softfloat.c 236.6 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
A
Alex Bennée 已提交
86
#include "qemu/bitops.h"
87
#include "fpu/softfloat.h"
B
bellard 已提交
88

89 90
/* We only need stdlib for abort() */

B
bellard 已提交
91 92 93 94 95
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
96
#include "fpu/softfloat-macros.h"
B
bellard 已提交
97

98 99 100 101
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

102
static inline uint32_t extractFloat16Frac(float16 a)
103 104 105 106 107 108 109 110
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

111
static inline int extractFloat16Exp(float16 a)
112 113 114 115
{
    return (float16_val(a) >> 10) & 0x1f;
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
} FloatClass;

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/* Simple helpers for checking if, or what kind of, NaN we have */
static inline __attribute__((unused)) bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}

static inline __attribute__((unused)) bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}

static inline __attribute__((unused)) bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
230
 *   frac_lsbm1: the bit below the least significant bit (for rounding)
231
 *   round_mask/roundeven_mask: masks used for rounding
232 233
 * The following optional modifiers are available:
 *   arm_althp: handle ARM Alternative Half Precision
234 235 236 237 238 239 240 241 242 243 244
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
245
    bool arm_althp;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

264 265 266 267 268
static const FloatFmt float16_params_ahp = {
    FLOAT_PARAMS(5, 10),
    .arm_althp = true
};

269 270 271 272 273 274 275 276
static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

328 329 330 331 332 333 334 335 336 337
/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

A
Alex Bennée 已提交
338 339 340 341
/* Canonicalize EXP and FRAC, setting CLS.  */
static FloatParts canonicalize(FloatParts part, const FloatFmt *parm,
                               float_status *status)
{
342
    if (part.exp == parm->exp_max && !parm->arm_althp) {
A
Alex Bennée 已提交
343 344 345
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
346
            part.frac <<= parm->frac_shift;
347 348
            part.cls = (parts_is_snan_frac(part.frac, status)
                        ? float_class_snan : float_class_qnan);
A
Alex Bennée 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

431 432 433 434 435 436 437 438 439
            if (parm->arm_althp) {
                /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
                if (unlikely(exp > exp_max)) {
                    /* Overflow.  Return the maximum normal.  */
                    flags = float_flag_invalid;
                    exp = exp_max;
                    frac = -1;
                }
            } else if (unlikely(exp >= exp_max)) {
A
Alex Bennée 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
490
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
491 492 493 494 495 496
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
497
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
498
        exp = exp_max;
499
        frac >>= parm->frac_shift;
A
Alex Bennée 已提交
500 501 502 503 504 505 506 507 508 509 510 511
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

512 513 514 515 516 517 518
/* Explicit FloatFmt version */
static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
                                            const FloatFmt *params)
{
    return canonicalize(float16_unpack_raw(f), params, s);
}

A
Alex Bennée 已提交
519 520
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
521 522 523 524 525 526 527
    return float16a_unpack_canonical(f, s, &float16_params);
}

static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
                                             const FloatFmt *params)
{
    return float16_pack_raw(round_canonical(p, s, params));
A
Alex Bennée 已提交
528 529 530 531
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
532
    return float16a_round_pack_canonical(p, s, &float16_params);
A
Alex Bennée 已提交
533 534 535 536 537 538 539 540 541
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
    return canonicalize(float32_unpack_raw(f), &float32_params, s);
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
542
    return float32_pack_raw(round_canonical(p, s, &float32_params));
A
Alex Bennée 已提交
543 544 545 546 547 548 549 550 551
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
    return canonicalize(float64_unpack_raw(f), &float64_params, s);
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
552
    return float64_pack_raw(round_canonical(p, s, &float64_params));
A
Alex Bennée 已提交
553 554
}

555 556 557 558 559
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
560
        a = parts_silence_nan(a, s);
561 562 563
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
564
            return parts_default_nan(s);
565 566 567 568 569 570 571 572 573
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
574 575 576 577 578 579 580
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
581
        return parts_default_nan(s);
A
Alex Bennée 已提交
582
    } else {
583
        if (pickNaN(a.cls, b.cls,
A
Alex Bennée 已提交
584 585 586 587
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
588 589 590
        if (is_snan(a.cls)) {
            return parts_silence_nan(a, s);
        }
A
Alex Bennée 已提交
591 592 593 594
    }
    return a;
}

A
Alex Bennée 已提交
595 596 597
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
598 599
    int which;

A
Alex Bennée 已提交
600 601 602 603
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

604
    which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
605

A
Alex Bennée 已提交
606
    if (s->default_nan_mode) {
607 608 609
        /* Note that this check is after pickNaNMulAdd so that function
         * has an opportunity to set the Invalid flag.
         */
610
        which = 3;
611
    }
A
Alex Bennée 已提交
612

613 614 615 616 617 618 619 620 621 622
    switch (which) {
    case 0:
        break;
    case 1:
        a = b;
        break;
    case 2:
        a = c;
        break;
    case 3:
623
        return parts_default_nan(s);
624 625
    default:
        g_assert_not_reached();
A
Alex Bennée 已提交
626
    }
627

628 629 630
    if (is_snan(a.cls)) {
        return parts_silence_nan(a, s);
    }
A
Alex Bennée 已提交
631 632 633
    return a;
}

A
Alex Bennée 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
678
                return parts_default_nan(s);
A
Alex Bennée 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                a.frac >>= 1;
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

float16  __attribute__((flatten)) float16_add(float16 a, float16 b,
                                              float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_add(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_add(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float64_round_pack_canonical(pr, status);
}

float16 __attribute__((flatten)) float16_sub(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_sub(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_sub(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
824
        return parts_default_nan(s);
A
Alex Bennée 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

float16 __attribute__((flatten)) float16_mul(float16 a, float16 b,
                                             float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_mul(float32 a, float32 b,
                                             float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
                                             float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
902
        return parts_default_nan(s);
A
Alex Bennée 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
926
            return parts_default_nan(s);
A
Alex Bennée 已提交
927 928 929
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
930
            return a;
A
Alex Bennée 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        }
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c,
                                                int flags, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t temp_lo, temp_hi;
        int exp = a.exp - b.exp;
        if (a.frac < b.frac) {
            exp -= 1;
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1,
                              &temp_hi, &temp_lo);
        } else {
            shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT,
                              &temp_hi, &temp_lo);
        }
        /* LSB of quot is set if inexact which roundandpack will use
         * to set flags. Yet again we re-use a for the result */
        a.frac = div128To64(temp_lo, temp_hi, b.frac);
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
1141
        return parts_default_nan(s);
A
Alex Bennée 已提交
1142
    }
1143 1144 1145 1146 1147
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
A
Alex Bennée 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 float32_div(float32 a, float32 b, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 float64_div(float64 a, float64 b, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Float to Float conversions
 *
 * Returns the result of converting one float format to another. The
 * conversion is performed according to the IEC/IEEE Standard for
 * Binary Floating-Point Arithmetic.
 *
 * The float_to_float helper only needs to take care of raising
 * invalid exceptions and handling the conversion on NaNs.
 */

static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
                                 float_status *s)
{
    if (dstf->arm_althp) {
        switch (a.cls) {
        case float_class_qnan:
        case float_class_snan:
            /* There is no NaN in the destination format.  Raise Invalid
             * and return a zero with the sign of the input NaN.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_zero;
            a.frac = 0;
            a.exp = 0;
            break;

        case float_class_inf:
            /* There is no Inf in the destination format.  Raise Invalid
             * and return the maximum normal with the correct sign.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_normal;
            a.exp = dstf->exp_max;
            a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
            break;

        default:
            break;
        }
    } else if (is_nan(a.cls)) {
        if (is_snan(a.cls)) {
            s->float_exception_flags |= float_flag_invalid;
            a = parts_silence_nan(a, s);
        }
        if (s->default_nan_mode) {
            return parts_default_nan(s);
        }
    }
    return a;
}

float32 float16_to_float32(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float16_to_float64(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float32_to_float16(float32 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float64 float32_to_float64(float32 a, float_status *s)
{
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float64_to_float16(float64 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float32 float64_to_float32(float64 a, float_status *s)
{
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts round_to_int(FloatParts a, int rounding_mode, float_status *s)
{
    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }

    switch (a.cls) {
    case float_class_zero:
    case float_class_inf:
    case float_class_qnan:
        /* already "integral" */
        break;
    case float_class_normal:
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
            switch (rounding_mode) {
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

            switch (rounding_mode) {
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, s);
    return float64_round_pack_canonical(pr, s);
}

float64 float64_trunc_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
    FloatParts pr = round_to_int(pa, float_round_to_zero, s);
    return float64_round_pack_canonical(pr, s);
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

static int64_t round_to_int_and_pack(FloatParts in, int rmode,
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
1437
        s->float_exception_flags = orig_flags | float_flag_invalid;
1438 1439
        return max;
    case float_class_inf:
1440
        s->float_exception_flags = orig_flags | float_flag_invalid;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
1453
            if (r <= -(uint64_t) min) {
1454 1455 1456 1457 1458 1459
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
1460
            if (r <= max) {
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_INT(fsz, isz)                                          \
int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a,         \
                                                float_status *s)        \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, s->float_rounding_mode,             \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}                                                                       \
                                                                        \
int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero       \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_int_and_pack(p, float_round_to_zero,                \
                                 INT ## isz ## _MIN, INT ## isz ## _MAX,\
                                 s);                                    \
}

FLOAT_TO_INT(16, 16)
FLOAT_TO_INT(16, 32)
FLOAT_TO_INT(16, 64)

FLOAT_TO_INT(32, 16)
FLOAT_TO_INT(32, 32)
FLOAT_TO_INT(32, 64)

FLOAT_TO_INT(64, 16)
FLOAT_TO_INT(64, 32)
FLOAT_TO_INT(64, 64)

#undef FLOAT_TO_INT

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max,
                                       float_status *s)
{
    int orig_flags = get_float_exception_flags(s);
    FloatParts p = round_to_int(in, rmode, s);

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
1530
        s->float_exception_flags = orig_flags | float_flag_invalid;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
    {
        uint64_t r;
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        } else {
            return r;
        }
    }
    default:
        g_assert_not_reached();
    }
}

#define FLOAT_TO_UINT(fsz, isz) \
uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a,       \
                                                  float_status *s)      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
    return round_to_uint_and_pack(p, s->float_rounding_mode,            \
                                 UINT ## isz ## _MAX, s);               \
}                                                                       \
                                                                        \
uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero     \
 (float ## fsz a, float_status *s)                                      \
{                                                                       \
    FloatParts p = float ## fsz ## _unpack_canonical(a, s);             \
1580 1581
    return round_to_uint_and_pack(p, float_round_to_zero,               \
                                  UINT ## isz ## _MAX, s);              \
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
}

FLOAT_TO_UINT(16, 16)
FLOAT_TO_UINT(16, 32)
FLOAT_TO_UINT(16, 64)

FLOAT_TO_UINT(32, 16)
FLOAT_TO_UINT(32, 32)
FLOAT_TO_UINT(32, 64)

FLOAT_TO_UINT(64, 16)
FLOAT_TO_UINT(64, 32)
FLOAT_TO_UINT(64, 64)

#undef FLOAT_TO_UINT

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts int_to_float(int64_t a, float_status *status)
{
1608
    FloatParts r = {};
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    if (a == 0) {
        r.cls = float_class_zero;
        r.sign = false;
    } else if (a == (1ULL << 63)) {
        r.cls = float_class_normal;
        r.sign = true;
        r.frac = DECOMPOSED_IMPLICIT_BIT;
        r.exp = 63;
    } else {
        uint64_t f;
        if (a < 0) {
            f = -a;
            r.sign = true;
        } else {
            f = a;
            r.sign = false;
        }
        int shift = clz64(f) - 1;
        r.cls = float_class_normal;
        r.exp = (DECOMPOSED_BINARY_POINT - shift);
        r.frac = f << shift;
    }

    return r;
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 int32_to_float16(int32_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float16 int16_to_float16(int16_t a, float_status *status)
{
    return int64_to_float16(a, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 int32_to_float32(int32_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float32 int16_to_float32(int16_t a, float_status *status)
{
    return int64_to_float32(a, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    FloatParts pa = int_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 int32_to_float64(int32_t a, float_status *status)
{
    return int64_to_float64(a, status);
}

float64 int16_to_float64(int16_t a, float_status *status)
{
    return int64_to_float64(a, status);
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts uint_to_float(uint64_t a, float_status *status)
{
    FloatParts r = { .sign = false};

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
        int spare_bits = clz64(a) - 1;
        r.cls = float_class_normal;
        r.exp = DECOMPOSED_BINARY_POINT - spare_bits;
        if (spare_bits < 0) {
            shift64RightJamming(a, -spare_bits, &a);
            r.frac = a;
        } else {
            r.frac = a << spare_bits;
        }
    }

    return r;
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float16_round_pack_canonical(pa, status);
}

float16 uint32_to_float16(uint32_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
    return uint64_to_float16(a, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float32_round_pack_canonical(pa, status);
}

float32 uint32_to_float32(uint32_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
    return uint64_to_float32(a, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    FloatParts pa = uint_to_float(a, status);
    return float64_round_pack_canonical(pa, status);
}

float64 uint32_to_float64(uint32_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
    return uint64_to_float64(a, status);
}

A
Alex Bennée 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

1828 1829 1830 1831 1832 1833
        if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
1834 1835
        }

1836
        if (a.sign == b.sign) {
A
Alex Bennée 已提交
1837 1838 1839 1840
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
1841
            return a.sign ^ a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
1842
        } else {
1843
            return a.sign ^ ismin ? b : a;
A
Alex Bennée 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
1962 1963 1964 1965 1966 1967 1968
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
1969 1970 1971 1972 1973 1974
        /* The largest float type (even though not supported by FloatParts)
         * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
         * still allows rounding to infinity, without allowing overflow
         * within the int32_t that backs FloatParts.exp.
         */
        n = MIN(MAX(n, -0x10000), 0x10000);
A
Alex Bennée 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/*
 * Square Root
 *
 * The old softfloat code did an approximation step before zeroing in
 * on the final result. However for simpleness we just compute the
 * square root by iterating down from the implicit bit to enough extra
 * bits to ensure we get a correctly rounded result.
 *
 * This does mean however the calculation is slower than before,
 * especially for 64 bit floats.
 */

static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
{
    uint64_t a_frac, r_frac, s_frac;
    int bit, last_bit;

    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_zero) {
        return a;  /* sqrt(+-0) = +-0 */
    }
    if (a.sign) {
        s->float_exception_flags |= float_flag_invalid;
2026
        return parts_default_nan(s);
A
Alex Bennée 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
    }
    if (a.cls == float_class_inf) {
        return a;  /* sqrt(+inf) = +inf */
    }

    assert(a.cls == float_class_normal);

    /* We need two overflow bits at the top. Adding room for that is a
     * right shift. If the exponent is odd, we can discard the low bit
     * by multiplying the fraction by 2; that's a left shift. Combine
     * those and we shift right if the exponent is even.
     */
    a_frac = a.frac;
    if (!(a.exp & 1)) {
        a_frac >>= 1;
    }
    a.exp >>= 1;

    /* Bit-by-bit computation of sqrt.  */
    r_frac = 0;
    s_frac = 0;

    /* Iterate from implicit bit down to the 3 extra bits to compute a
     * properly rounded result. Remember we've inserted one more bit
     * at the top, so these positions are one less.
     */
    bit = DECOMPOSED_BINARY_POINT - 1;
    last_bit = MAX(p->frac_shift - 4, 0);
    do {
        uint64_t q = 1ULL << bit;
        uint64_t t_frac = s_frac + q;
        if (t_frac <= a_frac) {
            s_frac = t_frac + q;
            a_frac -= t_frac;
            r_frac += q;
        }
        a_frac <<= 1;
    } while (--bit >= last_bit);

    /* Undo the right shift done above. If there is any remaining
     * fraction, the result is inexact. Set the sticky bit.
     */
    a.frac = (r_frac << 1) + (a_frac != 0);

    return a;
}

float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float16_params);
    return float16_round_pack_canonical(pr, status);
}

float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float32_params);
    return float32_round_pack_canonical(pr, status);
}

float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float64_params);
    return float64_round_pack_canonical(pr, status);
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
/*----------------------------------------------------------------------------
| The pattern for a default generated NaN.
*----------------------------------------------------------------------------*/

float16 float16_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

float128 float128_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    float128 r;

    /* Extrapolate from the choices made by parts_default_nan to fill
     * in the quad-floating format.  If the low bit is set, assume we
     * want to set all non-snan bits.
     */
    r.low = -(p.frac & 1);
    r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
    r.high |= LIT64(0x7FFF000000000000);
    r.high |= (uint64_t)p.sign << 63;

    return r;
}
A
Alex Bennée 已提交
2136

B
bellard 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

2148
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
2149
{
2150
    int8_t roundingMode;
B
bellard 已提交
2151
    flag roundNearestEven;
2152
    int8_t roundIncrement, roundBits;
2153
    int32_t z;
B
bellard 已提交
2154

2155
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2156
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2157 2158
    switch (roundingMode) {
    case float_round_nearest_even:
2159
    case float_round_ties_away:
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
2173 2174 2175 2176 2177 2178 2179
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
2180
        float_raise(float_flag_invalid, status);
2181
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2182
    }
2183 2184 2185
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

2202
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
2203
                               float_status *status)
B
bellard 已提交
2204
{
2205
    int8_t roundingMode;
B
bellard 已提交
2206
    flag roundNearestEven, increment;
2207
    int64_t z;
B
bellard 已提交
2208

2209
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2210
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2211 2212
    switch (roundingMode) {
    case float_round_nearest_even:
2213
    case float_round_ties_away:
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
2227 2228 2229 2230
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
2231
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2232 2233 2234 2235 2236
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
2237
        float_raise(float_flag_invalid, status);
B
bellard 已提交
2238
        return
2239
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
2240 2241
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
2242 2243 2244
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2245 2246 2247 2248
    return z;

}

T
Tom Musta 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

2259
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
2260
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
2261
{
2262
    int8_t roundingMode;
T
Tom Musta 已提交
2263 2264
    flag roundNearestEven, increment;

2265
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
2266
    roundNearestEven = (roundingMode == float_round_nearest_even);
2267 2268
    switch (roundingMode) {
    case float_round_nearest_even:
2269
    case float_round_ties_away:
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
2283 2284 2285 2286
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
2287
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2288 2289 2290 2291 2292 2293
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
2294
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2295 2296 2297 2298
        return 0;
    }

    if (absZ1) {
2299
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
2300 2301 2302 2303
    }
    return absZ0;
}

2304 2305 2306 2307
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2308
float32 float32_squash_input_denormal(float32 a, float_status *status)
2309
{
2310
    if (status->flush_inputs_to_zero) {
2311
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
2312
            float_raise(float_flag_input_denormal, status);
2313 2314 2315 2316 2317 2318
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
2319 2320 2321 2322 2323 2324 2325 2326
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2327
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
2328
{
2329
    int8_t shiftCount;
B
bellard 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

    shiftCount = countLeadingZeros32( aSig ) - 8;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2359
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2360
                                   float_status *status)
B
bellard 已提交
2361
{
2362
    int8_t roundingMode;
B
bellard 已提交
2363
    flag roundNearestEven;
2364
    int8_t roundIncrement, roundBits;
B
bellard 已提交
2365 2366
    flag isTiny;

2367
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2368
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2369 2370
    switch (roundingMode) {
    case float_round_nearest_even:
2371
    case float_round_ties_away:
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
2386 2387
    }
    roundBits = zSig & 0x7F;
2388
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
2389 2390
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
2391
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2392
           ) {
P
Peter Maydell 已提交
2393
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
2394
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
2395 2396
        }
        if ( zExp < 0 ) {
2397
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2398
                float_raise(float_flag_output_denormal, status);
2399 2400
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
2401
            isTiny =
2402 2403
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
2404 2405 2406 2407 2408
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
2409 2410 2411
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
2412 2413
        }
    }
2414 2415 2416
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
2434
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2435
                              float_status *status)
B
bellard 已提交
2436
{
2437
    int8_t shiftCount;
B
bellard 已提交
2438 2439

    shiftCount = countLeadingZeros32( zSig ) - 1;
P
Peter Maydell 已提交
2440 2441
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2442 2443 2444

}

2445 2446 2447 2448
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2449
float64 float64_squash_input_denormal(float64 a, float_status *status)
2450
{
2451
    if (status->flush_inputs_to_zero) {
2452
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
2453
            float_raise(float_flag_input_denormal, status);
2454 2455 2456 2457 2458 2459
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
2460 2461 2462 2463 2464 2465 2466 2467
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2468
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
2469
{
2470
    int8_t shiftCount;
B
bellard 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

    shiftCount = countLeadingZeros64( aSig ) - 11;
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2489
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
2490 2491
{

P
pbrook 已提交
2492
    return make_float64(
2493
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
2505 2506 2507
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2519
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2520
                                   float_status *status)
B
bellard 已提交
2521
{
2522
    int8_t roundingMode;
B
bellard 已提交
2523
    flag roundNearestEven;
2524
    int roundIncrement, roundBits;
B
bellard 已提交
2525 2526
    flag isTiny;

2527
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2528
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2529 2530
    switch (roundingMode) {
    case float_round_nearest_even:
2531
    case float_round_ties_away:
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
2543 2544 2545
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
2546 2547
    default:
        abort();
B
bellard 已提交
2548 2549
    }
    roundBits = zSig & 0x3FF;
2550
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
2551 2552
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
2553
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2554
           ) {
2555 2556
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
2557
            float_raise(float_flag_overflow | float_flag_inexact, status);
2558
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
2559 2560
        }
        if ( zExp < 0 ) {
2561
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2562
                float_raise(float_flag_output_denormal, status);
2563 2564
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
2565
            isTiny =
2566 2567
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2568 2569 2570 2571 2572
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
2573 2574 2575
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2576 2577 2578 2579 2580 2581 2582
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
2583 2584
        }
    }
2585 2586 2587
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
2605
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2606
                              float_status *status)
B
bellard 已提交
2607
{
2608
    int8_t shiftCount;
B
bellard 已提交
2609 2610

    shiftCount = countLeadingZeros64( zSig ) - 1;
P
Peter Maydell 已提交
2611 2612
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

2623 2624
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr)
B
bellard 已提交
2625
{
2626
    int8_t shiftCount;
B
bellard 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

    shiftCount = countLeadingZeros64( aSig );
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;
}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2657 2658 2659
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status)
B
bellard 已提交
2660
{
2661
    int8_t roundingMode;
B
bellard 已提交
2662
    flag roundNearestEven, increment, isTiny;
2663
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
2664

2665
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
2680 2681
    switch (roundingMode) {
    case float_round_nearest_even:
2682
    case float_round_ties_away:
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
2695 2696
    }
    roundBits = zSig0 & roundMask;
2697
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2698 2699 2700 2701 2702 2703
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
2704
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2705
                float_raise(float_flag_output_denormal, status);
2706 2707
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
2708
            isTiny =
2709 2710
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2711 2712 2713 2714 2715
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
2716 2717 2718
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2719 2720 2721
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
2722
            zSig0 += roundIncrement;
2723
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2724 2725 2726 2727 2728 2729 2730 2731
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2732 2733 2734
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
2748 2749
    switch (roundingMode) {
    case float_round_nearest_even:
2750
    case float_round_ties_away:
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
2764
    }
2765
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
2766 2767 2768 2769 2770 2771 2772 2773
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
2774
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
2775 2776 2777 2778 2779 2780
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
2781 2782 2783
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
2784 2785 2786
        }
        if ( zExp <= 0 ) {
            isTiny =
2787 2788
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2789 2790 2791 2792 2793
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
2794 2795 2796
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
2797 2798 2799
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
2800 2801
            switch (roundingMode) {
            case float_round_nearest_even:
2802
            case float_round_ties_away:
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
2816 2817 2818 2819
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
2820 2821
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
2822 2823 2824 2825
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
2826 2827 2828
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2829 2830 2831 2832 2833 2834 2835
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
2836
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

2855 2856 2857 2858
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status)
B
bellard 已提交
2859
{
2860
    int8_t shiftCount;
B
bellard 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 );
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
2870 2871
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
2872 2873 2874 2875 2876 2877 2878 2879

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2880
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

2892
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

2904
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

2915
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
2934 2935
     uint64_t aSig0,
     uint64_t aSig1,
2936
     int32_t *zExpPtr,
2937 2938
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
2939 2940
 )
{
2941
    int8_t shiftCount;
B
bellard 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

    if ( aSig0 == 0 ) {
        shiftCount = countLeadingZeros64( aSig1 ) - 15;
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
        shiftCount = countLeadingZeros64( aSig0 ) - 15;
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2976
static inline float128
2977
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
2978 2979 2980 2981
{
    float128 z;

    z.low = zSig1;
2982
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3008
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
3009 3010
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
3011
{
3012
    int8_t roundingMode;
B
bellard 已提交
3013 3014
    flag roundNearestEven, increment, isTiny;

3015
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3016
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3017 3018
    switch (roundingMode) {
    case float_round_nearest_even:
3019
    case float_round_ties_away:
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
3031 3032 3033
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
3034 3035
    default:
        abort();
B
bellard 已提交
3036
    }
3037
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
3049
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3050 3051 3052
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
3053
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
3066
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3067
                float_raise(float_flag_output_denormal, status);
3068 3069
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
3070
            isTiny =
3071 3072
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
3084 3085 3086
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
3087 3088
            switch (roundingMode) {
            case float_round_nearest_even:
3089
            case float_round_ties_away:
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
3101 3102 3103
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
3104 3105
            default:
                abort();
B
bellard 已提交
3106 3107 3108
            }
        }
    }
3109 3110 3111
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

3133
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
3134 3135
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
3136
{
3137
    int8_t shiftCount;
3138
    uint64_t zSig2;
B
bellard 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
    shiftCount = countLeadingZeros64( zSig0 ) - 15;
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
3155
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3167
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
3168 3169
{
    flag zSign;
3170
    uint32_t absA;
3171
    int8_t shiftCount;
3172
    uint64_t zSig;
B
bellard 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 32;
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3189
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
3190 3191
{
    flag zSign;
3192
    uint32_t absA;
3193
    int8_t shiftCount;
3194
    uint64_t zSig0;
B
bellard 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros32( absA ) + 17;
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3212
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
3213 3214
{
    flag zSign;
3215
    uint64_t absA;
3216
    int8_t shiftCount;
B
bellard 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA );
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3232
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
3233 3234
{
    flag zSign;
3235
    uint64_t absA;
3236
    int8_t shiftCount;
3237
    int32_t zExp;
3238
    uint64_t zSig0, zSig1;
B
bellard 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
    shiftCount = countLeadingZeros64( absA ) + 49;
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

3259 3260 3261 3262 3263 3264
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3265
float128 uint64_to_float128(uint64_t a, float_status *status)
3266 3267 3268 3269
{
    if (a == 0) {
        return float128_zero;
    }
3270
    return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
3271 3272
}

B
bellard 已提交
3273 3274 3275 3276 3277 3278 3279
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3280
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
3281 3282
{
    flag aSign;
3283
    int aExp;
3284
    uint32_t aSig;
B
bellard 已提交
3285

P
Peter Maydell 已提交
3286
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3287 3288 3289 3290
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3291 3292 3293
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
3294 3295 3296
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
3297 3298 3299 3300 3301 3302
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
3303
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3314
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
3315 3316
{
    flag aSign;
3317
    int aExp;
3318
    uint32_t aSig;
B
bellard 已提交
3319

P
Peter Maydell 已提交
3320
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3321 3322 3323 3324
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3325 3326 3327
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3328 3329 3330 3331 3332 3333 3334
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3335
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3345
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
3346
{
3347
    flag aSign, zSign;
3348
    int aExp, bExp, expDiff;
3349 3350 3351 3352 3353
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
3354 3355
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3356 3357 3358 3359 3360 3361 3362 3363

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
3364
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
3365
        }
P
Peter Maydell 已提交
3366
        float_raise(float_flag_invalid, status);
3367
        return float32_default_nan(status);
B
bellard 已提交
3368 3369
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
3370 3371 3372
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
3373 3374 3375 3376
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
3377
            float_raise(float_flag_invalid, status);
3378
            return float32_default_nan(status);
B
bellard 已提交
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
3399
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
3411 3412
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
3431
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
3432 3433 3434 3435
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
3436
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
3437
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
3438
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
3439 3440
}

3441

B
bellard 已提交
3442

A
Aurelien Jarno 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
3478 3479
};

3480
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
3481 3482
{
    flag aSign;
3483
    int aExp;
3484
    uint32_t aSig;
A
Aurelien Jarno 已提交
3485 3486
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
3487
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
3488 3489 3490 3491 3492 3493

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
3494 3495 3496
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
3497 3498 3499 3500 3501 3502
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
3503
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
3504 3505 3506 3507

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
3508 3509
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
3510 3511 3512 3513 3514 3515

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
3516 3517
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
3518

P
Peter Maydell 已提交
3519
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
3520 3521 3522 3523 3524
    }

    return float64_to_float32(r, status);
}

3525 3526 3527 3528 3529
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
3530
float32 float32_log2(float32 a, float_status *status)
3531 3532
{
    flag aSign, zSign;
3533
    int aExp;
3534
    uint32_t aSig, zSig, i;
3535

P
Peter Maydell 已提交
3536
    a = float32_squash_input_denormal(a, status);
3537 3538 3539 3540 3541 3542 3543 3544 3545
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
3546
        float_raise(float_flag_invalid, status);
3547
        return float32_default_nan(status);
3548 3549
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3550 3551 3552
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
3553 3554 3555 3556 3557 3558 3559 3560 3561
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
3562
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
3563 3564 3565 3566 3567 3568 3569 3570 3571
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
3572
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
3573 3574
}

B
bellard 已提交
3575 3576
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3577 3578
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
3579 3580 3581
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3582
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
3583
{
3584
    uint32_t av, bv;
P
Peter Maydell 已提交
3585 3586
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3587 3588 3589 3590

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3591
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3592 3593
        return 0;
    }
3594 3595 3596
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
3597 3598 3599 3600
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3601 3602 3603
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3604 3605
*----------------------------------------------------------------------------*/

3606
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
3607 3608
{
    flag aSign, bSign;
3609
    uint32_t av, bv;
P
Peter Maydell 已提交
3610 3611
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3612 3613 3614 3615

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3616
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3617 3618 3619 3620
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3621 3622
    av = float32_val(a);
    bv = float32_val(b);
3623
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3624
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3625 3626 3627 3628 3629

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3630 3631 3632
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3633 3634
*----------------------------------------------------------------------------*/

3635
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
3636 3637
{
    flag aSign, bSign;
3638
    uint32_t av, bv;
P
Peter Maydell 已提交
3639 3640
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3641 3642 3643 3644

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3645
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3646 3647 3648 3649
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3650 3651
    av = float32_val(a);
    bv = float32_val(b);
3652
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
3653
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3654 3655 3656

}

3657 3658
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
3659 3660 3661
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
3662 3663
*----------------------------------------------------------------------------*/

3664
int float32_unordered(float32 a, float32 b, float_status *status)
3665
{
P
Peter Maydell 已提交
3666 3667
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
3668 3669 3670 3671

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3672
        float_raise(float_flag_invalid, status);
3673 3674 3675 3676
        return 1;
    }
    return 0;
}
3677

B
bellard 已提交
3678 3679
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3680 3681 3682
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
3683 3684
*----------------------------------------------------------------------------*/

3685
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3686
{
P
Peter Maydell 已提交
3687 3688
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3689 3690 3691 3692

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3693 3694
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3695
            float_raise(float_flag_invalid, status);
3696
        }
B
bellard 已提交
3697 3698
        return 0;
    }
3699 3700
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3710
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3711 3712
{
    flag aSign, bSign;
3713
    uint32_t av, bv;
P
Peter Maydell 已提交
3714 3715
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3716 3717 3718 3719

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
3720 3721
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3722
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3723 3724 3725 3726 3727
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3728 3729
    av = float32_val(a);
    bv = float32_val(b);
3730
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3731
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3732 3733 3734 3735 3736 3737 3738

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
3739
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3740 3741
*----------------------------------------------------------------------------*/

3742
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3743
{
3744 3745 3746 3747
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3748

3749 3750 3751 3752 3753
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
3754
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3755
        }
3756
        return 0;
B
bellard 已提交
3757
    }
3758 3759 3760 3761 3762 3763
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
3764 3765 3766 3767

}

/*----------------------------------------------------------------------------
3768 3769 3770 3771
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
3772 3773
*----------------------------------------------------------------------------*/

3774
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
3775
{
3776 3777
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3778

3779 3780 3781 3782 3783 3784
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
3785
        }
3786
        return 1;
B
bellard 已提交
3787
    }
3788
    return 0;
B
bellard 已提交
3789 3790
}

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

B
bellard 已提交
3806 3807 3808 3809 3810 3811 3812
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3813
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
3814 3815
{
    flag aSign;
3816
    int aExp;
3817
    uint64_t aSig;
B
bellard 已提交
3818

P
Peter Maydell 已提交
3819
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
3820 3821 3822 3823
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
3824 3825 3826
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
3827 3828 3829
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3848
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
3849 3850
{
    flag aSign;
3851
    int aExp;
3852
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
3853

P
Peter Maydell 已提交
3854
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
3855 3856 3857 3858
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
3859 3860 3861
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3881
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
3882
{
3883
    flag aSign, zSign;
3884
    int aExp, bExp, expDiff;
3885 3886 3887
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
3888

P
Peter Maydell 已提交
3889 3890
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
3891 3892 3893 3894 3895 3896 3897
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
3898
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
3899
        }
P
Peter Maydell 已提交
3900
        float_raise(float_flag_invalid, status);
3901
        return float64_default_nan(status);
B
bellard 已提交
3902 3903
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
3904 3905 3906
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
3907 3908 3909 3910
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
3911
            float_raise(float_flag_invalid, status);
3912
            return float64_default_nan(status);
B
bellard 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
3952
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
3953 3954 3955 3956
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
3957
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
3958
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
3959
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
3960 3961 3962

}

3963 3964 3965 3966 3967
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
3968
float64 float64_log2(float64 a, float_status *status)
3969 3970
{
    flag aSign, zSign;
3971
    int aExp;
3972
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
3973
    a = float64_squash_input_denormal(a, status);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
3984
        float_raise(float_flag_invalid, status);
3985
        return float64_default_nan(status);
3986 3987
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
3988 3989 3990
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
3991 3992 3993 3994 3995 3996
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
3997
    zSig = (uint64_t)aExp << 52;
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
4009
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4010 4011
}

B
bellard 已提交
4012 4013
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4014 4015
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4016 4017 4018
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4019
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4020
{
4021
    uint64_t av, bv;
P
Peter Maydell 已提交
4022 4023
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4024 4025 4026 4027

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4028
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4029 4030
        return 0;
    }
P
pbrook 已提交
4031
    av = float64_val(a);
P
pbrook 已提交
4032
    bv = float64_val(b);
4033
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4034 4035 4036 4037 4038

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4039 4040 4041
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4042 4043
*----------------------------------------------------------------------------*/

4044
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4045 4046
{
    flag aSign, bSign;
4047
    uint64_t av, bv;
P
Peter Maydell 已提交
4048 4049
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4050 4051 4052 4053

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4054
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4055 4056 4057 4058
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4059
    av = float64_val(a);
P
pbrook 已提交
4060
    bv = float64_val(b);
4061
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4062
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4063 4064 4065 4066 4067

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4068 4069 4070
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4071 4072
*----------------------------------------------------------------------------*/

4073
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4074 4075
{
    flag aSign, bSign;
4076
    uint64_t av, bv;
B
bellard 已提交
4077

P
Peter Maydell 已提交
4078 4079
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4080 4081 4082
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4083
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4084 4085 4086 4087
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4088
    av = float64_val(a);
P
pbrook 已提交
4089
    bv = float64_val(b);
4090
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4091
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4092 4093 4094

}

4095 4096
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4097 4098 4099
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4100 4101
*----------------------------------------------------------------------------*/

4102
int float64_unordered(float64 a, float64 b, float_status *status)
4103
{
P
Peter Maydell 已提交
4104 4105
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4106 4107 4108 4109

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4110
        float_raise(float_flag_invalid, status);
4111 4112 4113 4114 4115
        return 1;
    }
    return 0;
}

B
bellard 已提交
4116 4117
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4118 4119 4120
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4121 4122
*----------------------------------------------------------------------------*/

4123
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4124
{
4125
    uint64_t av, bv;
P
Peter Maydell 已提交
4126 4127
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4128 4129 4130 4131

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4132 4133
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4134
            float_raise(float_flag_invalid, status);
4135
        }
B
bellard 已提交
4136 4137
        return 0;
    }
P
pbrook 已提交
4138
    av = float64_val(a);
P
pbrook 已提交
4139
    bv = float64_val(b);
4140
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4151
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4152 4153
{
    flag aSign, bSign;
4154
    uint64_t av, bv;
P
Peter Maydell 已提交
4155 4156
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4157 4158 4159 4160

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4161 4162
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4163
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4164 4165 4166 4167 4168
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4169
    av = float64_val(a);
P
pbrook 已提交
4170
    bv = float64_val(b);
4171
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4172
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4183
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4184 4185
{
    flag aSign, bSign;
4186
    uint64_t av, bv;
P
Peter Maydell 已提交
4187 4188
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4189 4190 4191 4192

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4193 4194
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4195
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4196 4197 4198 4199 4200
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4201
    av = float64_val(a);
P
pbrook 已提交
4202
    bv = float64_val(b);
4203
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4204
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4205 4206 4207

}

4208 4209 4210 4211 4212 4213 4214
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4215
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4216
{
P
Peter Maydell 已提交
4217 4218
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4219 4220 4221 4222

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4223 4224
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4225
            float_raise(float_flag_invalid, status);
4226 4227 4228 4229 4230 4231
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4242
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
4243 4244
{
    flag aSign;
4245
    int32_t aExp, shiftCount;
4246
    uint64_t aSig;
B
bellard 已提交
4247

4248 4249 4250 4251
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4252 4253 4254
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4255
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4256 4257 4258
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
4259
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4273
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4274 4275
{
    flag aSign;
4276
    int32_t aExp, shiftCount;
4277
    uint64_t aSig, savedASig;
4278
    int32_t z;
B
bellard 已提交
4279

4280 4281 4282 4283
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4284 4285 4286 4287
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4288
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4289 4290 4291
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
4292 4293 4294
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
4304
        float_raise(float_flag_invalid, status);
4305
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4306 4307
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
4308
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4324
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
4325 4326
{
    flag aSign;
4327
    int32_t aExp, shiftCount;
4328
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4329

4330 4331 4332 4333
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4334 4335 4336 4337 4338 4339
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
4340
            float_raise(float_flag_invalid, status);
4341
            if (!aSign || floatx80_is_any_nan(a)) {
B
bellard 已提交
4342 4343
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4344
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4345 4346 4347 4348 4349 4350
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
4351
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4365
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4366 4367
{
    flag aSign;
4368
    int32_t aExp, shiftCount;
4369
    uint64_t aSig;
4370
    int64_t z;
B
bellard 已提交
4371

4372 4373 4374 4375
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4376 4377 4378 4379 4380 4381 4382
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
4383
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4384 4385 4386 4387
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4388
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4389 4390
    }
    else if ( aExp < 0x3FFF ) {
4391 4392 4393
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4394 4395 4396
        return 0;
    }
    z = aSig>>( - shiftCount );
4397
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
4398
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4412
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
4413 4414
{
    flag aSign;
4415
    int32_t aExp;
4416
    uint64_t aSig;
B
bellard 已提交
4417

4418 4419 4420 4421
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
4422 4423 4424 4425
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4426
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4427
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4428 4429 4430 4431 4432
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
4433
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4444
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
4445 4446
{
    flag aSign;
4447
    int32_t aExp;
4448
    uint64_t aSig, zSig;
B
bellard 已提交
4449

4450 4451 4452 4453
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
4454 4455 4456 4457
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4458
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4459
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4460 4461 4462 4463 4464
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
4465
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4476
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
4477 4478
{
    flag aSign;
4479
    int aExp;
4480
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4481

4482 4483 4484 4485
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
4486 4487 4488
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4489
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4490
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4491 4492 4493 4494 4495 4496
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
4513 4514 4515 4516 4517 4518 4519
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4520
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
4521 4522
{
    flag aSign;
4523
    int32_t aExp;
4524
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4525 4526
    floatx80 z;

4527 4528 4529 4530
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4531 4532
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4533
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
4534
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
4535 4536 4537 4538 4539
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4540
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4541 4542
            return a;
        }
4543
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4544
        aSign = extractFloatx80Sign( a );
4545
        switch (status->float_rounding_mode) {
B
bellard 已提交
4546
         case float_round_nearest_even:
4547
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4548 4549 4550 4551 4552
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4553 4554 4555 4556 4557
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4574
    switch (status->float_rounding_mode) {
4575
    case float_round_nearest_even:
B
bellard 已提交
4576
        z.low += lastBitMask>>1;
4577 4578 4579 4580
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4581 4582 4583
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4584 4585 4586 4587 4588 4589 4590 4591 4592
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4593 4594
            z.low += roundBitsMask;
        }
4595 4596 4597
        break;
    default:
        abort();
B
bellard 已提交
4598 4599 4600 4601 4602 4603
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
4604 4605 4606
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4619 4620
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4621
{
4622
    int32_t aExp, bExp, zExp;
4623
    uint64_t aSig, bSig, zSig0, zSig1;
4624
    int32_t expDiff;
B
bellard 已提交
4625 4626 4627 4628 4629 4630 4631 4632

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4633 4634 4635
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
4636 4637 4638 4639 4640 4641 4642 4643
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4644 4645 4646
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
4647 4648 4649
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
4650 4651 4652 4653 4654 4655 4656
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
4657
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
4658
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
4672
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
4673 4674 4675 4676 4677
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
4678
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4679
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4690 4691
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4692
{
4693
    int32_t aExp, bExp, zExp;
4694
    uint64_t aSig, bSig, zSig0, zSig1;
4695
    int32_t expDiff;
B
bellard 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
4705
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
4706
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4707
        }
P
Peter Maydell 已提交
4708
        float_raise(float_flag_invalid, status);
4709
        return floatx80_default_nan(status);
B
bellard 已提交
4710 4711 4712 4713 4714 4715 4716 4717
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
4718
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
4719 4720
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4721 4722 4723
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
4724 4725
        return packFloatx80(zSign ^ 1, floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4736 4737 4738
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4739 4740 4741 4742 4743 4744 4745 4746
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
4747
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4748
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4749 4750 4751 4752 4753 4754 4755 4756
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4757
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4758 4759 4760
{
    flag aSign, bSign;

4761 4762 4763 4764
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4765 4766 4767
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
4768
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
4769 4770
    }
    else {
P
Peter Maydell 已提交
4771
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4782
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4783 4784 4785
{
    flag aSign, bSign;

4786 4787 4788 4789
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4790 4791 4792
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
4793
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
4794 4795
    }
    else {
P
Peter Maydell 已提交
4796
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4807
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4808 4809
{
    flag aSign, bSign, zSign;
4810
    int32_t aExp, bExp, zExp;
4811
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
4812

4813 4814 4815 4816
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4817 4818 4819 4820 4821 4822 4823 4824
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
4825 4826
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
4827
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4828 4829
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
4830 4831
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
4832 4833
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4834 4835 4836
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4837 4838
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
4839
            float_raise(float_flag_invalid, status);
4840
            return floatx80_default_nan(status);
B
bellard 已提交
4841
        }
4842 4843
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
4855
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
4856 4857 4858
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
4859
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4860
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4861 4862 4863 4864 4865 4866 4867 4868
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4869
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4870 4871
{
    flag aSign, bSign, zSign;
4872
    int32_t aExp, bExp, zExp;
4873 4874
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
4875

4876 4877 4878 4879
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4880 4881 4882 4883 4884 4885 4886 4887
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4888 4889 4890
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4891
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4892 4893 4894
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
4895 4896
            goto invalid;
        }
4897 4898
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
4899 4900
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4901 4902 4903
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4904 4905 4906 4907 4908 4909
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
4910
                float_raise(float_flag_invalid, status);
4911
                return floatx80_default_nan(status);
B
bellard 已提交
4912
            }
P
Peter Maydell 已提交
4913
            float_raise(float_flag_divbyzero, status);
4914 4915
            return packFloatx80(zSign, floatx80_infinity_high,
                                       floatx80_infinity_low);
B
bellard 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
4932
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
4933 4934 4935 4936
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
4937
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
4938 4939
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
4940
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
4941 4942 4943 4944 4945
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
4946
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
4947
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
4948 4949 4950 4951 4952 4953 4954 4955
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4956
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
4957
{
4958
    flag aSign, zSign;
4959
    int32_t aExp, bExp, expDiff;
4960 4961
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
4962

4963 4964 4965 4966
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4967 4968 4969 4970 4971 4972
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
4973 4974
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
4975
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
4976 4977 4978 4979
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
4980 4981 4982
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
4983 4984 4985 4986 4987
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
4988
            float_raise(float_flag_invalid, status);
4989
            return floatx80_default_nan(status);
B
bellard 已提交
4990 4991 4992 4993
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
4994
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
5045
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5055
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5056 5057
{
    flag aSign;
5058
    int32_t aExp, zExp;
5059 5060
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5061

5062 5063 5064 5065
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5066 5067 5068 5069
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5070 5071 5072
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
5073 5074 5075 5076 5077 5078
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
5079
        float_raise(float_flag_invalid, status);
5080
        return floatx80_default_nan(status);
B
bellard 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5093
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5105
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
5116 5117
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
5118 5119 5120
}

/*----------------------------------------------------------------------------
5121 5122 5123 5124
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5125 5126
*----------------------------------------------------------------------------*/

5127
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5128 5129
{

5130 5131 5132 5133 5134
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5135
       ) {
P
Peter Maydell 已提交
5136
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5137 5138 5139 5140 5141 5142
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5143
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5144 5145 5146 5147 5148 5149 5150
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5151 5152 5153
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5154 5155
*----------------------------------------------------------------------------*/

5156
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5157 5158 5159
{
    flag aSign, bSign;

5160 5161 5162 5163 5164
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5165
       ) {
P
Peter Maydell 已提交
5166
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5167 5168 5169 5170 5171 5172 5173
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5174
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5185 5186 5187
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5188 5189
*----------------------------------------------------------------------------*/

5190
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5191 5192 5193
{
    flag aSign, bSign;

5194 5195 5196 5197 5198
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5199
       ) {
P
Peter Maydell 已提交
5200
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5201 5202 5203 5204 5205 5206 5207
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5208
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5209 5210 5211 5212 5213 5214 5215 5216
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5217 5218
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5219 5220 5221
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5222
*----------------------------------------------------------------------------*/
5223
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5224
{
5225 5226 5227 5228 5229
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
5230
       ) {
P
Peter Maydell 已提交
5231
        float_raise(float_flag_invalid, status);
5232 5233 5234 5235 5236
        return 1;
    }
    return 0;
}

B
bellard 已提交
5237
/*----------------------------------------------------------------------------
5238
| Returns 1 if the extended double-precision floating-point value `a' is
5239 5240 5241
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5242 5243
*----------------------------------------------------------------------------*/

5244
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5245 5246
{

5247 5248 5249 5250
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5251
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5252
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5253
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5254
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5255
       ) {
5256 5257
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5258
            float_raise(float_flag_invalid, status);
5259
        }
B
bellard 已提交
5260 5261 5262 5263 5264 5265
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5266
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5278
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5279 5280 5281
{
    flag aSign, bSign;

5282 5283 5284 5285
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5286
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5287
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5288
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5289
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5290
       ) {
5291 5292
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5293
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5294 5295 5296 5297 5298 5299 5300 5301
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5302
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5318
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5319 5320 5321
{
    flag aSign, bSign;

5322 5323 5324 5325
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5326
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5327
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5328
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5329
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5330
       ) {
5331 5332
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5333
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5334 5335 5336 5337 5338 5339 5340 5341
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5342
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5343 5344 5345 5346 5347 5348 5349 5350
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5351 5352 5353 5354 5355 5356
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
5357
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
5358
{
5359 5360 5361 5362
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
5363 5364 5365 5366 5367
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
5368 5369
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5370
            float_raise(float_flag_invalid, status);
5371 5372 5373 5374 5375 5376
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5387
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
5388 5389
{
    flag aSign;
5390
    int32_t aExp, shiftCount;
5391
    uint64_t aSig0, aSig1;
B
bellard 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
5402
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5416
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5417 5418
{
    flag aSign;
5419
    int32_t aExp, shiftCount;
5420
    uint64_t aSig0, aSig1, savedASig;
5421
    int32_t z;
B
bellard 已提交
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
5433 5434 5435
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
5446
        float_raise(float_flag_invalid, status);
5447
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5448 5449
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
5450
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5466
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
5467 5468
{
    flag aSign;
5469
    int32_t aExp, shiftCount;
5470
    uint64_t aSig0, aSig1;
B
bellard 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
5480
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5481 5482 5483 5484 5485 5486 5487
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5488
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5489 5490 5491 5492 5493 5494
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
5495
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5509
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5510 5511
{
    flag aSign;
5512
    int32_t aExp, shiftCount;
5513
    uint64_t aSig0, aSig1;
5514
    int64_t z;
B
bellard 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
5527 5528 5529
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
5530 5531
            }
            else {
P
Peter Maydell 已提交
5532
                float_raise(float_flag_invalid, status);
B
bellard 已提交
5533 5534 5535 5536
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5537
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5538 5539
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5540
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
5541
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5542 5543 5544 5545 5546
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
5547
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5548 5549 5550 5551 5552
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5553
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
5554
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5555 5556 5557 5558 5559 5560 5561
        }
    }
    if ( aSign ) z = - z;
    return z;

}

5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
5621 5622
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
5651 5652 5653 5654 5655
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5656
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
5657 5658
{
    flag aSign;
5659
    int32_t aExp;
5660 5661
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
5662 5663 5664 5665 5666 5667 5668

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5669
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
5680
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

5691
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
5692 5693
{
    flag aSign;
5694
    int32_t aExp;
5695
    uint64_t aSig0, aSig1;
B
bellard 已提交
5696 5697 5698 5699 5700 5701 5702

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5703
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5704 5705 5706 5707 5708 5709 5710 5711 5712
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
5713
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5724
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
5725 5726
{
    flag aSign;
5727
    int32_t aExp;
5728
    uint64_t aSig0, aSig1;
B
bellard 已提交
5729 5730 5731 5732 5733 5734 5735

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
5736
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
5737
        }
5738 5739
        return packFloatx80(aSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5740 5741 5742 5743 5744 5745 5746 5747 5748
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
5749
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5760
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
5761 5762
{
    flag aSign;
5763
    int32_t aExp;
5764
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
5765 5766 5767 5768 5769 5770 5771 5772
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
5773
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
5774 5775 5776 5777 5778 5779 5780
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
5781
        switch (status->float_rounding_mode) {
5782
        case float_round_nearest_even:
B
bellard 已提交
5783 5784 5785 5786 5787
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
5788
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
5789
                    ++z.high;
5790
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
5791 5792
                }
            }
5793
            break;
5794 5795 5796 5797 5798 5799 5800 5801 5802
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
5813
            }
5814 5815 5816
            break;
        default:
            abort();
B
bellard 已提交
5817 5818 5819 5820 5821
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
5822
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
5823
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5824
            aSign = extractFloat128Sign( a );
5825
            switch (status->float_rounding_mode) {
B
bellard 已提交
5826 5827 5828 5829 5830 5831 5832 5833
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
5834 5835 5836 5837 5838
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
5855
        switch (status->float_rounding_mode) {
5856
        case float_round_nearest_even:
B
bellard 已提交
5857 5858 5859 5860
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
5861
            break;
5862 5863 5864
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
5865 5866 5867 5868
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
5869 5870 5871
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
5872 5873 5874 5875 5876 5877 5878 5879 5880
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
5881 5882 5883 5884
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
5885
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5899 5900
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5901
{
5902
    int32_t aExp, bExp, zExp;
5903
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
5904
    int32_t expDiff;
B
bellard 已提交
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5915 5916 5917
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5932 5933 5934
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
5950
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
5951 5952 5953 5954
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
5955
        if ( aExp == 0 ) {
5956
            if (status->flush_to_zero) {
5957
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
5958
                    float_raise(float_flag_output_denormal, status);
5959 5960 5961
                }
                return packFloat128(zSign, 0, 0, 0);
            }
5962 5963
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
5978
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5990 5991
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5992
{
5993
    int32_t aExp, bExp, zExp;
5994
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
5995
    int32_t expDiff;
B
bellard 已提交
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6010
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6011
        }
P
Peter Maydell 已提交
6012
        float_raise(float_flag_invalid, status);
6013
        return float128_default_nan(status);
B
bellard 已提交
6014 6015 6016 6017 6018 6019 6020 6021 6022
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
6023 6024
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
6025 6026
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6027 6028 6029
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6047 6048 6049
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
6065 6066
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6076
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6077 6078 6079 6080 6081 6082
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6083
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6084 6085
    }
    else {
P
Peter Maydell 已提交
6086
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6097
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6098 6099 6100 6101 6102 6103
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6104
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6105 6106
    }
    else {
P
Peter Maydell 已提交
6107
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6118
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6119 6120
{
    flag aSign, bSign, zSign;
6121
    int32_t aExp, bExp, zExp;
6122
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6136
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6137 6138 6139 6140 6141
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6142 6143 6144
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6145 6146
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6147
            float_raise(float_flag_invalid, status);
6148
            return float128_default_nan(status);
B
bellard 已提交
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
6171
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6172 6173 6174 6175 6176 6177 6178 6179 6180

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6181
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6182 6183
{
    flag aSign, bSign, zSign;
6184
    int32_t aExp, bExp, zExp;
6185 6186
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6198 6199 6200
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6201
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6202 6203 6204
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6205 6206 6207 6208 6209
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6210 6211 6212
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6213 6214 6215 6216 6217 6218
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6219
                float_raise(float_flag_invalid, status);
6220
                return float128_default_nan(status);
B
bellard 已提交
6221
            }
P
Peter Maydell 已提交
6222
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6243
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6244 6245 6246 6247 6248 6249 6250
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6251
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6252 6253 6254 6255 6256 6257
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6258
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6259 6260 6261 6262 6263 6264 6265 6266 6267

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6268
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
6269
{
6270
    flag aSign, zSign;
6271
    int32_t aExp, bExp, expDiff;
6272 6273 6274
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6286
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6287 6288 6289 6290
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6291 6292 6293
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6294 6295 6296 6297 6298
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6299
            float_raise(float_flag_invalid, status);
6300
            return float128_default_nan(status);
B
bellard 已提交
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6355
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6356
    add128(
6357
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6358 6359 6360 6361 6362
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6363
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6364
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6365 6366
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
6367 6368 6369 6370 6371 6372 6373 6374
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6375
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
6376 6377
{
    flag aSign;
6378
    int32_t aExp, zExp;
6379 6380
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6381 6382 6383 6384 6385 6386

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6387 6388 6389
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
6390 6391 6392 6393 6394 6395
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
6396
        float_raise(float_flag_invalid, status);
6397
        return float128_default_nan(status);
B
bellard 已提交
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6411
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6423
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6424 6425 6426 6427 6428 6429 6430 6431 6432
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6433
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6434 6435 6436 6437 6438

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6439 6440
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6441 6442 6443
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6444
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
6445 6446 6447 6448 6449 6450 6451
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6452
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6453 6454 6455 6456 6457 6458
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6459
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6460 6461 6462 6463 6464 6465
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6466 6467 6468
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6469 6470
*----------------------------------------------------------------------------*/

6471
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
6472 6473 6474 6475 6476 6477 6478 6479
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6480
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6481 6482 6483 6484 6485 6486 6487
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6488
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6499 6500 6501
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6502 6503
*----------------------------------------------------------------------------*/

6504
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
6505 6506 6507 6508 6509 6510 6511 6512
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6513
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6514 6515 6516 6517 6518 6519 6520
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6521
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6522 6523 6524 6525 6526 6527 6528 6529
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6530 6531
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6532 6533 6534
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6535 6536
*----------------------------------------------------------------------------*/

6537
int float128_unordered(float128 a, float128 b, float_status *status)
6538 6539 6540 6541 6542 6543
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6544
        float_raise(float_flag_invalid, status);
6545 6546 6547 6548 6549
        return 1;
    }
    return 0;
}

B
bellard 已提交
6550 6551
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6552 6553 6554
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6555 6556
*----------------------------------------------------------------------------*/

6557
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6558 6559 6560 6561 6562 6563 6564
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6565 6566
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6567
            float_raise(float_flag_invalid, status);
6568
        }
B
bellard 已提交
6569 6570 6571 6572 6573 6574
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6575
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6587
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6588 6589 6590 6591 6592 6593 6594 6595
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6596 6597
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6598
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6599 6600 6601 6602 6603 6604 6605 6606
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6607
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6623
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6624 6625 6626 6627 6628 6629 6630 6631
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6632 6633
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6634
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6635 6636 6637 6638 6639 6640 6641 6642
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6643
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6644 6645 6646 6647 6648 6649 6650 6651
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6652 6653 6654 6655 6656 6657 6658
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6659
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
6660 6661 6662 6663 6664 6665
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6666 6667
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6668
            float_raise(float_flag_invalid, status);
6669 6670 6671 6672 6673 6674
        }
        return 1;
    }
    return 0;
}

6675 6676
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
6677 6678 6679
{
    flag aSign, bSign;

6680 6681 6682 6683
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
6684 6685 6686 6687 6688
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
6689 6690
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6691
            float_raise(float_flag_invalid, status);
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

6715
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
6716
{
P
Peter Maydell 已提交
6717
    return floatx80_compare_internal(a, b, 0, status);
6718 6719
}

6720
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
6721
{
P
Peter Maydell 已提交
6722
    return floatx80_compare_internal(a, b, 1, status);
6723 6724
}

6725 6726
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
6727 6728 6729 6730 6731 6732 6733 6734
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
6735 6736
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6737
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

6759
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
6760
{
P
Peter Maydell 已提交
6761
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
6762 6763
}

6764
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
6765
{
P
Peter Maydell 已提交
6766
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
6767 6768
}

6769
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
6770 6771
{
    flag aSign;
6772
    int32_t aExp;
6773
    uint64_t aSig;
P
pbrook 已提交
6774

6775 6776 6777 6778
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
6779 6780 6781 6782
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

6783 6784
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
6785
            return propagateFloatx80NaN(a, a, status);
6786
        }
P
pbrook 已提交
6787 6788
        return a;
    }
6789

6790 6791 6792 6793 6794 6795
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
6796

6797 6798 6799 6800 6801 6802
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
6803
    aExp += n;
6804 6805
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
6806 6807
}

6808
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
6809 6810
{
    flag aSign;
6811
    int32_t aExp;
6812
    uint64_t aSig0, aSig1;
P
pbrook 已提交
6813 6814 6815 6816 6817 6818

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
6819
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6820
            return propagateFloat128NaN(a, a, status);
6821
        }
P
pbrook 已提交
6822 6823
        return a;
    }
6824
    if (aExp != 0) {
6825
        aSig0 |= LIT64( 0x0001000000000000 );
6826
    } else if (aSig0 == 0 && aSig1 == 0) {
6827
        return a;
6828 6829 6830
    } else {
        aExp++;
    }
6831

6832 6833 6834 6835 6836 6837
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

6838 6839
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
6840
                                         , status);
P
pbrook 已提交
6841 6842

}