scrub.c 121.0 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
21
#include <linux/sched/mm.h>
A
Arne Jansen 已提交
22 23 24 25
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
26
#include "transaction.h"
27
#include "backref.h"
28
#include "extent_io.h"
29
#include "dev-replace.h"
30
#include "check-integrity.h"
31
#include "rcu-string.h"
D
David Woodhouse 已提交
32
#include "raid56.h"
A
Arne Jansen 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

47
struct scrub_block;
48
struct scrub_ctx;
A
Arne Jansen 已提交
49

50 51 52 53 54 55 56 57 58
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
59 60 61 62 63 64

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
65
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
66

67
struct scrub_recover {
68
	refcount_t		refs;
69 70 71 72
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
73
struct scrub_page {
74 75
	struct scrub_block	*sblock;
	struct page		*page;
76
	struct btrfs_device	*dev;
77
	struct list_head	list;
A
Arne Jansen 已提交
78 79
	u64			flags;  /* extent flags */
	u64			generation;
80 81
	u64			logical;
	u64			physical;
82
	u64			physical_for_dev_replace;
83
	atomic_t		refs;
84 85 86 87 88
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
89
	u8			csum[BTRFS_CSUM_SIZE];
90 91

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
92 93 94 95
};

struct scrub_bio {
	int			index;
96
	struct scrub_ctx	*sctx;
97
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
98
	struct bio		*bio;
99
	blk_status_t		status;
A
Arne Jansen 已提交
100 101
	u64			logical;
	u64			physical;
102 103 104 105 106
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
107
	int			page_count;
A
Arne Jansen 已提交
108 109 110 111
	int			next_free;
	struct btrfs_work	work;
};

112
struct scrub_block {
113
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 115
	int			page_count;
	atomic_t		outstanding_pages;
116
	refcount_t		refs; /* free mem on transition to zero */
117
	struct scrub_ctx	*sctx;
118
	struct scrub_parity	*sparity;
119 120 121 122
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
123
		unsigned int	generation_error:1; /* also sets header_error */
124 125 126 127

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
128
	};
129
	struct btrfs_work	work;
130 131
};

132 133 134 135 136 137 138 139 140 141 142 143
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

144
	u64			stripe_len;
145

146
	refcount_t		refs;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

165
struct scrub_ctx {
166
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
167
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
168 169
	int			first_free;
	int			curr;
170 171
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
172 173 174 175 176
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
177
	int			readonly;
178
	int			pages_per_rd_bio;
179 180

	int			is_dev_replace;
181 182 183 184 185

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
186
	bool                    flush_all_writes;
187

A
Arne Jansen 已提交
188 189 190 191 192
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
193 194 195 196 197 198 199 200

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
201
	refcount_t              refs;
A
Arne Jansen 已提交
202 203
};

204
struct scrub_fixup_nodatasum {
205
	struct scrub_ctx	*sctx;
206
	struct btrfs_device	*dev;
207 208 209 210 211 212
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

213 214 215 216 217 218 219
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

220 221 222 223 224 225
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
226
	struct list_head	inodes;
227 228 229
	struct btrfs_work	work;
};

230 231 232 233 234 235 236 237 238
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

239 240 241 242 243 244 245
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

246 247 248 249
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
250
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
251
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
252
				     struct scrub_block *sblocks_for_recheck);
253
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
254 255
				struct scrub_block *sblock,
				int retry_failed_mirror);
256
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
257
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
258
					     struct scrub_block *sblock_good);
259 260 261
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
262 263 264
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
265 266 267 268 269
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
270 271
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
272 273
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
274 275
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
276
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
277
		       u64 physical, struct btrfs_device *dev, u64 flags,
278 279
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
280
static void scrub_bio_end_io(struct bio *bio);
281 282
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
283 284 285 286 287 288 289 290
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
291
static void scrub_wr_bio_end_io(struct bio *bio);
292 293 294 295
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
296
				      struct scrub_copy_nocow_ctx *ctx);
297 298 299
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
300
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
301
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
303 304


305 306
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
307
	refcount_inc(&sctx->refs);
308 309 310 311 312 313 314
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
315
	scrub_put_ctx(sctx);
316 317
}

318
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 320 321 322 323 324 325 326 327
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

328
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
329 330 331
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
332
}
333

334 335
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
336 337 338 339 340 341 342 343
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

344 345 346 347 348 349
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

	/* Insert new lock */
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

	WARN_ON(!mutex_is_locked(&locks_root->lock));

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

566 567 568 569 570 571
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
572
	struct btrfs_fs_info *fs_info = sctx->fs_info;
573

574
	refcount_inc(&sctx->refs);
575 576 577 578 579 580 581 582 583 584 585 586 587
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
588 589 590 591 592 593 594 595 596 597

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

598 599 600 601 602 603
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
604
	struct btrfs_fs_info *fs_info = sctx->fs_info;
605 606 607 608 609 610 611 612 613 614 615 616

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
617
	scrub_put_ctx(sctx);
618 619
}

620
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
621
{
622
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
623
		struct btrfs_ordered_sum *sum;
624
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
625 626 627 628 629 630
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

631
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
632 633 634
{
	int i;

635
	if (!sctx)
A
Arne Jansen 已提交
636 637
		return;

638
	/* this can happen when scrub is cancelled */
639 640
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
641 642

		for (i = 0; i < sbio->page_count; i++) {
643
			WARN_ON(!sbio->pagev[i]->page);
644 645 646 647 648
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

649
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
650
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
651 652 653 654 655 656

		if (!sbio)
			break;
		kfree(sbio);
	}

657
	kfree(sctx->wr_curr_bio);
658 659
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
660 661
}

662 663
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
664
	if (refcount_dec_and_test(&sctx->refs))
665 666 667
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
668
static noinline_for_stack
669
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
670
{
671
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
672
	int		i;
673
	struct btrfs_fs_info *fs_info = dev->fs_info;
A
Arne Jansen 已提交
674

675
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
676
	if (!sctx)
A
Arne Jansen 已提交
677
		goto nomem;
678
	refcount_set(&sctx->refs, 1);
679
	sctx->is_dev_replace = is_dev_replace;
680
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
681
	sctx->curr = -1;
682
	sctx->fs_info = dev->fs_info;
683
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
684 685
		struct scrub_bio *sbio;

686
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
687 688
		if (!sbio)
			goto nomem;
689
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
690 691

		sbio->index = i;
692
		sbio->sctx = sctx;
693
		sbio->page_count = 0;
694 695
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
696

697
		if (i != SCRUB_BIOS_PER_SCTX - 1)
698
			sctx->bios[i]->next_free = i + 1;
699
		else
700 701 702
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
703 704
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
705 706 707 708 709 710 711
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
712

713 714 715
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
716
	if (is_dev_replace) {
717
		WARN_ON(!fs_info->dev_replace.tgtdev);
718
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
719
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
720
		sctx->flush_all_writes = false;
721
	}
722

723
	return sctx;
A
Arne Jansen 已提交
724 725

nomem:
726
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
727 728 729
	return ERR_PTR(-ENOMEM);
}

730 731
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
732 733 734 735 736
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
737
	unsigned nofs_flag;
738 739
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
740
	struct scrub_warning *swarn = warn_ctx;
741
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
742 743 744
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
745
	struct btrfs_key key;
746 747 748 749 750 751 752 753 754 755

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

756 757 758
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
759 760 761 762 763
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
764 765 766 767 768 769 770 771 772 773 774 775
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

776 777 778 779 780 781
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
782
	ipath = init_ipath(4096, local_root, swarn->path);
783
	memalloc_nofs_restore(nofs_flag);
784 785 786 787 788
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
789 790 791 792 793 794 795 796 797 798
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
799 800 801 802 803 804 805 806
		btrfs_warn_in_rcu(fs_info,
				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
				  (unsigned long long)swarn->sector,
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
807 808 809 810 811

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
812 813 814 815 816 817
	btrfs_warn_in_rcu(fs_info,
			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
			  (unsigned long long)swarn->sector,
			  root, inum, offset, ret);
818 819 820 821 822

	free_ipath(ipath);
	return 0;
}

823
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
824
{
825 826
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
827 828 829 830 831
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
832 833 834
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
835
	u64 ref_root;
836
	u32 item_size;
837
	u8 ref_level = 0;
838
	int ret;
839

840
	WARN_ON(sblock->page_count < 1);
841
	dev = sblock->pagev[0]->dev;
842
	fs_info = sblock->sctx->fs_info;
843

844
	path = btrfs_alloc_path();
845 846
	if (!path)
		return;
847

848 849
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
850
	swarn.errstr = errstr;
851
	swarn.dev = NULL;
852

853 854
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
855 856 857
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
858
	extent_item_pos = swarn.logical - found_key.objectid;
859 860 861 862 863 864
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

865
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
866
		do {
867 868 869
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
870
			btrfs_warn_in_rcu(fs_info,
J
Jeff Mahoney 已提交
871 872
				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
				errstr, swarn.logical,
873
				rcu_str_deref(dev->name),
874 875 876 877 878
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
879
		btrfs_release_path(path);
880
	} else {
881
		btrfs_release_path(path);
882
		swarn.path = path;
883
		swarn.dev = dev;
884 885
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
886 887 888 889 890 891 892
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

893
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
894
{
895
	struct page *page = NULL;
896
	unsigned long index;
897
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
898
	int ret;
899
	int corrected = 0;
900
	struct btrfs_key key;
901
	struct inode *inode = NULL;
902
	struct btrfs_fs_info *fs_info;
903 904
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
905
	int srcu_index;
906 907 908 909

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
910 911 912 913 914 915 916

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917
		return PTR_ERR(local_root);
918
	}
919 920 921 922

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
923 924
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
925 926 927
	if (IS_ERR(inode))
		return PTR_ERR(inode);

928
	index = offset >> PAGE_SHIFT;
929 930

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
957
		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
958
					fixup->logical, page,
959
					offset - page_offset(page),
960 961 962 963 964 965 966 967 968 969
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
970
					EXTENT_DAMAGED);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
988
						EXTENT_DAMAGED);
989 990 991 992 993
	}

out:
	if (page)
		put_page(page);
994 995

	iput(inode);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
1013
	struct btrfs_fs_info *fs_info;
1014 1015
	int ret;
	struct scrub_fixup_nodatasum *fixup;
1016
	struct scrub_ctx *sctx;
1017 1018 1019 1020 1021
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1022
	sctx = fixup->sctx;
1023
	fs_info = fixup->root->fs_info;
1024 1025 1026

	path = btrfs_alloc_path();
	if (!path) {
1027 1028 1029
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
1049 1050
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
					  scrub_fixup_readpage, fixup);
1051 1052 1053 1054 1055 1056
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

1057 1058 1059
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
1060 1061 1062

out:
	if (trans && !IS_ERR(trans))
1063
		btrfs_end_transaction(trans);
1064
	if (uncorrectable) {
1065 1066 1067
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
1068
		btrfs_dev_replace_stats_inc(
1069 1070
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
1071
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1072
			fixup->logical, rcu_str_deref(fixup->dev->name));
1073 1074 1075 1076 1077
	}

	btrfs_free_path(path);
	kfree(fixup);

1078
	scrub_pending_trans_workers_dec(sctx);
1079 1080
}

1081 1082
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1083
	refcount_inc(&recover->refs);
1084 1085
}

1086 1087
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1088
{
1089
	if (refcount_dec_and_test(&recover->refs)) {
1090
		btrfs_bio_counter_dec(fs_info);
1091
		btrfs_put_bbio(recover->bbio);
1092 1093 1094 1095
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1096
/*
1097 1098 1099 1100 1101 1102
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1103
 */
1104
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1105
{
1106
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1107
	struct btrfs_device *dev;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
1120
	bool full_stripe_locked;
1121
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1122 1123 1124
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
1125
	fs_info = sctx->fs_info;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
1137
	length = sblock_to_check->page_count * PAGE_SIZE;
1138 1139 1140 1141
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
1142
			BTRFS_EXTENT_FLAG_DATA);
1143 1144
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1164 1165 1166 1167 1168
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

1198 1199
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1200
	if (!sblocks_for_recheck) {
1201 1202 1203 1204 1205
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1206
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1207
		goto out;
A
Arne Jansen 已提交
1208 1209
	}

1210
	/* setup the context, map the logical blocks and alloc the pages */
1211
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1212
	if (ret) {
1213 1214 1215 1216
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1217
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1218 1219 1220 1221
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1222

1223
	/* build and submit the bios for the failed mirror, check checksums */
1224
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1236 1237
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1238
		sblock_to_check->data_corrected = 1;
1239
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1240

1241 1242
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1243
		goto out;
A
Arne Jansen 已提交
1244 1245
	}

1246
	if (!sblock_bad->no_io_error_seen) {
1247 1248 1249
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1250 1251
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1252
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1253
	} else if (sblock_bad->checksum_error) {
1254 1255 1256
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1257 1258
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1259
		btrfs_dev_stat_inc_and_print(dev,
1260
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1261
	} else if (sblock_bad->header_error) {
1262 1263 1264
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1265 1266 1267
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1268
		if (sblock_bad->generation_error)
1269
			btrfs_dev_stat_inc_and_print(dev,
1270 1271
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1272
			btrfs_dev_stat_inc_and_print(dev,
1273
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1274
	}
A
Arne Jansen 已提交
1275

1276 1277 1278 1279
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1280

1281 1282
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1283

1284 1285
		WARN_ON(sctx->is_dev_replace);

1286 1287
nodatasum_case:

1288 1289
		/*
		 * !is_metadata and !have_csum, this means that the data
1290
		 * might not be COWed, that it might be modified
1291 1292 1293 1294 1295 1296 1297
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1298
		fixup_nodatasum->sctx = sctx;
1299
		fixup_nodatasum->dev = dev;
1300 1301 1302
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1303
		scrub_pending_trans_workers_inc(sctx);
1304 1305
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1306 1307
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1308
		goto out;
A
Arne Jansen 已提交
1309 1310
	}

1311 1312
	/*
	 * now build and submit the bios for the other mirrors, check
1313 1314
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1330
		struct scrub_block *sblock_other;
1331

1332 1333 1334 1335 1336
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1337
		scrub_recheck_block(fs_info, sblock_other, 0);
1338 1339

		if (!sblock_other->header_error &&
1340 1341
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1342 1343
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1344
				goto corrected_error;
1345 1346
			} else {
				ret = scrub_repair_block_from_good_copy(
1347 1348 1349
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1350
			}
1351 1352
		}
	}
A
Arne Jansen 已提交
1353

1354 1355
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1356 1357 1358

	/*
	 * In case of I/O errors in the area that is supposed to be
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1371
	 * the final checksum succeeds. But this would be a rare
1372 1373 1374 1375 1376 1377 1378 1379
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1380
	 */
1381
	success = 1;
1382 1383
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1384
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1385
		struct scrub_block *sblock_other = NULL;
1386

1387 1388
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1389
			continue;
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1402 1403
				}
			}
1404 1405
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1406
		}
A
Arne Jansen 已提交
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1422
					&fs_info->dev_replace.num_write_errors);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1433
		}
A
Arne Jansen 已提交
1434 1435
	}

1436
	if (success && !sctx->is_dev_replace) {
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1447
			scrub_recheck_block(fs_info, sblock_bad, 1);
1448
			if (!sblock_bad->header_error &&
1449 1450 1451 1452 1453 1454 1455
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1456 1457
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1458
			sblock_to_check->data_corrected = 1;
1459
			spin_unlock(&sctx->stat_lock);
1460 1461
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1462
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1463
		}
1464 1465
	} else {
did_not_correct_error:
1466 1467 1468
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1469 1470
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1471
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1472
	}
A
Arne Jansen 已提交
1473

1474 1475 1476 1477 1478 1479
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1480
			struct scrub_recover *recover;
1481 1482
			int page_index;

1483 1484 1485
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1486 1487
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1488
					scrub_put_recover(fs_info, recover);
1489 1490 1491
					sblock->pagev[page_index]->recover =
									NULL;
				}
1492 1493
				scrub_page_put(sblock->pagev[page_index]);
			}
1494 1495 1496
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1497

1498 1499 1500
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
	if (ret < 0)
		return ret;
1501 1502
	return 0;
}
A
Arne Jansen 已提交
1503

1504
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1505
{
Z
Zhao Lei 已提交
1506 1507 1508 1509 1510
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1511 1512 1513
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1514 1515
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1516 1517 1518 1519 1520 1521 1522
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1523
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1544
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1545 1546
				     struct scrub_block *sblocks_for_recheck)
{
1547
	struct scrub_ctx *sctx = original_sblock->sctx;
1548
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1549 1550
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1551 1552 1553
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1554 1555 1556 1557 1558 1559
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1560
	int page_index = 0;
1561
	int mirror_index;
1562
	int nmirrors;
1563 1564 1565
	int ret;

	/*
1566
	 * note: the two members refs and outstanding_pages
1567 1568 1569 1570 1571
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1572 1573 1574
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1575

1576 1577 1578 1579
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1580
		btrfs_bio_counter_inc_blocked(fs_info);
1581
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1582
				logical, &mapped_length, &bbio);
1583
		if (ret || !bbio || mapped_length < sublen) {
1584
			btrfs_put_bbio(bbio);
1585
			btrfs_bio_counter_dec(fs_info);
1586 1587
			return -EIO;
		}
A
Arne Jansen 已提交
1588

1589 1590
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1591
			btrfs_put_bbio(bbio);
1592
			btrfs_bio_counter_dec(fs_info);
1593 1594 1595
			return -ENOMEM;
		}

1596
		refcount_set(&recover->refs, 1);
1597 1598 1599
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1600
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1601

1602
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1603

1604
		for (mirror_index = 0; mirror_index < nmirrors;
1605 1606 1607 1608 1609
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1610
			sblock->sctx = sctx;
1611

1612 1613 1614
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1615 1616 1617
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1618
				scrub_put_recover(fs_info, recover);
1619 1620
				return -ENOMEM;
			}
1621 1622
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1623 1624 1625
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1626
			page->logical = logical;
1627 1628 1629 1630 1631
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1632

Z
Zhao Lei 已提交
1633 1634 1635
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1636
						      mapped_length,
1637 1638
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1639 1640 1641 1642 1643 1644 1645
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1646 1647 1648 1649
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1650 1651
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1652
			sblock->page_count++;
1653 1654 1655
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1656 1657 1658

			scrub_get_recover(recover);
			page->recover = recover;
1659
		}
1660
		scrub_put_recover(fs_info, recover);
1661 1662 1663 1664 1665 1666
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1667 1668
}

1669 1670
struct scrub_bio_ret {
	struct completion event;
1671
	blk_status_t status;
1672 1673
};

1674
static void scrub_bio_wait_endio(struct bio *bio)
1675 1676 1677
{
	struct scrub_bio_ret *ret = bio->bi_private;

1678
	ret->status = bio->bi_status;
1679 1680 1681 1682 1683
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1684
	return page->recover &&
1685
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
1696
	done.status = 0;
1697 1698 1699 1700
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1701
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1702
				    page->recover->map_length,
1703
				    page->mirror_num, 0);
1704 1705 1706
	if (ret)
		return ret;

1707
	wait_for_completion_io(&done.event);
1708
	if (done.status)
1709 1710 1711 1712 1713
		return -EIO;

	return 0;
}

1714 1715 1716 1717 1718 1719 1720
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1721
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1722 1723
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1724
{
1725
	int page_num;
I
Ilya Dryomov 已提交
1726

1727
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1728

1729 1730
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1731
		struct scrub_page *page = sblock->pagev[page_num];
1732

1733
		if (page->dev->bdev == NULL) {
1734 1735 1736 1737 1738
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1739
		WARN_ON(!page->page);
1740
		bio = btrfs_io_bio_alloc(1);
1741
		bio->bi_bdev = page->dev->bdev;
1742

1743
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1744
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1745 1746
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
				page->io_error = 1;
1747
				sblock->no_io_error_seen = 0;
1748
			}
1749 1750
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;
M
Mike Christie 已提交
1751
			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1752

1753 1754
			if (btrfsic_submit_bio_wait(bio)) {
				page->io_error = 1;
1755
				sblock->no_io_error_seen = 0;
1756
			}
1757
		}
1758

1759 1760
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1761

1762
	if (sblock->no_io_error_seen)
1763
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1764 1765
}

M
Miao Xie 已提交
1766 1767 1768 1769 1770 1771
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1772
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1773 1774 1775
	return !ret;
}

1776
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1777
{
1778 1779 1780
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1781

1782 1783 1784 1785
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1786 1787
}

1788
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1789
					     struct scrub_block *sblock_good)
1790 1791 1792
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1793

1794 1795
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1796

1797 1798
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1799
							   page_num, 1);
1800 1801
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1802
	}
1803 1804 1805 1806 1807 1808 1809 1810

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1811 1812
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1813
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1814

1815 1816
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1817 1818 1819 1820 1821
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1822
		if (!page_bad->dev->bdev) {
1823
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1824
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1825 1826 1827
			return -EIO;
		}

1828
		bio = btrfs_io_bio_alloc(1);
1829
		bio->bi_bdev = page_bad->dev->bdev;
1830
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1831
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1832 1833 1834 1835 1836

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1837
		}
1838

1839
		if (btrfsic_submit_bio_wait(bio)) {
1840 1841
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1842
			btrfs_dev_replace_stats_inc(
1843
				&fs_info->dev_replace.num_write_errors);
1844 1845 1846
			bio_put(bio);
			return -EIO;
		}
1847
		bio_put(bio);
A
Arne Jansen 已提交
1848 1849
	}

1850 1851 1852
	return 0;
}

1853 1854
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1855
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1856 1857
	int page_num;

1858 1859 1860 1861 1862 1863 1864
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1865 1866 1867 1868 1869 1870
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1871
				&fs_info->dev_replace.num_write_errors);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1884
		clear_page(mapped_buffer);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1897
	mutex_lock(&sctx->wr_lock);
1898
again:
1899 1900
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1901
					      GFP_KERNEL);
1902 1903
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1904 1905
			return -ENOMEM;
		}
1906 1907
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1908
	}
1909
	sbio = sctx->wr_curr_bio;
1910 1911 1912 1913 1914
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1915
		sbio->dev = sctx->wr_tgtdev;
1916 1917
		bio = sbio->bio;
		if (!bio) {
1918
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1919 1920 1921 1922 1923 1924
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1925
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1926
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1927
		sbio->status = 0;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1941
			mutex_unlock(&sctx->wr_lock);
1942 1943 1944 1945 1946 1947 1948 1949 1950
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1951
	if (sbio->page_count == sctx->pages_per_wr_bio)
1952
		scrub_wr_submit(sctx);
1953
	mutex_unlock(&sctx->wr_lock);
1954 1955 1956 1957 1958 1959 1960 1961

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1962
	if (!sctx->wr_curr_bio)
1963 1964
		return;

1965 1966
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1967 1968 1969 1970 1971 1972
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1973
	btrfsic_submit_bio(sbio->bio);
1974 1975
}

1976
static void scrub_wr_bio_end_io(struct bio *bio)
1977 1978
{
	struct scrub_bio *sbio = bio->bi_private;
1979
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1980

1981
	sbio->status = bio->bi_status;
1982 1983
	sbio->bio = bio;

1984 1985
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1986
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1987 1988 1989 1990 1991 1992 1993 1994 1995
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1996
	if (sbio->status) {
1997
		struct btrfs_dev_replace *dev_replace =
1998
			&sbio->sctx->fs_info->dev_replace;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2018 2019 2020 2021
{
	u64 flags;
	int ret;

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2034 2035
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2047 2048

	return ret;
A
Arne Jansen 已提交
2049 2050
}

2051
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2052
{
2053
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2054
	u8 csum[BTRFS_CSUM_SIZE];
2055 2056 2057
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
2058
	u32 crc = ~(u32)0;
2059 2060
	u64 len;
	int index;
A
Arne Jansen 已提交
2061

2062
	BUG_ON(sblock->page_count < 1);
2063
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
2064 2065
		return 0;

2066 2067
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
2068
	buffer = kmap_atomic(page);
2069

2070
	len = sctx->fs_info->sectorsize;
2071 2072 2073 2074
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

2075
		crc = btrfs_csum_data(buffer, crc, l);
2076
		kunmap_atomic(buffer);
2077 2078 2079 2080 2081
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2082 2083
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2084
		buffer = kmap_atomic(page);
2085 2086
	}

A
Arne Jansen 已提交
2087
	btrfs_csum_final(crc, csum);
2088
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2089
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2090

2091
	return sblock->checksum_error;
A
Arne Jansen 已提交
2092 2093
}

2094
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2095
{
2096
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2097
	struct btrfs_header *h;
2098
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2099 2100 2101 2102 2103 2104
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2105
	u32 crc = ~(u32)0;
2106 2107 2108 2109
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
2110
	page = sblock->pagev[0]->page;
2111
	mapped_buffer = kmap_atomic(page);
2112
	h = (struct btrfs_header *)mapped_buffer;
2113
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
2114 2115 2116 2117 2118 2119

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2120
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2121
		sblock->header_error = 1;
A
Arne Jansen 已提交
2122

2123 2124 2125 2126
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2127

M
Miao Xie 已提交
2128
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2129
		sblock->header_error = 1;
A
Arne Jansen 已提交
2130 2131 2132

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2133
		sblock->header_error = 1;
A
Arne Jansen 已提交
2134

2135
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2136 2137 2138 2139 2140 2141
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2142
		crc = btrfs_csum_data(p, crc, l);
2143
		kunmap_atomic(mapped_buffer);
2144 2145 2146 2147 2148
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2149 2150
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2151
		mapped_buffer = kmap_atomic(page);
2152 2153 2154 2155 2156
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2157
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2158
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2159

2160
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2161 2162
}

2163
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2164 2165
{
	struct btrfs_super_block *s;
2166
	struct scrub_ctx *sctx = sblock->sctx;
2167 2168 2169 2170 2171 2172
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2173
	u32 crc = ~(u32)0;
2174 2175
	int fail_gen = 0;
	int fail_cor = 0;
2176 2177
	u64 len;
	int index;
A
Arne Jansen 已提交
2178

2179
	BUG_ON(sblock->page_count < 1);
2180
	page = sblock->pagev[0]->page;
2181
	mapped_buffer = kmap_atomic(page);
2182
	s = (struct btrfs_super_block *)mapped_buffer;
2183
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2184

2185
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2186
		++fail_cor;
A
Arne Jansen 已提交
2187

2188
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2189
		++fail_gen;
A
Arne Jansen 已提交
2190

M
Miao Xie 已提交
2191
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2192
		++fail_cor;
A
Arne Jansen 已提交
2193

2194 2195 2196 2197 2198 2199 2200
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2201
		crc = btrfs_csum_data(p, crc, l);
2202
		kunmap_atomic(mapped_buffer);
2203 2204 2205 2206 2207
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2208 2209
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2210
		mapped_buffer = kmap_atomic(page);
2211 2212 2213 2214 2215
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2216
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2217
		++fail_cor;
A
Arne Jansen 已提交
2218

2219
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2220 2221 2222 2223 2224
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2225 2226 2227
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2228
		if (fail_cor)
2229
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2230 2231
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2232
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2233
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2234 2235
	}

2236
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2237 2238
}

2239 2240
static void scrub_block_get(struct scrub_block *sblock)
{
2241
	refcount_inc(&sblock->refs);
2242 2243 2244 2245
}

static void scrub_block_put(struct scrub_block *sblock)
{
2246
	if (refcount_dec_and_test(&sblock->refs)) {
2247 2248
		int i;

2249 2250 2251
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2252
		for (i = 0; i < sblock->page_count; i++)
2253
			scrub_page_put(sblock->pagev[i]);
2254 2255 2256 2257
		kfree(sblock);
	}
}

2258 2259
static void scrub_page_get(struct scrub_page *spage)
{
2260
	atomic_inc(&spage->refs);
2261 2262 2263 2264
}

static void scrub_page_put(struct scrub_page *spage)
{
2265
	if (atomic_dec_and_test(&spage->refs)) {
2266 2267 2268 2269 2270 2271
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2272
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2273 2274 2275
{
	struct scrub_bio *sbio;

2276
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2277
		return;
A
Arne Jansen 已提交
2278

2279 2280
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2281
	scrub_pending_bio_inc(sctx);
2282
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2283 2284
}

2285 2286
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2287
{
2288
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2289
	struct scrub_bio *sbio;
2290
	int ret;
A
Arne Jansen 已提交
2291 2292 2293 2294 2295

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2296 2297 2298 2299 2300 2301 2302 2303
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2304
		} else {
2305 2306
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2307 2308
		}
	}
2309
	sbio = sctx->bios[sctx->curr];
2310
	if (sbio->page_count == 0) {
2311 2312
		struct bio *bio;

2313 2314
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2315
		sbio->dev = spage->dev;
2316 2317
		bio = sbio->bio;
		if (!bio) {
2318
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2319 2320
			sbio->bio = bio;
		}
2321 2322 2323

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2324
		bio->bi_bdev = sbio->dev->bdev;
2325
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2326
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2327
		sbio->status = 0;
2328 2329 2330
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2331 2332
		   spage->logical ||
		   sbio->dev != spage->dev) {
2333
		scrub_submit(sctx);
A
Arne Jansen 已提交
2334 2335
		goto again;
	}
2336

2337 2338 2339 2340 2341 2342 2343 2344
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2345
		scrub_submit(sctx);
2346 2347 2348
		goto again;
	}

2349
	scrub_block_get(sblock); /* one for the page added to the bio */
2350 2351
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2352
	if (sbio->page_count == sctx->pages_per_rd_bio)
2353
		scrub_submit(sctx);
2354 2355 2356 2357

	return 0;
}

2358
static void scrub_missing_raid56_end_io(struct bio *bio)
2359 2360
{
	struct scrub_block *sblock = bio->bi_private;
2361
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2362

2363
	if (bio->bi_status)
2364 2365
		sblock->no_io_error_seen = 0;

2366 2367
	bio_put(bio);

2368 2369 2370 2371 2372 2373 2374
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2375
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2376 2377 2378 2379 2380 2381
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2382
	if (sblock->no_io_error_seen)
2383
		scrub_recheck_block_checksum(sblock);
2384 2385 2386 2387 2388

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2389
		btrfs_err_rl_in_rcu(fs_info,
2390
			"IO error rebuilding logical %llu for dev %s",
2391 2392 2393 2394 2395
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2396
		btrfs_err_rl_in_rcu(fs_info,
2397
			"failed to rebuild valid logical %llu for dev %s",
2398 2399 2400 2401 2402 2403 2404
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

2405
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2406
		mutex_lock(&sctx->wr_lock);
2407
		scrub_wr_submit(sctx);
2408
		mutex_unlock(&sctx->wr_lock);
2409 2410 2411 2412 2413 2414 2415 2416
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2417
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2418 2419
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2420
	struct btrfs_bio *bbio = NULL;
2421 2422 2423 2424 2425
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2426
	btrfs_bio_counter_inc_blocked(fs_info);
2427
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2428
			&length, &bbio);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2443
	bio = btrfs_io_bio_alloc(0);
2444 2445 2446 2447
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2448
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2468
	btrfs_bio_counter_dec(fs_info);
2469 2470 2471 2472 2473 2474
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2475
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2476
		       u64 physical, struct btrfs_device *dev, u64 flags,
2477 2478
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2479 2480 2481 2482
{
	struct scrub_block *sblock;
	int index;

2483
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2484
	if (!sblock) {
2485 2486 2487
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2488
		return -ENOMEM;
A
Arne Jansen 已提交
2489
	}
2490

2491 2492
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2493
	refcount_set(&sblock->refs, 1);
2494
	sblock->sctx = sctx;
2495 2496 2497
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2498
		struct scrub_page *spage;
2499 2500
		u64 l = min_t(u64, len, PAGE_SIZE);

2501
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2502 2503
		if (!spage) {
leave_nomem:
2504 2505 2506
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2507
			scrub_block_put(sblock);
2508 2509
			return -ENOMEM;
		}
2510 2511 2512
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2513
		spage->sblock = sblock;
2514
		spage->dev = dev;
2515 2516 2517 2518
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2519
		spage->physical_for_dev_replace = physical_for_dev_replace;
2520 2521 2522
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2523
			memcpy(spage->csum, csum, sctx->csum_size);
2524 2525 2526 2527
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2528
		spage->page = alloc_page(GFP_KERNEL);
2529 2530
		if (!spage->page)
			goto leave_nomem;
2531 2532 2533
		len -= l;
		logical += l;
		physical += l;
2534
		physical_for_dev_replace += l;
2535 2536
	}

2537
	WARN_ON(sblock->page_count == 0);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2548

2549 2550 2551 2552 2553
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2554
		}
A
Arne Jansen 已提交
2555

2556 2557 2558
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2559

2560 2561
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2562 2563 2564
	return 0;
}

2565
static void scrub_bio_end_io(struct bio *bio)
2566 2567
{
	struct scrub_bio *sbio = bio->bi_private;
2568
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2569

2570
	sbio->status = bio->bi_status;
2571 2572
	sbio->bio = bio;

2573
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2574 2575 2576 2577 2578
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2579
	struct scrub_ctx *sctx = sbio->sctx;
2580 2581
	int i;

2582
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2583
	if (sbio->status) {
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2604 2605 2606 2607
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2608

2609
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2610
		mutex_lock(&sctx->wr_lock);
2611
		scrub_wr_submit(sctx);
2612
		mutex_unlock(&sctx->wr_lock);
2613 2614
	}

2615
	scrub_pending_bio_dec(sctx);
2616 2617
}

2618 2619 2620 2621
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2622
	u64 offset;
2623 2624
	u64 nsectors64;
	u32 nsectors;
2625
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2626 2627 2628 2629 2630 2631 2632

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2633 2634
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2635 2636 2637 2638
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2661 2662
static void scrub_block_complete(struct scrub_block *sblock)
{
2663 2664
	int corrupted = 0;

2665
	if (!sblock->no_io_error_seen) {
2666
		corrupted = 1;
2667
		scrub_handle_errored_block(sblock);
2668 2669 2670 2671 2672 2673
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2674 2675
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2676 2677
			scrub_write_block_to_dev_replace(sblock);
	}
2678 2679 2680 2681 2682 2683 2684 2685 2686

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2687 2688
}

2689
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2690 2691
{
	struct btrfs_ordered_sum *sum = NULL;
2692
	unsigned long index;
A
Arne Jansen 已提交
2693 2694
	unsigned long num_sectors;

2695 2696
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2697 2698 2699 2700 2701 2702
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2703
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2704 2705 2706 2707 2708 2709 2710
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2711 2712 2713
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2714
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2715 2716
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2717 2718 2719
		list_del(&sum->list);
		kfree(sum);
	}
2720
	return 1;
A
Arne Jansen 已提交
2721 2722 2723
}

/* scrub extent tries to collect up to 64 kB for each bio */
2724
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2725
			u64 physical, struct btrfs_device *dev, u64 flags,
2726
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2727 2728 2729
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2730 2731 2732
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2733
		blocksize = sctx->fs_info->sectorsize;
2734 2735 2736 2737
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2738
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2739
		blocksize = sctx->fs_info->nodesize;
2740 2741 2742 2743
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2744
	} else {
2745
		blocksize = sctx->fs_info->sectorsize;
2746
		WARN_ON(1);
2747
	}
A
Arne Jansen 已提交
2748 2749

	while (len) {
2750
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2751 2752 2753 2754
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2755
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2756
			if (have_csum == 0)
2757
				++sctx->stat.no_csum;
2758 2759 2760 2761 2762 2763
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2764
		}
2765
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2766 2767 2768
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2769 2770 2771 2772 2773
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2774
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2775 2776 2777 2778
	}
	return 0;
}

2779 2780 2781 2782 2783 2784 2785 2786 2787
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2788
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2789 2790 2791 2792 2793 2794 2795 2796 2797
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2798
	refcount_set(&sblock->refs, 1);
2799 2800 2801 2802 2803 2804 2805 2806 2807
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2808
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2838
		spage->page = alloc_page(GFP_KERNEL);
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2873 2874 2875 2876 2877
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2878
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2879
		blocksize = sctx->fs_info->sectorsize;
2880
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2881
		blocksize = sctx->fs_info->nodesize;
2882
	} else {
2883
		blocksize = sctx->fs_info->sectorsize;
2884 2885 2886 2887 2888 2889 2890 2891 2892
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2893
			have_csum = scrub_find_csum(sctx, logical, csum);
2894 2895 2896 2897 2898 2899 2900 2901
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2902
skip:
2903 2904 2905 2906 2907 2908 2909
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2910 2911 2912 2913 2914 2915 2916 2917
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2918 2919
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2920 2921 2922 2923 2924
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2925 2926
	u32 stripe_index;
	u32 rot;
2927 2928 2929

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2930 2931 2932
	if (stripe_start)
		*stripe_start = last_offset;

2933 2934 2935 2936
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2937
		stripe_nr = div64_u64(*offset, map->stripe_len);
2938
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2939 2940

		/* Work out the disk rotation on this stripe-set */
2941
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2942 2943
		/* calculate which stripe this data locates */
		rot += i;
2944
		stripe_index = rot % map->num_stripes;
2945 2946 2947 2948 2949 2950 2951 2952 2953
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2986
static void scrub_parity_bio_endio(struct bio *bio)
2987 2988
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2989
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2990

2991
	if (bio->bi_status)
2992 2993 2994 2995
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2996 2997 2998

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
2999
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3000 3001 3002 3003 3004
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3005
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

3016
	length = sparity->logic_end - sparity->logic_start;
3017 3018

	btrfs_bio_counter_inc_blocked(fs_info);
3019
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3020
			       &length, &bbio);
3021
	if (ret || !bbio || !bbio->raid_map)
3022 3023
		goto bbio_out;

3024
	bio = btrfs_io_bio_alloc(0);
3025 3026 3027 3028
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3029
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3030
					      length, sparity->scrub_dev,
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
3043
	btrfs_bio_counter_dec(fs_info);
3044
	btrfs_put_bbio(bbio);
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
3056
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3057 3058 3059 3060
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3061
	refcount_inc(&sparity->refs);
3062 3063 3064 3065
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3066
	if (!refcount_dec_and_test(&sparity->refs))
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
3079
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3080 3081 3082
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3083
	struct btrfs_bio *bbio = NULL;
3084 3085 3086 3087 3088 3089 3090 3091 3092
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3093
	u64 mapped_length;
3094 3095 3096 3097 3098 3099 3100
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

3101
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3118
	refcount_set(&sparity->refs, 1);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3167 3168 3169 3170
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3171
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3172
				bytes = fs_info->nodesize;
3173 3174 3175 3176 3177 3178
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3179
			if (key.objectid >= logic_end) {
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3192 3193 3194 3195
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3196 3197
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3198
					  key.objectid, logic_start);
3199 3200 3201
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3221
			mapped_length = extent_len;
3222
			bbio = NULL;
3223 3224 3225
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3252 3253 3254

			scrub_free_csums(sctx);

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3286
						logic_end - logic_start);
3287 3288
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3289
	mutex_lock(&sctx->wr_lock);
3290
	scrub_wr_submit(sctx);
3291
	mutex_unlock(&sctx->wr_lock);
3292 3293 3294 3295 3296

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3297
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3298 3299
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3300 3301
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3302
{
3303
	struct btrfs_path *path, *ppath;
3304
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3305 3306 3307
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3308
	struct blk_plug plug;
A
Arne Jansen 已提交
3309 3310 3311 3312 3313 3314 3315
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3316
	u64 logic_end;
3317
	u64 physical_end;
A
Arne Jansen 已提交
3318
	u64 generation;
3319
	int mirror_num;
A
Arne Jansen 已提交
3320 3321
	struct reada_control *reada1;
	struct reada_control *reada2;
3322
	struct btrfs_key key;
A
Arne Jansen 已提交
3323
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3324 3325
	u64 increment = map->stripe_len;
	u64 offset;
3326 3327 3328
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3329 3330
	u64 stripe_logical;
	u64 stripe_end;
3331 3332
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3333
	int stop_loop = 0;
D
David Woodhouse 已提交
3334

3335
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3336
	offset = 0;
3337
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3338 3339 3340
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3341
		mirror_num = 1;
A
Arne Jansen 已提交
3342 3343 3344 3345
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3346
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3347 3348
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3349
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3350 3351
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3352
		mirror_num = num % map->num_stripes + 1;
3353
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3354
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3355 3356
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3357 3358
	} else {
		increment = map->stripe_len;
3359
		mirror_num = 1;
A
Arne Jansen 已提交
3360 3361 3362 3363 3364 3365
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3366 3367
	ppath = btrfs_alloc_path();
	if (!ppath) {
3368
		btrfs_free_path(path);
3369 3370 3371
		return -ENOMEM;
	}

3372 3373 3374 3375 3376
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3377 3378 3379
	path->search_commit_root = 1;
	path->skip_locking = 1;

3380 3381
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3382
	/*
A
Arne Jansen 已提交
3383 3384 3385
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3386 3387
	 */
	logical = base + offset;
3388
	physical_end = physical + nstripes * map->stripe_len;
3389
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3390
		get_raid56_logic_offset(physical_end, num,
3391
					map, &logic_end, NULL);
3392 3393 3394 3395
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3396
	wait_event(sctx->list_wait,
3397
		   atomic_read(&sctx->bios_in_flight) == 0);
3398
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3399 3400

	/* FIXME it might be better to start readahead at commit root */
3401 3402 3403
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3404
	key_end.objectid = logic_end;
3405 3406
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3407
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3408

3409 3410 3411
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3412 3413
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3414
	key_end.offset = logic_end;
3415
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3416 3417 3418 3419 3420 3421

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3422 3423 3424 3425 3426

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3427
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3428 3429 3430 3431 3432

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3433
	while (physical < physical_end) {
A
Arne Jansen 已提交
3434 3435 3436 3437
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3438
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3439 3440 3441 3442 3443 3444 3445 3446
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3447
			sctx->flush_all_writes = true;
3448
			scrub_submit(sctx);
3449
			mutex_lock(&sctx->wr_lock);
3450
			scrub_wr_submit(sctx);
3451
			mutex_unlock(&sctx->wr_lock);
3452
			wait_event(sctx->list_wait,
3453
				   atomic_read(&sctx->bios_in_flight) == 0);
3454
			sctx->flush_all_writes = false;
3455
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3456 3457
		}

3458 3459 3460 3461 3462 3463
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3464
				/* it is parity strip */
3465
				stripe_logical += base;
3466
				stripe_end = stripe_logical + increment;
3467 3468 3469 3470 3471 3472 3473 3474 3475
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3476 3477 3478 3479
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3480
		key.objectid = logical;
L
Liu Bo 已提交
3481
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3482 3483 3484 3485

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3486

3487
		if (ret > 0) {
3488
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3489 3490
			if (ret < 0)
				goto out;
3491 3492 3493 3494 3495 3496 3497 3498 3499
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3500 3501
		}

L
Liu Bo 已提交
3502
		stop_loop = 0;
A
Arne Jansen 已提交
3503
		while (1) {
3504 3505
			u64 bytes;

A
Arne Jansen 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3515
				stop_loop = 1;
A
Arne Jansen 已提交
3516 3517 3518 3519
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3520 3521 3522 3523
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3524
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3525
				bytes = fs_info->nodesize;
3526 3527 3528 3529
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3530 3531
				goto next;

L
Liu Bo 已提交
3532 3533 3534 3535 3536 3537
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3538 3539 3540 3541 3542 3543

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3544 3545 3546 3547
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3548
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3549
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3550
				       key.objectid, logical);
3551 3552 3553
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3554 3555 3556
				goto next;
			}

L
Liu Bo 已提交
3557 3558 3559 3560
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3561 3562 3563
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3564 3565 3566
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3567
			}
L
Liu Bo 已提交
3568
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3569
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3570 3571
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3572 3573
			}

L
Liu Bo 已提交
3574
			extent_physical = extent_logical - logical + physical;
3575 3576 3577 3578 3579 3580 3581
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3582

3583 3584 3585 3586 3587
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3588 3589 3590
			if (ret)
				goto out;

3591 3592 3593
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3594
					   extent_logical - logical + physical);
3595 3596 3597

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3598 3599 3600
			if (ret)
				goto out;

L
Liu Bo 已提交
3601 3602
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3603
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3604 3605 3606 3607
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3618
								increment;
3619 3620 3621 3622 3623 3624 3625 3626
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3627 3628 3629 3630
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3631 3632 3633 3634 3635
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3636
				if (physical >= physical_end) {
L
Liu Bo 已提交
3637 3638 3639 3640
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3641 3642 3643
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3644
		btrfs_release_path(path);
3645
skip:
A
Arne Jansen 已提交
3646 3647
		logical += increment;
		physical += map->stripe_len;
3648
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3649 3650 3651 3652 3653
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3654
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3655 3656
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3657
	}
3658
out:
A
Arne Jansen 已提交
3659
	/* push queued extents */
3660
	scrub_submit(sctx);
3661
	mutex_lock(&sctx->wr_lock);
3662
	scrub_wr_submit(sctx);
3663
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3664

3665
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3666
	btrfs_free_path(path);
3667
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3668 3669 3670
	return ret < 0 ? ret : 0;
}

3671
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3672 3673
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3674 3675 3676
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3677
{
3678 3679
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3680 3681 3682
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3683
	int ret = 0;
A
Arne Jansen 已提交
3684 3685 3686 3687 3688

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3701

3702
	map = em->map_lookup;
A
Arne Jansen 已提交
3703 3704 3705 3706 3707 3708 3709
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3710
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3711
		    map->stripes[i].physical == dev_offset) {
3712
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3713 3714
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3726
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3727 3728
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3729 3730 3731
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3732 3733
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3734 3735
	u64 length;
	u64 chunk_offset;
3736
	int ret = 0;
3737
	int ro_set;
A
Arne Jansen 已提交
3738 3739 3740 3741 3742
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3743
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3744 3745 3746 3747 3748

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3749
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3750 3751 3752
	path->search_commit_root = 1;
	path->skip_locking = 1;

3753
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3754 3755 3756 3757 3758 3759
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3760 3761 3762 3763 3764
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3765 3766 3767 3768
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3769
					break;
3770 3771 3772
				}
			} else {
				ret = 0;
3773 3774
			}
		}
A
Arne Jansen 已提交
3775 3776 3777 3778 3779 3780

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3781
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3782 3783
			break;

3784
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3796 3797
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3798 3799 3800 3801 3802 3803 3804 3805

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3806 3807 3808 3809 3810 3811

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3812 3813 3814 3815 3816 3817 3818 3819 3820
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3821
		ret = btrfs_inc_block_group_ro(fs_info, cache);
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
3843
			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3844 3845 3846 3847 3848 3849 3850 3851 3852
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3853
					ret = btrfs_commit_transaction(trans);
3854 3855 3856 3857 3858 3859 3860
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3861
		scrub_pause_off(fs_info);
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3875
			btrfs_warn(fs_info,
3876
				   "failed setting block group ro: %d", ret);
3877 3878 3879 3880
			btrfs_put_block_group(cache);
			break;
		}

3881
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3882 3883 3884
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3885
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3886
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3887
				  found_key.offset, cache, is_dev_replace);
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3899
		sctx->flush_all_writes = true;
3900
		scrub_submit(sctx);
3901
		mutex_lock(&sctx->wr_lock);
3902
		scrub_wr_submit(sctx);
3903
		mutex_unlock(&sctx->wr_lock);
3904 3905 3906

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3907 3908

		scrub_pause_on(fs_info);
3909 3910 3911 3912 3913 3914

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3915 3916
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3917
		sctx->flush_all_writes = false;
3918

3919
		scrub_pause_off(fs_info);
3920

3921 3922 3923 3924 3925
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3926
		if (ro_set)
3927
			btrfs_dec_block_group_ro(cache);
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3951 3952 3953
		btrfs_put_block_group(cache);
		if (ret)
			break;
3954 3955
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3956 3957 3958 3959 3960 3961 3962
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3963
skip:
A
Arne Jansen 已提交
3964
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3965
		btrfs_release_path(path);
A
Arne Jansen 已提交
3966 3967 3968
	}

	btrfs_free_path(path);
3969

3970
	return ret;
A
Arne Jansen 已提交
3971 3972
}

3973 3974
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3975 3976 3977 3978 3979
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3980
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3981

3982
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3983 3984
		return -EIO;

3985
	/* Seed devices of a new filesystem has their own generation. */
3986
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3987 3988
		gen = scrub_dev->generation;
	else
3989
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3990 3991 3992

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3993 3994
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3995 3996
			break;

3997
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3998
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3999
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
4000 4001 4002
		if (ret)
			return ret;
	}
4003
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4004 4005 4006 4007 4008 4009 4010

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4011 4012
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4013
{
4014
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4015
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
4016

A
Arne Jansen 已提交
4017
	if (fs_info->scrub_workers_refcnt == 0) {
4018
		if (is_dev_replace)
4019
			fs_info->scrub_workers =
4020
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4021
						      1, 4);
4022
		else
4023
			fs_info->scrub_workers =
4024
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
4025
						      max_active, 4);
4026 4027 4028
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

4029
		fs_info->scrub_wr_completion_workers =
4030
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4031
					      max_active, 2);
4032 4033 4034
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

4035
		fs_info->scrub_nocow_workers =
4036
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4037 4038
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
4039
		fs_info->scrub_parity_workers =
4040
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4041
					      max_active, 2);
4042 4043
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
4044
	}
A
Arne Jansen 已提交
4045
	++fs_info->scrub_workers_refcnt;
4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
4056 4057
}

4058
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4059
{
4060
	if (--fs_info->scrub_workers_refcnt == 0) {
4061 4062 4063
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4064
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4065
	}
A
Arne Jansen 已提交
4066 4067 4068
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

4069 4070
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4071
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4072
{
4073
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4074 4075
	int ret;
	struct btrfs_device *dev;
4076
	struct rcu_string *name;
A
Arne Jansen 已提交
4077

4078
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
4079 4080
		return -EINVAL;

4081
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4082 4083 4084 4085 4086
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4087 4088
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4089 4090
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4091 4092 4093
		return -EINVAL;
	}

4094
	if (fs_info->sectorsize != PAGE_SIZE) {
4095
		/* not supported for data w/o checksums */
4096
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
4097
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4098
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
4099 4100 4101
		return -EINVAL;
	}

4102
	if (fs_info->nodesize >
4103
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4104
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4105 4106 4107 4108
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4109 4110
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4111
		       fs_info->nodesize,
4112
		       SCRUB_MAX_PAGES_PER_BLOCK,
4113
		       fs_info->sectorsize,
4114 4115 4116 4117
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
4118

4119 4120
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4121
	if (!dev || (dev->missing && !is_dev_replace)) {
4122
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4123 4124 4125
		return -ENODEV;
	}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

4136
	mutex_lock(&fs_info->scrub_lock);
4137
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
4138
		mutex_unlock(&fs_info->scrub_lock);
4139 4140
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
4141 4142
	}

4143
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4144 4145 4146
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4147
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
4148
		mutex_unlock(&fs_info->scrub_lock);
4149
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4150 4151
		return -EINPROGRESS;
	}
4152
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4153 4154 4155 4156 4157 4158 4159 4160

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

4161
	sctx = scrub_setup_ctx(dev, is_dev_replace);
4162
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
4163
		mutex_unlock(&fs_info->scrub_lock);
4164 4165
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
4166
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4167
	}
4168 4169
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
4170
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4171

4172 4173 4174 4175
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4176
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4177 4178 4179
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4180
	if (!is_dev_replace) {
4181 4182 4183 4184
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4185
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4186
		ret = scrub_supers(sctx, dev);
4187
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4188
	}
A
Arne Jansen 已提交
4189 4190

	if (!ret)
4191 4192
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
4193

4194
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4195 4196 4197
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4198
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4199

A
Arne Jansen 已提交
4200
	if (progress)
4201
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4202 4203 4204

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
4205
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
4206 4207
	mutex_unlock(&fs_info->scrub_lock);

4208
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4209 4210 4211 4212

	return ret;
}

4213
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4228
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4229 4230 4231 4232 4233
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4234
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4255 4256
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4257
{
4258
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4259 4260

	mutex_lock(&fs_info->scrub_lock);
4261 4262
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4263 4264 4265
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4266
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4277

4278
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4279 4280 4281
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4282
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4283

4284 4285
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4286
	if (dev)
4287 4288 4289
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4290
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4291

4292
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4293
}
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4306
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4307 4308 4309
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4310
		btrfs_put_bbio(bbio);
4311 4312 4313 4314 4315 4316
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4317
	btrfs_put_bbio(bbio);
4318 4319 4320 4321 4322 4323
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4324
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4341 4342
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4343
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4344 4345
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4346 4347 4348 4349

	return 0;
}

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4367 4368 4369 4370 4371
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4372 4373
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4399
					  record_inode_for_nocow, nocow_ctx);
4400
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4401 4402 4403 4404
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4405 4406 4407 4408
		not_written = 1;
		goto out;
	}

4409
	btrfs_end_transaction(trans);
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4427
out:
4428 4429 4430 4431 4432 4433 4434 4435
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4436
	if (trans && !IS_ERR(trans))
4437
		btrfs_end_transaction(trans);
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4448
static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4449 4450 4451 4452 4453 4454 4455 4456 4457
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

4458
	io_tree = &inode->io_tree;
4459

4460
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4461
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4492 4493
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4494
{
4495
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4496
	struct btrfs_key key;
4497 4498
	struct inode *inode;
	struct page *page;
4499
	struct btrfs_root *local_root;
4500
	struct extent_io_tree *io_tree;
4501
	u64 physical_for_dev_replace;
4502
	u64 nocow_ctx_logical;
4503
	u64 len = nocow_ctx->len;
4504
	unsigned long index;
4505
	int srcu_index;
4506 4507
	int ret = 0;
	int err = 0;
4508 4509 4510 4511

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4512 4513 4514

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4515
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4516 4517
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4518
		return PTR_ERR(local_root);
4519
	}
4520 4521 4522 4523 4524

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4525
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4526 4527 4528
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4529
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4530
	inode_lock(inode);
4531 4532
	inode_dio_wait(inode);

4533
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4534
	io_tree = &BTRFS_I(inode)->io_tree;
4535
	nocow_ctx_logical = nocow_ctx->logical;
4536

4537 4538
	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
			nocow_ctx_logical);
4539 4540 4541
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4542 4543
	}

4544 4545
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4546
again:
4547 4548
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4549
			btrfs_err(fs_info, "find_or_create_page() failed");
4550
			ret = -ENOMEM;
4551
			goto out;
4552 4553 4554 4555 4556 4557 4558
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4559
			err = extent_read_full_page(io_tree, page,
4560 4561
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4562 4563
			if (err) {
				ret = err;
4564 4565
				goto next_page;
			}
4566

4567
			lock_page(page);
4568 4569 4570 4571 4572 4573 4574
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4575
				unlock_page(page);
4576
				put_page(page);
4577 4578
				goto again;
			}
4579 4580 4581 4582 4583
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4584

4585
		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4586 4587 4588 4589 4590 4591
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4592 4593 4594 4595
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4596
next_page:
4597
		unlock_page(page);
4598
		put_page(page);
4599 4600 4601 4602

		if (ret)
			break;

4603 4604 4605 4606
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4607
	}
4608
	ret = COPY_COMPLETE;
4609
out:
A
Al Viro 已提交
4610
	inode_unlock(inode);
4611
	iput(inode);
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

4622
	dev = sctx->wr_tgtdev;
4623 4624 4625
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4626
		btrfs_warn_rl(dev->fs_info,
4627
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4628 4629
		return -EIO;
	}
4630
	bio = btrfs_io_bio_alloc(1);
4631 4632
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4633
	bio->bi_bdev = dev->bdev;
4634
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4635 4636
	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
4637 4638 4639 4640 4641 4642
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4643
	if (btrfsic_submit_bio_wait(bio))
4644 4645 4646 4647 4648
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}