scrub.c 107.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
A
Arne Jansen 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

37
struct scrub_block;
38
struct scrub_ctx;
A
Arne Jansen 已提交
39

40 41 42 43 44 45 46 47 48
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
49 50 51 52 53 54

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
55
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59 60 61 62
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
63
struct scrub_page {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74 75 76 77 78
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
79
	u8			csum[BTRFS_CSUM_SIZE];
80 81

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
82 83 84 85
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88
	struct bio		*bio;
89
	blk_status_t		status;
A
Arne Jansen 已提交
90 91
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105
	int			page_count;
	atomic_t		outstanding_pages;
106
	refcount_t		refs; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108
	struct scrub_parity	*sparity;
109 110 111 112
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
113
		unsigned int	generation_error:1; /* also sets header_error */
114 115 116 117

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
118
	};
119
	struct btrfs_work	work;
120 121
};

122 123 124 125 126 127 128 129 130 131 132 133
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

134
	u64			stripe_len;
135

136
	refcount_t		refs;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

155
struct scrub_ctx {
156
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
157
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
158 159
	int			first_free;
	int			curr;
160 161
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
162 163 164 165 166
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
167
	int			readonly;
168
	int			pages_per_rd_bio;
169 170

	int			is_dev_replace;
171 172 173 174 175

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
176
	bool                    flush_all_writes;
177

A
Arne Jansen 已提交
178 179 180 181 182
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
183 184 185 186 187 188 189 190

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
191
	refcount_t              refs;
A
Arne Jansen 已提交
192 193
};

194 195 196 197
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
198
	u64			physical;
199 200 201 202
	u64			logical;
	struct btrfs_device	*dev;
};

203 204 205 206 207 208 209
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

210 211
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
212
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
213
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214
				     struct scrub_block *sblocks_for_recheck);
215
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 217
				struct scrub_block *sblock,
				int retry_failed_mirror);
218
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220
					     struct scrub_block *sblock_good);
221 222 223
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
224 225 226
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
227 228 229 230 231
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
232 233
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
234 235
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
236 237
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
238
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
239
		       u64 physical, struct btrfs_device *dev, u64 flags,
240 241
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
242
static void scrub_bio_end_io(struct bio *bio);
243 244
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
245 246 247 248 249 250 251 252
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
253
static void scrub_wr_bio_end_io(struct bio *bio);
254
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
255
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
257
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
258

259 260 261 262 263
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
264

265 266
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
267
	refcount_inc(&sctx->refs);
268 269 270 271 272 273 274
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
275
	scrub_put_ctx(sctx);
276 277
}

278
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279 280 281 282 283 284 285 286 287
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

288
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
289 290 291
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
292
}
293

294 295
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
296 297 298 299 300 301 302 303
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

304 305 306 307 308 309
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

329
	lockdep_assert_held(&locks_root->lock);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

345 346 347
	/*
	 * Insert new lock.
	 */
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

373
	lockdep_assert_held(&locks_root->lock);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
393
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
394 395 396 397 398 399 400 401 402 403 404 405 406
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
407 408
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
426
	struct btrfs_block_group *bg_cache;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
473
	struct btrfs_block_group *bg_cache;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

527
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528
{
529
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
530
		struct btrfs_ordered_sum *sum;
531
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
532 533 534 535 536 537
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

538
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
539 540 541
{
	int i;

542
	if (!sctx)
A
Arne Jansen 已提交
543 544
		return;

545
	/* this can happen when scrub is cancelled */
546 547
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 549

		for (i = 0; i < sbio->page_count; i++) {
550
			WARN_ON(!sbio->pagev[i]->page);
551 552 553 554 555
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

556
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
558 559 560 561 562 563

		if (!sbio)
			break;
		kfree(sbio);
	}

564
	kfree(sctx->wr_curr_bio);
565 566
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
567 568
}

569 570
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
571
	if (refcount_dec_and_test(&sctx->refs))
572 573 574
		scrub_free_ctx(sctx);
}

575 576
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
577
{
578
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
579 580
	int		i;

581
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582
	if (!sctx)
A
Arne Jansen 已提交
583
		goto nomem;
584
	refcount_set(&sctx->refs, 1);
585
	sctx->is_dev_replace = is_dev_replace;
586
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587
	sctx->curr = -1;
588
	sctx->fs_info = fs_info;
589
	INIT_LIST_HEAD(&sctx->csum_list);
590
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
591 592
		struct scrub_bio *sbio;

593
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
594 595
		if (!sbio)
			goto nomem;
596
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
597 598

		sbio->index = i;
599
		sbio->sctx = sctx;
600
		sbio->page_count = 0;
601 602
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
603

604
		if (i != SCRUB_BIOS_PER_SCTX - 1)
605
			sctx->bios[i]->next_free = i + 1;
606
		else
607 608 609
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
610 611
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
612 613 614 615 616 617
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
618

619 620 621
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
622
	if (is_dev_replace) {
623
		WARN_ON(!fs_info->dev_replace.tgtdev);
624
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626
		sctx->flush_all_writes = false;
627
	}
628

629
	return sctx;
A
Arne Jansen 已提交
630 631

nomem:
632
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
633 634 635
	return ERR_PTR(-ENOMEM);
}

636 637
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
638 639 640 641 642
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
643
	unsigned nofs_flag;
644 645
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
646
	struct scrub_warning *swarn = warn_ctx;
647
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 649 650
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
651
	struct btrfs_key key;
652 653 654 655

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
656
	local_root = btrfs_get_fs_root(fs_info, &root_key, true);
657 658 659 660
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}
661 662 663 664
	if (!btrfs_grab_fs_root(local_root)) {
		ret = -ENOENT;
		goto err;
	}
665

666 667 668
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
669 670 671 672 673
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
674
	if (ret) {
675
		btrfs_put_fs_root(local_root);
676 677 678 679 680 681 682 683 684 685 686
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

687 688 689 690 691 692
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
693
	ipath = init_ipath(4096, local_root, swarn->path);
694
	memalloc_nofs_restore(nofs_flag);
695
	if (IS_ERR(ipath)) {
696
		btrfs_put_fs_root(local_root);
697 698 699 700
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
701 702 703 704 705 706 707 708 709 710
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
711
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
712
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
713 714
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
715
				  swarn->physical,
J
Jeff Mahoney 已提交
716 717 718
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
719

720
	btrfs_put_fs_root(local_root);
721 722 723 724
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
725
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
726
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
727 728
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
729
			  swarn->physical,
J
Jeff Mahoney 已提交
730
			  root, inum, offset, ret);
731 732 733 734 735

	free_ipath(ipath);
	return 0;
}

736
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
737
{
738 739
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
740 741 742 743 744
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
745 746 747
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
748
	u64 ref_root;
749
	u32 item_size;
750
	u8 ref_level = 0;
751
	int ret;
752

753
	WARN_ON(sblock->page_count < 1);
754
	dev = sblock->pagev[0]->dev;
755
	fs_info = sblock->sctx->fs_info;
756

757
	path = btrfs_alloc_path();
758 759
	if (!path)
		return;
760

D
David Sterba 已提交
761
	swarn.physical = sblock->pagev[0]->physical;
762
	swarn.logical = sblock->pagev[0]->logical;
763
	swarn.errstr = errstr;
764
	swarn.dev = NULL;
765

766 767
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
768 769 770
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
771
	extent_item_pos = swarn.logical - found_key.objectid;
772 773 774 775 776 777
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

778
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
779
		do {
780 781 782
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
783
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
784
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
785
				errstr, swarn.logical,
786
				rcu_str_deref(dev->name),
D
David Sterba 已提交
787
				swarn.physical,
788 789 790 791
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
792
		btrfs_release_path(path);
793
	} else {
794
		btrfs_release_path(path);
795
		swarn.path = path;
796
		swarn.dev = dev;
797 798
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
799
					scrub_print_warning_inode, &swarn, false);
800 801 802 803 804 805
	}

out:
	btrfs_free_path(path);
}

806 807
static inline void scrub_get_recover(struct scrub_recover *recover)
{
808
	refcount_inc(&recover->refs);
809 810
}

811 812
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
813
{
814
	if (refcount_dec_and_test(&recover->refs)) {
815
		btrfs_bio_counter_dec(fs_info);
816
		btrfs_put_bbio(recover->bbio);
817 818 819 820
		kfree(recover);
	}
}

A
Arne Jansen 已提交
821
/*
822 823 824 825 826 827
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
828
 */
829
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
830
{
831
	struct scrub_ctx *sctx = sblock_to_check->sctx;
832
	struct btrfs_device *dev;
833 834 835 836 837 838 839 840 841 842 843
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
844
	bool full_stripe_locked;
845
	unsigned int nofs_flag;
846
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
847 848 849
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
850
	fs_info = sctx->fs_info;
851 852 853 854 855 856 857 858 859 860 861
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
862 863 864 865
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
866
			BTRFS_EXTENT_FLAG_DATA);
867 868
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
869

870 871 872 873 874 875 876 877 878 879
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
880 881 882 883 884 885 886 887 888
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
889
		memalloc_nofs_restore(nofs_flag);
890 891 892 893 894 895 896 897 898
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

928
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
929
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
930
	if (!sblocks_for_recheck) {
931 932 933 934 935
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
936
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
937
		goto out;
A
Arne Jansen 已提交
938 939
	}

940
	/* setup the context, map the logical blocks and alloc the pages */
941
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
942
	if (ret) {
943 944 945 946
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
947
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
948 949 950 951
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
952

953
	/* build and submit the bios for the failed mirror, check checksums */
954
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
955

956 957 958 959 960 961 962 963 964 965
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
966 967
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
968
		sblock_to_check->data_corrected = 1;
969
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
970

971 972
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
973
		goto out;
A
Arne Jansen 已提交
974 975
	}

976
	if (!sblock_bad->no_io_error_seen) {
977 978 979
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
980 981
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
982
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
983
	} else if (sblock_bad->checksum_error) {
984 985 986
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
987 988
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
989
		btrfs_dev_stat_inc_and_print(dev,
990
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
991
	} else if (sblock_bad->header_error) {
992 993 994
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
995 996 997
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
998
		if (sblock_bad->generation_error)
999
			btrfs_dev_stat_inc_and_print(dev,
1000 1001
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1002
			btrfs_dev_stat_inc_and_print(dev,
1003
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1004
	}
A
Arne Jansen 已提交
1005

1006 1007 1008 1009
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1010

1011 1012
	/*
	 * now build and submit the bios for the other mirrors, check
1013 1014
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1026
	for (mirror_index = 0; ;mirror_index++) {
1027
		struct scrub_block *sblock_other;
1028

1029 1030
		if (mirror_index == failed_mirror_index)
			continue;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1054 1055

		/* build and submit the bios, check checksums */
1056
		scrub_recheck_block(fs_info, sblock_other, 0);
1057 1058

		if (!sblock_other->header_error &&
1059 1060
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1061 1062
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1063
				goto corrected_error;
1064 1065
			} else {
				ret = scrub_repair_block_from_good_copy(
1066 1067 1068
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1069
			}
1070 1071
		}
	}
A
Arne Jansen 已提交
1072

1073 1074
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1075 1076 1077

	/*
	 * In case of I/O errors in the area that is supposed to be
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1090
	 * the final checksum succeeds. But this would be a rare
1091 1092 1093 1094 1095 1096 1097 1098
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1099
	 */
1100
	success = 1;
1101 1102
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1103
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1104
		struct scrub_block *sblock_other = NULL;
1105

1106 1107
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1108
			continue;
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1121 1122 1123 1124 1125 1126 1127 1128 1129
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1130 1131
				}
			}
1132 1133
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1134
		}
A
Arne Jansen 已提交
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1149
				atomic64_inc(
1150
					&fs_info->dev_replace.num_write_errors);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1161
		}
A
Arne Jansen 已提交
1162 1163
	}

1164
	if (success && !sctx->is_dev_replace) {
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1175
			scrub_recheck_block(fs_info, sblock_bad, 1);
1176
			if (!sblock_bad->header_error &&
1177 1178 1179 1180 1181 1182 1183
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1184 1185
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1186
			sblock_to_check->data_corrected = 1;
1187
			spin_unlock(&sctx->stat_lock);
1188 1189
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1190
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1191
		}
1192 1193
	} else {
did_not_correct_error:
1194 1195 1196
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1197 1198
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1199
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1200
	}
A
Arne Jansen 已提交
1201

1202 1203 1204 1205 1206 1207
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1208
			struct scrub_recover *recover;
1209 1210
			int page_index;

1211 1212 1213
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1214 1215
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1216
					scrub_put_recover(fs_info, recover);
1217 1218 1219
					sblock->pagev[page_index]->recover =
									NULL;
				}
1220 1221
				scrub_page_put(sblock->pagev[page_index]);
			}
1222 1223 1224
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1225

1226
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1227
	memalloc_nofs_restore(nofs_flag);
1228 1229
	if (ret < 0)
		return ret;
1230 1231
	return 0;
}
A
Arne Jansen 已提交
1232

1233
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1234
{
Z
Zhao Lei 已提交
1235 1236 1237 1238 1239
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1240 1241 1242
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1243 1244
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1245 1246 1247 1248 1249 1250 1251
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1252
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1273
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1274 1275
				     struct scrub_block *sblocks_for_recheck)
{
1276
	struct scrub_ctx *sctx = original_sblock->sctx;
1277
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1278 1279
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1280 1281 1282
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1283 1284 1285 1286 1287 1288
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1289
	int page_index = 0;
1290
	int mirror_index;
1291
	int nmirrors;
1292 1293 1294
	int ret;

	/*
1295
	 * note: the two members refs and outstanding_pages
1296 1297 1298 1299 1300
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1301 1302 1303
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1304

1305 1306 1307 1308
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1309
		btrfs_bio_counter_inc_blocked(fs_info);
1310
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1311
				logical, &mapped_length, &bbio);
1312
		if (ret || !bbio || mapped_length < sublen) {
1313
			btrfs_put_bbio(bbio);
1314
			btrfs_bio_counter_dec(fs_info);
1315 1316
			return -EIO;
		}
A
Arne Jansen 已提交
1317

1318 1319
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1320
			btrfs_put_bbio(bbio);
1321
			btrfs_bio_counter_dec(fs_info);
1322 1323 1324
			return -ENOMEM;
		}

1325
		refcount_set(&recover->refs, 1);
1326 1327 1328
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1329
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1330

1331
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1332

1333
		for (mirror_index = 0; mirror_index < nmirrors;
1334 1335 1336 1337 1338
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1339
			sblock->sctx = sctx;
1340

1341 1342 1343
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1344 1345 1346
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1347
				scrub_put_recover(fs_info, recover);
1348 1349
				return -ENOMEM;
			}
1350 1351
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1352 1353 1354
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1355
			page->logical = logical;
1356 1357 1358 1359 1360
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1361

Z
Zhao Lei 已提交
1362 1363 1364
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1365
						      mapped_length,
1366 1367
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1368 1369 1370 1371 1372 1373 1374
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1375 1376 1377 1378
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1379 1380
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1381
			sblock->page_count++;
1382 1383 1384
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1385 1386 1387

			scrub_get_recover(recover);
			page->recover = recover;
1388
		}
1389
		scrub_put_recover(fs_info, recover);
1390 1391 1392 1393 1394 1395
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1396 1397
}

1398
static void scrub_bio_wait_endio(struct bio *bio)
1399
{
1400
	complete(bio->bi_private);
1401 1402 1403 1404 1405 1406
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1407
	DECLARE_COMPLETION_ONSTACK(done);
1408
	int ret;
1409
	int mirror_num;
1410 1411 1412 1413 1414

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1415
	mirror_num = page->sblock->pagev[0]->mirror_num;
1416
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1417
				    page->recover->map_length,
1418
				    mirror_num, 0);
1419 1420 1421
	if (ret)
		return ret;

1422 1423
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1424 1425
}

L
Liu Bo 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1465 1466 1467 1468 1469 1470 1471
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1472
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1473 1474
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1475
{
1476
	int page_num;
I
Ilya Dryomov 已提交
1477

1478
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1479

L
Liu Bo 已提交
1480 1481 1482 1483
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1484 1485
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1486
		struct scrub_page *page = sblock->pagev[page_num];
1487

1488
		if (page->dev->bdev == NULL) {
1489 1490 1491 1492 1493
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1494
		WARN_ON(!page->page);
1495
		bio = btrfs_io_bio_alloc(1);
1496
		bio_set_dev(bio, page->dev->bdev);
1497

1498
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1499 1500
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1501

L
Liu Bo 已提交
1502 1503 1504
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1505
		}
1506

1507 1508
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1509

1510
	if (sblock->no_io_error_seen)
1511
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1512 1513
}

M
Miao Xie 已提交
1514 1515 1516 1517 1518 1519
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1520
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1521 1522 1523
	return !ret;
}

1524
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1525
{
1526 1527 1528
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1529

1530 1531 1532 1533
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1534 1535
}

1536
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1537
					     struct scrub_block *sblock_good)
1538 1539 1540
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1541

1542 1543
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1544

1545 1546
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1547
							   page_num, 1);
1548 1549
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1550
	}
1551 1552 1553 1554 1555 1556 1557 1558

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1559 1560
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1561
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1562

1563 1564
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1565 1566 1567 1568 1569
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1570
		if (!page_bad->dev->bdev) {
1571
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1572
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1573 1574 1575
			return -EIO;
		}

1576
		bio = btrfs_io_bio_alloc(1);
1577
		bio_set_dev(bio, page_bad->dev->bdev);
1578
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
D
David Sterba 已提交
1579
		bio->bi_opf = REQ_OP_WRITE;
1580 1581 1582 1583 1584

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1585
		}
1586

1587
		if (btrfsic_submit_bio_wait(bio)) {
1588 1589
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1590
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1591 1592 1593
			bio_put(bio);
			return -EIO;
		}
1594
		bio_put(bio);
A
Arne Jansen 已提交
1595 1596
	}

1597 1598 1599
	return 0;
}

1600 1601
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1602
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1603 1604
	int page_num;

1605 1606 1607 1608 1609 1610 1611
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1612 1613 1614 1615 1616
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1617
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1630
		clear_page(mapped_buffer);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1643
	mutex_lock(&sctx->wr_lock);
1644
again:
1645 1646
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1647
					      GFP_KERNEL);
1648 1649
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1650 1651
			return -ENOMEM;
		}
1652 1653
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1654
	}
1655
	sbio = sctx->wr_curr_bio;
1656 1657 1658 1659 1660
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1661
		sbio->dev = sctx->wr_tgtdev;
1662 1663
		bio = sbio->bio;
		if (!bio) {
1664
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1665 1666 1667 1668 1669
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1670
		bio_set_dev(bio, sbio->dev->bdev);
1671
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1672
		bio->bi_opf = REQ_OP_WRITE;
1673
		sbio->status = 0;
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1687
			mutex_unlock(&sctx->wr_lock);
1688 1689 1690 1691 1692 1693 1694 1695 1696
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1697
	if (sbio->page_count == sctx->pages_per_wr_bio)
1698
		scrub_wr_submit(sctx);
1699
	mutex_unlock(&sctx->wr_lock);
1700 1701 1702 1703 1704 1705 1706 1707

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1708
	if (!sctx->wr_curr_bio)
1709 1710
		return;

1711 1712
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1713
	WARN_ON(!sbio->bio->bi_disk);
1714 1715 1716 1717 1718
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1719
	btrfsic_submit_bio(sbio->bio);
1720 1721
}

1722
static void scrub_wr_bio_end_io(struct bio *bio)
1723 1724
{
	struct scrub_bio *sbio = bio->bi_private;
1725
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1726

1727
	sbio->status = bio->bi_status;
1728 1729
	sbio->bio = bio;

1730
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1731
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1732 1733 1734 1735 1736 1737 1738 1739 1740
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1741
	if (sbio->status) {
1742
		struct btrfs_dev_replace *dev_replace =
1743
			&sbio->sctx->fs_info->dev_replace;
1744 1745 1746 1747 1748

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1749
			atomic64_inc(&dev_replace->num_write_errors);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1762 1763 1764 1765
{
	u64 flags;
	int ret;

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1778 1779
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1791 1792

	return ret;
A
Arne Jansen 已提交
1793 1794
}

1795
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1796
{
1797
	struct scrub_ctx *sctx = sblock->sctx;
1798 1799
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1800
	u8 csum[BTRFS_CSUM_SIZE];
1801 1802 1803 1804 1805
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
	u64 len;
	int index;
A
Arne Jansen 已提交
1806

1807
	BUG_ON(sblock->page_count < 1);
1808
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1809 1810
		return 0;

1811 1812 1813
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1814 1815
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1816
	buffer = kmap_atomic(page);
1817

1818
	len = sctx->fs_info->sectorsize;
1819 1820 1821 1822
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1823
		crypto_shash_update(shash, buffer, l);
1824
		kunmap_atomic(buffer);
1825 1826 1827 1828 1829
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1830 1831
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1832
		buffer = kmap_atomic(page);
1833 1834
	}

1835
	crypto_shash_final(shash, csum);
1836
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1837
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1838

1839
	return sblock->checksum_error;
A
Arne Jansen 已提交
1840 1841
}

1842
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1843
{
1844
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1845
	struct btrfs_header *h;
1846
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1847
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1848 1849 1850 1851 1852 1853 1854 1855 1856
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
	u64 len;
	int index;

1857 1858 1859
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1860
	BUG_ON(sblock->page_count < 1);
1861
	page = sblock->pagev[0]->page;
1862
	mapped_buffer = kmap_atomic(page);
1863
	h = (struct btrfs_header *)mapped_buffer;
1864
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1865 1866 1867 1868 1869 1870

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1871
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1872
		sblock->header_error = 1;
A
Arne Jansen 已提交
1873

1874 1875 1876 1877
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1878

M
Miao Xie 已提交
1879
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1880
		sblock->header_error = 1;
A
Arne Jansen 已提交
1881 1882 1883

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1884
		sblock->header_error = 1;
A
Arne Jansen 已提交
1885

1886
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1887 1888 1889 1890 1891 1892
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1893
		crypto_shash_update(shash, p, l);
1894
		kunmap_atomic(mapped_buffer);
1895 1896 1897 1898 1899
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1900 1901
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1902
		mapped_buffer = kmap_atomic(page);
1903 1904 1905 1906
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1907
	crypto_shash_final(shash, calculated_csum);
1908
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1909
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1910

1911
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1912 1913
}

1914
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1915 1916
{
	struct btrfs_super_block *s;
1917
	struct scrub_ctx *sctx = sblock->sctx;
1918 1919
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1920 1921 1922 1923 1924 1925
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
1926 1927
	int fail_gen = 0;
	int fail_cor = 0;
1928 1929
	u64 len;
	int index;
A
Arne Jansen 已提交
1930

1931 1932 1933
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1934
	BUG_ON(sblock->page_count < 1);
1935
	page = sblock->pagev[0]->page;
1936
	mapped_buffer = kmap_atomic(page);
1937
	s = (struct btrfs_super_block *)mapped_buffer;
1938
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1939

1940
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1941
		++fail_cor;
A
Arne Jansen 已提交
1942

1943
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1944
		++fail_gen;
A
Arne Jansen 已提交
1945

M
Miao Xie 已提交
1946
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1947
		++fail_cor;
A
Arne Jansen 已提交
1948

1949 1950 1951 1952 1953 1954 1955
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1956
		crypto_shash_update(shash, p, l);
1957
		kunmap_atomic(mapped_buffer);
1958 1959 1960 1961 1962
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1963 1964
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1965
		mapped_buffer = kmap_atomic(page);
1966 1967 1968 1969
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1970
	crypto_shash_final(shash, calculated_csum);
1971
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1972
		++fail_cor;
A
Arne Jansen 已提交
1973

1974
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1975 1976 1977 1978 1979
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1980 1981 1982
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1983
		if (fail_cor)
1984
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1985 1986
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1987
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1988
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1989 1990
	}

1991
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1992 1993
}

1994 1995
static void scrub_block_get(struct scrub_block *sblock)
{
1996
	refcount_inc(&sblock->refs);
1997 1998 1999 2000
}

static void scrub_block_put(struct scrub_block *sblock)
{
2001
	if (refcount_dec_and_test(&sblock->refs)) {
2002 2003
		int i;

2004 2005 2006
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2007
		for (i = 0; i < sblock->page_count; i++)
2008
			scrub_page_put(sblock->pagev[i]);
2009 2010 2011 2012
		kfree(sblock);
	}
}

2013 2014
static void scrub_page_get(struct scrub_page *spage)
{
2015
	atomic_inc(&spage->refs);
2016 2017 2018 2019
}

static void scrub_page_put(struct scrub_page *spage)
{
2020
	if (atomic_dec_and_test(&spage->refs)) {
2021 2022 2023 2024 2025 2026
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2027
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2028 2029 2030
{
	struct scrub_bio *sbio;

2031
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2032
		return;
A
Arne Jansen 已提交
2033

2034 2035
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2036
	scrub_pending_bio_inc(sctx);
2037
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2038 2039
}

2040 2041
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2042
{
2043
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2044
	struct scrub_bio *sbio;
2045
	int ret;
A
Arne Jansen 已提交
2046 2047 2048 2049 2050

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2051 2052 2053 2054 2055 2056 2057 2058
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2059
		} else {
2060 2061
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2062 2063
		}
	}
2064
	sbio = sctx->bios[sctx->curr];
2065
	if (sbio->page_count == 0) {
2066 2067
		struct bio *bio;

2068 2069
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2070
		sbio->dev = spage->dev;
2071 2072
		bio = sbio->bio;
		if (!bio) {
2073
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2074 2075
			sbio->bio = bio;
		}
2076 2077 2078

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2079
		bio_set_dev(bio, sbio->dev->bdev);
2080
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2081
		bio->bi_opf = REQ_OP_READ;
2082
		sbio->status = 0;
2083 2084 2085
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2086 2087
		   spage->logical ||
		   sbio->dev != spage->dev) {
2088
		scrub_submit(sctx);
A
Arne Jansen 已提交
2089 2090
		goto again;
	}
2091

2092 2093 2094 2095 2096 2097 2098 2099
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2100
		scrub_submit(sctx);
2101 2102 2103
		goto again;
	}

2104
	scrub_block_get(sblock); /* one for the page added to the bio */
2105 2106
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2107
	if (sbio->page_count == sctx->pages_per_rd_bio)
2108
		scrub_submit(sctx);
2109 2110 2111 2112

	return 0;
}

2113
static void scrub_missing_raid56_end_io(struct bio *bio)
2114 2115
{
	struct scrub_block *sblock = bio->bi_private;
2116
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2117

2118
	if (bio->bi_status)
2119 2120
		sblock->no_io_error_seen = 0;

2121 2122
	bio_put(bio);

2123 2124 2125 2126 2127 2128 2129
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2130
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2131 2132 2133 2134 2135 2136
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2137
	if (sblock->no_io_error_seen)
2138
		scrub_recheck_block_checksum(sblock);
2139 2140 2141 2142 2143

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2144
		btrfs_err_rl_in_rcu(fs_info,
2145
			"IO error rebuilding logical %llu for dev %s",
2146 2147 2148 2149 2150
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2151
		btrfs_err_rl_in_rcu(fs_info,
2152
			"failed to rebuild valid logical %llu for dev %s",
2153 2154 2155 2156 2157
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2158
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2159
		mutex_lock(&sctx->wr_lock);
2160
		scrub_wr_submit(sctx);
2161
		mutex_unlock(&sctx->wr_lock);
2162 2163
	}

2164
	scrub_block_put(sblock);
2165 2166 2167 2168 2169 2170
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2171
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2172 2173
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2174
	struct btrfs_bio *bbio = NULL;
2175 2176 2177 2178 2179
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2180
	btrfs_bio_counter_inc_blocked(fs_info);
2181
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2182
			&length, &bbio);
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2197
	bio = btrfs_io_bio_alloc(0);
2198 2199 2200 2201
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2202
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2203 2204 2205 2206 2207 2208 2209 2210 2211
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2212
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2213 2214 2215 2216 2217 2218 2219 2220
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2221
	btrfs_bio_counter_dec(fs_info);
2222 2223 2224 2225 2226 2227
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2228
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2229
		       u64 physical, struct btrfs_device *dev, u64 flags,
2230 2231
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2232 2233 2234 2235
{
	struct scrub_block *sblock;
	int index;

2236
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2237
	if (!sblock) {
2238 2239 2240
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2241
		return -ENOMEM;
A
Arne Jansen 已提交
2242
	}
2243

2244 2245
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2246
	refcount_set(&sblock->refs, 1);
2247
	sblock->sctx = sctx;
2248 2249 2250
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2251
		struct scrub_page *spage;
2252 2253
		u64 l = min_t(u64, len, PAGE_SIZE);

2254
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2255 2256
		if (!spage) {
leave_nomem:
2257 2258 2259
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2260
			scrub_block_put(sblock);
2261 2262
			return -ENOMEM;
		}
2263 2264 2265
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2266
		spage->sblock = sblock;
2267
		spage->dev = dev;
2268 2269 2270 2271
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2272
		spage->physical_for_dev_replace = physical_for_dev_replace;
2273 2274 2275
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2276
			memcpy(spage->csum, csum, sctx->csum_size);
2277 2278 2279 2280
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2281
		spage->page = alloc_page(GFP_KERNEL);
2282 2283
		if (!spage->page)
			goto leave_nomem;
2284 2285 2286
		len -= l;
		logical += l;
		physical += l;
2287
		physical_for_dev_replace += l;
2288 2289
	}

2290
	WARN_ON(sblock->page_count == 0);
2291
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2292 2293 2294 2295 2296 2297 2298 2299 2300
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2301

2302 2303 2304 2305 2306
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2307
		}
A
Arne Jansen 已提交
2308

2309 2310 2311
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2312

2313 2314
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2315 2316 2317
	return 0;
}

2318
static void scrub_bio_end_io(struct bio *bio)
2319 2320
{
	struct scrub_bio *sbio = bio->bi_private;
2321
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2322

2323
	sbio->status = bio->bi_status;
2324 2325
	sbio->bio = bio;

2326
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2327 2328 2329 2330 2331
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2332
	struct scrub_ctx *sctx = sbio->sctx;
2333 2334
	int i;

2335
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2336
	if (sbio->status) {
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2357 2358 2359 2360
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2361

2362
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2363
		mutex_lock(&sctx->wr_lock);
2364
		scrub_wr_submit(sctx);
2365
		mutex_unlock(&sctx->wr_lock);
2366 2367
	}

2368
	scrub_pending_bio_dec(sctx);
2369 2370
}

2371 2372 2373 2374
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2375
	u64 offset;
2376 2377
	u64 nsectors64;
	u32 nsectors;
2378
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2379 2380 2381 2382 2383 2384 2385

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2386 2387
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2388 2389 2390 2391
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2414 2415
static void scrub_block_complete(struct scrub_block *sblock)
{
2416 2417
	int corrupted = 0;

2418
	if (!sblock->no_io_error_seen) {
2419
		corrupted = 1;
2420
		scrub_handle_errored_block(sblock);
2421 2422 2423 2424 2425 2426
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2427 2428
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2429 2430
			scrub_write_block_to_dev_replace(sblock);
	}
2431 2432 2433 2434 2435 2436 2437 2438 2439

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2440 2441
}

2442
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2443 2444
{
	struct btrfs_ordered_sum *sum = NULL;
2445
	unsigned long index;
A
Arne Jansen 已提交
2446 2447
	unsigned long num_sectors;

2448 2449
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2450 2451 2452 2453 2454 2455
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2456
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2457 2458 2459 2460 2461 2462 2463
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2464 2465 2466
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2467
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2468
	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2469
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2470 2471 2472
		list_del(&sum->list);
		kfree(sum);
	}
2473
	return 1;
A
Arne Jansen 已提交
2474 2475 2476
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2477 2478
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2479
			u64 physical, struct btrfs_device *dev, u64 flags,
2480
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2481 2482 2483
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2484 2485 2486
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2487 2488 2489 2490
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2491 2492 2493 2494
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2495
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2496 2497 2498 2499
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2500 2501 2502 2503
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2504
	} else {
2505
		blocksize = sctx->fs_info->sectorsize;
2506
		WARN_ON(1);
2507
	}
A
Arne Jansen 已提交
2508 2509

	while (len) {
2510
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2511 2512 2513 2514
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2515
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2516
			if (have_csum == 0)
2517
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2518
		}
2519
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2520 2521
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2522 2523 2524 2525 2526
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2527
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2528 2529 2530 2531
	}
	return 0;
}

2532 2533 2534 2535 2536 2537 2538 2539 2540
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2541
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2542 2543 2544 2545 2546 2547 2548 2549 2550
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2551
	refcount_set(&sblock->refs, 1);
2552 2553 2554 2555 2556 2557 2558 2559 2560
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2561
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2591
		spage->page = alloc_page(GFP_KERNEL);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2626
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2627 2628 2629 2630
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2631
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2632
		blocksize = sparity->stripe_len;
2633
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2634
		blocksize = sparity->stripe_len;
2635
	} else {
2636
		blocksize = sctx->fs_info->sectorsize;
2637 2638 2639 2640 2641 2642 2643 2644 2645
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2646
			have_csum = scrub_find_csum(sctx, logical, csum);
2647 2648 2649 2650 2651 2652 2653 2654
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2655
skip:
2656 2657 2658 2659 2660 2661 2662
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2663 2664 2665 2666 2667 2668 2669 2670
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2671 2672
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2673 2674 2675 2676 2677
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2678 2679
	u32 stripe_index;
	u32 rot;
2680
	const int data_stripes = nr_data_stripes(map);
2681

2682
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2683 2684 2685
	if (stripe_start)
		*stripe_start = last_offset;

2686
	*offset = last_offset;
2687
	for (i = 0; i < data_stripes; i++) {
2688 2689
		*offset = last_offset + i * map->stripe_len;

2690
		stripe_nr = div64_u64(*offset, map->stripe_len);
2691
		stripe_nr = div_u64(stripe_nr, data_stripes);
2692 2693

		/* Work out the disk rotation on this stripe-set */
2694
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2695 2696
		/* calculate which stripe this data locates */
		rot += i;
2697
		stripe_index = rot % map->num_stripes;
2698 2699 2700 2701 2702 2703 2704 2705 2706
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2739
static void scrub_parity_bio_endio(struct bio *bio)
2740 2741
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2742
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2743

2744
	if (bio->bi_status)
2745 2746 2747 2748
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2749

2750 2751
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2752
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2753 2754 2755 2756 2757
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2758
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2769
	length = sparity->logic_end - sparity->logic_start;
2770 2771

	btrfs_bio_counter_inc_blocked(fs_info);
2772
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2773
			       &length, &bbio);
2774
	if (ret || !bbio || !bbio->raid_map)
2775 2776
		goto bbio_out;

2777
	bio = btrfs_io_bio_alloc(0);
2778 2779 2780 2781
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2782
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2783
					      length, sparity->scrub_dev,
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2796
	btrfs_bio_counter_dec(fs_info);
2797
	btrfs_put_bbio(bbio);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2809
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2810 2811 2812 2813
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2814
	refcount_inc(&sparity->refs);
2815 2816 2817 2818
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2819
	if (!refcount_dec_and_test(&sparity->refs))
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2832
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2833 2834 2835
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2836
	struct btrfs_bio *bbio = NULL;
2837 2838 2839 2840 2841 2842 2843 2844 2845
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2846
	u64 mapped_length;
2847 2848 2849 2850 2851 2852 2853
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2854
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2871
	refcount_set(&sparity->refs, 1);
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2920 2921 2922 2923
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2924
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2925
				bytes = fs_info->nodesize;
2926 2927 2928 2929 2930 2931
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2932
			if (key.objectid >= logic_end) {
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2945 2946 2947 2948
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2949 2950
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2951
					  key.objectid, logic_start);
2952 2953 2954
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2974
			mapped_length = extent_len;
2975
			bbio = NULL;
2976 2977 2978
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3005 3006 3007

			scrub_free_csums(sctx);

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3039
						logic_end - logic_start);
3040 3041
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3042
	mutex_lock(&sctx->wr_lock);
3043
	scrub_wr_submit(sctx);
3044
	mutex_unlock(&sctx->wr_lock);
3045 3046 3047 3048 3049

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3050
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3051 3052
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3053
					   int num, u64 base, u64 length)
A
Arne Jansen 已提交
3054
{
3055
	struct btrfs_path *path, *ppath;
3056
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3057 3058 3059
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3060
	struct blk_plug plug;
A
Arne Jansen 已提交
3061 3062 3063 3064 3065 3066 3067
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3068
	u64 logic_end;
3069
	u64 physical_end;
A
Arne Jansen 已提交
3070
	u64 generation;
3071
	int mirror_num;
A
Arne Jansen 已提交
3072 3073
	struct reada_control *reada1;
	struct reada_control *reada2;
3074
	struct btrfs_key key;
A
Arne Jansen 已提交
3075
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3076 3077
	u64 increment = map->stripe_len;
	u64 offset;
3078 3079 3080
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3081 3082
	u64 stripe_logical;
	u64 stripe_end;
3083 3084
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3085
	int stop_loop = 0;
D
David Woodhouse 已提交
3086

3087
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3088
	offset = 0;
3089
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3090 3091 3092
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3093
		mirror_num = 1;
A
Arne Jansen 已提交
3094 3095 3096 3097
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3098
		mirror_num = num % map->sub_stripes + 1;
3099
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3100
		increment = map->stripe_len;
3101
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3102 3103
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3104
		mirror_num = num % map->num_stripes + 1;
3105
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3106
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3107 3108
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3109 3110
	} else {
		increment = map->stripe_len;
3111
		mirror_num = 1;
A
Arne Jansen 已提交
3112 3113 3114 3115 3116 3117
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3118 3119
	ppath = btrfs_alloc_path();
	if (!ppath) {
3120
		btrfs_free_path(path);
3121 3122 3123
		return -ENOMEM;
	}

3124 3125 3126 3127 3128
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3129 3130 3131
	path->search_commit_root = 1;
	path->skip_locking = 1;

3132 3133
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3134
	/*
A
Arne Jansen 已提交
3135 3136 3137
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3138 3139
	 */
	logical = base + offset;
3140
	physical_end = physical + nstripes * map->stripe_len;
3141
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3142
		get_raid56_logic_offset(physical_end, num,
3143
					map, &logic_end, NULL);
3144 3145 3146 3147
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3148
	wait_event(sctx->list_wait,
3149
		   atomic_read(&sctx->bios_in_flight) == 0);
3150
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3151 3152

	/* FIXME it might be better to start readahead at commit root */
3153 3154 3155
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3156
	key_end.objectid = logic_end;
3157 3158
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3159
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3160

3161 3162 3163
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3164 3165
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3166
	key_end.offset = logic_end;
3167
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3168 3169 3170 3171 3172 3173

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3174 3175 3176 3177 3178

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3179
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3180 3181 3182 3183 3184

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3185
	while (physical < physical_end) {
A
Arne Jansen 已提交
3186 3187 3188 3189
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3190
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3191 3192 3193 3194 3195 3196 3197 3198
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3199
			sctx->flush_all_writes = true;
3200
			scrub_submit(sctx);
3201
			mutex_lock(&sctx->wr_lock);
3202
			scrub_wr_submit(sctx);
3203
			mutex_unlock(&sctx->wr_lock);
3204
			wait_event(sctx->list_wait,
3205
				   atomic_read(&sctx->bios_in_flight) == 0);
3206
			sctx->flush_all_writes = false;
3207
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3208 3209
		}

3210 3211 3212 3213 3214 3215
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3216
				/* it is parity strip */
3217
				stripe_logical += base;
3218
				stripe_end = stripe_logical + increment;
3219 3220 3221 3222 3223 3224 3225 3226 3227
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3228 3229 3230 3231
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3232
		key.objectid = logical;
L
Liu Bo 已提交
3233
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3234 3235 3236 3237

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3238

3239
		if (ret > 0) {
3240
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3241 3242
			if (ret < 0)
				goto out;
3243 3244 3245 3246 3247 3248 3249 3250 3251
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3252 3253
		}

L
Liu Bo 已提交
3254
		stop_loop = 0;
A
Arne Jansen 已提交
3255
		while (1) {
3256 3257
			u64 bytes;

A
Arne Jansen 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3267
				stop_loop = 1;
A
Arne Jansen 已提交
3268 3269 3270 3271
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3272 3273 3274 3275
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3276
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3277
				bytes = fs_info->nodesize;
3278 3279 3280 3281
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3282 3283
				goto next;

L
Liu Bo 已提交
3284 3285 3286 3287 3288 3289
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3290 3291 3292 3293 3294 3295

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3296 3297 3298 3299
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3300
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3301
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3302
				       key.objectid, logical);
3303 3304 3305
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3306 3307 3308
				goto next;
			}

L
Liu Bo 已提交
3309 3310 3311 3312
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3313 3314 3315
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3316 3317 3318
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3319
			}
L
Liu Bo 已提交
3320
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3321
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3322 3323
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3324 3325
			}

L
Liu Bo 已提交
3326
			extent_physical = extent_logical - logical + physical;
3327 3328
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3329
			if (sctx->is_dev_replace)
3330 3331 3332 3333
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3334

3335 3336 3337 3338 3339
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3340 3341 3342
			if (ret)
				goto out;

L
Liu Bo 已提交
3343
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3344 3345
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3346
					   extent_logical - logical + physical);
3347 3348 3349

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3350 3351 3352
			if (ret)
				goto out;

L
Liu Bo 已提交
3353 3354
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3355
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3356 3357 3358 3359
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3370
								increment;
3371 3372 3373 3374 3375 3376 3377 3378
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3379 3380 3381 3382
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3383 3384 3385 3386 3387
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3388
				if (physical >= physical_end) {
L
Liu Bo 已提交
3389 3390 3391 3392
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3393 3394 3395
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3396
		btrfs_release_path(path);
3397
skip:
A
Arne Jansen 已提交
3398 3399
		logical += increment;
		physical += map->stripe_len;
3400
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3401 3402 3403 3404 3405
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3406
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3407 3408
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3409
	}
3410
out:
A
Arne Jansen 已提交
3411
	/* push queued extents */
3412
	scrub_submit(sctx);
3413
	mutex_lock(&sctx->wr_lock);
3414
	scrub_wr_submit(sctx);
3415
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3416

3417
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3418
	btrfs_free_path(path);
3419
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3420 3421 3422
	return ret < 0 ? ret : 0;
}

3423
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3424 3425
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3426
					  u64 dev_offset,
3427
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3428
{
3429
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3430
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3431 3432 3433
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3434
	int ret = 0;
A
Arne Jansen 已提交
3435

3436 3437 3438
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3452

3453
	map = em->map_lookup;
A
Arne Jansen 已提交
3454 3455 3456 3457 3458 3459 3460
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3461
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3462
		    map->stripes[i].physical == dev_offset) {
3463
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3464
					   chunk_offset, length);
A
Arne Jansen 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3476
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3477
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3478 3479 3480
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3481 3482
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3483 3484
	u64 length;
	u64 chunk_offset;
3485
	int ret = 0;
3486
	int ro_set;
A
Arne Jansen 已提交
3487 3488 3489 3490
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3491
	struct btrfs_block_group *cache;
3492
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3493 3494 3495 3496 3497

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3498
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3499 3500 3501
	path->search_commit_root = 1;
	path->skip_locking = 1;

3502
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3503 3504 3505 3506 3507 3508
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3509 3510 3511 3512 3513
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3514 3515 3516 3517
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3518
					break;
3519 3520 3521
				}
			} else {
				ret = 0;
3522 3523
			}
		}
A
Arne Jansen 已提交
3524 3525 3526 3527 3528 3529

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3530
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3531 3532
			break;

3533
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3545 3546
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3547 3548 3549 3550 3551 3552 3553 3554

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3555 3556 3557 3558 3559 3560

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3561 3562 3563 3564 3565 3566 3567 3568 3569
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3600
		 */
3601
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3602 3603
		if (ret == 0) {
			ro_set = 1;
3604
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3605 3606 3607
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3608
			 * It is not a problem for scrub, because
3609 3610 3611 3612 3613
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3614
			btrfs_warn(fs_info,
3615
				   "failed setting block group ro: %d", ret);
3616
			btrfs_put_block_group(cache);
3617
			scrub_pause_off(fs_info);
3618 3619 3620
			break;
		}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3633
		down_write(&dev_replace->rwsem);
3634 3635 3636
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3637 3638
		up_write(&dev_replace->rwsem);

3639
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3640
				  found_key.offset, cache);
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3652
		sctx->flush_all_writes = true;
3653
		scrub_submit(sctx);
3654
		mutex_lock(&sctx->wr_lock);
3655
		scrub_wr_submit(sctx);
3656
		mutex_unlock(&sctx->wr_lock);
3657 3658 3659

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3660 3661

		scrub_pause_on(fs_info);
3662 3663 3664 3665 3666 3667

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3668 3669
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3670
		sctx->flush_all_writes = false;
3671

3672
		scrub_pause_off(fs_info);
3673

3674
		down_write(&dev_replace->rwsem);
3675 3676
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3677
		up_write(&dev_replace->rwsem);
3678

3679
		if (ro_set)
3680
			btrfs_dec_block_group_ro(cache);
3681

3682 3683 3684 3685 3686 3687 3688 3689 3690
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3691
		    cache->used == 0) {
3692
			spin_unlock(&cache->lock);
3693 3694 3695 3696 3697
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3698 3699 3700 3701
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3702 3703 3704
		btrfs_put_block_group(cache);
		if (ret)
			break;
3705
		if (sctx->is_dev_replace &&
3706
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3707 3708 3709 3710 3711 3712 3713
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3714
skip:
A
Arne Jansen 已提交
3715
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3716
		btrfs_release_path(path);
A
Arne Jansen 已提交
3717 3718 3719
	}

	btrfs_free_path(path);
3720

3721
	return ret;
A
Arne Jansen 已提交
3722 3723
}

3724 3725
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3726 3727 3728 3729 3730
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3731
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3732

3733
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3734 3735
		return -EIO;

3736
	/* Seed devices of a new filesystem has their own generation. */
3737
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3738 3739
		gen = scrub_dev->generation;
	else
3740
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3741 3742 3743

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3744 3745
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3746 3747
			break;

3748
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3749
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3750
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3751 3752 3753
		if (ret)
			return ret;
	}
3754
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3755 3756 3757 3758 3759 3760 3761

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3762 3763
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3764
{
3765
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3766
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3767

3768 3769
	lockdep_assert_held(&fs_info->scrub_lock);

3770
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3771
		ASSERT(fs_info->scrub_workers == NULL);
3772 3773
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
3774 3775 3776
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3777
		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3778
		fs_info->scrub_wr_completion_workers =
3779
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3780
					      max_active, 2);
3781 3782 3783
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3784
		ASSERT(fs_info->scrub_parity_workers == NULL);
3785
		fs_info->scrub_parity_workers =
3786
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3787
					      max_active, 2);
3788 3789
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
3790 3791 3792 3793

		refcount_set(&fs_info->scrub_workers_refcnt, 1);
	} else {
		refcount_inc(&fs_info->scrub_workers_refcnt);
A
Arne Jansen 已提交
3794
	}
3795 3796 3797 3798 3799 3800 3801 3802
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3803 3804
}

3805 3806
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3807
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3808
{
3809
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3810 3811
	int ret;
	struct btrfs_device *dev;
3812
	unsigned int nofs_flag;
3813 3814 3815
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
A
Arne Jansen 已提交
3816

3817
	if (btrfs_fs_closing(fs_info))
3818
		return -EAGAIN;
A
Arne Jansen 已提交
3819

3820
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3821 3822 3823 3824 3825
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3826 3827
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3828 3829
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3830 3831 3832
		return -EINVAL;
	}

3833
	if (fs_info->sectorsize != PAGE_SIZE) {
3834
		/* not supported for data w/o checksums */
3835
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3836
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3837
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3838 3839 3840
		return -EINVAL;
	}

3841
	if (fs_info->nodesize >
3842
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3843
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3844 3845 3846 3847
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3848 3849
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3850
		       fs_info->nodesize,
3851
		       SCRUB_MAX_PAGES_PER_BLOCK,
3852
		       fs_info->sectorsize,
3853 3854 3855 3856
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

3857 3858 3859 3860
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3861

3862
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3863
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3864 3865
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3866
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3867 3868
		ret = -ENODEV;
		goto out_free_ctx;
A
Arne Jansen 已提交
3869 3870
	}

3871 3872
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3873
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874 3875
		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
				rcu_str_deref(dev->name));
3876 3877
		ret = -EROFS;
		goto out_free_ctx;
3878 3879
	}

3880
	mutex_lock(&fs_info->scrub_lock);
3881
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3882
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3883
		mutex_unlock(&fs_info->scrub_lock);
3884
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3885 3886
		ret = -EIO;
		goto out_free_ctx;
A
Arne Jansen 已提交
3887 3888
	}

3889
	down_read(&fs_info->dev_replace.rwsem);
3890
	if (dev->scrub_ctx ||
3891 3892
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3893
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
3894
		mutex_unlock(&fs_info->scrub_lock);
3895
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3896 3897
		ret = -EINPROGRESS;
		goto out_free_ctx;
A
Arne Jansen 已提交
3898
	}
3899
	up_read(&fs_info->dev_replace.rwsem);
3900 3901 3902 3903 3904

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3905
		goto out_free_ctx;
3906 3907
	}

3908
	sctx->readonly = readonly;
3909
	dev->scrub_ctx = sctx;
3910
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3911

3912 3913 3914 3915
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3916
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3917 3918 3919
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
3930
	if (!is_dev_replace) {
3931
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3932 3933 3934 3935
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3936
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3937
		ret = scrub_supers(sctx, dev);
3938
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3939
	}
A
Arne Jansen 已提交
3940 3941

	if (!ret)
3942
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3943
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
3944

3945
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3946 3947 3948
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3949
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3950

A
Arne Jansen 已提交
3951
	if (progress)
3952
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3953

3954 3955 3956 3957
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
3958
	mutex_lock(&fs_info->scrub_lock);
3959
	dev->scrub_ctx = NULL;
3960
	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3961 3962 3963
		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;
3964 3965 3966 3967

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
3968
	}
A
Arne Jansen 已提交
3969 3970
	mutex_unlock(&fs_info->scrub_lock);

3971 3972 3973
	btrfs_destroy_workqueue(scrub_workers);
	btrfs_destroy_workqueue(scrub_wr_comp);
	btrfs_destroy_workqueue(scrub_parity);
3974
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3975

3976 3977 3978 3979 3980
	return ret;

out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
3981 3982 3983
	return ret;
}

3984
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3999
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4000 4001 4002 4003 4004
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4005
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4026
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4027
{
4028
	struct btrfs_fs_info *fs_info = dev->fs_info;
4029
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4030 4031

	mutex_lock(&fs_info->scrub_lock);
4032
	sctx = dev->scrub_ctx;
4033
	if (!sctx) {
A
Arne Jansen 已提交
4034 4035 4036
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4037
	atomic_inc(&sctx->cancel_req);
4038
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4039 4040
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4041
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4042 4043 4044 4045 4046 4047
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4048

4049
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4050 4051 4052
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4053
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4054

4055
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4056
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
A
Arne Jansen 已提交
4057
	if (dev)
4058
		sctx = dev->scrub_ctx;
4059 4060
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4061
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4062

4063
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4064
}
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4077
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4078 4079 4080
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4081
		btrfs_put_bbio(bbio);
4082 4083 4084 4085 4086 4087
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4088
	btrfs_put_bbio(bbio);
4089
}