softfloat.c 246.7 KB
Newer Older
1 2 3
/*
 * QEMU float support
 *
4 5 6 7 8 9 10 11 12 13 14 15
 * The code in this source file is derived from release 2a of the SoftFloat
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 * some later contributions) are provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file after December 1st 2014 will be
 * taken to be licensed under the Softfloat-2a license unless specifically
 * indicated otherwise.
16
 */
B
bellard 已提交
17

18 19 20 21
/*
===============================================================================
This C source file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
B
bellard 已提交
22 23 24 25 26 27 28 29

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
B
bellard 已提交
31 32
arithmetic/SoftFloat.html'.

33 34 35 36 37
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
B
bellard 已提交
38 39

Derivative works are acceptable, even for commercial purposes, so long as
40 41 42
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
B
bellard 已提交
43

44 45
===============================================================================
*/
B
bellard 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/* BSD licensing:
 * Copyright (c) 2006, Fabrice Bellard
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

82 83 84
/* softfloat (and in particular the code in softfloat-specialize.h) is
 * target-dependent and needs the TARGET_* macros.
 */
P
Peter Maydell 已提交
85
#include "qemu/osdep.h"
A
Alex Bennée 已提交
86
#include "qemu/bitops.h"
87
#include "fpu/softfloat.h"
B
bellard 已提交
88

89 90
/* We only need stdlib for abort() */

B
bellard 已提交
91 92 93 94 95
/*----------------------------------------------------------------------------
| Primitive arithmetic functions, including multi-word arithmetic, and
| division and square root approximations.  (Can be specialized to target if
| desired.)
*----------------------------------------------------------------------------*/
96
#include "fpu/softfloat-macros.h"
B
bellard 已提交
97

98 99 100 101
/*----------------------------------------------------------------------------
| Returns the fraction bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

102
static inline uint32_t extractFloat16Frac(float16 a)
103 104 105 106 107 108 109 110
{
    return float16_val(a) & 0x3ff;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the half-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

111
static inline int extractFloat16Exp(float16 a)
112 113 114 115
{
    return (float16_val(a) >> 10) & 0x1f;
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*----------------------------------------------------------------------------
| Returns the fraction bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint32_t extractFloat32Frac(float32 a)
{
    return float32_val(a) & 0x007FFFFF;
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat32Exp(float32 a)
{
    return (float32_val(a) >> 23) & 0xFF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the single-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat32Sign(float32 a)
{
    return float32_val(a) >> 31;
}

/*----------------------------------------------------------------------------
| Returns the fraction bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline uint64_t extractFloat64Frac(float64 a)
{
    return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline int extractFloat64Exp(float64 a)
{
    return (float64_val(a) >> 52) & 0x7FF;
}

/*----------------------------------------------------------------------------
| Returns the sign bit of the double-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

static inline flag extractFloat64Sign(float64 a)
{
    return float64_val(a) >> 63;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Classify a floating point number. Everything above float_class_qnan
 * is a NaN so cls >= float_class_qnan is any NaN.
 */

typedef enum __attribute__ ((__packed__)) {
    float_class_unclassified,
    float_class_zero,
    float_class_normal,
    float_class_inf,
    float_class_qnan,  /* all NaNs from here */
    float_class_snan,
} FloatClass;

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/* Simple helpers for checking if, or what kind of, NaN we have */
static inline __attribute__((unused)) bool is_nan(FloatClass c)
{
    return unlikely(c >= float_class_qnan);
}

static inline __attribute__((unused)) bool is_snan(FloatClass c)
{
    return c == float_class_snan;
}

static inline __attribute__((unused)) bool is_qnan(FloatClass c)
{
    return c == float_class_qnan;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Structure holding all of the decomposed parts of a float. The
 * exponent is unbiased and the fraction is normalized. All
 * calculations are done with a 64 bit fraction and then rounded as
 * appropriate for the final format.
 *
 * Thanks to the packed FloatClass a decent compiler should be able to
 * fit the whole structure into registers and avoid using the stack
 * for parameter passing.
 */

typedef struct {
    uint64_t frac;
    int32_t  exp;
    FloatClass cls;
    bool sign;
} FloatParts;

#define DECOMPOSED_BINARY_POINT    (64 - 2)
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)

/* Structure holding all of the relevant parameters for a format.
 *   exp_size: the size of the exponent field
 *   exp_bias: the offset applied to the exponent field
 *   exp_max: the maximum normalised exponent
 *   frac_size: the size of the fraction field
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 * The following are computed based the size of fraction
 *   frac_lsb: least significant bit of fraction
230
 *   frac_lsbm1: the bit below the least significant bit (for rounding)
231
 *   round_mask/roundeven_mask: masks used for rounding
232 233
 * The following optional modifiers are available:
 *   arm_althp: handle ARM Alternative Half Precision
234 235 236 237 238 239 240 241 242 243 244
 */
typedef struct {
    int exp_size;
    int exp_bias;
    int exp_max;
    int frac_size;
    int frac_shift;
    uint64_t frac_lsb;
    uint64_t frac_lsbm1;
    uint64_t round_mask;
    uint64_t roundeven_mask;
245
    bool arm_althp;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
} FloatFmt;

/* Expand fields based on the size of exponent and fraction */
#define FLOAT_PARAMS(E, F)                                           \
    .exp_size       = E,                                             \
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
    .exp_max        = (1 << E) - 1,                                  \
    .frac_size      = F,                                             \
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1

static const FloatFmt float16_params = {
    FLOAT_PARAMS(5, 10)
};

264 265 266 267 268
static const FloatFmt float16_params_ahp = {
    FLOAT_PARAMS(5, 10),
    .arm_althp = true
};

269 270 271 272 273 274 275 276
static const FloatFmt float32_params = {
    FLOAT_PARAMS(8, 23)
};

static const FloatFmt float64_params = {
    FLOAT_PARAMS(11, 52)
};

A
Alex Bennée 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/* Unpack a float to parts, but do not canonicalize.  */
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;

    return (FloatParts) {
        .cls = float_class_unclassified,
        .sign = extract64(raw, sign_pos, 1),
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
        .frac = extract64(raw, 0, fmt.frac_size),
    };
}

static inline FloatParts float16_unpack_raw(float16 f)
{
    return unpack_raw(float16_params, f);
}

static inline FloatParts float32_unpack_raw(float32 f)
{
    return unpack_raw(float32_params, f);
}

static inline FloatParts float64_unpack_raw(float64 f)
{
    return unpack_raw(float64_params, f);
}

/* Pack a float from parts, but do not canonicalize.  */
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
{
    const int sign_pos = fmt.frac_size + fmt.exp_size;
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
    return deposit64(ret, sign_pos, 1, p.sign);
}

static inline float16 float16_pack_raw(FloatParts p)
{
    return make_float16(pack_raw(float16_params, p));
}

static inline float32 float32_pack_raw(FloatParts p)
{
    return make_float32(pack_raw(float32_params, p));
}

static inline float64 float64_pack_raw(FloatParts p)
{
    return make_float64(pack_raw(float64_params, p));
}

328 329 330 331 332 333 334 335 336 337
/*----------------------------------------------------------------------------
| Functions and definitions to determine:  (1) whether tininess for underflow
| is detected before or after rounding by default, (2) what (if anything)
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
| are propagated from function inputs to output.  These details are target-
| specific.
*----------------------------------------------------------------------------*/
#include "softfloat-specialize.h"

A
Alex Bennée 已提交
338
/* Canonicalize EXP and FRAC, setting CLS.  */
339 340
static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm,
                                  float_status *status)
A
Alex Bennée 已提交
341
{
342
    if (part.exp == parm->exp_max && !parm->arm_althp) {
A
Alex Bennée 已提交
343 344 345
        if (part.frac == 0) {
            part.cls = float_class_inf;
        } else {
346
            part.frac <<= parm->frac_shift;
347 348
            part.cls = (parts_is_snan_frac(part.frac, status)
                        ? float_class_snan : float_class_qnan);
A
Alex Bennée 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        }
    } else if (part.exp == 0) {
        if (likely(part.frac == 0)) {
            part.cls = float_class_zero;
        } else if (status->flush_inputs_to_zero) {
            float_raise(float_flag_input_denormal, status);
            part.cls = float_class_zero;
            part.frac = 0;
        } else {
            int shift = clz64(part.frac) - 1;
            part.cls = float_class_normal;
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
            part.frac <<= shift;
        }
    } else {
        part.cls = float_class_normal;
        part.exp -= parm->exp_bias;
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
    }
    return part;
}

/* Round and uncanonicalize a floating-point number by parts. There
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 * fraction; these bits will be removed. The exponent will be biased
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 */

static FloatParts round_canonical(FloatParts p, float_status *s,
                                  const FloatFmt *parm)
{
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
    const uint64_t round_mask = parm->round_mask;
    const uint64_t roundeven_mask = parm->roundeven_mask;
    const int exp_max = parm->exp_max;
    const int frac_shift = parm->frac_shift;
    uint64_t frac, inc;
    int exp, flags = 0;
    bool overflow_norm;

    frac = p.frac;
    exp = p.exp;

    switch (p.cls) {
    case float_class_normal:
        switch (s->float_rounding_mode) {
        case float_round_nearest_even:
            overflow_norm = false;
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
            break;
        case float_round_ties_away:
            overflow_norm = false;
            inc = frac_lsbm1;
            break;
        case float_round_to_zero:
            overflow_norm = true;
            inc = 0;
            break;
        case float_round_up:
            inc = p.sign ? 0 : round_mask;
            overflow_norm = p.sign;
            break;
        case float_round_down:
            inc = p.sign ? round_mask : 0;
            overflow_norm = !p.sign;
            break;
        default:
            g_assert_not_reached();
        }

        exp += parm->exp_bias;
        if (likely(exp > 0)) {
            if (frac & round_mask) {
                flags |= float_flag_inexact;
                frac += inc;
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
                    frac >>= 1;
                    exp++;
                }
            }
            frac >>= frac_shift;

431 432 433 434 435 436 437 438 439
            if (parm->arm_althp) {
                /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
                if (unlikely(exp > exp_max)) {
                    /* Overflow.  Return the maximum normal.  */
                    flags = float_flag_invalid;
                    exp = exp_max;
                    frac = -1;
                }
            } else if (unlikely(exp >= exp_max)) {
A
Alex Bennée 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                flags |= float_flag_overflow | float_flag_inexact;
                if (overflow_norm) {
                    exp = exp_max - 1;
                    frac = -1;
                } else {
                    p.cls = float_class_inf;
                    goto do_inf;
                }
            }
        } else if (s->flush_to_zero) {
            flags |= float_flag_output_denormal;
            p.cls = float_class_zero;
            goto do_zero;
        } else {
            bool is_tiny = (s->float_detect_tininess
                            == float_tininess_before_rounding)
                        || (exp < 0)
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);

            shift64RightJamming(frac, 1 - exp, &frac);
            if (frac & round_mask) {
                /* Need to recompute round-to-even.  */
                if (s->float_rounding_mode == float_round_nearest_even) {
                    inc = ((frac & roundeven_mask) != frac_lsbm1
                           ? frac_lsbm1 : 0);
                }
                flags |= float_flag_inexact;
                frac += inc;
            }

            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
            frac >>= frac_shift;

            if (is_tiny && (flags & float_flag_inexact)) {
                flags |= float_flag_underflow;
            }
            if (exp == 0 && frac == 0) {
                p.cls = float_class_zero;
            }
        }
        break;

    case float_class_zero:
    do_zero:
        exp = 0;
        frac = 0;
        break;

    case float_class_inf:
    do_inf:
490
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
491 492 493 494 495 496
        exp = exp_max;
        frac = 0;
        break;

    case float_class_qnan:
    case float_class_snan:
497
        assert(!parm->arm_althp);
A
Alex Bennée 已提交
498
        exp = exp_max;
499
        frac >>= parm->frac_shift;
A
Alex Bennée 已提交
500 501 502 503 504 505 506 507 508 509 510 511
        break;

    default:
        g_assert_not_reached();
    }

    float_raise(flags, s);
    p.exp = exp;
    p.frac = frac;
    return p;
}

512 513 514 515
/* Explicit FloatFmt version */
static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
                                            const FloatFmt *params)
{
516
    return sf_canonicalize(float16_unpack_raw(f), params, s);
517 518
}

A
Alex Bennée 已提交
519 520
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
{
521 522 523 524 525 526 527
    return float16a_unpack_canonical(f, s, &float16_params);
}

static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
                                             const FloatFmt *params)
{
    return float16_pack_raw(round_canonical(p, s, params));
A
Alex Bennée 已提交
528 529 530 531
}

static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
{
532
    return float16a_round_pack_canonical(p, s, &float16_params);
A
Alex Bennée 已提交
533 534 535 536
}

static FloatParts float32_unpack_canonical(float32 f, float_status *s)
{
537
    return sf_canonicalize(float32_unpack_raw(f), &float32_params, s);
A
Alex Bennée 已提交
538 539 540 541
}

static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
{
542
    return float32_pack_raw(round_canonical(p, s, &float32_params));
A
Alex Bennée 已提交
543 544 545 546
}

static FloatParts float64_unpack_canonical(float64 f, float_status *s)
{
547
    return sf_canonicalize(float64_unpack_raw(f), &float64_params, s);
A
Alex Bennée 已提交
548 549 550 551
}

static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
{
552
    return float64_pack_raw(round_canonical(p, s, &float64_params));
A
Alex Bennée 已提交
553 554
}

555 556 557 558 559
static FloatParts return_nan(FloatParts a, float_status *s)
{
    switch (a.cls) {
    case float_class_snan:
        s->float_exception_flags |= float_flag_invalid;
560
        a = parts_silence_nan(a, s);
561 562 563
        /* fall through */
    case float_class_qnan:
        if (s->default_nan_mode) {
564
            return parts_default_nan(s);
565 566 567 568 569 570 571 572 573
        }
        break;

    default:
        g_assert_not_reached();
    }
    return a;
}

A
Alex Bennée 已提交
574 575 576 577 578 579 580
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
{
    if (is_snan(a.cls) || is_snan(b.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

    if (s->default_nan_mode) {
581
        return parts_default_nan(s);
A
Alex Bennée 已提交
582
    } else {
583
        if (pickNaN(a.cls, b.cls,
A
Alex Bennée 已提交
584 585 586 587
                    a.frac > b.frac ||
                    (a.frac == b.frac && a.sign < b.sign))) {
            a = b;
        }
588 589 590
        if (is_snan(a.cls)) {
            return parts_silence_nan(a, s);
        }
A
Alex Bennée 已提交
591 592 593 594
    }
    return a;
}

A
Alex Bennée 已提交
595 596 597
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
                                  bool inf_zero, float_status *s)
{
598 599
    int which;

A
Alex Bennée 已提交
600 601 602 603
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
        s->float_exception_flags |= float_flag_invalid;
    }

604
    which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
605

A
Alex Bennée 已提交
606
    if (s->default_nan_mode) {
607 608 609
        /* Note that this check is after pickNaNMulAdd so that function
         * has an opportunity to set the Invalid flag.
         */
610
        which = 3;
611
    }
A
Alex Bennée 已提交
612

613 614 615 616 617 618 619 620 621 622
    switch (which) {
    case 0:
        break;
    case 1:
        a = b;
        break;
    case 2:
        a = c;
        break;
    case 3:
623
        return parts_default_nan(s);
624 625
    default:
        g_assert_not_reached();
A
Alex Bennée 已提交
626
    }
627

628 629 630
    if (is_snan(a.cls)) {
        return parts_silence_nan(a, s);
    }
A
Alex Bennée 已提交
631 632 633
    return a;
}

A
Alex Bennée 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
/*
 * Returns the result of adding or subtracting the values of the
 * floating-point values `a' and `b'. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
                                float_status *s)
{
    bool a_sign = a.sign;
    bool b_sign = b.sign ^ subtract;

    if (a_sign != b_sign) {
        /* Subtraction */

        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
                a.frac = a.frac - b.frac;
            } else {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.frac = b.frac - a.frac;
                a.exp = b.exp;
                a_sign ^= 1;
            }

            if (a.frac == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
            } else {
                int shift = clz64(a.frac) - 1;
                a.frac = a.frac << shift;
                a.exp = a.exp - shift;
                a.sign = a_sign;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf) {
            if (b.cls == float_class_inf) {
                float_raise(float_flag_invalid, s);
678
                return parts_default_nan(s);
A
Alex Bennée 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            }
            return a;
        }
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
            a.sign = s->float_rounding_mode == float_round_down;
            return a;
        }
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
            b.sign = a_sign ^ 1;
            return b;
        }
        if (b.cls == float_class_zero) {
            return a;
        }
    } else {
        /* Addition */
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
            if (a.exp > b.exp) {
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
            } else if (a.exp < b.exp) {
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
                a.exp = b.exp;
            }
            a.frac += b.frac;
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
704
                shift64RightJamming(a.frac, 1, &a.frac);
A
Alex Bennée 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
                a.exp += 1;
            }
            return a;
        }
        if (is_nan(a.cls) || is_nan(b.cls)) {
            return pick_nan(a, b, s);
        }
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
            return a;
        }
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
            b.sign = b_sign;
            return b;
        }
    }
    g_assert_not_reached();
}

/*
 * Returns the result of adding or subtracting the floating-point
 * values `a' and `b'. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

729
float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
730 731 732 733 734 735 736 737
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float16_round_pack_canonical(pr, status);
}

738
float32 QEMU_FLATTEN float32_add(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
739 740 741 742 743 744 745 746
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float32_round_pack_canonical(pr, status);
}

747
float64 QEMU_FLATTEN float64_add(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
748 749 750 751 752 753 754 755
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, false, status);

    return float64_round_pack_canonical(pr, status);
}

756
float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
757 758 759 760 761 762 763 764
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float16_round_pack_canonical(pr, status);
}

765
float32 QEMU_FLATTEN float32_sub(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
766 767 768 769 770 771 772 773
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float32_round_pack_canonical(pr, status);
}

774
float64 QEMU_FLATTEN float64_sub(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
775 776 777 778 779 780 781 782
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = addsub_floats(pa, pb, true, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b'. The operation is performed according to the IEC/IEEE Standard
 * for Binary Floating-Point Arithmetic.
 */

static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
        uint64_t hi, lo;
        int exp = a.exp + b.exp;

        mul64To128(a.frac, b.frac, &hi, &lo);
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
            shift64RightJamming(lo, 1, &lo);
            exp += 1;
        }

        /* Re-use a */
        a.exp = exp;
        a.sign = sign;
        a.frac = lo;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* Inf * Zero == NaN */
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
        s->float_exception_flags |= float_flag_invalid;
818
        return parts_default_nan(s);
A
Alex Bennée 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831
    }
    /* Multiply by 0 or Inf */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
        b.sign = sign;
        return b;
    }
    g_assert_not_reached();
}

832
float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status)
A
Alex Bennée 已提交
833 834 835 836 837 838 839 840
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

841
float32 QEMU_FLATTEN float32_mul(float32 a, float32 b, float_status *status)
A
Alex Bennée 已提交
842 843 844 845 846 847 848 849
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

850
float64 QEMU_FLATTEN float64_mul(float64 a, float64 b, float_status *status)
A
Alex Bennée 已提交
851 852 853 854 855 856 857 858
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = mul_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/*
 * Returns the result of multiplying the floating-point values `a' and
 * `b' then adding 'c', with no intermediate rounding step after the
 * multiplication. The operation is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 * The flags argument allows the caller to select negation of the
 * addend, the intermediate product, or the final result. (The
 * difference between this and having the caller do a separate
 * negation is that negating externally will flip the sign bit on
 * NaNs.)
 */

static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
                                int flags, float_status *s)
{
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
                    ((1 << float_class_inf) | (1 << float_class_zero));
    bool p_sign;
    bool sign_flip = flags & float_muladd_negate_result;
    FloatClass p_class;
    uint64_t hi, lo;
    int p_exp;

    /* It is implementation-defined whether the cases of (0,inf,qnan)
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
     * they return if they do), so we have to hand this information
     * off to the target-specific pick-a-NaN routine.
     */
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
        return pick_nan_muladd(a, b, c, inf_zero, s);
    }

    if (inf_zero) {
        s->float_exception_flags |= float_flag_invalid;
893
        return parts_default_nan(s);
A
Alex Bennée 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    }

    if (flags & float_muladd_negate_c) {
        c.sign ^= 1;
    }

    p_sign = a.sign ^ b.sign;

    if (flags & float_muladd_negate_product) {
        p_sign ^= 1;
    }

    if (a.cls == float_class_inf || b.cls == float_class_inf) {
        p_class = float_class_inf;
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
        p_class = float_class_zero;
    } else {
        p_class = float_class_normal;
    }

    if (c.cls == float_class_inf) {
        if (p_class == float_class_inf && p_sign != c.sign) {
            s->float_exception_flags |= float_flag_invalid;
917
            return parts_default_nan(s);
A
Alex Bennée 已提交
918 919 920
        } else {
            a.cls = float_class_inf;
            a.sign = c.sign ^ sign_flip;
921
            return a;
A
Alex Bennée 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        }
    }

    if (p_class == float_class_inf) {
        a.cls = float_class_inf;
        a.sign = p_sign ^ sign_flip;
        return a;
    }

    if (p_class == float_class_zero) {
        if (c.cls == float_class_zero) {
            if (p_sign != c.sign) {
                p_sign = s->float_rounding_mode == float_round_down;
            }
            c.sign = p_sign;
        } else if (flags & float_muladd_halve_result) {
            c.exp -= 1;
        }
        c.sign ^= sign_flip;
        return c;
    }

    /* a & b should be normals now... */
    assert(a.cls == float_class_normal &&
           b.cls == float_class_normal);

    p_exp = a.exp + b.exp;

    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
     * result.
     */
    mul64To128(a.frac, b.frac, &hi, &lo);
    /* binary point now at bit 124 */

    /* check for overflow */
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
        shift128RightJamming(hi, lo, 1, &hi, &lo);
        p_exp += 1;
    }

    /* + add/sub */
    if (c.cls == float_class_zero) {
        /* move binary point back to 62 */
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
    } else {
        int exp_diff = p_exp - c.exp;
        if (p_sign == c.sign) {
            /* Addition */
            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo,
                                     DECOMPOSED_BINARY_POINT - exp_diff,
                                     &hi, &lo);
                lo += c.frac;
                p_exp = c.exp;
            } else {
                uint64_t c_hi, c_lo;
                /* shift c to the same binary point as the product (124) */
                c_hi = c.frac >> 2;
                c_lo = 0;
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
                /* move binary point back to 62 */
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
            }

            if (lo & DECOMPOSED_OVERFLOW_BIT) {
                shift64RightJamming(lo, 1, &lo);
                p_exp += 1;
            }

        } else {
            /* Subtraction */
            uint64_t c_hi, c_lo;
            /* make C binary point match product at bit 124 */
            c_hi = c.frac >> 2;
            c_lo = 0;

            if (exp_diff <= 0) {
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
                if (exp_diff == 0
                    &&
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
                } else {
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
                    p_sign ^= 1;
                    p_exp = c.exp;
                }
            } else {
                shift128RightJamming(c_hi, c_lo,
                                     exp_diff,
                                     &c_hi, &c_lo);
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
            }

            if (hi == 0 && lo == 0) {
                a.cls = float_class_zero;
                a.sign = s->float_rounding_mode == float_round_down;
                a.sign ^= sign_flip;
                return a;
            } else {
                int shift;
                if (hi != 0) {
                    shift = clz64(hi);
                } else {
                    shift = clz64(lo) + 64;
                }
                /* Normalizing to a binary point of 124 is the
                   correct adjust for the exponent.  However since we're
                   shifting, we might as well put the binary point back
                   at 62 where we really want it.  Therefore shift as
                   if we're leaving 1 bit at the top of the word, but
                   adjust the exponent as if we're leaving 3 bits.  */
                shift -= 1;
                if (shift >= 64) {
                    lo = lo << (shift - 64);
                } else {
                    hi = (hi << shift) | (lo >> (64 - shift));
                    lo = hi | ((lo << shift) != 0);
                }
                p_exp -= shift - 2;
            }
        }
    }

    if (flags & float_muladd_halve_result) {
        p_exp -= 1;
    }

    /* finally prepare our result */
    a.cls = float_class_normal;
    a.sign = p_sign ^ sign_flip;
    a.exp = p_exp;
    a.frac = lo;

    return a;
}

1062
float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c,
A
Alex Bennée 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
                                                int flags, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pc = float16_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float16_round_pack_canonical(pr, status);
}

1073
float32 QEMU_FLATTEN float32_muladd(float32 a, float32 b, float32 c,
A
Alex Bennée 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
                                                int flags, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pc = float32_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float32_round_pack_canonical(pr, status);
}

1084
float64 QEMU_FLATTEN float64_muladd(float64 a, float64 b, float64 c,
A
Alex Bennée 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
                                                int flags, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pc = float64_unpack_canonical(c, status);
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);

    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/*
 * Returns the result of dividing the floating-point value `a' by the
 * corresponding value `b'. The operation is performed according to
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
{
    bool sign = a.sign ^ b.sign;

    if (a.cls == float_class_normal && b.cls == float_class_normal) {
R
Richard Henderson 已提交
1106
        uint64_t n0, n1, q, r;
A
Alex Bennée 已提交
1107
        int exp = a.exp - b.exp;
R
Richard Henderson 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

        /*
         * We want a 2*N / N-bit division to produce exactly an N-bit
         * result, so that we do not lose any precision and so that we
         * do not have to renormalize afterward.  If A.frac < B.frac,
         * then division would produce an (N-1)-bit result; shift A left
         * by one to produce the an N-bit result, and decrement the
         * exponent to match.
         *
         * The udiv_qrnnd algorithm that we're using requires normalization,
         * i.e. the msb of the denominator must be set.  Since we know that
         * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left
         * by one (more), and the remainder must be shifted right by one.
         */
A
Alex Bennée 已提交
1122 1123
        if (a.frac < b.frac) {
            exp -= 1;
R
Richard Henderson 已提交
1124
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
A
Alex Bennée 已提交
1125
        } else {
R
Richard Henderson 已提交
1126
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
A
Alex Bennée 已提交
1127
        }
R
Richard Henderson 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        q = udiv_qrnnd(&r, n1, n0, b.frac << 1);

        /*
         * Set lsb if there is a remainder, to set inexact.
         * As mentioned above, to find the actual value of the remainder we
         * would need to shift right, but (1) we are only concerned about
         * non-zero-ness, and (2) the remainder will always be even because
         * both inputs to the division primitive are even.
         */
        a.frac = q | (r != 0);
A
Alex Bennée 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        a.sign = sign;
        a.exp = exp;
        return a;
    }
    /* handle all the NaN cases */
    if (is_nan(a.cls) || is_nan(b.cls)) {
        return pick_nan(a, b, s);
    }
    /* 0/0 or Inf/Inf */
    if (a.cls == b.cls
        &&
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
        s->float_exception_flags |= float_flag_invalid;
1151
        return parts_default_nan(s);
A
Alex Bennée 已提交
1152
    }
1153 1154 1155 1156 1157
    /* Inf / x or 0 / x */
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
        a.sign = sign;
        return a;
    }
A
Alex Bennée 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    /* Div 0 => Inf */
    if (b.cls == float_class_zero) {
        s->float_exception_flags |= float_flag_divbyzero;
        a.cls = float_class_inf;
        a.sign = sign;
        return a;
    }
    /* Div by Inf */
    if (b.cls == float_class_inf) {
        a.cls = float_class_zero;
        a.sign = sign;
        return a;
    }
    g_assert_not_reached();
}

float16 float16_div(float16 a, float16 b, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pb = float16_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float16_round_pack_canonical(pr, status);
}

float32 float32_div(float32 a, float32 b, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pb = float32_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float32_round_pack_canonical(pr, status);
}

float64 float64_div(float64 a, float64 b, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pb = float64_unpack_canonical(b, status);
    FloatParts pr = div_floats(pa, pb, status);

    return float64_round_pack_canonical(pr, status);
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * Float to Float conversions
 *
 * Returns the result of converting one float format to another. The
 * conversion is performed according to the IEC/IEEE Standard for
 * Binary Floating-Point Arithmetic.
 *
 * The float_to_float helper only needs to take care of raising
 * invalid exceptions and handling the conversion on NaNs.
 */

static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
                                 float_status *s)
{
    if (dstf->arm_althp) {
        switch (a.cls) {
        case float_class_qnan:
        case float_class_snan:
            /* There is no NaN in the destination format.  Raise Invalid
             * and return a zero with the sign of the input NaN.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_zero;
            a.frac = 0;
            a.exp = 0;
            break;

        case float_class_inf:
            /* There is no Inf in the destination format.  Raise Invalid
             * and return the maximum normal with the correct sign.
             */
            s->float_exception_flags |= float_flag_invalid;
            a.cls = float_class_normal;
            a.exp = dstf->exp_max;
            a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
            break;

        default:
            break;
        }
    } else if (is_nan(a.cls)) {
        if (is_snan(a.cls)) {
            s->float_exception_flags |= float_flag_invalid;
            a = parts_silence_nan(a, s);
        }
        if (s->default_nan_mode) {
            return parts_default_nan(s);
        }
    }
    return a;
}

float32 float16_to_float32(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

float64 float16_to_float64(float16 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float32_to_float16(float32 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float64 float32_to_float64(float32 a, float_status *s)
{
    FloatParts p = float32_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float64_params, s);
    return float64_round_pack_canonical(pr, s);
}

float16 float64_to_float16(float64 a, bool ieee, float_status *s)
{
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, fmt16, s);
    return float16a_round_pack_canonical(pr, s, fmt16);
}

float32 float64_to_float32(float64 a, float_status *s)
{
    FloatParts p = float64_unpack_canonical(a, s);
    FloatParts pr = float_to_float(p, &float32_params, s);
    return float32_round_pack_canonical(pr, s);
}

1299 1300 1301 1302 1303 1304 1305
/*
 * Rounds the floating-point value `a' to an integer, and returns the
 * result as a floating-point value. The operation is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic.
 */

1306 1307
static FloatParts round_to_int(FloatParts a, int rmode,
                               int scale, float_status *s)
1308
{
1309 1310 1311
    switch (a.cls) {
    case float_class_qnan:
    case float_class_snan:
1312 1313 1314 1315 1316 1317
        return return_nan(a, s);

    case float_class_zero:
    case float_class_inf:
        /* already "integral" */
        break;
1318

1319
    case float_class_normal:
1320 1321 1322
        scale = MIN(MAX(scale, -0x10000), 0x10000);
        a.exp += scale;

1323 1324 1325 1326 1327 1328 1329 1330
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
            /* already integral */
            break;
        }
        if (a.exp < 0) {
            bool one;
            /* all fractional */
            s->float_exception_flags |= float_flag_inexact;
1331
            switch (rmode) {
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
            case float_round_nearest_even:
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_ties_away:
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
                break;
            case float_round_to_zero:
                one = false;
                break;
            case float_round_up:
                one = !a.sign;
                break;
            case float_round_down:
                one = a.sign;
                break;
            default:
                g_assert_not_reached();
            }

            if (one) {
                a.frac = DECOMPOSED_IMPLICIT_BIT;
                a.exp = 0;
            } else {
                a.cls = float_class_zero;
            }
        } else {
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
            uint64_t frac_lsbm1 = frac_lsb >> 1;
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
            uint64_t rnd_mask = rnd_even_mask >> 1;
            uint64_t inc;

1364
            switch (rmode) {
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
            case float_round_nearest_even:
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
                break;
            case float_round_ties_away:
                inc = frac_lsbm1;
                break;
            case float_round_to_zero:
                inc = 0;
                break;
            case float_round_up:
                inc = a.sign ? 0 : rnd_mask;
                break;
            case float_round_down:
                inc = a.sign ? rnd_mask : 0;
                break;
            default:
                g_assert_not_reached();
            }

            if (a.frac & rnd_mask) {
                s->float_exception_flags |= float_flag_inexact;
                a.frac += inc;
                a.frac &= ~rnd_mask;
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
                    a.frac >>= 1;
                    a.exp++;
                }
            }
        }
        break;
    default:
        g_assert_not_reached();
    }
    return a;
}

float16 float16_round_to_int(float16 a, float_status *s)
{
    FloatParts pa = float16_unpack_canonical(a, s);
1404
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1405 1406 1407 1408 1409 1410
    return float16_round_pack_canonical(pr, s);
}

float32 float32_round_to_int(float32 a, float_status *s)
{
    FloatParts pa = float32_unpack_canonical(a, s);
1411
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1412 1413 1414 1415 1416 1417
    return float32_round_pack_canonical(pr, s);
}

float64 float64_round_to_int(float64 a, float_status *s)
{
    FloatParts pa = float64_unpack_canonical(a, s);
1418
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
1419 1420 1421
    return float64_round_pack_canonical(pr, s);
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/*
 * Returns the result of converting the floating-point value `a' to
 * the two's complement integer format. The conversion is performed
 * according to the IEC/IEEE Standard for Binary Floating-Point
 * Arithmetic---which means in particular that the conversion is
 * rounded according to the current rounding mode. If `a' is a NaN,
 * the largest positive integer is returned. Otherwise, if the
 * conversion overflows, the largest integer with the same sign as `a'
 * is returned.
*/

1433
static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
1434 1435 1436 1437 1438
                                     int64_t min, int64_t max,
                                     float_status *s)
{
    uint64_t r;
    int orig_flags = get_float_exception_flags(s);
1439
    FloatParts p = round_to_int(in, rmode, scale, s);
1440 1441 1442 1443

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
1444
        s->float_exception_flags = orig_flags | float_flag_invalid;
1445 1446
        return max;
    case float_class_inf:
1447
        s->float_exception_flags = orig_flags | float_flag_invalid;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        return p.sign ? min : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            r = UINT64_MAX;
        }
        if (p.sign) {
1460
            if (r <= -(uint64_t) min) {
1461 1462 1463 1464 1465 1466
                return -r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return min;
            }
        } else {
1467
            if (r <= max) {
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
                return r;
            } else {
                s->float_exception_flags = orig_flags | float_flag_invalid;
                return max;
            }
        }
    default:
        g_assert_not_reached();
    }
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
}

int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
}

int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale,
                                float_status *s)
{
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
}

int16_t float16_to_int16(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float16_to_int32(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float16_to_int64(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float32_to_int16(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float32_to_int32(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float32_to_int64(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float64_to_int16(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
}

int32_t float64_to_int32(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
}

int64_t float64_to_int64(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
}

int16_t float16_to_int16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int16_scalbn(a, float_round_to_zero, 0, s);
}

int32_t float16_to_int32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float16_to_int64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_int64_scalbn(a, float_round_to_zero, 0, s);
1600 1601
}

1602 1603 1604 1605
int16_t float32_to_int16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
int32_t float32_to_int32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int32_scalbn(a, float_round_to_zero, 0, s);
}

int64_t float32_to_int64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_int64_scalbn(a, float_round_to_zero, 0, s);
}

int16_t float64_to_int16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int16_scalbn(a, float_round_to_zero, 0, s);
}
1621

1622 1623 1624 1625
int32_t float64_to_int32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int32_scalbn(a, float_round_to_zero, 0, s);
}
1626

1627 1628 1629 1630
int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_int64_scalbn(a, float_round_to_zero, 0, s);
}
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

/*
 *  Returns the result of converting the floating-point value `a' to
 *  the unsigned integer format. The conversion is performed according
 *  to the IEC/IEEE Standard for Binary Floating-Point
 *  Arithmetic---which means in particular that the conversion is
 *  rounded according to the current rounding mode. If `a' is a NaN,
 *  the largest unsigned integer is returned. Otherwise, if the
 *  conversion overflows, the largest unsigned integer is returned. If
 *  the 'a' is negative, the result is rounded and zero is returned;
 *  values that do not round to zero will raise the inexact exception
 *  flag.
 */

1645 1646
static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
                                       uint64_t max, float_status *s)
1647 1648
{
    int orig_flags = get_float_exception_flags(s);
1649 1650
    FloatParts p = round_to_int(in, rmode, scale, s);
    uint64_t r;
1651 1652 1653 1654 1655 1656 1657

    switch (p.cls) {
    case float_class_snan:
    case float_class_qnan:
        s->float_exception_flags = orig_flags | float_flag_invalid;
        return max;
    case float_class_inf:
1658
        s->float_exception_flags = orig_flags | float_flag_invalid;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
        return p.sign ? 0 : max;
    case float_class_zero:
        return 0;
    case float_class_normal:
        if (p.sign) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return 0;
        }

        if (p.exp < DECOMPOSED_BINARY_POINT) {
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
        } else {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }

        /* For uint64 this will never trip, but if p.exp is too large
         * to shift a decomposed fraction we shall have exited via the
         * 3rd leg above.
         */
        if (r > max) {
            s->float_exception_flags = orig_flags | float_flag_invalid;
            return max;
        }
1685
        return r;
1686 1687 1688 1689 1690
    default:
        g_assert_not_reached();
    }
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT16_MAX, s);
}

uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT32_MAX, s);
}

uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale,
                                  float_status *s)
{
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
                                  rmode, scale, UINT64_MAX, s);
}

uint16_t float16_to_uint16(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float16_to_uint32(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float16_to_uint64(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float32_to_uint16(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float32_to_uint32(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float32_to_uint64(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float64_to_uint16(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
}

uint32_t float64_to_uint32(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
}

uint64_t float64_to_uint64(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
}

uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s)
{
    return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s)
{
    return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}

uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s);
}

uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s);
}

uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
{
    return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
}
1843

1844 1845 1846 1847 1848 1849 1850 1851
/*
 * Integer to float conversions
 *
 * Returns the result of converting the two's complement integer `a'
 * to the floating-point format. The conversion is performed according
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

1852
static FloatParts int_to_float(int64_t a, int scale, float_status *status)
1853
{
1854 1855
    FloatParts r = { .sign = false };

1856 1857 1858
    if (a == 0) {
        r.cls = float_class_zero;
    } else {
1859 1860 1861 1862
        uint64_t f = a;
        int shift;

        r.cls = float_class_normal;
1863
        if (a < 0) {
1864
            f = -f;
1865 1866
            r.sign = true;
        }
1867 1868 1869 1870 1871
        shift = clz64(f) - 1;
        scale = MIN(MAX(scale, -0x10000), 0x10000);

        r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
        r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift);
1872 1873 1874 1875 1876
    }

    return r;
}

1877
float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
1878
{
1879
    FloatParts pa = int_to_float(a, scale, status);
1880 1881 1882
    return float16_round_pack_canonical(pa, status);
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float16_scalbn(a, scale, status);
}

float16 int64_to_float16(int64_t a, float_status *status)
{
    return int64_to_float16_scalbn(a, 0, status);
}

1898 1899
float16 int32_to_float16(int32_t a, float_status *status)
{
1900
    return int64_to_float16_scalbn(a, 0, status);
1901 1902 1903 1904
}

float16 int16_to_float16(int16_t a, float_status *status)
{
1905
    return int64_to_float16_scalbn(a, 0, status);
1906 1907
}

1908
float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
1909
{
1910
    FloatParts pa = int_to_float(a, scale, status);
1911 1912 1913
    return float32_round_pack_canonical(pa, status);
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float32_scalbn(a, scale, status);
}

float32 int64_to_float32(int64_t a, float_status *status)
{
    return int64_to_float32_scalbn(a, 0, status);
}

1929 1930
float32 int32_to_float32(int32_t a, float_status *status)
{
1931
    return int64_to_float32_scalbn(a, 0, status);
1932 1933 1934 1935
}

float32 int16_to_float32(int16_t a, float_status *status)
{
1936
    return int64_to_float32_scalbn(a, 0, status);
1937 1938
}

1939
float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
1940
{
1941
    FloatParts pa = int_to_float(a, scale, status);
1942 1943 1944
    return float64_round_pack_canonical(pa, status);
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status)
{
    return int64_to_float64_scalbn(a, scale, status);
}

float64 int64_to_float64(int64_t a, float_status *status)
{
    return int64_to_float64_scalbn(a, 0, status);
}

1960 1961
float64 int32_to_float64(int32_t a, float_status *status)
{
1962
    return int64_to_float64_scalbn(a, 0, status);
1963 1964 1965 1966
}

float64 int16_to_float64(int16_t a, float_status *status)
{
1967
    return int64_to_float64_scalbn(a, 0, status);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}


/*
 * Unsigned Integer to float conversions
 *
 * Returns the result of converting the unsigned integer `a' to the
 * floating-point format. The conversion is performed according to the
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 */

1979
static FloatParts uint_to_float(uint64_t a, int scale, float_status *status)
1980
{
1981
    FloatParts r = { .sign = false };
1982 1983 1984 1985

    if (a == 0) {
        r.cls = float_class_zero;
    } else {
1986
        scale = MIN(MAX(scale, -0x10000), 0x10000);
1987
        r.cls = float_class_normal;
1988 1989 1990
        if ((int64_t)a < 0) {
            r.exp = DECOMPOSED_BINARY_POINT + 1 + scale;
            shift64RightJamming(a, 1, &a);
1991 1992
            r.frac = a;
        } else {
1993 1994 1995
            int shift = clz64(a) - 1;
            r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
            r.frac = a << shift;
1996 1997 1998 1999 2000 2001
        }
    }

    return r;
}

2002
float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status)
2003
{
2004
    FloatParts pa = uint_to_float(a, scale, status);
2005 2006 2007
    return float16_round_pack_canonical(pa, status);
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float16_scalbn(a, scale, status);
}

float16 uint64_to_float16(uint64_t a, float_status *status)
{
    return uint64_to_float16_scalbn(a, 0, status);
}

2023 2024
float16 uint32_to_float16(uint32_t a, float_status *status)
{
2025
    return uint64_to_float16_scalbn(a, 0, status);
2026 2027 2028 2029
}

float16 uint16_to_float16(uint16_t a, float_status *status)
{
2030
    return uint64_to_float16_scalbn(a, 0, status);
2031 2032
}

2033
float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status)
2034
{
2035
    FloatParts pa = uint_to_float(a, scale, status);
2036 2037 2038
    return float32_round_pack_canonical(pa, status);
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float32_scalbn(a, scale, status);
}

float32 uint64_to_float32(uint64_t a, float_status *status)
{
    return uint64_to_float32_scalbn(a, 0, status);
}

2054 2055
float32 uint32_to_float32(uint32_t a, float_status *status)
{
2056
    return uint64_to_float32_scalbn(a, 0, status);
2057 2058 2059 2060
}

float32 uint16_to_float32(uint16_t a, float_status *status)
{
2061
    return uint64_to_float32_scalbn(a, 0, status);
2062 2063
}

2064
float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status)
2065
{
2066
    FloatParts pa = uint_to_float(a, scale, status);
2067 2068 2069
    return float64_round_pack_canonical(pa, status);
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status)
{
    return uint64_to_float64_scalbn(a, scale, status);
}

float64 uint64_to_float64(uint64_t a, float_status *status)
{
    return uint64_to_float64_scalbn(a, 0, status);
}

2085 2086
float64 uint32_to_float64(uint32_t a, float_status *status)
{
2087
    return uint64_to_float64_scalbn(a, 0, status);
2088 2089 2090 2091
}

float64 uint16_to_float64(uint16_t a, float_status *status)
{
2092
    return uint64_to_float64_scalbn(a, 0, status);
2093 2094
}

A
Alex Bennée 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
/* Float Min/Max */
/* min() and max() functions. These can't be implemented as
 * 'compare and pick one input' because that would mishandle
 * NaNs and +0 vs -0.
 *
 * minnum() and maxnum() functions. These are similar to the min()
 * and max() functions but if one of the arguments is a QNaN and
 * the other is numerical then the numerical argument is returned.
 * SNaNs will get quietened before being returned.
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 * and maxNum() operations. min() and max() are the typical min/max
 * semantics provided by many CPUs which predate that specification.
 *
 * minnummag() and maxnummag() functions correspond to minNumMag()
 * and minNumMag() from the IEEE-754 2008.
 */
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
                                bool ieee, bool ismag, float_status *s)
{
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
        if (ieee) {
            /* Takes two floating-point values `a' and `b', one of
             * which is a NaN, and returns the appropriate NaN
             * result. If either `a' or `b' is a signaling NaN,
             * the invalid exception is raised.
             */
            if (is_snan(a.cls) || is_snan(b.cls)) {
                return pick_nan(a, b, s);
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
                return b;
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
                return a;
            }
        }
        return pick_nan(a, b, s);
    } else {
        int a_exp, b_exp;

        switch (a.cls) {
        case float_class_normal:
            a_exp = a.exp;
            break;
        case float_class_inf:
            a_exp = INT_MAX;
            break;
        case float_class_zero:
            a_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }
        switch (b.cls) {
        case float_class_normal:
            b_exp = b.exp;
            break;
        case float_class_inf:
            b_exp = INT_MAX;
            break;
        case float_class_zero:
            b_exp = INT_MIN;
            break;
        default:
            g_assert_not_reached();
            break;
        }

2162 2163 2164 2165 2166 2167
        if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
            return a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2168 2169
        }

2170
        if (a.sign == b.sign) {
A
Alex Bennée 已提交
2171 2172 2173 2174
            bool a_less = a_exp < b_exp;
            if (a_exp == b_exp) {
                a_less = a.frac < b.frac;
            }
2175
            return a.sign ^ a_less ^ ismin ? b : a;
A
Alex Bennée 已提交
2176
        } else {
2177
            return a.sign ^ ismin ? b : a;
A
Alex Bennée 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        }
    }
}

#define MINMAX(sz, name, ismin, isiee, ismag)                           \
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
                                     float_status *s)                   \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
                                                                        \
    return float ## sz ## _round_pack_canonical(pr, s);                 \
}

MINMAX(16, min, true, false, false)
MINMAX(16, minnum, true, true, false)
MINMAX(16, minnummag, true, true, true)
MINMAX(16, max, false, false, false)
MINMAX(16, maxnum, false, true, false)
MINMAX(16, maxnummag, false, true, true)

MINMAX(32, min, true, false, false)
MINMAX(32, minnum, true, true, false)
MINMAX(32, minnummag, true, true, true)
MINMAX(32, max, false, false, false)
MINMAX(32, maxnum, false, true, false)
MINMAX(32, maxnummag, false, true, true)

MINMAX(64, min, true, false, false)
MINMAX(64, minnum, true, true, false)
MINMAX(64, minnummag, true, true, true)
MINMAX(64, max, false, false, false)
MINMAX(64, maxnum, false, true, false)
MINMAX(64, maxnummag, false, true, true)

#undef MINMAX

A
Alex Bennée 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
/* Floating point compare */
static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
                          float_status *s)
{
    if (is_nan(a.cls) || is_nan(b.cls)) {
        if (!is_quiet ||
            a.cls == float_class_snan ||
            b.cls == float_class_snan) {
            s->float_exception_flags |= float_flag_invalid;
        }
        return float_relation_unordered;
    }

    if (a.cls == float_class_zero) {
        if (b.cls == float_class_zero) {
            return float_relation_equal;
        }
        return b.sign ? float_relation_greater : float_relation_less;
    } else if (b.cls == float_class_zero) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    /* The only really important thing about infinity is its sign. If
     * both are infinities the sign marks the smallest of the two.
     */
    if (a.cls == float_class_inf) {
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
            return float_relation_equal;
        }
        return a.sign ? float_relation_less : float_relation_greater;
    } else if (b.cls == float_class_inf) {
        return b.sign ? float_relation_greater : float_relation_less;
    }

    if (a.sign != b.sign) {
        return a.sign ? float_relation_less : float_relation_greater;
    }

    if (a.exp == b.exp) {
        if (a.frac == b.frac) {
            return float_relation_equal;
        }
        if (a.sign) {
            return a.frac > b.frac ?
                float_relation_less : float_relation_greater;
        } else {
            return a.frac > b.frac ?
                float_relation_greater : float_relation_less;
        }
    } else {
        if (a.sign) {
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
        } else {
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
        }
    }
}

#define COMPARE(sz)                                                     \
int float ## sz ## _compare(float ## sz a, float ## sz b,               \
                            float_status *s)                            \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, false, s);                            \
}                                                                       \
int float ## sz ## _compare_quiet(float ## sz a, float ## sz b,         \
                                  float_status *s)                      \
{                                                                       \
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
    return compare_floats(pa, pb, true, s);                             \
}

COMPARE(16)
COMPARE(32)
COMPARE(64)

#undef COMPARE

A
Alex Bennée 已提交
2296 2297 2298 2299 2300 2301 2302
/* Multiply A by 2 raised to the power N.  */
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
{
    if (unlikely(is_nan(a.cls))) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_normal) {
2303 2304 2305 2306 2307 2308
        /* The largest float type (even though not supported by FloatParts)
         * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
         * still allows rounding to infinity, without allowing overflow
         * within the int32_t that backs FloatParts.exp.
         */
        n = MIN(MAX(n, -0x10000), 0x10000);
A
Alex Bennée 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
        a.exp += n;
    }
    return a;
}

float16 float16_scalbn(float16 a, int n, float_status *status)
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float16_round_pack_canonical(pr, status);
}

float32 float32_scalbn(float32 a, int n, float_status *status)
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float32_round_pack_canonical(pr, status);
}

float64 float64_scalbn(float64 a, int n, float_status *status)
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = scalbn_decomposed(pa, n, status);
    return float64_round_pack_canonical(pr, status);
}

A
Alex Bennée 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/*
 * Square Root
 *
 * The old softfloat code did an approximation step before zeroing in
 * on the final result. However for simpleness we just compute the
 * square root by iterating down from the implicit bit to enough extra
 * bits to ensure we get a correctly rounded result.
 *
 * This does mean however the calculation is slower than before,
 * especially for 64 bit floats.
 */

static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
{
    uint64_t a_frac, r_frac, s_frac;
    int bit, last_bit;

    if (is_nan(a.cls)) {
        return return_nan(a, s);
    }
    if (a.cls == float_class_zero) {
        return a;  /* sqrt(+-0) = +-0 */
    }
    if (a.sign) {
        s->float_exception_flags |= float_flag_invalid;
2360
        return parts_default_nan(s);
A
Alex Bennée 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
    }
    if (a.cls == float_class_inf) {
        return a;  /* sqrt(+inf) = +inf */
    }

    assert(a.cls == float_class_normal);

    /* We need two overflow bits at the top. Adding room for that is a
     * right shift. If the exponent is odd, we can discard the low bit
     * by multiplying the fraction by 2; that's a left shift. Combine
     * those and we shift right if the exponent is even.
     */
    a_frac = a.frac;
    if (!(a.exp & 1)) {
        a_frac >>= 1;
    }
    a.exp >>= 1;

    /* Bit-by-bit computation of sqrt.  */
    r_frac = 0;
    s_frac = 0;

    /* Iterate from implicit bit down to the 3 extra bits to compute a
     * properly rounded result. Remember we've inserted one more bit
     * at the top, so these positions are one less.
     */
    bit = DECOMPOSED_BINARY_POINT - 1;
    last_bit = MAX(p->frac_shift - 4, 0);
    do {
        uint64_t q = 1ULL << bit;
        uint64_t t_frac = s_frac + q;
        if (t_frac <= a_frac) {
            s_frac = t_frac + q;
            a_frac -= t_frac;
            r_frac += q;
        }
        a_frac <<= 1;
    } while (--bit >= last_bit);

    /* Undo the right shift done above. If there is any remaining
     * fraction, the result is inexact. Set the sticky bit.
     */
    a.frac = (r_frac << 1) + (a_frac != 0);

    return a;
}

2408
float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status)
A
Alex Bennée 已提交
2409 2410 2411 2412 2413 2414
{
    FloatParts pa = float16_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float16_params);
    return float16_round_pack_canonical(pr, status);
}

2415
float32 QEMU_FLATTEN float32_sqrt(float32 a, float_status *status)
A
Alex Bennée 已提交
2416 2417 2418 2419 2420 2421
{
    FloatParts pa = float32_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float32_params);
    return float32_round_pack_canonical(pr, status);
}

2422
float64 QEMU_FLATTEN float64_sqrt(float64 a, float_status *status)
A
Alex Bennée 已提交
2423 2424 2425 2426 2427 2428
{
    FloatParts pa = float64_unpack_canonical(a, status);
    FloatParts pr = sqrt_float(pa, status, &float64_params);
    return float64_round_pack_canonical(pr, status);
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/*----------------------------------------------------------------------------
| The pattern for a default generated NaN.
*----------------------------------------------------------------------------*/

float16 float16_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

float128 float128_default_nan(float_status *status)
{
    FloatParts p = parts_default_nan(status);
    float128 r;

    /* Extrapolate from the choices made by parts_default_nan to fill
     * in the quad-floating format.  If the low bit is set, assume we
     * want to set all non-snan bits.
     */
    r.low = -(p.frac & 1);
    r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
    r.high |= LIT64(0x7FFF000000000000);
    r.high |= (uint64_t)p.sign << 63;

    return r;
}
A
Alex Bennée 已提交
2470

B
bellard 已提交
2471
/*----------------------------------------------------------------------------
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
| Returns a quiet NaN from a signalling NaN for the floating point value `a'.
*----------------------------------------------------------------------------*/

float16 float16_silence_nan(float16 a, float_status *status)
{
    FloatParts p = float16_unpack_raw(a);
    p.frac <<= float16_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float16_params.frac_shift;
    return float16_pack_raw(p);
}

float32 float32_silence_nan(float32 a, float_status *status)
{
    FloatParts p = float32_unpack_raw(a);
    p.frac <<= float32_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float32_params.frac_shift;
    return float32_pack_raw(p);
}

float64 float64_silence_nan(float64 a, float_status *status)
{
    FloatParts p = float64_unpack_raw(a);
    p.frac <<= float64_params.frac_shift;
    p = parts_silence_nan(p, status);
    p.frac >>= float64_params.frac_shift;
    return float64_pack_raw(p);
}

/*----------------------------------------------------------------------------
B
bellard 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
| input.  If `zSign' is 1, the input is negated before being converted to an
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
| is simply rounded to an integer, with the inexact exception raised if the
| input cannot be represented exactly as an integer.  However, if the fixed-
| point input is too large, the invalid exception is raised and the largest
| positive or negative integer is returned.
*----------------------------------------------------------------------------*/

2513
static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
B
bellard 已提交
2514
{
2515
    int8_t roundingMode;
B
bellard 已提交
2516
    flag roundNearestEven;
2517
    int8_t roundIncrement, roundBits;
2518
    int32_t z;
B
bellard 已提交
2519

2520
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2521
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2522 2523
    switch (roundingMode) {
    case float_round_nearest_even:
2524
    case float_round_ties_away:
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
B
bellard 已提交
2538 2539 2540 2541 2542 2543 2544
    }
    roundBits = absZ & 0x7F;
    absZ = ( absZ + roundIncrement )>>7;
    absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    z = absZ;
    if ( zSign ) z = - z;
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
P
Peter Maydell 已提交
2545
        float_raise(float_flag_invalid, status);
2546
        return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
2547
    }
2548 2549 2550
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
    return z;

}

/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit integer corresponding to the input.
| If `zSign' is 1, the input is negated before being converted to an integer.
| Ordinarily, the fixed-point input is simply rounded to an integer, with
| the inexact exception raised if the input cannot be represented exactly as
| an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest positive or negative integer is
| returned.
*----------------------------------------------------------------------------*/

2567
static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
2568
                               float_status *status)
B
bellard 已提交
2569
{
2570
    int8_t roundingMode;
B
bellard 已提交
2571
    flag roundNearestEven, increment;
2572
    int64_t z;
B
bellard 已提交
2573

2574
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2575
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2576 2577
    switch (roundingMode) {
    case float_round_nearest_even:
2578
    case float_round_ties_away:
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
        increment = ((int64_t) absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
B
bellard 已提交
2592 2593 2594 2595
    }
    if ( increment ) {
        ++absZ0;
        if ( absZ0 == 0 ) goto overflow;
2596
        absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
2597 2598 2599 2600 2601
    }
    z = absZ0;
    if ( zSign ) z = - z;
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 overflow:
P
Peter Maydell 已提交
2602
        float_raise(float_flag_invalid, status);
B
bellard 已提交
2603
        return
2604
              zSign ? (int64_t) LIT64( 0x8000000000000000 )
B
bellard 已提交
2605 2606
            : LIT64( 0x7FFFFFFFFFFFFFFF );
    }
2607 2608 2609
    if (absZ1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2610 2611 2612 2613
    return z;

}

T
Tom Musta 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/*----------------------------------------------------------------------------
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
| `absZ1', with binary point between bits 63 and 64 (between the input words),
| and returns the properly rounded 64-bit unsigned integer corresponding to the
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
| with the inexact exception raised if the input cannot be represented exactly
| as an integer.  However, if the fixed-point input is too large, the invalid
| exception is raised and the largest unsigned integer is returned.
*----------------------------------------------------------------------------*/

2624
static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
2625
                                uint64_t absZ1, float_status *status)
T
Tom Musta 已提交
2626
{
2627
    int8_t roundingMode;
T
Tom Musta 已提交
2628 2629
    flag roundNearestEven, increment;

2630
    roundingMode = status->float_rounding_mode;
T
Tom Musta 已提交
2631
    roundNearestEven = (roundingMode == float_round_nearest_even);
2632 2633
    switch (roundingMode) {
    case float_round_nearest_even:
2634
    case float_round_ties_away:
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
        increment = ((int64_t)absZ1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && absZ1;
        break;
    case float_round_down:
        increment = zSign && absZ1;
        break;
    default:
        abort();
T
Tom Musta 已提交
2648 2649 2650 2651
    }
    if (increment) {
        ++absZ0;
        if (absZ0 == 0) {
P
Peter Maydell 已提交
2652
            float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2653 2654 2655 2656 2657 2658
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
    }

    if (zSign && absZ0) {
P
Peter Maydell 已提交
2659
        float_raise(float_flag_invalid, status);
T
Tom Musta 已提交
2660 2661 2662 2663
        return 0;
    }

    if (absZ1) {
2664
        status->float_exception_flags |= float_flag_inexact;
T
Tom Musta 已提交
2665 2666 2667 2668
    }
    return absZ0;
}

2669 2670 2671 2672
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2673
float32 float32_squash_input_denormal(float32 a, float_status *status)
2674
{
2675
    if (status->flush_inputs_to_zero) {
2676
        if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
P
Peter Maydell 已提交
2677
            float_raise(float_flag_input_denormal, status);
2678 2679 2680 2681 2682 2683
            return make_float32(float32_val(a) & 0x80000000);
        }
    }
    return a;
}

B
bellard 已提交
2684 2685 2686 2687 2688 2689 2690 2691
/*----------------------------------------------------------------------------
| Normalizes the subnormal single-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2692
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
B
bellard 已提交
2693
{
2694
    int8_t shiftCount;
B
bellard 已提交
2695

2696
    shiftCount = clz32(aSig) - 8;
B
bellard 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the single-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal single-
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 30
| and 29, which is 7 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2724
static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2725
                                   float_status *status)
B
bellard 已提交
2726
{
2727
    int8_t roundingMode;
B
bellard 已提交
2728
    flag roundNearestEven;
2729
    int8_t roundIncrement, roundBits;
B
bellard 已提交
2730 2731
    flag isTiny;

2732
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2733
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2734 2735
    switch (roundingMode) {
    case float_round_nearest_even:
2736
    case float_round_ties_away:
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
        roundIncrement = 0x40;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x7f;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x7f : 0;
        break;
    default:
        abort();
        break;
B
bellard 已提交
2751 2752
    }
    roundBits = zSig & 0x7F;
2753
    if ( 0xFD <= (uint16_t) zExp ) {
B
bellard 已提交
2754 2755
        if (    ( 0xFD < zExp )
             || (    ( zExp == 0xFD )
2756
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2757
           ) {
P
Peter Maydell 已提交
2758
            float_raise(float_flag_overflow | float_flag_inexact, status);
P
pbrook 已提交
2759
            return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
B
bellard 已提交
2760 2761
        }
        if ( zExp < 0 ) {
2762
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2763
                float_raise(float_flag_output_denormal, status);
2764 2765
                return packFloat32(zSign, 0, 0);
            }
B
bellard 已提交
2766
            isTiny =
2767 2768
                (status->float_detect_tininess
                 == float_tininess_before_rounding)
B
bellard 已提交
2769 2770 2771 2772 2773
                || ( zExp < -1 )
                || ( zSig + roundIncrement < 0x80000000 );
            shift32RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x7F;
P
Peter Maydell 已提交
2774 2775 2776
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
B
bellard 已提交
2777 2778
        }
    }
2779 2780 2781
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
    zSig = ( zSig + roundIncrement )>>7;
    zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat32( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper single-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float32
2799
 normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
2800
                              float_status *status)
B
bellard 已提交
2801
{
2802
    int8_t shiftCount;
B
bellard 已提交
2803

2804
    shiftCount = clz32(zSig) - 1;
P
Peter Maydell 已提交
2805 2806
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2807 2808 2809

}

2810 2811 2812 2813
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
2814
float64 float64_squash_input_denormal(float64 a, float_status *status)
2815
{
2816
    if (status->flush_inputs_to_zero) {
2817
        if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
P
Peter Maydell 已提交
2818
            float_raise(float_flag_input_denormal, status);
2819 2820 2821 2822 2823 2824
            return make_float64(float64_val(a) & (1ULL << 63));
        }
    }
    return a;
}

B
bellard 已提交
2825 2826 2827 2828 2829 2830 2831 2832
/*----------------------------------------------------------------------------
| Normalizes the subnormal double-precision floating-point value represented
| by the denormalized significand `aSig'.  The normalized exponent and
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

static void
2833
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
B
bellard 已提交
2834
{
2835
    int8_t shiftCount;
B
bellard 已提交
2836

2837
    shiftCount = clz64(aSig) - 11;
B
bellard 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
| double-precision floating-point value, returning the result.  After being
| shifted into the proper positions, the three fields are simply added
| together to form the result.  This means that any integer portion of `zSig'
| will be added into the exponent.  Since a properly normalized significand
| will have an integer portion equal to 1, the `zExp' input should be 1 less
| than the desired result exponent whenever `zSig' is a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

2854
static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
B
bellard 已提交
2855 2856
{

P
pbrook 已提交
2857
    return make_float64(
2858
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
B
bellard 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  Ordinarily, the abstract
| value is simply rounded and packed into the double-precision format, with
| the inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
2870 2871 2872
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal double-
B
bellard 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
| precision floating-point number.
|     The input significand `zSig' has its binary point between bits 62
| and 61, which is 10 bits to the left of the usual location.  This shifted
| significand must be normalized or smaller.  If `zSig' is not normalized,
| `zExp' must be 0; in that case, the result returned is a subnormal number,
| and it must not require rounding.  In the usual case that `zSig' is
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
| The handling of underflow and overflow follows the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

2884
static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2885
                                   float_status *status)
B
bellard 已提交
2886
{
2887
    int8_t roundingMode;
B
bellard 已提交
2888
    flag roundNearestEven;
2889
    int roundIncrement, roundBits;
B
bellard 已提交
2890 2891
    flag isTiny;

2892
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
2893
    roundNearestEven = ( roundingMode == float_round_nearest_even );
2894 2895
    switch (roundingMode) {
    case float_round_nearest_even:
2896
    case float_round_ties_away:
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
        roundIncrement = 0x200;
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : 0x3ff;
        break;
    case float_round_down:
        roundIncrement = zSign ? 0x3ff : 0;
        break;
2908 2909 2910
    case float_round_to_odd:
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
        break;
2911 2912
    default:
        abort();
B
bellard 已提交
2913 2914
    }
    roundBits = zSig & 0x3FF;
2915
    if ( 0x7FD <= (uint16_t) zExp ) {
B
bellard 已提交
2916 2917
        if (    ( 0x7FD < zExp )
             || (    ( zExp == 0x7FD )
2918
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
B
bellard 已提交
2919
           ) {
2920 2921
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
                                   roundIncrement != 0;
P
Peter Maydell 已提交
2922
            float_raise(float_flag_overflow | float_flag_inexact, status);
2923
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
B
bellard 已提交
2924 2925
        }
        if ( zExp < 0 ) {
2926
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
2927
                float_raise(float_flag_output_denormal, status);
2928 2929
                return packFloat64(zSign, 0, 0);
            }
B
bellard 已提交
2930
            isTiny =
2931 2932
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
2933 2934 2935 2936 2937
                || ( zExp < -1 )
                || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
            shift64RightJamming( zSig, - zExp, &zSig );
            zExp = 0;
            roundBits = zSig & 0x3FF;
P
Peter Maydell 已提交
2938 2939 2940
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
2941 2942 2943 2944 2945 2946 2947
            if (roundingMode == float_round_to_odd) {
                /*
                 * For round-to-odd case, the roundIncrement depends on
                 * zSig which just changed.
                 */
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
            }
B
bellard 已提交
2948 2949
        }
    }
2950 2951 2952
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
    zSig = ( zSig + roundIncrement )>>10;
    zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
    if ( zSig == 0 ) zExp = 0;
    return packFloat64( zSign, zExp, zSig );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand `zSig', and returns the proper double-precision floating-
| point value corresponding to the abstract input.  This routine is just like
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
| floating-point exponent.
*----------------------------------------------------------------------------*/

static float64
2970
 normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
2971
                              float_status *status)
B
bellard 已提交
2972
{
2973
    int8_t shiftCount;
B
bellard 已提交
2974

2975
    shiftCount = clz64(zSig) - 1;
P
Peter Maydell 已提交
2976 2977
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
                               status);
B
bellard 已提交
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'.  The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/

2988 2989
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
                                uint64_t *zSigPtr)
B
bellard 已提交
2990
{
2991
    int8_t shiftCount;
B
bellard 已提交
2992

2993
    shiftCount = clz64(aSig);
B
bellard 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
    *zSigPtr = aSig<<shiftCount;
    *zExpPtr = 1 - shiftCount;
}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| rounded and packed into the extended double-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal extended
| double-precision floating-point number.
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
| number of bits as single or double precision, respectively.  Otherwise, the
| result is rounded to the full precision of the extended double-precision
| format.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  The
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3022 3023 3024
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
                              float_status *status)
B
bellard 已提交
3025
{
3026
    int8_t roundingMode;
B
bellard 已提交
3027
    flag roundNearestEven, increment, isTiny;
3028
    int64_t roundIncrement, roundMask, roundBits;
B
bellard 已提交
3029

3030
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
    roundNearestEven = ( roundingMode == float_round_nearest_even );
    if ( roundingPrecision == 80 ) goto precision80;
    if ( roundingPrecision == 64 ) {
        roundIncrement = LIT64( 0x0000000000000400 );
        roundMask = LIT64( 0x00000000000007FF );
    }
    else if ( roundingPrecision == 32 ) {
        roundIncrement = LIT64( 0x0000008000000000 );
        roundMask = LIT64( 0x000000FFFFFFFFFF );
    }
    else {
        goto precision80;
    }
    zSig0 |= ( zSig1 != 0 );
3045 3046
    switch (roundingMode) {
    case float_round_nearest_even:
3047
    case float_round_ties_away:
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
        break;
    case float_round_to_zero:
        roundIncrement = 0;
        break;
    case float_round_up:
        roundIncrement = zSign ? 0 : roundMask;
        break;
    case float_round_down:
        roundIncrement = zSign ? roundMask : 0;
        break;
    default:
        abort();
B
bellard 已提交
3060 3061
    }
    roundBits = zSig0 & roundMask;
3062
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3063 3064 3065 3066 3067 3068
        if (    ( 0x7FFE < zExp )
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
           ) {
            goto overflow;
        }
        if ( zExp <= 0 ) {
3069
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3070
                float_raise(float_flag_output_denormal, status);
3071 3072
                return packFloatx80(zSign, 0, 0);
            }
B
bellard 已提交
3073
            isTiny =
3074 3075
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3076 3077 3078 3079 3080
                || ( zExp < 0 )
                || ( zSig0 <= zSig0 + roundIncrement );
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
            zExp = 0;
            roundBits = zSig0 & roundMask;
P
Peter Maydell 已提交
3081 3082 3083
            if (isTiny && roundBits) {
                float_raise(float_flag_underflow, status);
            }
3084 3085 3086
            if (roundBits) {
                status->float_exception_flags |= float_flag_inexact;
            }
B
bellard 已提交
3087
            zSig0 += roundIncrement;
3088
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3089 3090 3091 3092 3093 3094 3095 3096
            roundIncrement = roundMask + 1;
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
                roundMask |= roundIncrement;
            }
            zSig0 &= ~ roundMask;
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3097 3098 3099
    if (roundBits) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    zSig0 += roundIncrement;
    if ( zSig0 < roundIncrement ) {
        ++zExp;
        zSig0 = LIT64( 0x8000000000000000 );
    }
    roundIncrement = roundMask + 1;
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
        roundMask |= roundIncrement;
    }
    zSig0 &= ~ roundMask;
    if ( zSig0 == 0 ) zExp = 0;
    return packFloatx80( zSign, zExp, zSig0 );
 precision80:
3113 3114
    switch (roundingMode) {
    case float_round_nearest_even:
3115
    case float_round_ties_away:
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
        increment = ((int64_t)zSig1 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig1;
        break;
    case float_round_down:
        increment = zSign && zSig1;
        break;
    default:
        abort();
B
bellard 已提交
3129
    }
3130
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
B
bellard 已提交
3131 3132 3133 3134 3135 3136 3137 3138
        if (    ( 0x7FFE < zExp )
             || (    ( zExp == 0x7FFE )
                  && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
                  && increment
                )
           ) {
            roundMask = 0;
 overflow:
P
Peter Maydell 已提交
3139
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3140 3141 3142 3143 3144 3145
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
               ) {
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
            }
3146 3147 3148
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
3149 3150 3151
        }
        if ( zExp <= 0 ) {
            isTiny =
3152 3153
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3154 3155 3156 3157 3158
                || ( zExp < 0 )
                || ! increment
                || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
            zExp = 0;
P
Peter Maydell 已提交
3159 3160 3161
            if (isTiny && zSig1) {
                float_raise(float_flag_underflow, status);
            }
3162 3163 3164
            if (zSig1) {
                status->float_exception_flags |= float_flag_inexact;
            }
3165 3166
            switch (roundingMode) {
            case float_round_nearest_even:
3167
            case float_round_ties_away:
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
                increment = ((int64_t)zSig1 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig1;
                break;
            case float_round_down:
                increment = zSign && zSig1;
                break;
            default:
                abort();
B
bellard 已提交
3181 3182 3183 3184
            }
            if ( increment ) {
                ++zSig0;
                zSig0 &=
3185 3186
                    ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
B
bellard 已提交
3187 3188 3189 3190
            }
            return packFloatx80( zSign, zExp, zSig0 );
        }
    }
3191 3192 3193
    if (zSig1) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3194 3195 3196 3197 3198 3199 3200
    if ( increment ) {
        ++zSig0;
        if ( zSig0 == 0 ) {
            ++zExp;
            zSig0 = LIT64( 0x8000000000000000 );
        }
        else {
3201
            zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
B
bellard 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
        }
    }
    else {
        if ( zSig0 == 0 ) zExp = 0;
    }
    return packFloatx80( zSign, zExp, zSig0 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
| and returns the proper extended double-precision floating-point value
| corresponding to the abstract input.  This routine is just like
| `roundAndPackFloatx80' except that the input significand does not have to be
| normalized.
*----------------------------------------------------------------------------*/

3220 3221 3222 3223
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
                                       flag zSign, int32_t zExp,
                                       uint64_t zSig0, uint64_t zSig1,
                                       float_status *status)
B
bellard 已提交
3224
{
3225
    int8_t shiftCount;
B
bellard 已提交
3226 3227 3228 3229 3230 3231

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
3232
    shiftCount = clz64(zSig0);
B
bellard 已提交
3233 3234
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    zExp -= shiftCount;
P
Peter Maydell 已提交
3235 3236
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
                                zSig0, zSig1, status);
B
bellard 已提交
3237 3238 3239 3240 3241 3242 3243 3244

}

/*----------------------------------------------------------------------------
| Returns the least-significant 64 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3245
static inline uint64_t extractFloat128Frac1( float128 a )
B
bellard 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
{

    return a.low;

}

/*----------------------------------------------------------------------------
| Returns the most-significant 48 fraction bits of the quadruple-precision
| floating-point value `a'.
*----------------------------------------------------------------------------*/

3257
static inline uint64_t extractFloat128Frac0( float128 a )
B
bellard 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
{

    return a.high & LIT64( 0x0000FFFFFFFFFFFF );

}

/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/

3269
static inline int32_t extractFloat128Exp( float128 a )
B
bellard 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
{

    return ( a.high>>48 ) & 0x7FFF;

}

/*----------------------------------------------------------------------------
| Returns the sign bit of the quadruple-precision floating-point value `a'.
*----------------------------------------------------------------------------*/

3280
static inline flag extractFloat128Sign( float128 a )
B
bellard 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
{

    return a.high>>63;

}

/*----------------------------------------------------------------------------
| Normalizes the subnormal quadruple-precision floating-point value
| represented by the denormalized significand formed by the concatenation of
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
| significand are stored at the location pointed to by `zSig0Ptr', and the
| least significant 64 bits of the normalized significand are stored at the
| location pointed to by `zSig1Ptr'.
*----------------------------------------------------------------------------*/

static void
 normalizeFloat128Subnormal(
3299 3300
     uint64_t aSig0,
     uint64_t aSig1,
3301
     int32_t *zExpPtr,
3302 3303
     uint64_t *zSig0Ptr,
     uint64_t *zSig1Ptr
B
bellard 已提交
3304 3305
 )
{
3306
    int8_t shiftCount;
B
bellard 已提交
3307 3308

    if ( aSig0 == 0 ) {
3309
        shiftCount = clz64(aSig1) - 15;
B
bellard 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
        if ( shiftCount < 0 ) {
            *zSig0Ptr = aSig1>>( - shiftCount );
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
        }
        else {
            *zSig0Ptr = aSig1<<shiftCount;
            *zSig1Ptr = 0;
        }
        *zExpPtr = - shiftCount - 63;
    }
    else {
3321
        shiftCount = clz64(aSig0) - 15;
B
bellard 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
        *zExpPtr = 1 - shiftCount;
    }

}

/*----------------------------------------------------------------------------
| Packs the sign `zSign', the exponent `zExp', and the significand formed
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
| floating-point value, returning the result.  After being shifted into the
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
| added together to form the most significant 32 bits of the result.  This
| means that any integer portion of `zSig0' will be added into the exponent.
| Since a properly normalized significand will have an integer portion equal
| to 1, the `zExp' input should be 1 less than the desired result exponent
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
| significand.
*----------------------------------------------------------------------------*/

3341
static inline float128
3342
 packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
B
bellard 已提交
3343 3344 3345 3346
{
    float128 z;

    z.low = zSig1;
3347
    z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
B
bellard 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
    return z;

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and extended significand formed by the concatenation of `zSig0', `zSig1',
| and `zSig2', and returns the proper quadruple-precision floating-point value
| corresponding to the abstract input.  Ordinarily, the abstract value is
| simply rounded and packed into the quadruple-precision format, with the
| inexact exception raised if the abstract input cannot be represented
| exactly.  However, if the abstract value is too large, the overflow and
| inexact exceptions are raised and an infinity or maximal finite value is
| returned.  If the abstract value is too small, the input value is rounded to
| a subnormal number, and the underflow and inexact exceptions are raised if
| the abstract input cannot be represented exactly as a subnormal quadruple-
| precision floating-point number.
|     The input significand must be normalized or smaller.  If the input
| significand is not normalized, `zExp' must be 0; in that case, the result
| returned is a subnormal number, and it must not require rounding.  In the
| usual case that the input significand is normalized, `zExp' must be 1 less
| than the ``true'' floating-point exponent.  The handling of underflow and
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3373
static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
3374 3375
                                     uint64_t zSig0, uint64_t zSig1,
                                     uint64_t zSig2, float_status *status)
B
bellard 已提交
3376
{
3377
    int8_t roundingMode;
B
bellard 已提交
3378 3379
    flag roundNearestEven, increment, isTiny;

3380
    roundingMode = status->float_rounding_mode;
B
bellard 已提交
3381
    roundNearestEven = ( roundingMode == float_round_nearest_even );
3382 3383
    switch (roundingMode) {
    case float_round_nearest_even:
3384
    case float_round_ties_away:
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        increment = ((int64_t)zSig2 < 0);
        break;
    case float_round_to_zero:
        increment = 0;
        break;
    case float_round_up:
        increment = !zSign && zSig2;
        break;
    case float_round_down:
        increment = zSign && zSig2;
        break;
3396 3397 3398
    case float_round_to_odd:
        increment = !(zSig1 & 0x1) && zSig2;
        break;
3399 3400
    default:
        abort();
B
bellard 已提交
3401
    }
3402
    if ( 0x7FFD <= (uint32_t) zExp ) {
B
bellard 已提交
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
        if (    ( 0x7FFD < zExp )
             || (    ( zExp == 0x7FFD )
                  && eq128(
                         LIT64( 0x0001FFFFFFFFFFFF ),
                         LIT64( 0xFFFFFFFFFFFFFFFF ),
                         zSig0,
                         zSig1
                     )
                  && increment
                )
           ) {
P
Peter Maydell 已提交
3414
            float_raise(float_flag_overflow | float_flag_inexact, status);
B
bellard 已提交
3415 3416 3417
            if (    ( roundingMode == float_round_to_zero )
                 || ( zSign && ( roundingMode == float_round_up ) )
                 || ( ! zSign && ( roundingMode == float_round_down ) )
3418
                 || (roundingMode == float_round_to_odd)
B
bellard 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
               ) {
                return
                    packFloat128(
                        zSign,
                        0x7FFE,
                        LIT64( 0x0000FFFFFFFFFFFF ),
                        LIT64( 0xFFFFFFFFFFFFFFFF )
                    );
            }
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( zExp < 0 ) {
3431
            if (status->flush_to_zero) {
P
Peter Maydell 已提交
3432
                float_raise(float_flag_output_denormal, status);
3433 3434
                return packFloat128(zSign, 0, 0, 0);
            }
B
bellard 已提交
3435
            isTiny =
3436 3437
                   (status->float_detect_tininess
                    == float_tininess_before_rounding)
B
bellard 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
                || ( zExp < -1 )
                || ! increment
                || lt128(
                       zSig0,
                       zSig1,
                       LIT64( 0x0001FFFFFFFFFFFF ),
                       LIT64( 0xFFFFFFFFFFFFFFFF )
                   );
            shift128ExtraRightJamming(
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
            zExp = 0;
P
Peter Maydell 已提交
3449 3450 3451
            if (isTiny && zSig2) {
                float_raise(float_flag_underflow, status);
            }
3452 3453
            switch (roundingMode) {
            case float_round_nearest_even:
3454
            case float_round_ties_away:
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
                increment = ((int64_t)zSig2 < 0);
                break;
            case float_round_to_zero:
                increment = 0;
                break;
            case float_round_up:
                increment = !zSign && zSig2;
                break;
            case float_round_down:
                increment = zSign && zSig2;
                break;
3466 3467 3468
            case float_round_to_odd:
                increment = !(zSig1 & 0x1) && zSig2;
                break;
3469 3470
            default:
                abort();
B
bellard 已提交
3471 3472 3473
            }
        }
    }
3474 3475 3476
    if (zSig2) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
    if ( increment ) {
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
        zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
    }
    else {
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
    }
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
| and significand formed by the concatenation of `zSig0' and `zSig1', and
| returns the proper quadruple-precision floating-point value corresponding
| to the abstract input.  This routine is just like `roundAndPackFloat128'
| except that the input significand has fewer bits and does not have to be
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
| point exponent.
*----------------------------------------------------------------------------*/

3498
static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
3499 3500
                                              uint64_t zSig0, uint64_t zSig1,
                                              float_status *status)
B
bellard 已提交
3501
{
3502
    int8_t shiftCount;
3503
    uint64_t zSig2;
B
bellard 已提交
3504 3505 3506 3507 3508 3509

    if ( zSig0 == 0 ) {
        zSig0 = zSig1;
        zSig1 = 0;
        zExp -= 64;
    }
3510
    shiftCount = clz64(zSig0) - 15;
B
bellard 已提交
3511 3512 3513 3514 3515 3516 3517 3518 3519
    if ( 0 <= shiftCount ) {
        zSig2 = 0;
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    }
    else {
        shift128ExtraRightJamming(
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
    }
    zExp -= shiftCount;
P
Peter Maydell 已提交
3520
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

}


/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3532
floatx80 int32_to_floatx80(int32_t a, float_status *status)
B
bellard 已提交
3533 3534
{
    flag zSign;
3535
    uint32_t absA;
3536
    int8_t shiftCount;
3537
    uint64_t zSig;
B
bellard 已提交
3538 3539 3540 3541

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3542
    shiftCount = clz32(absA) + 32;
B
bellard 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    zSig = absA;
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 32-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3554
float128 int32_to_float128(int32_t a, float_status *status)
B
bellard 已提交
3555 3556
{
    flag zSign;
3557
    uint32_t absA;
3558
    int8_t shiftCount;
3559
    uint64_t zSig0;
B
bellard 已提交
3560 3561 3562 3563

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3564
    shiftCount = clz32(absA) + 17;
B
bellard 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
    zSig0 = absA;
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3577
floatx80 int64_to_floatx80(int64_t a, float_status *status)
B
bellard 已提交
3578 3579
{
    flag zSign;
3580
    uint64_t absA;
3581
    int8_t shiftCount;
B
bellard 已提交
3582 3583 3584 3585

    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3586
    shiftCount = clz64(absA);
B
bellard 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a' to
| the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3597
float128 int64_to_float128(int64_t a, float_status *status)
B
bellard 已提交
3598 3599
{
    flag zSign;
3600
    uint64_t absA;
3601
    int8_t shiftCount;
3602
    int32_t zExp;
3603
    uint64_t zSig0, zSig1;
B
bellard 已提交
3604 3605 3606 3607

    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
    zSign = ( a < 0 );
    absA = zSign ? - a : a;
3608
    shiftCount = clz64(absA) + 49;
B
bellard 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
    zExp = 0x406E - shiftCount;
    if ( 64 <= shiftCount ) {
        zSig1 = 0;
        zSig0 = absA;
        shiftCount -= 64;
    }
    else {
        zSig1 = absA;
        zSig0 = 0;
    }
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
    return packFloat128( zSign, zExp, zSig0, zSig1 );

}

3624 3625 3626 3627 3628 3629
/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format.  The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3630
float128 uint64_to_float128(uint64_t a, float_status *status)
3631 3632 3633 3634
{
    if (a == 0) {
        return float128_zero;
    }
3635
    return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
3636 3637
}

B
bellard 已提交
3638 3639 3640 3641 3642 3643 3644
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3645
floatx80 float32_to_floatx80(float32 a, float_status *status)
B
bellard 已提交
3646 3647
{
    flag aSign;
3648
    int aExp;
3649
    uint32_t aSig;
B
bellard 已提交
3650

P
Peter Maydell 已提交
3651
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3652 3653 3654 3655
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3656 3657 3658
        if (aSig) {
            return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
        }
3659 3660 3661
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
3662 3663 3664 3665 3666 3667
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    aSig |= 0x00800000;
3668
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
B
bellard 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

}

/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
| `a' to the double-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

3679
float128 float32_to_float128(float32 a, float_status *status)
B
bellard 已提交
3680 3681
{
    flag aSign;
3682
    int aExp;
3683
    uint32_t aSig;
B
bellard 已提交
3684

P
Peter Maydell 已提交
3685
    a = float32_squash_input_denormal(a, status);
B
bellard 已提交
3686 3687 3688 3689
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3690 3691 3692
        if (aSig) {
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
        }
B
bellard 已提交
3693 3694 3695 3696 3697 3698 3699
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
3700
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
B
bellard 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709

}

/*----------------------------------------------------------------------------
| Returns the remainder of the single-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3710
float32 float32_rem(float32 a, float32 b, float_status *status)
B
bellard 已提交
3711
{
3712
    flag aSign, zSign;
3713
    int aExp, bExp, expDiff;
3714 3715 3716 3717 3718
    uint32_t aSig, bSig;
    uint32_t q;
    uint64_t aSig64, bSig64, q64;
    uint32_t alternateASig;
    int32_t sigMean;
P
Peter Maydell 已提交
3719 3720
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3721 3722 3723 3724 3725 3726 3727 3728

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );
    bSig = extractFloat32Frac( b );
    bExp = extractFloat32Exp( b );
    if ( aExp == 0xFF ) {
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
P
Peter Maydell 已提交
3729
            return propagateFloat32NaN(a, b, status);
B
bellard 已提交
3730
        }
P
Peter Maydell 已提交
3731
        float_raise(float_flag_invalid, status);
3732
        return float32_default_nan(status);
B
bellard 已提交
3733 3734
    }
    if ( bExp == 0xFF ) {
P
Peter Maydell 已提交
3735 3736 3737
        if (bSig) {
            return propagateFloat32NaN(a, b, status);
        }
B
bellard 已提交
3738 3739 3740 3741
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
3742
            float_raise(float_flag_invalid, status);
3743
            return float32_default_nan(status);
B
bellard 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
        }
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig |= 0x00800000;
    bSig |= 0x00800000;
    if ( expDiff < 32 ) {
        aSig <<= 8;
        bSig <<= 8;
        if ( expDiff < 0 ) {
            if ( expDiff < -1 ) return a;
            aSig >>= 1;
        }
        q = ( bSig <= aSig );
        if ( q ) aSig -= bSig;
        if ( 0 < expDiff ) {
3764
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
B
bellard 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
            q >>= 32 - expDiff;
            bSig >>= 2;
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
        }
        else {
            aSig >>= 2;
            bSig >>= 2;
        }
    }
    else {
        if ( bSig <= aSig ) aSig -= bSig;
3776 3777
        aSig64 = ( (uint64_t) aSig )<<40;
        bSig64 = ( (uint64_t) bSig )<<40;
B
bellard 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
        expDiff -= 64;
        while ( 0 < expDiff ) {
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
            aSig64 = - ( ( bSig * q64 )<<38 );
            expDiff -= 62;
        }
        expDiff += 64;
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
        q = q64>>( 64 - expDiff );
        bSig <<= 6;
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
3796
    } while ( 0 <= (int32_t) aSig );
B
bellard 已提交
3797 3798 3799 3800
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
3801
    zSign = ( (int32_t) aSig < 0 );
B
bellard 已提交
3802
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
3803
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
3804 3805
}

3806

B
bellard 已提交
3807

A
Aurelien Jarno 已提交
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
/*----------------------------------------------------------------------------
| Returns the binary exponential of the single-precision floating-point value
| `a'. The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
|
| Uses the following identities:
|
| 1. -------------------------------------------------------------------------
|      x    x*ln(2)
|     2  = e
|
| 2. -------------------------------------------------------------------------
|                      2     3     4     5           n
|      x        x     x     x     x     x           x
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
|               1!    2!    3!    4!    5!          n!
*----------------------------------------------------------------------------*/

static const float64 float32_exp2_coefficients[15] =
{
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
    const_float64( 0x3ff0000000000000ll ), /*  1 */
    const_float64( 0x3fe0000000000000ll ), /*  2 */
    const_float64( 0x3fc5555555555555ll ), /*  3 */
    const_float64( 0x3fa5555555555555ll ), /*  4 */
    const_float64( 0x3f81111111111111ll ), /*  5 */
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
A
Aurelien Jarno 已提交
3843 3844
};

3845
float32 float32_exp2(float32 a, float_status *status)
A
Aurelien Jarno 已提交
3846 3847
{
    flag aSign;
3848
    int aExp;
3849
    uint32_t aSig;
A
Aurelien Jarno 已提交
3850 3851
    float64 r, x, xn;
    int i;
P
Peter Maydell 已提交
3852
    a = float32_squash_input_denormal(a, status);
A
Aurelien Jarno 已提交
3853 3854 3855 3856 3857 3858

    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0xFF) {
P
Peter Maydell 已提交
3859 3860 3861
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
A
Aurelien Jarno 已提交
3862 3863 3864 3865 3866 3867
        return (aSign) ? float32_zero : a;
    }
    if (aExp == 0) {
        if (aSig == 0) return float32_one;
    }

P
Peter Maydell 已提交
3868
    float_raise(float_flag_inexact, status);
A
Aurelien Jarno 已提交
3869 3870 3871 3872

    /* ******************************* */
    /* using float64 for approximation */
    /* ******************************* */
P
Peter Maydell 已提交
3873 3874
    x = float32_to_float64(a, status);
    x = float64_mul(x, float64_ln2, status);
A
Aurelien Jarno 已提交
3875 3876 3877 3878 3879 3880

    xn = x;
    r = float64_one;
    for (i = 0 ; i < 15 ; i++) {
        float64 f;

P
Peter Maydell 已提交
3881 3882
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
        r = float64_add(r, f, status);
A
Aurelien Jarno 已提交
3883

P
Peter Maydell 已提交
3884
        xn = float64_mul(xn, x, status);
A
Aurelien Jarno 已提交
3885 3886 3887 3888 3889
    }

    return float64_to_float32(r, status);
}

3890 3891 3892 3893 3894
/*----------------------------------------------------------------------------
| Returns the binary log of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
3895
float32 float32_log2(float32 a, float_status *status)
3896 3897
{
    flag aSign, zSign;
3898
    int aExp;
3899
    uint32_t aSig, zSig, i;
3900

P
Peter Maydell 已提交
3901
    a = float32_squash_input_denormal(a, status);
3902 3903 3904 3905 3906 3907 3908 3909 3910
    aSig = extractFloat32Frac( a );
    aExp = extractFloat32Exp( a );
    aSign = extractFloat32Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
3911
        float_raise(float_flag_invalid, status);
3912
        return float32_default_nan(status);
3913 3914
    }
    if ( aExp == 0xFF ) {
P
Peter Maydell 已提交
3915 3916 3917
        if (aSig) {
            return propagateFloat32NaN(a, float32_zero, status);
        }
3918 3919 3920 3921 3922 3923 3924 3925 3926
        return a;
    }

    aExp -= 0x7F;
    aSig |= 0x00800000;
    zSign = aExp < 0;
    zSig = aExp << 23;

    for (i = 1 << 22; i > 0; i >>= 1) {
3927
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
3928 3929 3930 3931 3932 3933 3934 3935 3936
        if ( aSig & 0x01000000 ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;

P
Peter Maydell 已提交
3937
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
3938 3939
}

B
bellard 已提交
3940 3941
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
3942 3943
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
3944 3945 3946
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

3947
int float32_eq(float32 a, float32 b, float_status *status)
B
bellard 已提交
3948
{
3949
    uint32_t av, bv;
P
Peter Maydell 已提交
3950 3951
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3952 3953 3954 3955

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3956
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3957 3958
        return 0;
    }
3959 3960 3961
    av = float32_val(a);
    bv = float32_val(b);
    return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
3962 3963 3964 3965
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3966 3967 3968
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3969 3970
*----------------------------------------------------------------------------*/

3971
int float32_le(float32 a, float32 b, float_status *status)
B
bellard 已提交
3972 3973
{
    flag aSign, bSign;
3974
    uint32_t av, bv;
P
Peter Maydell 已提交
3975 3976
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
3977 3978 3979 3980

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
3981
        float_raise(float_flag_invalid, status);
B
bellard 已提交
3982 3983 3984 3985
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
3986 3987
    av = float32_val(a);
    bv = float32_val(b);
3988
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
3989
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
3990 3991 3992 3993 3994

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
3995 3996 3997
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
3998 3999
*----------------------------------------------------------------------------*/

4000
int float32_lt(float32 a, float32 b, float_status *status)
B
bellard 已提交
4001 4002
{
    flag aSign, bSign;
4003
    uint32_t av, bv;
P
Peter Maydell 已提交
4004 4005
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4006 4007 4008 4009

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4010
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4011 4012 4013 4014
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4015 4016
    av = float32_val(a);
    bv = float32_val(b);
4017
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4018
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4019 4020 4021

}

4022 4023
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
4024 4025 4026
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4027 4028
*----------------------------------------------------------------------------*/

4029
int float32_unordered(float32 a, float32 b, float_status *status)
4030
{
P
Peter Maydell 已提交
4031 4032
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
4033 4034 4035 4036

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
P
Peter Maydell 已提交
4037
        float_raise(float_flag_invalid, status);
4038 4039 4040 4041
        return 1;
    }
    return 0;
}
4042

B
bellard 已提交
4043 4044
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is equal to
4045 4046 4047
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4048 4049
*----------------------------------------------------------------------------*/

4050
int float32_eq_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4051
{
P
Peter Maydell 已提交
4052 4053
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4054 4055 4056 4057

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4058 4059
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4060
            float_raise(float_flag_invalid, status);
4061
        }
B
bellard 已提交
4062 4063
        return 0;
    }
4064 4065
    return ( float32_val(a) == float32_val(b) ) ||
            ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
B
bellard 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4075
int float32_le_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4076 4077
{
    flag aSign, bSign;
4078
    uint32_t av, bv;
P
Peter Maydell 已提交
4079 4080
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4081 4082 4083 4084

    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
4085 4086
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4087
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4088 4089 4090 4091 4092
        }
        return 0;
    }
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
P
pbrook 已提交
4093 4094
    av = float32_val(a);
    bv = float32_val(b);
4095
    if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4096
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4097 4098 4099 4100 4101 4102 4103

}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
4104
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4105 4106
*----------------------------------------------------------------------------*/

4107
int float32_lt_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4108
{
4109 4110 4111 4112
    flag aSign, bSign;
    uint32_t av, bv;
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4113

4114 4115 4116 4117 4118
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4119
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4120
        }
4121
        return 0;
B
bellard 已提交
4122
    }
4123 4124 4125 4126 4127 4128
    aSign = extractFloat32Sign( a );
    bSign = extractFloat32Sign( b );
    av = float32_val(a);
    bv = float32_val(b);
    if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4129 4130 4131 4132

}

/*----------------------------------------------------------------------------
4133 4134 4135 4136
| Returns 1 if the single-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
B
bellard 已提交
4137 4138
*----------------------------------------------------------------------------*/

4139
int float32_unordered_quiet(float32 a, float32 b, float_status *status)
B
bellard 已提交
4140
{
4141 4142
    a = float32_squash_input_denormal(a, status);
    b = float32_squash_input_denormal(b, status);
B
bellard 已提交
4143

4144 4145 4146 4147 4148 4149
    if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
         || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
       ) {
        if (float32_is_signaling_nan(a, status)
         || float32_is_signaling_nan(b, status)) {
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4150
        }
4151
        return 1;
B
bellard 已提交
4152
    }
4153
    return 0;
B
bellard 已提交
4154 4155
}

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
/*----------------------------------------------------------------------------
| If `a' is denormal and we are in flush-to-zero mode then set the
| input-denormal exception and return zero. Otherwise just return the value.
*----------------------------------------------------------------------------*/
float16 float16_squash_input_denormal(float16 a, float_status *status)
{
    if (status->flush_inputs_to_zero) {
        if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
            float_raise(float_flag_input_denormal, status);
            return make_float16(float16_val(a) & 0x8000);
        }
    }
    return a;
}

B
bellard 已提交
4171 4172 4173 4174 4175 4176 4177
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the extended double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4178
floatx80 float64_to_floatx80(float64 a, float_status *status)
B
bellard 已提交
4179 4180
{
    flag aSign;
4181
    int aExp;
4182
    uint64_t aSig;
B
bellard 已提交
4183

P
Peter Maydell 已提交
4184
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4185 4186 4187 4188
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4189 4190 4191
        if (aSig) {
            return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
        }
4192 4193 4194
        return packFloatx80(aSign,
                            floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    return
        packFloatx80(
            aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );

}

/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
| `a' to the quadruple-precision floating-point format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

4213
float128 float64_to_float128(float64 a, float_status *status)
B
bellard 已提交
4214 4215
{
    flag aSign;
4216
    int aExp;
4217
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4218

P
Peter Maydell 已提交
4219
    a = float64_squash_input_denormal(a, status);
B
bellard 已提交
4220 4221 4222 4223
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4224 4225 4226
        if (aSig) {
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
        }
B
bellard 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
        return packFloat128( aSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
        --aExp;
    }
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );

}


/*----------------------------------------------------------------------------
| Returns the remainder of the double-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4246
float64 float64_rem(float64 a, float64 b, float_status *status)
B
bellard 已提交
4247
{
4248
    flag aSign, zSign;
4249
    int aExp, bExp, expDiff;
4250 4251 4252
    uint64_t aSig, bSig;
    uint64_t q, alternateASig;
    int64_t sigMean;
B
bellard 已提交
4253

P
Peter Maydell 已提交
4254 4255
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4256 4257 4258 4259 4260 4261 4262
    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );
    bSig = extractFloat64Frac( b );
    bExp = extractFloat64Exp( b );
    if ( aExp == 0x7FF ) {
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
P
Peter Maydell 已提交
4263
            return propagateFloat64NaN(a, b, status);
B
bellard 已提交
4264
        }
P
Peter Maydell 已提交
4265
        float_raise(float_flag_invalid, status);
4266
        return float64_default_nan(status);
B
bellard 已提交
4267 4268
    }
    if ( bExp == 0x7FF ) {
P
Peter Maydell 已提交
4269 4270 4271
        if (bSig) {
            return propagateFloat64NaN(a, b, status);
        }
B
bellard 已提交
4272 4273 4274 4275
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
P
Peter Maydell 已提交
4276
            float_raise(float_flag_invalid, status);
4277
            return float64_default_nan(status);
B
bellard 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
        }
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return a;
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    expDiff = aExp - bExp;
    aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
    bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        aSig >>= 1;
    }
    q = ( bSig <= aSig );
    if ( q ) aSig -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        aSig = - ( ( bSig>>2 ) * q );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig, 0, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        bSig >>= 2;
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
    }
    else {
        aSig >>= 2;
        bSig >>= 2;
    }
    do {
        alternateASig = aSig;
        ++q;
        aSig -= bSig;
4317
    } while ( 0 <= (int64_t) aSig );
B
bellard 已提交
4318 4319 4320 4321
    sigMean = aSig + alternateASig;
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
        aSig = alternateASig;
    }
4322
    zSign = ( (int64_t) aSig < 0 );
B
bellard 已提交
4323
    if ( zSign ) aSig = - aSig;
P
Peter Maydell 已提交
4324
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
B
bellard 已提交
4325 4326 4327

}

4328 4329 4330 4331 4332
/*----------------------------------------------------------------------------
| Returns the binary log of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
4333
float64 float64_log2(float64 a, float_status *status)
4334 4335
{
    flag aSign, zSign;
4336
    int aExp;
4337
    uint64_t aSig, aSig0, aSig1, zSig, i;
P
Peter Maydell 已提交
4338
    a = float64_squash_input_denormal(a, status);
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

    aSig = extractFloat64Frac( a );
    aExp = extractFloat64Exp( a );
    aSign = extractFloat64Sign( a );

    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
    }
    if ( aSign ) {
P
Peter Maydell 已提交
4349
        float_raise(float_flag_invalid, status);
4350
        return float64_default_nan(status);
4351 4352
    }
    if ( aExp == 0x7FF ) {
P
Peter Maydell 已提交
4353 4354 4355
        if (aSig) {
            return propagateFloat64NaN(a, float64_zero, status);
        }
4356 4357 4358 4359 4360 4361
        return a;
    }

    aExp -= 0x3FF;
    aSig |= LIT64( 0x0010000000000000 );
    zSign = aExp < 0;
4362
    zSig = (uint64_t)aExp << 52;
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
    for (i = 1LL << 51; i > 0; i >>= 1) {
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
        if ( aSig & LIT64( 0x0020000000000000 ) ) {
            aSig >>= 1;
            zSig |= i;
        }
    }

    if ( zSign )
        zSig = -zSig;
P
Peter Maydell 已提交
4374
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
4375 4376
}

B
bellard 已提交
4377 4378
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4379 4380
| corresponding value `b', and 0 otherwise.  The invalid exception is raised
| if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
4381 4382 4383
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4384
int float64_eq(float64 a, float64 b, float_status *status)
B
bellard 已提交
4385
{
4386
    uint64_t av, bv;
P
Peter Maydell 已提交
4387 4388
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4389 4390 4391 4392

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4393
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4394 4395
        return 0;
    }
P
pbrook 已提交
4396
    av = float64_val(a);
P
pbrook 已提交
4397
    bv = float64_val(b);
4398
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4399 4400 4401 4402 4403

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
4404 4405 4406
| equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4407 4408
*----------------------------------------------------------------------------*/

4409
int float64_le(float64 a, float64 b, float_status *status)
B
bellard 已提交
4410 4411
{
    flag aSign, bSign;
4412
    uint64_t av, bv;
P
Peter Maydell 已提交
4413 4414
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4415 4416 4417 4418

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4419
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4420 4421 4422 4423
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4424
    av = float64_val(a);
P
pbrook 已提交
4425
    bv = float64_val(b);
4426
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4427
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4428 4429 4430 4431 4432

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
4433 4434 4435
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
4436 4437
*----------------------------------------------------------------------------*/

4438
int float64_lt(float64 a, float64 b, float_status *status)
B
bellard 已提交
4439 4440
{
    flag aSign, bSign;
4441
    uint64_t av, bv;
B
bellard 已提交
4442

P
Peter Maydell 已提交
4443 4444
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4445 4446 4447
    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4448
        float_raise(float_flag_invalid, status);
B
bellard 已提交
4449 4450 4451 4452
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4453
    av = float64_val(a);
P
pbrook 已提交
4454
    bv = float64_val(b);
4455
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4456
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4457 4458 4459

}

4460 4461
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
4462 4463 4464
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
4465 4466
*----------------------------------------------------------------------------*/

4467
int float64_unordered(float64 a, float64 b, float_status *status)
4468
{
P
Peter Maydell 已提交
4469 4470
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4471 4472 4473 4474

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
P
Peter Maydell 已提交
4475
        float_raise(float_flag_invalid, status);
4476 4477 4478 4479 4480
        return 1;
    }
    return 0;
}

B
bellard 已提交
4481 4482
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is equal to the
4483 4484 4485
| corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
4486 4487
*----------------------------------------------------------------------------*/

4488
int float64_eq_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4489
{
4490
    uint64_t av, bv;
P
Peter Maydell 已提交
4491 4492
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4493 4494 4495 4496

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4497 4498
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4499
            float_raise(float_flag_invalid, status);
4500
        }
B
bellard 已提交
4501 4502
        return 0;
    }
P
pbrook 已提交
4503
    av = float64_val(a);
P
pbrook 已提交
4504
    bv = float64_val(b);
4505
    return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
B
bellard 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than or
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4516
int float64_le_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4517 4518
{
    flag aSign, bSign;
4519
    uint64_t av, bv;
P
Peter Maydell 已提交
4520 4521
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4522 4523 4524 4525

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4526 4527
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4528
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4529 4530 4531 4532 4533
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4534
    av = float64_val(a);
P
pbrook 已提交
4535
    bv = float64_val(b);
4536
    if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
P
pbrook 已提交
4537
    return ( av == bv ) || ( aSign ^ ( av < bv ) );
B
bellard 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4548
int float64_lt_quiet(float64 a, float64 b, float_status *status)
B
bellard 已提交
4549 4550
{
    flag aSign, bSign;
4551
    uint64_t av, bv;
P
Peter Maydell 已提交
4552 4553
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
B
bellard 已提交
4554 4555 4556 4557

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4558 4559
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4560
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4561 4562 4563 4564 4565
        }
        return 0;
    }
    aSign = extractFloat64Sign( a );
    bSign = extractFloat64Sign( b );
P
pbrook 已提交
4566
    av = float64_val(a);
P
pbrook 已提交
4567
    bv = float64_val(b);
4568
    if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
P
pbrook 已提交
4569
    return ( av != bv ) && ( aSign ^ ( av < bv ) );
B
bellard 已提交
4570 4571 4572

}

4573 4574 4575 4576 4577 4578 4579
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4580
int float64_unordered_quiet(float64 a, float64 b, float_status *status)
4581
{
P
Peter Maydell 已提交
4582 4583
    a = float64_squash_input_denormal(a, status);
    b = float64_squash_input_denormal(b, status);
4584 4585 4586 4587

    if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
         || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
       ) {
4588 4589
        if (float64_is_signaling_nan(a, status)
         || float64_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
4590
            float_raise(float_flag_invalid, status);
4591 4592 4593 4594 4595 4596
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN, the
| largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4607
int32_t floatx80_to_int32(floatx80 a, float_status *status)
B
bellard 已提交
4608 4609
{
    flag aSign;
4610
    int32_t aExp, shiftCount;
4611
    uint64_t aSig;
B
bellard 已提交
4612

4613 4614 4615 4616
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4617 4618 4619
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4620
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4621 4622 4623
    shiftCount = 0x4037 - aExp;
    if ( shiftCount <= 0 ) shiftCount = 1;
    shift64RightJamming( aSig, shiftCount, &aSig );
P
Peter Maydell 已提交
4624
    return roundAndPackInt32(aSign, aSig, status);
B
bellard 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 32-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4638
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4639 4640
{
    flag aSign;
4641
    int32_t aExp, shiftCount;
4642
    uint64_t aSig, savedASig;
4643
    int32_t z;
B
bellard 已提交
4644

4645 4646 4647 4648
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1 << 31;
    }
B
bellard 已提交
4649 4650 4651 4652
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( 0x401E < aExp ) {
4653
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
B
bellard 已提交
4654 4655 4656
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
4657 4658 4659
        if (aExp || aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668
        return 0;
    }
    shiftCount = 0x403E - aExp;
    savedASig = aSig;
    aSig >>= shiftCount;
    z = aSig;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
4669
        float_raise(float_flag_invalid, status);
4670
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
4671 4672
    }
    if ( ( aSig<<shiftCount ) != savedASig ) {
4673
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic---which means in particular that the conversion
| is rounded according to the current rounding mode.  If `a' is a NaN,
| the largest positive integer is returned.  Otherwise, if the conversion
| overflows, the largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

4689
int64_t floatx80_to_int64(floatx80 a, float_status *status)
B
bellard 已提交
4690 4691
{
    flag aSign;
4692
    int32_t aExp, shiftCount;
4693
    uint64_t aSig, aSigExtra;
B
bellard 已提交
4694

4695 4696 4697 4698
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4699 4700 4701 4702 4703 4704
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = 0x403E - aExp;
    if ( shiftCount <= 0 ) {
        if ( shiftCount ) {
P
Peter Maydell 已提交
4705
            float_raise(float_flag_invalid, status);
4706
            if (!aSign || floatx80_is_any_nan(a)) {
B
bellard 已提交
4707 4708
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
4709
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4710 4711 4712 4713 4714 4715
        }
        aSigExtra = 0;
    }
    else {
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
    }
P
Peter Maydell 已提交
4716
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
B
bellard 已提交
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the 64-bit two's complement integer format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic, except that the conversion is always rounded
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
| Otherwise, if the conversion overflows, the largest integer with the same
| sign as `a' is returned.
*----------------------------------------------------------------------------*/

4730
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
B
bellard 已提交
4731 4732
{
    flag aSign;
4733
    int32_t aExp, shiftCount;
4734
    uint64_t aSig;
4735
    int64_t z;
B
bellard 已提交
4736

4737 4738 4739 4740
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return 1ULL << 63;
    }
B
bellard 已提交
4741 4742 4743 4744 4745 4746 4747
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    shiftCount = aExp - 0x403E;
    if ( 0 <= shiftCount ) {
        aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
        if ( ( a.high != 0xC03E ) || aSig ) {
P
Peter Maydell 已提交
4748
            float_raise(float_flag_invalid, status);
B
bellard 已提交
4749 4750 4751 4752
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
        }
4753
        return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
4754 4755
    }
    else if ( aExp < 0x3FFF ) {
4756 4757 4758
        if (aExp | aSig) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
4759 4760 4761
        return 0;
    }
    z = aSig>>( - shiftCount );
4762
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
4763
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
    }
    if ( aSign ) z = - z;
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the single-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4777
float32 floatx80_to_float32(floatx80 a, float_status *status)
B
bellard 已提交
4778 4779
{
    flag aSign;
4780
    int32_t aExp;
4781
    uint64_t aSig;
B
bellard 已提交
4782

4783 4784 4785 4786
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float32_default_nan(status);
    }
B
bellard 已提交
4787 4788 4789 4790
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4791
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4792
            return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4793 4794 4795 4796 4797
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    shift64RightJamming( aSig, 33, &aSig );
    if ( aExp || aSig ) aExp -= 0x3F81;
P
Peter Maydell 已提交
4798
    return roundAndPackFloat32(aSign, aExp, aSig, status);
B
bellard 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4809
float64 floatx80_to_float64(floatx80 a, float_status *status)
B
bellard 已提交
4810 4811
{
    flag aSign;
4812
    int32_t aExp;
4813
    uint64_t aSig, zSig;
B
bellard 已提交
4814

4815 4816 4817 4818
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float64_default_nan(status);
    }
B
bellard 已提交
4819 4820 4821 4822
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
4823
        if ( (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4824
            return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4825 4826 4827 4828 4829
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shift64RightJamming( aSig, 1, &zSig );
    if ( aExp || aSig ) aExp -= 0x3C01;
P
Peter Maydell 已提交
4830
    return roundAndPackFloat64(aSign, aExp, zSig, status);
B
bellard 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840

}

/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point value `a' to the quadruple-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4841
float128 floatx80_to_float128(floatx80 a, float_status *status)
B
bellard 已提交
4842 4843
{
    flag aSign;
4844
    int aExp;
4845
    uint64_t aSig, zSig0, zSig1;
B
bellard 已提交
4846

4847 4848 4849 4850
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return float128_default_nan(status);
    }
B
bellard 已提交
4851 4852 4853
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
4854
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
P
Peter Maydell 已提交
4855
        return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
B
bellard 已提交
4856 4857 4858 4859 4860 4861
    }
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
    return packFloat128( aSign, aExp, zSig0, zSig1 );

}

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a'
| to the precision provided by floatx80_rounding_precision and returns the
| result as an extended double-precision floating-point value.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

floatx80 floatx80_round(floatx80 a, float_status *status)
{
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                extractFloatx80Sign(a),
                                extractFloatx80Exp(a),
                                extractFloatx80Frac(a), 0, status);
}

B
bellard 已提交
4878 4879 4880 4881 4882 4883 4884
/*----------------------------------------------------------------------------
| Rounds the extended double-precision floating-point value `a' to an integer,
| and returns the result as an extended quadruple-precision floating-point
| value.  The operation is performed according to the IEC/IEEE Standard for
| Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4885
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
B
bellard 已提交
4886 4887
{
    flag aSign;
4888
    int32_t aExp;
4889
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
4890 4891
    floatx80 z;

4892 4893 4894 4895
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
4896 4897
    aExp = extractFloatx80Exp( a );
    if ( 0x403E <= aExp ) {
4898
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
P
Peter Maydell 已提交
4899
            return propagateFloatx80NaN(a, a, status);
B
bellard 已提交
4900 4901 4902 4903 4904
        }
        return a;
    }
    if ( aExp < 0x3FFF ) {
        if (    ( aExp == 0 )
4905
             && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
B
bellard 已提交
4906 4907
            return a;
        }
4908
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
4909
        aSign = extractFloatx80Sign( a );
4910
        switch (status->float_rounding_mode) {
B
bellard 已提交
4911
         case float_round_nearest_even:
4912
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
B
bellard 已提交
4913 4914 4915 4916 4917
               ) {
                return
                    packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
            }
            break;
4918 4919 4920 4921 4922
        case float_round_ties_away:
            if (aExp == 0x3FFE) {
                return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
            }
            break;
B
bellard 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
         case float_round_down:
            return
                  aSign ?
                      packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
                : packFloatx80( 0, 0, 0 );
         case float_round_up:
            return
                  aSign ? packFloatx80( 1, 0, 0 )
                : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
        }
        return packFloatx80( aSign, 0, 0 );
    }
    lastBitMask = 1;
    lastBitMask <<= 0x403E - aExp;
    roundBitsMask = lastBitMask - 1;
    z = a;
4939
    switch (status->float_rounding_mode) {
4940
    case float_round_nearest_even:
B
bellard 已提交
4941
        z.low += lastBitMask>>1;
4942 4943 4944 4945
        if ((z.low & roundBitsMask) == 0) {
            z.low &= ~lastBitMask;
        }
        break;
4946 4947 4948
    case float_round_ties_away:
        z.low += lastBitMask >> 1;
        break;
4949 4950 4951 4952 4953 4954 4955 4956 4957
    case float_round_to_zero:
        break;
    case float_round_up:
        if (!extractFloatx80Sign(z)) {
            z.low += roundBitsMask;
        }
        break;
    case float_round_down:
        if (extractFloatx80Sign(z)) {
B
bellard 已提交
4958 4959
            z.low += roundBitsMask;
        }
4960 4961 4962
        break;
    default:
        abort();
B
bellard 已提交
4963 4964 4965 4966 4967 4968
    }
    z.low &= ~ roundBitsMask;
    if ( z.low == 0 ) {
        ++z.high;
        z.low = LIT64( 0x8000000000000000 );
    }
4969 4970 4971
    if (z.low != a.low) {
        status->float_exception_flags |= float_flag_inexact;
    }
B
bellard 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the extended double-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
| negated before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

4984 4985
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
4986
{
4987
    int32_t aExp, bExp, zExp;
4988
    uint64_t aSig, bSig, zSig0, zSig1;
4989
    int32_t expDiff;
B
bellard 已提交
4990 4991 4992 4993 4994 4995 4996 4997

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
4998 4999 5000
            if ((uint64_t)(aSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5001 5002 5003 5004 5005 5006 5007 5008
            return a;
        }
        if ( bExp == 0 ) --expDiff;
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5009 5010 5011
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
5012 5013 5014
            return packFloatx80(zSign,
                                floatx80_infinity_high,
                                floatx80_infinity_low);
B
bellard 已提交
5015 5016 5017 5018 5019 5020 5021
        }
        if ( aExp == 0 ) ++expDiff;
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
5022
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5023
                return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
            }
            return a;
        }
        zSig1 = 0;
        zSig0 = aSig + bSig;
        if ( aExp == 0 ) {
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
            goto roundAndPack;
        }
        zExp = aExp;
        goto shiftRight1;
    }
    zSig0 = aSig + bSig;
5037
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
B
bellard 已提交
5038 5039 5040 5041 5042
 shiftRight1:
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= LIT64( 0x8000000000000000 );
    ++zExp;
 roundAndPack:
5043
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5044
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the extended
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5055 5056
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
                                float_status *status)
B
bellard 已提交
5057
{
5058
    int32_t aExp, bExp, zExp;
5059
    uint64_t aSig, bSig, zSig0, zSig1;
5060
    int32_t expDiff;
B
bellard 已提交
5061 5062 5063 5064 5065 5066 5067 5068 5069

    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
5070
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
P
Peter Maydell 已提交
5071
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5072
        }
P
Peter Maydell 已提交
5073
        float_raise(float_flag_invalid, status);
5074
        return floatx80_default_nan(status);
B
bellard 已提交
5075 5076 5077 5078 5079 5080 5081 5082
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    zSig1 = 0;
    if ( bSig < aSig ) goto aBigger;
    if ( aSig < bSig ) goto bBigger;
5083
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
B
bellard 已提交
5084 5085
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5086 5087 5088
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
5089 5090
        return packFloatx80(zSign ^ 1, floatx80_infinity_high,
                            floatx80_infinity_low);
B
bellard 已提交
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
    }
    if ( aExp == 0 ) ++expDiff;
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 bBigger:
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5101 5102 5103
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5104 5105 5106 5107 5108 5109 5110 5111
        return a;
    }
    if ( bExp == 0 ) --expDiff;
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 aBigger:
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
5112
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5113
                                         zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5114 5115 5116 5117 5118 5119 5120 5121
}

/*----------------------------------------------------------------------------
| Returns the result of adding the extended double-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5122
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5123 5124 5125
{
    flag aSign, bSign;

5126 5127 5128 5129
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5130 5131 5132
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5133
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5134 5135
    }
    else {
P
Peter Maydell 已提交
5136
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5147
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5148 5149 5150
{
    flag aSign, bSign;

5151 5152 5153 5154
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5155 5156 5157
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
5158
        return subFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5159 5160
    }
    else {
P
Peter Maydell 已提交
5161
        return addFloatx80Sigs(a, b, aSign, status);
B
bellard 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the extended double-precision floating-
| point values `a' and `b'.  The operation is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5172
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5173 5174
{
    flag aSign, bSign, zSign;
5175
    int32_t aExp, bExp, zExp;
5176
    uint64_t aSig, bSig, zSig0, zSig1;
B
bellard 已提交
5177

5178 5179 5180 5181
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5182 5183 5184 5185 5186 5187 5188 5189
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
5190 5191
        if (    (uint64_t) ( aSig<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5192
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5193 5194
        }
        if ( ( bExp | bSig ) == 0 ) goto invalid;
5195 5196
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5197 5198
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5199 5200 5201
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5202 5203
        if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5204
            float_raise(float_flag_invalid, status);
5205
            return floatx80_default_nan(status);
B
bellard 已提交
5206
        }
5207 5208
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    zExp = aExp + bExp - 0x3FFE;
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
5220
    if ( 0 < (int64_t) zSig0 ) {
B
bellard 已提交
5221 5222 5223
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
        --zExp;
    }
5224
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5225
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5226 5227 5228 5229 5230 5231 5232 5233
}

/*----------------------------------------------------------------------------
| Returns the result of dividing the extended double-precision floating-point
| value `a' by the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5234
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5235 5236
{
    flag aSign, bSign, zSign;
5237
    int32_t aExp, bExp, zExp;
5238 5239
    uint64_t aSig, bSig, zSig0, zSig1;
    uint64_t rem0, rem1, rem2, term0, term1, term2;
B
bellard 已提交
5240

5241 5242 5243 5244
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5245 5246 5247 5248 5249 5250 5251 5252
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    bSign = extractFloatx80Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5253 5254 5255
        if ((uint64_t)(aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5256
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5257 5258 5259
            if ((uint64_t)(bSig << 1)) {
                return propagateFloatx80NaN(a, b, status);
            }
B
bellard 已提交
5260 5261
            goto invalid;
        }
5262 5263
        return packFloatx80(zSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
5264 5265
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5266 5267 5268
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5269 5270 5271 5272 5273 5274
        return packFloatx80( zSign, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
            if ( ( aExp | aSig ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
5275
                float_raise(float_flag_invalid, status);
5276
                return floatx80_default_nan(status);
B
bellard 已提交
5277
            }
P
Peter Maydell 已提交
5278
            float_raise(float_flag_divbyzero, status);
5279 5280
            return packFloatx80(zSign, floatx80_infinity_high,
                                       floatx80_infinity_low);
B
bellard 已提交
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
    }
    zExp = aExp - bExp + 0x3FFE;
    rem1 = 0;
    if ( bSig <= aSig ) {
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
    mul64To128( bSig, zSig0, &term0, &term1 );
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
5297
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5298 5299 5300 5301
        --zSig0;
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
5302
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
B
bellard 已提交
5303 5304
        mul64To128( bSig, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
5305
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5306 5307 5308 5309 5310
            --zSig1;
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
        }
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
    }
5311
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
P
Peter Maydell 已提交
5312
                                zSign, zExp, zSig0, zSig1, status);
B
bellard 已提交
5313 5314 5315 5316 5317 5318 5319 5320
}

/*----------------------------------------------------------------------------
| Returns the remainder of the extended double-precision floating-point value
| `a' with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5321
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5322
{
5323
    flag aSign, zSign;
5324
    int32_t aExp, bExp, expDiff;
5325 5326
    uint64_t aSig0, aSig1, bSig;
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
B
bellard 已提交
5327

5328 5329 5330 5331
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5332 5333 5334 5335 5336 5337
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    bSig = extractFloatx80Frac( b );
    bExp = extractFloatx80Exp( b );
    if ( aExp == 0x7FFF ) {
5338 5339
        if (    (uint64_t) ( aSig0<<1 )
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
P
Peter Maydell 已提交
5340
            return propagateFloatx80NaN(a, b, status);
B
bellard 已提交
5341 5342 5343 5344
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
5345 5346 5347
        if ((uint64_t)(bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
B
bellard 已提交
5348 5349 5350 5351 5352
        return a;
    }
    if ( bExp == 0 ) {
        if ( bSig == 0 ) {
 invalid:
P
Peter Maydell 已提交
5353
            float_raise(float_flag_invalid, status);
5354
            return floatx80_default_nan(status);
B
bellard 已提交
5355 5356 5357 5358
        }
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
    }
    if ( aExp == 0 ) {
5359
        if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
B
bellard 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    bSig |= LIT64( 0x8000000000000000 );
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if ( expDiff < 0 ) {
        if ( expDiff < -1 ) return a;
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
        expDiff = 0;
    }
    q = ( bSig <= aSig0 );
    if ( q ) aSig0 -= bSig;
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        mul64To128( bSig, q, &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
        expDiff -= 62;
    }
    expDiff += 64;
    if ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig );
        q = ( 2 < q ) ? q - 2 : 0;
        q >>= 64 - expDiff;
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
            ++q;
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
        }
    }
    else {
        term1 = 0;
        term0 = bSig;
    }
    sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
    if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
         || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
              && ( q & 1 ) )
       ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
        zSign = ! zSign;
    }
    return
        normalizeRoundAndPackFloatx80(
P
Peter Maydell 已提交
5410
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
B
bellard 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419

}

/*----------------------------------------------------------------------------
| Returns the square root of the extended double-precision floating-point
| value `a'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5420
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
B
bellard 已提交
5421 5422
{
    flag aSign;
5423
    int32_t aExp, zExp;
5424 5425
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
5426

5427 5428 5429 5430
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
B
bellard 已提交
5431 5432 5433 5434
    aSig0 = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
5435 5436 5437
        if ((uint64_t)(aSig0 << 1)) {
            return propagateFloatx80NaN(a, a, status);
        }
B
bellard 已提交
5438 5439 5440 5441 5442 5443
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
5444
        float_raise(float_flag_invalid, status);
5445
        return floatx80_default_nan(status);
B
bellard 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
    }
    if ( aExp == 0 ) {
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
5458
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
5470
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
    zSig0 |= doubleZSig0;
5481 5482
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                0, zExp, zSig0, zSig1, status);
B
bellard 已提交
5483 5484 5485
}

/*----------------------------------------------------------------------------
5486 5487 5488 5489
| Returns 1 if the extended double-precision floating-point value `a' is equal
| to the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5490 5491
*----------------------------------------------------------------------------*/

5492
int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5493 5494
{

5495 5496 5497 5498 5499
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5500
       ) {
P
Peter Maydell 已提交
5501
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5502 5503 5504 5505 5506 5507
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5508
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5509 5510 5511 5512 5513 5514 5515
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
| less than or equal to the corresponding value `b', and 0 otherwise.  The
5516 5517 5518
| invalid exception is raised if either operand is a NaN.  The comparison is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
B
bellard 已提交
5519 5520
*----------------------------------------------------------------------------*/

5521
int floatx80_le(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5522 5523 5524
{
    flag aSign, bSign;

5525 5526 5527 5528 5529
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5530
       ) {
P
Peter Maydell 已提交
5531
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5532 5533 5534 5535 5536 5537 5538
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5539
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is
5550 5551 5552
| less than the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5553 5554
*----------------------------------------------------------------------------*/

5555
int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5556 5557 5558
{
    flag aSign, bSign;

5559 5560 5561 5562 5563
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
B
bellard 已提交
5564
       ) {
P
Peter Maydell 已提交
5565
        float_raise(float_flag_invalid, status);
B
bellard 已提交
5566 5567 5568 5569 5570 5571 5572
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5573
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5574 5575 5576 5577 5578 5579 5580 5581
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5582 5583
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
5584 5585 5586
| cannot be compared, and 0 otherwise.  The invalid exception is raised if
| either operand is a NaN.   The comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5587
*----------------------------------------------------------------------------*/
5588
int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
5589
{
5590 5591 5592 5593 5594
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
        || (extractFloatx80Exp(a) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(a) << 1))
        || (extractFloatx80Exp(b) == 0x7FFF
            && (uint64_t) (extractFloatx80Frac(b) << 1))
5595
       ) {
P
Peter Maydell 已提交
5596
        float_raise(float_flag_invalid, status);
5597 5598 5599 5600 5601
        return 1;
    }
    return 0;
}

B
bellard 已提交
5602
/*----------------------------------------------------------------------------
5603
| Returns 1 if the extended double-precision floating-point value `a' is
5604 5605 5606
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
5607 5608
*----------------------------------------------------------------------------*/

5609
int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5610 5611
{

5612 5613 5614 5615
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5616
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5617
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5618
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5619
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5620
       ) {
5621 5622
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5623
            float_raise(float_flag_invalid, status);
5624
        }
B
bellard 已提交
5625 5626 5627 5628 5629 5630
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
5631
                  && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
| do not cause an exception.  Otherwise, the comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5643
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5644 5645 5646
{
    flag aSign, bSign;

5647 5648 5649 5650
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5651
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5652
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5653
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5654
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5655
       ) {
5656 5657
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5658
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5659 5660 5661 5662 5663 5664 5665 5666
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5667
            || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is less
| than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
| an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

5683
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
B
bellard 已提交
5684 5685 5686
{
    flag aSign, bSign;

5687 5688 5689 5690
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 0;
    }
B
bellard 已提交
5691
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
5692
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
B
bellard 已提交
5693
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
5694
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
B
bellard 已提交
5695
       ) {
5696 5697
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5698
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5699 5700 5701 5702 5703 5704 5705 5706
        }
        return 0;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
5707
            && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
5708 5709 5710 5711 5712 5713 5714 5715
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

5716 5717 5718 5719 5720 5721
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point values `a' and `b'
| cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
| The comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
5722
int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
5723
{
5724 5725 5726 5727
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return 1;
    }
5728 5729 5730 5731 5732
    if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
         || (    ( extractFloatx80Exp( b ) == 0x7FFF )
              && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
       ) {
5733 5734
        if (floatx80_is_signaling_nan(a, status)
         || floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
5735
            float_raise(float_flag_invalid, status);
5736 5737 5738 5739 5740 5741
        }
        return 1;
    }
    return 0;
}

B
bellard 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5752
int32_t float128_to_int32(float128 a, float_status *status)
B
bellard 已提交
5753 5754
{
    flag aSign;
5755
    int32_t aExp, shiftCount;
5756
    uint64_t aSig0, aSig1;
B
bellard 已提交
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    aSig0 |= ( aSig1 != 0 );
    shiftCount = 0x4028 - aExp;
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
P
Peter Maydell 已提交
5767
    return roundAndPackInt32(aSign, aSig0, status);
B
bellard 已提交
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 32-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.  If
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
| conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5781
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5782 5783
{
    flag aSign;
5784
    int32_t aExp, shiftCount;
5785
    uint64_t aSig0, aSig1, savedASig;
5786
    int32_t z;
B
bellard 已提交
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    aSig0 |= ( aSig1 != 0 );
    if ( 0x401E < aExp ) {
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
        goto invalid;
    }
    else if ( aExp < 0x3FFF ) {
5798 5799 5800
        if (aExp || aSig0) {
            status->float_exception_flags |= float_flag_inexact;
        }
B
bellard 已提交
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
        return 0;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    savedASig = aSig0;
    aSig0 >>= shiftCount;
    z = aSig0;
    if ( aSign ) z = - z;
    if ( ( z < 0 ) ^ aSign ) {
 invalid:
P
Peter Maydell 已提交
5811
        float_raise(float_flag_invalid, status);
5812
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
B
bellard 已提交
5813 5814
    }
    if ( ( aSig0<<shiftCount ) != savedASig ) {
5815
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  Otherwise, if the conversion overflows, the
| largest integer with the same sign as `a' is returned.
*----------------------------------------------------------------------------*/

5831
int64_t float128_to_int64(float128 a, float_status *status)
B
bellard 已提交
5832 5833
{
    flag aSign;
5834
    int32_t aExp, shiftCount;
5835
    uint64_t aSig0, aSig1;
B
bellard 已提交
5836 5837 5838 5839 5840 5841 5842 5843 5844

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = 0x402F - aExp;
    if ( shiftCount <= 0 ) {
        if ( 0x403E < aExp ) {
P
Peter Maydell 已提交
5845
            float_raise(float_flag_invalid, status);
B
bellard 已提交
5846 5847 5848 5849 5850 5851 5852
            if (    ! aSign
                 || (    ( aExp == 0x7FFF )
                      && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
                    )
               ) {
                return LIT64( 0x7FFFFFFFFFFFFFFF );
            }
5853
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5854 5855 5856 5857 5858 5859
        }
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
    }
    else {
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
    }
P
Peter Maydell 已提交
5860
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
B
bellard 已提交
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the 64-bit two's complement integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic, except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
| the conversion overflows, the largest integer with the same sign as `a' is
| returned.
*----------------------------------------------------------------------------*/

5874
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
B
bellard 已提交
5875 5876
{
    flag aSign;
5877
    int32_t aExp, shiftCount;
5878
    uint64_t aSig0, aSig1;
5879
    int64_t z;
B
bellard 已提交
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
    shiftCount = aExp - 0x402F;
    if ( 0 < shiftCount ) {
        if ( 0x403E <= aExp ) {
            aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
            if (    ( a.high == LIT64( 0xC03E000000000000 ) )
                 && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
5892 5893 5894
                if (aSig1) {
                    status->float_exception_flags |= float_flag_inexact;
                }
B
bellard 已提交
5895 5896
            }
            else {
P
Peter Maydell 已提交
5897
                float_raise(float_flag_invalid, status);
B
bellard 已提交
5898 5899 5900 5901
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
                    return LIT64( 0x7FFFFFFFFFFFFFFF );
                }
            }
5902
            return (int64_t) LIT64( 0x8000000000000000 );
B
bellard 已提交
5903 5904
        }
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
5905
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
5906
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5907 5908 5909 5910 5911
        }
    }
    else {
        if ( aExp < 0x3FFF ) {
            if ( aExp | aSig0 | aSig1 ) {
5912
                status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5913 5914 5915 5916 5917
            }
            return 0;
        }
        z = aSig0>>( - shiftCount );
        if (    aSig1
5918
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
5919
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
5920 5921 5922 5923 5924 5925 5926
        }
    }
    if ( aSign ) z = - z;
    return z;

}

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point value
| `a' to the 64-bit unsigned integer format.  The conversion is
| performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic---which means in particular that the conversion is rounded
| according to the current rounding mode.  If `a' is a NaN, the largest
| positive integer is returned.  If the conversion overflows, the
| largest unsigned integer is returned.  If 'a' is negative, the value is
| rounded and zero is returned; negative values that do not round to zero
| will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint64_t float128_to_uint64(float128 a, float_status *status)
{
    flag aSign;
    int aExp;
    int shiftCount;
    uint64_t aSig0, aSig1;

    aSig0 = extractFloat128Frac0(a);
    aSig1 = extractFloat128Frac1(a);
    aExp = extractFloat128Exp(a);
    aSign = extractFloat128Sign(a);
    if (aSign && (aExp > 0x3FFE)) {
        float_raise(float_flag_invalid, status);
        if (float128_is_any_nan(a)) {
            return LIT64(0xFFFFFFFFFFFFFFFF);
        } else {
            return 0;
        }
    }
    if (aExp) {
        aSig0 |= LIT64(0x0001000000000000);
    }
    shiftCount = 0x402F - aExp;
    if (shiftCount <= 0) {
        if (0x403E < aExp) {
            float_raise(float_flag_invalid, status);
            return LIT64(0xFFFFFFFFFFFFFFFF);
        }
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
    } else {
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
    }
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
}

uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    signed char current_rounding_mode = status->float_rounding_mode;

    set_float_rounding_mode(float_round_to_zero, status);
    v = float128_to_uint64(a, status);
    set_float_rounding_mode(current_rounding_mode, status);

    return v;
}

B
bellard 已提交
5986 5987
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
| value `a' to the 32-bit unsigned integer format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic except that the conversion is always rounded toward zero.
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
| if the conversion overflows, the largest unsigned integer is returned.
| If 'a' is negative, the value is rounded and zero is returned; negative
| values that do not round to zero will raise the inexact exception.
*----------------------------------------------------------------------------*/

uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
{
    uint64_t v;
    uint32_t res;
    int old_exc_flags = get_float_exception_flags(status);

    v = float128_to_uint64_round_to_zero(a, status);
    if (v > 0xffffffff) {
        res = 0xffffffff;
    } else {
        return v;
    }
    set_float_exception_flags(old_exc_flags, status);
    float_raise(float_flag_invalid, status);
    return res;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
B
bellard 已提交
6016 6017 6018 6019 6020
| value `a' to the single-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6021
float32 float128_to_float32(float128 a, float_status *status)
B
bellard 已提交
6022 6023
{
    flag aSign;
6024
    int32_t aExp;
6025 6026
    uint64_t aSig0, aSig1;
    uint32_t zSig;
B
bellard 已提交
6027 6028 6029 6030 6031 6032 6033

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6034
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
        }
        return packFloat32( aSign, 0xFF, 0 );
    }
    aSig0 |= ( aSig1 != 0 );
    shift64RightJamming( aSig0, 18, &aSig0 );
    zSig = aSig0;
    if ( aExp || zSig ) {
        zSig |= 0x40000000;
        aExp -= 0x3F81;
    }
P
Peter Maydell 已提交
6045
    return roundAndPackFloat32(aSign, aExp, zSig, status);
B
bellard 已提交
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the double-precision floating-point format.  The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
| Arithmetic.
*----------------------------------------------------------------------------*/

6056
float64 float128_to_float64(float128 a, float_status *status)
B
bellard 已提交
6057 6058
{
    flag aSign;
6059
    int32_t aExp;
6060
    uint64_t aSig0, aSig1;
B
bellard 已提交
6061 6062 6063 6064 6065 6066 6067

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6068
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077
        }
        return packFloat64( aSign, 0x7FF, 0 );
    }
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    aSig0 |= ( aSig1 != 0 );
    if ( aExp || aSig0 ) {
        aSig0 |= LIT64( 0x4000000000000000 );
        aExp -= 0x3C01;
    }
P
Peter Maydell 已提交
6078
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
B
bellard 已提交
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088

}

/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point
| value `a' to the extended double-precision floating-point format.  The
| conversion is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6089
floatx80 float128_to_floatx80(float128 a, float_status *status)
B
bellard 已提交
6090 6091
{
    flag aSign;
6092
    int32_t aExp;
6093
    uint64_t aSig0, aSig1;
B
bellard 已提交
6094 6095 6096 6097 6098 6099 6100

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
6101
            return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
B
bellard 已提交
6102
        }
6103 6104
        return packFloatx80(aSign, floatx80_infinity_high,
                                   floatx80_infinity_low);
B
bellard 已提交
6105 6106 6107 6108 6109 6110 6111 6112 6113
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    else {
        aSig0 |= LIT64( 0x0001000000000000 );
    }
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6114
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
B
bellard 已提交
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124

}

/*----------------------------------------------------------------------------
| Rounds the quadruple-precision floating-point value `a' to an integer, and
| returns the result as a quadruple-precision floating-point value.  The
| operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6125
float128 float128_round_to_int(float128 a, float_status *status)
B
bellard 已提交
6126 6127
{
    flag aSign;
6128
    int32_t aExp;
6129
    uint64_t lastBitMask, roundBitsMask;
B
bellard 已提交
6130 6131 6132 6133 6134 6135 6136 6137
    float128 z;

    aExp = extractFloat128Exp( a );
    if ( 0x402F <= aExp ) {
        if ( 0x406F <= aExp ) {
            if (    ( aExp == 0x7FFF )
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
               ) {
P
Peter Maydell 已提交
6138
                return propagateFloat128NaN(a, a, status);
B
bellard 已提交
6139 6140 6141 6142 6143 6144 6145
            }
            return a;
        }
        lastBitMask = 1;
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
        roundBitsMask = lastBitMask - 1;
        z = a;
6146
        switch (status->float_rounding_mode) {
6147
        case float_round_nearest_even:
B
bellard 已提交
6148 6149 6150 6151 6152
            if ( lastBitMask ) {
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
            }
            else {
6153
                if ( (int64_t) z.low < 0 ) {
B
bellard 已提交
6154
                    ++z.high;
6155
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
B
bellard 已提交
6156 6157
                }
            }
6158
            break;
6159 6160 6161 6162 6163 6164 6165 6166 6167
        case float_round_ties_away:
            if (lastBitMask) {
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
            } else {
                if ((int64_t) z.low < 0) {
                    ++z.high;
                }
            }
            break;
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
            }
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
B
bellard 已提交
6178
            }
6179 6180 6181
            break;
        default:
            abort();
B
bellard 已提交
6182 6183 6184 6185 6186
        }
        z.low &= ~ roundBitsMask;
    }
    else {
        if ( aExp < 0x3FFF ) {
6187
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
6188
            status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6189
            aSign = extractFloat128Sign( a );
6190
            switch (status->float_rounding_mode) {
B
bellard 已提交
6191 6192 6193 6194 6195 6196 6197 6198
             case float_round_nearest_even:
                if (    ( aExp == 0x3FFE )
                     && (   extractFloat128Frac0( a )
                          | extractFloat128Frac1( a ) )
                   ) {
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
                }
                break;
6199 6200 6201 6202 6203
            case float_round_ties_away:
                if (aExp == 0x3FFE) {
                    return packFloat128(aSign, 0x3FFF, 0, 0);
                }
                break;
B
bellard 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
             case float_round_down:
                return
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
                    : packFloat128( 0, 0, 0, 0 );
             case float_round_up:
                return
                      aSign ? packFloat128( 1, 0, 0, 0 )
                    : packFloat128( 0, 0x3FFF, 0, 0 );
            }
            return packFloat128( aSign, 0, 0, 0 );
        }
        lastBitMask = 1;
        lastBitMask <<= 0x402F - aExp;
        roundBitsMask = lastBitMask - 1;
        z.low = 0;
        z.high = a.high;
6220
        switch (status->float_rounding_mode) {
6221
        case float_round_nearest_even:
B
bellard 已提交
6222 6223 6224 6225
            z.high += lastBitMask>>1;
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
                z.high &= ~ lastBitMask;
            }
6226
            break;
6227 6228 6229
        case float_round_ties_away:
            z.high += lastBitMask>>1;
            break;
6230 6231 6232 6233
        case float_round_to_zero:
            break;
        case float_round_up:
            if (!extractFloat128Sign(z)) {
B
bellard 已提交
6234 6235 6236
                z.high |= ( a.low != 0 );
                z.high += roundBitsMask;
            }
6237 6238 6239 6240 6241 6242 6243 6244 6245
            break;
        case float_round_down:
            if (extractFloat128Sign(z)) {
                z.high |= (a.low != 0);
                z.high += roundBitsMask;
            }
            break;
        default:
            abort();
B
bellard 已提交
6246 6247 6248 6249
        }
        z.high &= ~ roundBitsMask;
    }
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
6250
        status->float_exception_flags |= float_flag_inexact;
B
bellard 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
    }
    return z;

}

/*----------------------------------------------------------------------------
| Returns the result of adding the absolute values of the quadruple-precision
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
| before being returned.  `zSign' is ignored if the result is a NaN.
| The addition is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6264 6265
static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6266
{
6267
    int32_t aExp, bExp, zExp;
6268
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
6269
    int32_t expDiff;
B
bellard 已提交
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    if ( 0 < expDiff ) {
        if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6280 6281 6282
            if (aSig0 | aSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
            return a;
        }
        if ( bExp == 0 ) {
            --expDiff;
        }
        else {
            bSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
        zExp = aExp;
    }
    else if ( expDiff < 0 ) {
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6297 6298 6299
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        if ( aExp == 0 ) {
            ++expDiff;
        }
        else {
            aSig0 |= LIT64( 0x0001000000000000 );
        }
        shift128ExtraRightJamming(
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
        zExp = bExp;
    }
    else {
        if ( aExp == 0x7FFF ) {
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6315
                return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6316 6317 6318 6319
            }
            return a;
        }
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
6320
        if ( aExp == 0 ) {
6321
            if (status->flush_to_zero) {
6322
                if (zSig0 | zSig1) {
P
Peter Maydell 已提交
6323
                    float_raise(float_flag_output_denormal, status);
6324 6325 6326
                }
                return packFloat128(zSign, 0, 0, 0);
            }
6327 6328
            return packFloat128( zSign, 0, zSig0, zSig1 );
        }
B
bellard 已提交
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
        zSig2 = 0;
        zSig0 |= LIT64( 0x0002000000000000 );
        zExp = aExp;
        goto shiftRight1;
    }
    aSig0 |= LIT64( 0x0001000000000000 );
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    --zExp;
    if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
    ++zExp;
 shiftRight1:
    shift128ExtraRightJamming(
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 roundAndPack:
P
Peter Maydell 已提交
6343
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the absolute values of the quadruple-
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
| difference is negated before being returned.  `zSign' is ignored if the
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6355 6356
static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
                                float_status *status)
B
bellard 已提交
6357
{
6358
    int32_t aExp, bExp, zExp;
6359
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
6360
    int32_t expDiff;
B
bellard 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    expDiff = aExp - bExp;
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
    if ( 0 < expDiff ) goto aExpBigger;
    if ( expDiff < 0 ) goto bExpBigger;
    if ( aExp == 0x7FFF ) {
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
P
Peter Maydell 已提交
6375
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6376
        }
P
Peter Maydell 已提交
6377
        float_raise(float_flag_invalid, status);
6378
        return float128_default_nan(status);
B
bellard 已提交
6379 6380 6381 6382 6383 6384 6385 6386 6387
    }
    if ( aExp == 0 ) {
        aExp = 1;
        bExp = 1;
    }
    if ( bSig0 < aSig0 ) goto aBigger;
    if ( aSig0 < bSig0 ) goto bBigger;
    if ( bSig1 < aSig1 ) goto aBigger;
    if ( aSig1 < bSig1 ) goto bBigger;
6388 6389
    return packFloat128(status->float_rounding_mode == float_round_down,
                        0, 0, 0);
B
bellard 已提交
6390 6391
 bExpBigger:
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6392 6393 6394
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        ++expDiff;
    }
    else {
        aSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
    bSig0 |= LIT64( 0x4000000000000000 );
 bBigger:
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zExp = bExp;
    zSign ^= 1;
    goto normalizeRoundAndPack;
 aExpBigger:
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6412 6413 6414
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
        return a;
    }
    if ( bExp == 0 ) {
        --expDiff;
    }
    else {
        bSig0 |= LIT64( 0x4000000000000000 );
    }
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
    aSig0 |= LIT64( 0x4000000000000000 );
 aBigger:
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
    zExp = aExp;
 normalizeRoundAndPack:
    --zExp;
P
Peter Maydell 已提交
6430 6431
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
                                         status);
B
bellard 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440

}

/*----------------------------------------------------------------------------
| Returns the result of adding the quadruple-precision floating-point values
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6441
float128 float128_add(float128 a, float128 b, float_status *status)
B
bellard 已提交
6442 6443 6444 6445 6446 6447
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6448
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6449 6450
    }
    else {
P
Peter Maydell 已提交
6451
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
    }

}

/*----------------------------------------------------------------------------
| Returns the result of subtracting the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6462
float128 float128_sub(float128 a, float128 b, float_status *status)
B
bellard 已提交
6463 6464 6465 6466 6467 6468
{
    flag aSign, bSign;

    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign == bSign ) {
P
Peter Maydell 已提交
6469
        return subFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6470 6471
    }
    else {
P
Peter Maydell 已提交
6472
        return addFloat128Sigs(a, b, aSign, status);
B
bellard 已提交
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
    }

}

/*----------------------------------------------------------------------------
| Returns the result of multiplying the quadruple-precision floating-point
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6483
float128 float128_mul(float128 a, float128 b, float_status *status)
B
bellard 已提交
6484 6485
{
    flag aSign, bSign, zSign;
6486
    int32_t aExp, bExp, zExp;
6487
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
B
bellard 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6501
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6502 6503 6504 6505 6506
        }
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6507 6508 6509
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6510 6511
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6512
            float_raise(float_flag_invalid, status);
6513
            return float128_default_nan(status);
B
bellard 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    zExp = aExp + bExp - 0x4000;
    aSig0 |= LIT64( 0x0001000000000000 );
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
    zSig2 |= ( zSig3 != 0 );
    if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
        shift128ExtraRightJamming(
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
        ++zExp;
    }
P
Peter Maydell 已提交
6536
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545

}

/*----------------------------------------------------------------------------
| Returns the result of dividing the quadruple-precision floating-point value
| `a' by the corresponding value `b'.  The operation is performed according to
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6546
float128 float128_div(float128 a, float128 b, float_status *status)
B
bellard 已提交
6547 6548
{
    flag aSign, bSign, zSign;
6549
    int32_t aExp, bExp, zExp;
6550 6551
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    bSign = extractFloat128Sign( b );
    zSign = aSign ^ bSign;
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6563 6564 6565
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6566
        if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6567 6568 6569
            if (bSig0 | bSig1) {
                return propagateFloat128NaN(a, b, status);
            }
B
bellard 已提交
6570 6571 6572 6573 6574
            goto invalid;
        }
        return packFloat128( zSign, 0x7FFF, 0, 0 );
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6575 6576 6577
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6578 6579 6580 6581 6582 6583
        return packFloat128( zSign, 0, 0, 0 );
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6584
                float_raise(float_flag_invalid, status);
6585
                return float128_default_nan(status);
B
bellard 已提交
6586
            }
P
Peter Maydell 已提交
6587
            float_raise(float_flag_divbyzero, status);
B
bellard 已提交
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
            return packFloat128( zSign, 0x7FFF, 0, 0 );
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = aExp - bExp + 0x3FFD;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
        ++zExp;
    }
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
6608
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6609 6610 6611 6612 6613 6614 6615
        --zSig0;
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
    }
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
6616
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6617 6618 6619 6620 6621 6622
            --zSig1;
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6623
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632

}

/*----------------------------------------------------------------------------
| Returns the remainder of the quadruple-precision floating-point value `a'
| with respect to the corresponding value `b'.  The operation is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6633
float128 float128_rem(float128 a, float128 b, float_status *status)
B
bellard 已提交
6634
{
6635
    flag aSign, zSign;
6636
    int32_t aExp, bExp, expDiff;
6637 6638 6639
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
    int64_t sigMean0;
B
bellard 已提交
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    bSig1 = extractFloat128Frac1( b );
    bSig0 = extractFloat128Frac0( b );
    bExp = extractFloat128Exp( b );
    if ( aExp == 0x7FFF ) {
        if (    ( aSig0 | aSig1 )
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
P
Peter Maydell 已提交
6651
            return propagateFloat128NaN(a, b, status);
B
bellard 已提交
6652 6653 6654 6655
        }
        goto invalid;
    }
    if ( bExp == 0x7FFF ) {
P
Peter Maydell 已提交
6656 6657 6658
        if (bSig0 | bSig1) {
            return propagateFloat128NaN(a, b, status);
        }
B
bellard 已提交
6659 6660 6661 6662 6663
        return a;
    }
    if ( bExp == 0 ) {
        if ( ( bSig0 | bSig1 ) == 0 ) {
 invalid:
P
Peter Maydell 已提交
6664
            float_raise(float_flag_invalid, status);
6665
            return float128_default_nan(status);
B
bellard 已提交
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
        }
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    expDiff = aExp - bExp;
    if ( expDiff < -1 ) return a;
    shortShift128Left(
        aSig0 | LIT64( 0x0001000000000000 ),
        aSig1,
        15 - ( expDiff < 0 ),
        &aSig0,
        &aSig1
    );
    shortShift128Left(
        bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
    q = le128( bSig0, bSig1, aSig0, aSig1 );
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
    expDiff -= 64;
    while ( 0 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
        expDiff -= 61;
    }
    if ( -64 < expDiff ) {
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
        q = ( 4 < q ) ? q - 4 : 0;
        q >>= - expDiff;
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
        expDiff += 52;
        if ( expDiff < 0 ) {
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
        }
        else {
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
        }
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
    }
    else {
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
    }
    do {
        alternateASig0 = aSig0;
        alternateASig1 = aSig1;
        ++q;
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
6720
    } while ( 0 <= (int64_t) aSig0 );
B
bellard 已提交
6721
    add128(
6722
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
B
bellard 已提交
6723 6724 6725 6726 6727
    if (    ( sigMean0 < 0 )
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
        aSig0 = alternateASig0;
        aSig1 = alternateASig1;
    }
6728
    zSign = ( (int64_t) aSig0 < 0 );
B
bellard 已提交
6729
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
P
Peter Maydell 已提交
6730 6731
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
                                         status);
B
bellard 已提交
6732 6733 6734 6735 6736 6737 6738 6739
}

/*----------------------------------------------------------------------------
| Returns the square root of the quadruple-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6740
float128 float128_sqrt(float128 a, float_status *status)
B
bellard 已提交
6741 6742
{
    flag aSign;
6743
    int32_t aExp, zExp;
6744 6745
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
B
bellard 已提交
6746 6747 6748 6749 6750 6751

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
P
Peter Maydell 已提交
6752 6753 6754
        if (aSig0 | aSig1) {
            return propagateFloat128NaN(a, a, status);
        }
B
bellard 已提交
6755 6756 6757 6758 6759 6760
        if ( ! aSign ) return a;
        goto invalid;
    }
    if ( aSign ) {
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 invalid:
P
Peter Maydell 已提交
6761
        float_raise(float_flag_invalid, status);
6762
        return float128_default_nan(status);
B
bellard 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
    }
    if ( aExp == 0 ) {
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
    }
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
    aSig0 |= LIT64( 0x0001000000000000 );
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
    doubleZSig0 = zSig0<<1;
    mul64To128( zSig0, zSig0, &term0, &term1 );
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
6776
    while ( (int64_t) rem0 < 0 ) {
B
bellard 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
        --zSig0;
        doubleZSig0 -= 2;
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
    }
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
        if ( zSig1 == 0 ) zSig1 = 1;
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
        mul64To128( zSig1, zSig1, &term2, &term3 );
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
6788
        while ( (int64_t) rem1 < 0 ) {
B
bellard 已提交
6789 6790 6791 6792 6793 6794 6795 6796 6797
            --zSig1;
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
            term3 |= 1;
            term2 |= doubleZSig0;
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
        }
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
    }
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
P
Peter Maydell 已提交
6798
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
B
bellard 已提交
6799 6800 6801 6802 6803

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6804 6805
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  Otherwise, the comparison is performed
B
bellard 已提交
6806 6807 6808
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6809
int float128_eq(float128 a, float128 b, float_status *status)
B
bellard 已提交
6810 6811 6812 6813 6814 6815 6816
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6817
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6818 6819 6820 6821 6822 6823
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6824
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6825 6826 6827 6828 6829 6830
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6831 6832 6833
| or equal to the corresponding value `b', and 0 otherwise.  The invalid
| exception is raised if either operand is a NaN.  The comparison is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6834 6835
*----------------------------------------------------------------------------*/

6836
int float128_le(float128 a, float128 b, float_status *status)
B
bellard 已提交
6837 6838 6839 6840 6841 6842 6843 6844
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6845
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6846 6847 6848 6849 6850 6851 6852
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6853
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
6864 6865 6866
| the corresponding value `b', and 0 otherwise.  The invalid exception is
| raised if either operand is a NaN.  The comparison is performed according
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
B
bellard 已提交
6867 6868
*----------------------------------------------------------------------------*/

6869
int float128_lt(float128 a, float128 b, float_status *status)
B
bellard 已提交
6870 6871 6872 6873 6874 6875 6876 6877
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6878
        float_raise(float_flag_invalid, status);
B
bellard 已提交
6879 6880 6881 6882 6883 6884 6885
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6886
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6887 6888 6889 6890 6891 6892 6893 6894
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

6895 6896
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
6897 6898 6899
| be compared, and 0 otherwise.  The invalid exception is raised if either
| operand is a NaN. The comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
6900 6901
*----------------------------------------------------------------------------*/

6902
int float128_unordered(float128 a, float128 b, float_status *status)
6903 6904 6905 6906 6907 6908
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
P
Peter Maydell 已提交
6909
        float_raise(float_flag_invalid, status);
6910 6911 6912 6913 6914
        return 1;
    }
    return 0;
}

B
bellard 已提交
6915 6916
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is equal to
6917 6918 6919
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  The comparison is performed according to the IEC/IEEE Standard
| for Binary Floating-Point Arithmetic.
B
bellard 已提交
6920 6921
*----------------------------------------------------------------------------*/

6922
int float128_eq_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6923 6924 6925 6926 6927 6928 6929
{

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6930 6931
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6932
            float_raise(float_flag_invalid, status);
6933
        }
B
bellard 已提交
6934 6935 6936 6937 6938 6939
        return 0;
    }
    return
           ( a.low == b.low )
        && (    ( a.high == b.high )
             || (    ( a.low == 0 )
6940
                  && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
B
bellard 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
           );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
| cause an exception.  Otherwise, the comparison is performed according to the
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6952
int float128_le_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6953 6954 6955 6956 6957 6958 6959 6960
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6961 6962
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6963
            float_raise(float_flag_invalid, status);
B
bellard 已提交
6964 6965 6966 6967 6968 6969 6970 6971
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
6972
            || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
                 == 0 );
    }
    return
          aSign ? le128( b.high, b.low, a.high, a.low )
        : le128( a.high, a.low, b.high, b.low );

}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is less than
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
| Standard for Binary Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

6988
int float128_lt_quiet(float128 a, float128 b, float_status *status)
B
bellard 已提交
6989 6990 6991 6992 6993 6994 6995 6996
{
    flag aSign, bSign;

    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
6997 6998
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
6999
            float_raise(float_flag_invalid, status);
B
bellard 已提交
7000 7001 7002 7003 7004 7005 7006 7007
        }
        return 0;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        return
               aSign
7008
            && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
B
bellard 已提交
7009 7010 7011 7012 7013 7014 7015 7016
                 != 0 );
    }
    return
          aSign ? lt128( b.high, b.low, a.high, a.low )
        : lt128( a.high, a.low, b.high, b.low );

}

7017 7018 7019 7020 7021 7022 7023
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
| be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
| comparison is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/

7024
int float128_unordered_quiet(float128 a, float128 b, float_status *status)
7025 7026 7027 7028 7029 7030
{
    if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
              && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
         || (    ( extractFloat128Exp( b ) == 0x7FFF )
              && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
       ) {
7031 7032
        if (float128_is_signaling_nan(a, status)
         || float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7033
            float_raise(float_flag_invalid, status);
7034 7035 7036 7037 7038 7039
        }
        return 1;
    }
    return 0;
}

7040 7041
static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
                                            int is_quiet, float_status *status)
7042 7043 7044
{
    flag aSign, bSign;

7045 7046 7047 7048
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
        float_raise(float_flag_invalid, status);
        return float_relation_unordered;
    }
7049 7050 7051 7052 7053
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
          ( extractFloatx80Frac( a )<<1 ) ) ||
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
          ( extractFloatx80Frac( b )<<1 ) )) {
        if (!is_quiet ||
7054 7055
            floatx80_is_signaling_nan(a, status) ||
            floatx80_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7056
            float_raise(float_flag_invalid, status);
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
        }
        return float_relation_unordered;
    }
    aSign = extractFloatx80Sign( a );
    bSign = extractFloatx80Sign( b );
    if ( aSign != bSign ) {

        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
             ( ( a.low | b.low ) == 0 ) ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7080
int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
7081
{
P
Peter Maydell 已提交
7082
    return floatx80_compare_internal(a, b, 0, status);
7083 7084
}

7085
int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
7086
{
P
Peter Maydell 已提交
7087
    return floatx80_compare_internal(a, b, 1, status);
7088 7089
}

7090 7091
static inline int float128_compare_internal(float128 a, float128 b,
                                            int is_quiet, float_status *status)
B
blueswir1 已提交
7092 7093 7094 7095 7096 7097 7098 7099
{
    flag aSign, bSign;

    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
        if (!is_quiet ||
7100 7101
            float128_is_signaling_nan(a, status) ||
            float128_is_signaling_nan(b, status)) {
P
Peter Maydell 已提交
7102
            float_raise(float_flag_invalid, status);
B
blueswir1 已提交
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
        }
        return float_relation_unordered;
    }
    aSign = extractFloat128Sign( a );
    bSign = extractFloat128Sign( b );
    if ( aSign != bSign ) {
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
            /* zero case */
            return float_relation_equal;
        } else {
            return 1 - (2 * aSign);
        }
    } else {
        if (a.low == b.low && a.high == b.high) {
            return float_relation_equal;
        } else {
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
        }
    }
}

7124
int float128_compare(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7125
{
P
Peter Maydell 已提交
7126
    return float128_compare_internal(a, b, 0, status);
B
blueswir1 已提交
7127 7128
}

7129
int float128_compare_quiet(float128 a, float128 b, float_status *status)
B
blueswir1 已提交
7130
{
P
Peter Maydell 已提交
7131
    return float128_compare_internal(a, b, 1, status);
B
blueswir1 已提交
7132 7133
}

7134
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
P
pbrook 已提交
7135 7136
{
    flag aSign;
7137
    int32_t aExp;
7138
    uint64_t aSig;
P
pbrook 已提交
7139

7140 7141 7142 7143
    if (floatx80_invalid_encoding(a)) {
        float_raise(float_flag_invalid, status);
        return floatx80_default_nan(status);
    }
P
pbrook 已提交
7144 7145 7146 7147
    aSig = extractFloatx80Frac( a );
    aExp = extractFloatx80Exp( a );
    aSign = extractFloatx80Sign( a );

7148 7149
    if ( aExp == 0x7FFF ) {
        if ( aSig<<1 ) {
P
Peter Maydell 已提交
7150
            return propagateFloatx80NaN(a, a, status);
7151
        }
P
pbrook 已提交
7152 7153
        return a;
    }
7154

7155 7156 7157 7158 7159 7160
    if (aExp == 0) {
        if (aSig == 0) {
            return a;
        }
        aExp++;
    }
7161

7162 7163 7164 7165 7166 7167
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

P
pbrook 已提交
7168
    aExp += n;
7169 7170
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
                                         aSign, aExp, aSig, 0, status);
P
pbrook 已提交
7171 7172
}

7173
float128 float128_scalbn(float128 a, int n, float_status *status)
P
pbrook 已提交
7174 7175
{
    flag aSign;
7176
    int32_t aExp;
7177
    uint64_t aSig0, aSig1;
P
pbrook 已提交
7178 7179 7180 7181 7182 7183

    aSig1 = extractFloat128Frac1( a );
    aSig0 = extractFloat128Frac0( a );
    aExp = extractFloat128Exp( a );
    aSign = extractFloat128Sign( a );
    if ( aExp == 0x7FFF ) {
7184
        if ( aSig0 | aSig1 ) {
P
Peter Maydell 已提交
7185
            return propagateFloat128NaN(a, a, status);
7186
        }
P
pbrook 已提交
7187 7188
        return a;
    }
7189
    if (aExp != 0) {
7190
        aSig0 |= LIT64( 0x0001000000000000 );
7191
    } else if (aSig0 == 0 && aSig1 == 0) {
7192
        return a;
7193 7194 7195
    } else {
        aExp++;
    }
7196

7197 7198 7199 7200 7201 7202
    if (n > 0x10000) {
        n = 0x10000;
    } else if (n < -0x10000) {
        n = -0x10000;
    }

7203 7204
    aExp += n - 1;
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
P
Peter Maydell 已提交
7205
                                         , status);
P
pbrook 已提交
7206 7207

}