 4427 4428

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4429 4430
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4431
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4432 4433 4434 4435 4436
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4437
    av = float64_val(a);
P
pbrook 已提交
4438
    bv = float64_val(b);
4439
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4440
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4441 4442 4443

}

4444 4445 4446 4447 4448 4449 4450
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4451
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4452
{
P
Peter Maydell 已提交
4453 4454
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4455 4456 4457 4458

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4459 4460
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4461
            float_raise(float_flag_invalid, status);
4462 4463 4464 4465 4466 4467
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4478
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
4479 4480
{
    flag aSign;
4481
    int32_t aExp, shiftCount;
4482
    uint64_t aSig;
B
bellard 已提交
4483

4484 4485 4486 4487
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4488 4489 4490
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4491
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4492 4493 4494
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
4495
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4509
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4510 4511
{
    flag aSign;
4512
    int32_t aExp, shiftCount;
4513
    uint64_t aSig, savedASig;
4514
    int32_t z;
B
bellard 已提交
4515

4516 4517 4518 4519
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4520 4521 4522 4523
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4524
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4525 4526 4527
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
4528 4529 4530
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4531 4532 4533 4534 4535 4536 4537 4538 4539
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
4540
        float_raise(float_flag_invalid, status);
4541
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4542 4543
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
4544
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4560
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
4561 4562
{
    flag aSign;
4563
    int32_t aExp, shiftCount;
4564
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4565

4566 4567 4568 4569
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4570 4571 4572 4573 4574 4575
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
4576
            float_raise(float_flag_invalid, status);
4577
            if (!aSign || floatx80_is_any_nan(a)) {
B
bellard 已提交
4578 4579
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4580
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4581 4582 4583 4584 4585 4586
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
4587
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4601
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4602 4603
{
    flag aSign;
4604
    int32_t aExp, shiftCount;
4605
    uint64_t aSig;
4606
    int64_t z;
B
bellard 已提交
4607

4608 4609 4610 4611
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4612 4613 4614 4615 4616 4617 4618
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
4619
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4620 4621 4622 4623
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4624
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4625 4626
    }
    else if ( aExp < 0x3FFF ) {
4627 4628 4629
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4630 4631 4632
        return 0;
    }
    z = aSig>>( - shiftCount );
4633
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
4634
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4648
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
4649 4650
{
    flag aSign;
4651
    int32_t aExp;
4652
    uint64_t aSig;
B
bellard 已提交
4653

4654 4655 4656 4657
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
4658 4659 4660 4661
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4662
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4663
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4664 4665 4666 4667 4668
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
4669
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4680
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
4681 4682
{
    flag aSign;
4683
    int32_t aExp;
4684
    uint64_t aSig, zSig;
B
bellard 已提交
4685

4686 4687 4688 4689
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
4690 4691 4692 4693
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4694
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4695
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4696 4697 4698 4699 4700
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
4701
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4712
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
4713 4714
{
    flag aSign;
4715
    int aExp;
4716
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4717

4718 4719 4720 4721
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
4722 4723 4724
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4725
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4726
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4727 4728 4729 4730 4731 4732
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
4749 4750 4751 4752 4753 4754 4755
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4756
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
4757 4758
{
    flag aSign;
4759
    int32_t aExp;
4760
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4761 4762
    floatx80 z;

4763 4764 4765 4766
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4767 4768
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4769
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
4770
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
4771 4772 4773 4774 4775
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4776
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4777 4778
            return a;
        }
4779
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4780
        aSign = extractFloatx80Sign( a );
4781
        switch (status->float_rounding_mode) {
B
bellard 已提交
4782
         case float_round_nearest_even:
4783
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4784 4785 4786 4787 4788
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4789 4790 4791 4792 4793
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4810
    switch (status->float_rounding_mode) {
4811
    case float_round_nearest_even:
B
bellard 已提交
4812
        z.low += lastBitMask>>1;
4813 4814 4815 4816
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4817 4818 4819
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4820 4821 4822 4823 4824 4825 4826 4827 4828
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4829 4830
            z.low += roundBitsMask;
        }
4831 4832 4833
        break;
    default:
        abort();
B
bellard 已提交
4834 4835 4836 4837 4838 4839
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
4840 4841 4842
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4855 4856
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4857
{
4858
    int32_t aExp, bExp, zExp;
4859
    uint64_t aSig, bSig, zSig0, zSig1;
4860
    int32_t expDiff;
B
bellard 已提交
4861 4862 4863 4864 4865 4866 4867 4868

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4869 4870 4871
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
4872 4873 4874 4875 4876 4877 4878 4879
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4880 4881 4882
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
4883 4884 4885
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
4886 4887 4888 4889 4890 4891 4892
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
4893
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
4894
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
4908
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
4909 4910 4911 4912 4913
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
4914
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4915
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4926 4927
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4928
{
4929
    int32_t aExp, bExp, zExp;
4930
    uint64_t aSig, bSig, zSig0, zSig1;
4931
    int32_t expDiff;
B
bellard 已提交
4932 4933 4934 4935 4936 4937 4938 4939 4940

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
4941
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
4942
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4943
        }
P
Peter Maydell 已提交
4944
        float_raise(float_flag_invalid, status);
4945
        return floatx80_default_nan(status);
B
bellard 已提交
4946 4947 4948 4949 4950 4951 4952 4953
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
4954
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
4955 4956
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4957 4958 4959
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
4960 4961
        return packFloatx80(zSign ^ 1, floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4972 4973 4974
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4975 4976 4977 4978 4979 4980 4981 4982
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
4983
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4984
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4985 4986 4987 4988 4989 4990 4991 4992
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4993
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4994 4995 4996
{
    flag aSign, bSign;

4997 4998 4999 5000
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5001 5002 5003
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5004
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5005 5006
    }
    else {
P
Peter Maydell 已提交
5007
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5018
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5019 5020 5021
{
    flag aSign, bSign;

5022 5023 5024 5025
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5026 5027 5028
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5029
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5030 5031
    }
    else {
P
Peter Maydell 已提交
5032
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5043
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5044 5045
{
    flag aSign, bSign, zSign;
5046
    int32_t aExp, bExp, zExp;
5047
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5048

5049 5050 5051 5052
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5053 5054 5055 5056 5057 5058 5059 5060
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5061 5062
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5063
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5064 5065
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
5066 5067
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5068 5069
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5070 5071 5072
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5073 5074
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5075
            float_raise(float_flag_invalid, status);
5076
            return floatx80_default_nan(status);
B
bellard 已提交
5077
        }
5078 5079
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5091
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5092 5093 5094
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
5095
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5096
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5097 5098 5099 5100 5101 5102 5103 5104
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5105
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5106 5107
{
    flag aSign, bSign, zSign;
5108
    int32_t aExp, bExp, zExp;
5109 5110
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5111

5112 5113 5114 5115
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5116 5117 5118 5119 5120 5121 5122 5123
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5124 5125 5126
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5127
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5128 5129 5130
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5131 5132
            goto invalid;
        }
5133 5134
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5135 5136
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5137 5138 5139
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5140 5141 5142 5143 5144 5145
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5146
                float_raise(float_flag_invalid, status);
5147
                return floatx80_default_nan(status);
B
bellard 已提交
5148
            }
P
Peter Maydell 已提交
5149
            float_raise(float_flag_divbyzero, status);
5150 5151
            return packFloatx80(zSign, floatx80_infinity_high,
                                       floatx80_infinity_low);
B
bellard 已提交
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5168
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5169 5170 5171 5172
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5173
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5174 5175
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5176
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5177 5178 5179 5180 5181
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
5182
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5183
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5184 5185 5186 5187 5188 5189 5190 5191
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5192
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5193
{
5194
    flag aSign, zSign;
5195
    int32_t aExp, bExp, expDiff;
5196 5197
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5198

5199 5200 5201 5202
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5203 5204 5205 5206 5207 5208
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5209 5210
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5211
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5212 5213 5214 5215
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5216 5217 5218
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5219 5220 5221 5222 5223
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
5224
            float_raise(float_flag_invalid, status);
5225
            return floatx80_default_nan(status);
B
bellard 已提交
5226 5227 5228 5229
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5230
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
5281
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
5282 5283 5284 5285 5286 5287 5288 5289 5290

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5291
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5292 5293
{
    flag aSign;
5294
    int32_t aExp, zExp;
5295 5296
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5297

5298 5299 5300 5301
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5302 5303 5304 5305
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5306 5307 5308
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
5309 5310 5311 5312 5313 5314
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
5315
        float_raise(float_flag_invalid, status);
5316
        return floatx80_default_nan(status);
B
bellard 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5329
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5341
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
5352 5353
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
5354 5355 5356
}

/*----------------------------------------------------------------------------
5357 5358 5359 5360
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5361 5362
*----------------------------------------------------------------------------*/

5363
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5364 5365
{

5366 5367 5368 5369 5370
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5371
       ) {
P
Peter Maydell 已提交
5372
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5373 5374 5375 5376 5377 5378
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5379
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5380 5381 5382 5383 5384 5385 5386
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5387 5388 5389
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5390 5391
*----------------------------------------------------------------------------*/

5392
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5393 5394 5395
{
    flag aSign, bSign;

5396 5397 5398 5399 5400
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5401
       ) {
P
Peter Maydell 已提交
5402
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5403 5404 5405 5406 5407 5408 5409
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5410
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5421 5422 5423
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5424 5425
*----------------------------------------------------------------------------*/

5426
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5427 5428 5429
{
    flag aSign, bSign;

5430 5431 5432 5433 5434
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5435
       ) {
P
Peter Maydell 已提交
5436
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5437 5438 5439 5440 5441 5442 5443
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5444
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5445 5446 5447 5448 5449 5450 5451 5452
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5453 5454
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5455 5456 5457
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5458
*----------------------------------------------------------------------------*/
5459
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5460
{
5461 5462 5463 5464 5465
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
5466
       ) {
P
Peter Maydell 已提交
5467
        float_raise(float_flag_invalid, status);
5468 5469 5470 5471 5472
        return 1;
    }
    return 0;
}

B
bellard 已提交
5473
/*----------------------------------------------------------------------------
5474
| Returns 1 if the extended double-precision floating-point value `a' is
5475 5476 5477
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5478 5479
*----------------------------------------------------------------------------*/

5480
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5481 5482
{

5483 5484 5485 5486
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5487
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5488
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5489
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5490
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5491
       ) {
5492 5493
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5494
            float_raise(float_flag_invalid, status);
5495
        }
B
bellard 已提交
5496 5497 5498 5499 5500 5501
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5502
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5514
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5515 5516 5517
{
    flag aSign, bSign;

5518 5519 5520 5521
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5522
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5523
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5524
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5525
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5526
       ) {
5527 5528
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5529
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5530 5531 5532 5533 5534 5535 5536 5537
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5538
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5554
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5555 5556 5557
{
    flag aSign, bSign;

5558 5559 5560 5561
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5562
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5563
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5564
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5565
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5566
       ) {
5567 5568
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5569
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5570 5571 5572 5573 5574 5575 5576 5577
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5578
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5579 5580 5581 5582 5583 5584 5585 5586
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5587 5588 5589 5590 5591 5592
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
5593
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
5594
{
5595 5596 5597 5598
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
5599 5600 5601 5602 5603
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
5604 5605
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5606
            float_raise(float_flag_invalid, status);
5607 5608 5609 5610 5611 5612
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5623
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
5624 5625
{
    flag aSign;
5626
    int32_t aExp, shiftCount;
5627
    uint64_t aSig0, aSig1;
B
bellard 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
5638
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5652
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5653 5654
{
    flag aSign;
5655
    int32_t aExp, shiftCount;
5656
    uint64_t aSig0, aSig1, savedASig;
5657
    int32_t z;
B
bellard 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
5669 5670 5671
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
5682
        float_raise(float_flag_invalid, status);
5683
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5684 5685
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
5686
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5702
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
5703 5704
{
    flag aSign;
5705
    int32_t aExp, shiftCount;
5706
    uint64_t aSig0, aSig1;
B
bellard 已提交
5707 5708 5709 5710 5711 5712 5713 5714 5715

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
5716
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5717 5718 5719 5720 5721 5722 5723
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5724
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5725 5726 5727 5728 5729 5730
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
5731
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5745
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5746 5747
{
    flag aSign;
5748
    int32_t aExp, shiftCount;
5749
    uint64_t aSig0, aSig1;
5750
    int64_t z;
B
bellard 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
5763 5764 5765
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
5766 5767
            }
            else {
P
Peter Maydell 已提交
5768
                float_raise(float_flag_invalid, status);
B
bellard 已提交
5769 5770 5771 5772
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5773
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5774 5775
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5776
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
5777
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5778 5779 5780 5781 5782
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
5783
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5784 5785 5786 5787 5788
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5789
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
5790
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5791 5792 5793 5794 5795 5796 5797
        }
    }
    if ( aSign ) z = - z;
    return z;

}

5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
5857 5858
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
5887 5888 5889 5890 5891
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5892
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
5893 5894
{
    flag aSign;
5895
    int32_t aExp;
5896 5897
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5898 5899 5900 5901 5902 5903 5904

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5905
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
5916
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5927
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
5928 5929
{
    flag aSign;
5930
    int32_t aExp;
5931
    uint64_t aSig0, aSig1;
B
bellard 已提交
5932 5933 5934 5935 5936 5937 5938

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5939
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
5949
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5960
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
5961 5962
{
    flag aSign;
5963
    int32_t aExp;
5964
    uint64_t aSig0, aSig1;
B
bellard 已提交
5965 5966 5967 5968 5969 5970 5971

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5972
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5973
        }
5974 5975
        return packFloatx80(aSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5976 5977 5978 5979 5980 5981 5982 5983 5984
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
5985
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5996
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
5997 5998
{
    flag aSign;
5999
    int32_t aExp;
6000
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
6001 6002 6003 6004 6005 6006 6007 6008
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
6009
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
6010 6011 6012 6013 6014 6015 6016
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
6017
        switch (status->float_rounding_mode) {
6018
        case float_round_nearest_even:
B
bellard 已提交
6019 6020 6021 6022 6023
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
6024
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
6025
                    ++z.high;
6026
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
6027 6028
                }
            }
6029
            break;
6030 6031 6032 6033 6034 6035 6036 6037 6038
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6049
            }
6050 6051 6052
            break;
        default:
            abort();
B
bellard 已提交
6053 6054 6055 6056 6057
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6058
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6059
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6060
            aSign = extractFloat128Sign( a );
6061
            switch (status->float_rounding_mode) {
B
bellard 已提交
6062 6063 6064 6065 6066 6067 6068 6069
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6070 6071 6072 6073 6074
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6091
        switch (status->float_rounding_mode) {
6092
        case float_round_nearest_even:
B
bellard 已提交
6093 6094 6095 6096
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6097
            break;
6098 6099 6100
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6101 6102 6103 6104
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6105 6106 6107
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6108 6109 6110 6111 6112 6113 6114 6115 6116
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6117 6118 6119 6120
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6121
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6135 6136
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6137
{
6138
    int32_t aExp, bExp, zExp;
6139
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6140
    int32_t expDiff;
B
bellard 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6151 6152 6153
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6168 6169 6170
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6186
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6187 6188 6189 6190
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6191
        if ( aExp == 0 ) {
6192
            if (status->flush_to_zero) {
6193
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
6194
                    float_raise(float_flag_output_denormal, status);
6195 6196 6197
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6198 6199
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
6214
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6226 6227
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6228
{
6229
    int32_t aExp, bExp, zExp;
6230
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
6231
    int32_t expDiff;
B
bellard 已提交
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6246
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6247
        }
P
Peter Maydell 已提交
6248
        float_raise(float_flag_invalid, status);
6249
        return float128_default_nan(status);
B
bellard 已提交
6250 6251 6252 6253 6254 6255 6256 6257 6258
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
6259 6260
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
6261 6262
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6263 6264 6265
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6283 6284 6285
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
6301 6302
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
6303 6304 6305 6306 6307 6308 6309 6310 6311

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6312
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6313 6314 6315 6316 6317 6318
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6319
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6320 6321
    }
    else {
P
Peter Maydell 已提交
6322
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6333
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6334 6335 6336 6337 6338 6339
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6340
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6341 6342
    }
    else {
P
Peter Maydell 已提交
6343
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6354
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6355 6356
{
    flag aSign, bSign, zSign;
6357
    int32_t aExp, bExp, zExp;
6358
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6372
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6373 6374 6375 6376 6377
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6378 6379 6380
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6381 6382
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6383
            float_raise(float_flag_invalid, status);
6384
            return float128_default_nan(status);
B
bellard 已提交
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
6407
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6408 6409 6410 6411 6412 6413 6414 6415 6416

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6417
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6418 6419
{
    flag aSign, bSign, zSign;
6420
    int32_t aExp, bExp, zExp;
6421 6422
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6434 6435 6436
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6437
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6438 6439 6440
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6441 6442 6443 6444 6445
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6446 6447 6448
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6449 6450 6451 6452 6453 6454
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6455
                float_raise(float_flag_invalid, status);
6456
                return float128_default_nan(status);
B
bellard 已提交
6457
            }
P
Peter Maydell 已提交
6458
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6479
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6480 6481 6482 6483 6484 6485 6486
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6487
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6488 6489 6490 6491 6492 6493
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6494
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6495 6496 6497 6498 6499 6500 6501 6502 6503

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6504
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
6505
{
6506
    flag aSign, zSign;
6507
    int32_t aExp, bExp, expDiff;
6508 6509 6510
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6522
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6523 6524 6525 6526
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6527 6528 6529
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6530 6531 6532 6533 6534
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6535
            float_raise(float_flag_invalid, status);
6536
            return float128_default_nan(status);
B
bellard 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6591
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6592
    add128(
6593
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6594 6595 6596 6597 6598
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6599
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6600
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6601 6602
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
6603 6604 6605 6606 6607 6608 6609 6610
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6611
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
6612 6613
{
    flag aSign;
6614
    int32_t aExp, zExp;
6615 6616
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6617 6618 6619 6620 6621 6622

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6623 6624 6625
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
6626 6627 6628 6629 6630 6631
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
6632
        float_raise(float_flag_invalid, status);
6633
        return float128_default_nan(status);
B
bellard 已提交
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6647
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6659
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6669
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6670 6671 6672 6673 6674

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6675 6676
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6677 6678 6679
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6680
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
6681 6682 6683 6684 6685 6686 6687
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6688
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6689 6690 6691 6692 6693 6694
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6695
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6696 6697 6698 6699 6700 6701
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6702 6703 6704
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6705 6706
*----------------------------------------------------------------------------*/

6707
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
6708 6709 6710 6711 6712 6713 6714 6715
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6716
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6717 6718 6719 6720 6721 6722 6723
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6724
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6735 6736 6737
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6738 6739
*----------------------------------------------------------------------------*/

6740
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
6741 6742 6743 6744 6745 6746 6747 6748
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6749
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6750 6751 6752 6753 6754 6755 6756
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6757
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6758 6759 6760 6761 6762 6763 6764 6765
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6766 6767
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6768 6769 6770
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6771 6772
*----------------------------------------------------------------------------*/

6773
int float128_unordered(float128 a, float128 b, float_status *status)
6774 6775 6776 6777 6778 6779
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6780
        float_raise(float_flag_invalid, status);
6781 6782 6783 6784 6785
        return 1;
    }
    return 0;
}

B
bellard 已提交
6786 6787
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6788 6789 6790
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6791 6792
*----------------------------------------------------------------------------*/

6793
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6794 6795 6796 6797 6798 6799 6800
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6801 6802
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6803
            float_raise(float_flag_invalid, status);
6804
        }
B
bellard 已提交
6805 6806 6807 6808 6809 6810
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6811
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6823
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6824 6825 6826 6827 6828 6829 6830 6831
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6832 6833
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6834
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6835 6836 6837 6838 6839 6840 6841 6842
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6843
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6859
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6860 6861 6862 6863 6864 6865 6866 6867
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6868 6869
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6870
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6871 6872 6873 6874 6875 6876 6877 6878
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6879
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6880 6881 6882 6883 6884 6885 6886 6887
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6888 6889 6890 6891 6892 6893 6894
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6895
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
6896 6897 6898 6899 6900 6901
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6902 6903
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6904
            float_raise(float_flag_invalid, status);
6905 6906 6907 6908 6909 6910
        }
        return 1;
    }
    return 0;
}

6911 6912
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
6913 6914 6915
{
    flag aSign, bSign;

6916 6917 6918 6919
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
6920 6921 6922 6923 6924
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
6925 6926
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6927
            float_raise(float_flag_invalid, status);
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

6951
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
6952
{
P
Peter Maydell 已提交
6953
    return floatx80_compare_internal(a, b, 0, status);
6954 6955
}

6956
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
6957
{
P
Peter Maydell 已提交
6958
    return floatx80_compare_internal(a, b, 1, status);
6959 6960
}

6961 6962
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
6963 6964 6965 6966 6967 6968 6969 6970
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
6971 6972
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6973
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

6995
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
6996
{
P
Peter Maydell 已提交
6997
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
6998 6999
}

7000
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7001
{
P
Peter Maydell 已提交
7002
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
7003 7004
}

7005
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
7006 7007
{
    flag aSign;
7008
    int32_t aExp;
7009
    uint64_t aSig;
P
pbrook 已提交
7010

7011 7012 7013 7014
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
7015 7016 7017 7018
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7019 7020
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
7021
            return propagateFloatx80NaN(a, a, status);
7022
        }
P
pbrook 已提交
7023 7024
        return a;
    }
7025

7026 7027 7028 7029 7030 7031
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7032

7033 7034 7035 7036 7037 7038
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7039
    aExp += n;
7040 7041
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
7042 7043
}

7044
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7045 7046
{
    flag aSign;
7047
    int32_t aExp;
7048
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7049 7050 7051 7052 7053 7054

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7055
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
7056
            return propagateFloat128NaN(a, a, status);
7057
        }
P
pbrook 已提交
7058 7059
        return a;
    }
7060
    if (aExp != 0) {
7061
        aSig0 |= LIT64( 0x0001000000000000 );
7062
    } else if (aSig0 == 0 && aSig1 == 0) {
7063
        return a;
7064 7065 7066
    } else {
        aExp++;
    }
7067

7068 7069 7070 7071 7072 7073
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7074 7075
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
7076
                                         , status);
P
pbrook 已提交
7077 7078

}