header.c 90.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#ifdef HAVE_LIBBPF_SUPPORT
23
#include <bpf/libbpf.h>
24
#endif
25
#include <perf/cpumap.h>
26

27
#include "dso.h"
28
#include "evlist.h"
29
#include "evsel.h"
30
#include "util/evsel_fprintf.h"
31
#include "header.h"
32
#include "memswap.h"
33
#include "trace-event.h"
34
#include "session.h"
35
#include "symbol.h"
36
#include "debug.h"
37
#include "cpumap.h"
38
#include "pmu.h"
39
#include "vdso.h"
40
#include "strbuf.h"
41
#include "build-id.h"
42
#include "data.h"
43 44
#include <api/fs/fs.h>
#include "asm/bug.h"
45
#include "tool.h"
46
#include "time-utils.h"
47
#include "units.h"
48
#include "util/util.h" // perf_exe()
J
Jiri Olsa 已提交
49
#include "cputopo.h"
50
#include "bpf-event.h"
51
#include "clockid.h"
52

53
#include <linux/ctype.h>
54
#include <internal/lib.h>
55

56 57 58 59 60 61 62 63 64 65 66 67
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
68

69
#define PERF_MAGIC	__perf_magic2
70

71 72
const char perf_version_string[] = PERF_VERSION;

73
struct perf_file_attr {
74
	struct perf_event_attr	attr;
75 76 77
	struct perf_file_section	ids;
};

78
void perf_header__set_feat(struct perf_header *header, int feat)
79
{
80
	set_bit(feat, header->adds_features);
81 82
}

83
void perf_header__clear_feat(struct perf_header *header, int feat)
84
{
85
	clear_bit(feat, header->adds_features);
86 87
}

88
bool perf_header__has_feat(const struct perf_header *header, int feat)
89
{
90
	return test_bit(feat, header->adds_features);
91 92
}

93
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
94
{
95
	ssize_t ret = writen(ff->fd, buf, size);
96

97 98
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
126 127

	return 0;
128 129
}

130
/* Return: 0 if succeeded, -ERR if failed. */
131 132 133 134 135 136 137
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

138
/* Return: 0 if succeeded, -ERR if failed. */
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

157
/* Return: 0 if succeeded, -ERR if failed. */
158 159
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
160 161
{
	static const char zero_buf[NAME_ALIGN];
162
	int err = do_write(ff, bf, count);
163 164

	if (!err)
165
		err = do_write(ff, zero_buf, count_aligned - count);
166 167 168 169

	return err;
}

170 171 172
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

173
/* Return: 0 if succeeded, -ERR if failed. */
174
static int do_write_string(struct feat_fd *ff, const char *str)
175 176 177 178 179
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
180
	len = PERF_ALIGN(olen, NAME_ALIGN);
181 182

	/* write len, incl. \0 */
183
	ret = do_write(ff, &len, sizeof(len));
184 185 186
	if (ret < 0)
		return ret;

187
	return write_padded(ff, str, olen, len);
188 189
}

190
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
191
{
192
	ssize_t ret = readn(ff->fd, addr, size);
193 194 195 196 197 198

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

218
static int do_read_u32(struct feat_fd *ff, u32 *addr)
219 220 221
{
	int ret;

222
	ret = __do_read(ff, addr, sizeof(*addr));
223 224 225
	if (ret)
		return ret;

226
	if (ff->ph->needs_swap)
227 228 229 230
		*addr = bswap_32(*addr);
	return 0;
}

231
static int do_read_u64(struct feat_fd *ff, u64 *addr)
232 233 234
{
	int ret;

235
	ret = __do_read(ff, addr, sizeof(*addr));
236 237 238
	if (ret)
		return ret;

239
	if (ff->ph->needs_swap)
240 241 242 243
		*addr = bswap_64(*addr);
	return 0;
}

244
static char *do_read_string(struct feat_fd *ff)
245 246 247 248
{
	u32 len;
	char *buf;

249
	if (do_read_u32(ff, &len))
250 251 252 253 254 255
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

256
	if (!__do_read(ff, buf, len)) {
257 258 259 260 261 262 263 264 265 266 267 268
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

269
/* Return: 0 if succeeded, -ERR if failed. */
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

299
static int write_tracing_data(struct feat_fd *ff,
300
			      struct evlist *evlist)
301
{
302 303 304
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

305
	return read_tracing_data(ff->fd, &evlist->core.entries);
306 307
}

308
static int write_build_id(struct feat_fd *ff,
309
			  struct evlist *evlist __maybe_unused)
310 311 312 313
{
	struct perf_session *session;
	int err;

314
	session = container_of(ff->ph, struct perf_session, header);
315

316 317 318
	if (!perf_session__read_build_ids(session, true))
		return -1;

319 320 321
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

322
	err = perf_session__write_buildid_table(session, ff);
323 324 325 326
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
327
	perf_session__cache_build_ids(session);
328 329 330 331

	return 0;
}

332
static int write_hostname(struct feat_fd *ff,
333
			  struct evlist *evlist __maybe_unused)
334 335 336 337 338 339 340 341
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

342
	return do_write_string(ff, uts.nodename);
343 344
}

345
static int write_osrelease(struct feat_fd *ff,
346
			   struct evlist *evlist __maybe_unused)
347 348 349 350 351 352 353 354
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

355
	return do_write_string(ff, uts.release);
356 357
}

358
static int write_arch(struct feat_fd *ff,
359
		      struct evlist *evlist __maybe_unused)
360 361 362 363 364 365 366 367
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

368
	return do_write_string(ff, uts.machine);
369 370
}

371
static int write_version(struct feat_fd *ff,
372
			 struct evlist *evlist __maybe_unused)
373
{
374
	return do_write_string(ff, perf_version_string);
375 376
}

377
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
378 379 380 381
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
382
	const char *search = cpuinfo_proc;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

399 400
	if (ret) {
		ret = -1;
401
		goto done;
402
	}
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
418
			char *q = skip_spaces(r);
419 420 421 422 423 424
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
425
	ret = do_write_string(ff, s);
426 427 428 429 430 431
done:
	free(buf);
	fclose(file);
	return ret;
}

432
static int write_cpudesc(struct feat_fd *ff,
433
		       struct evlist *evlist __maybe_unused)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
452
	const char *cpuinfo_procs[] = CPUINFO_PROC;
453
#undef CPUINFO_PROC
454 455 456 457
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
458
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
459 460 461 462 463 464 465
		if (ret >= 0)
			return ret;
	}
	return -1;
}


466
static int write_nrcpus(struct feat_fd *ff,
467
			struct evlist *evlist __maybe_unused)
468 469 470 471 472
{
	long nr;
	u32 nrc, nra;
	int ret;

473
	nrc = cpu__max_present_cpu();
474 475 476 477 478 479 480

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

481
	ret = do_write(ff, &nrc, sizeof(nrc));
482 483 484
	if (ret < 0)
		return ret;

485
	return do_write(ff, &nra, sizeof(nra));
486 487
}

488
static int write_event_desc(struct feat_fd *ff,
489
			    struct evlist *evlist)
490
{
491
	struct evsel *evsel;
492
	u32 nre, nri, sz;
493 494
	int ret;

495
	nre = evlist->core.nr_entries;
496 497 498 499

	/*
	 * write number of events
	 */
500
	ret = do_write(ff, &nre, sizeof(nre));
501 502 503 504 505 506
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
507
	sz = (u32)sizeof(evsel->core.attr);
508
	ret = do_write(ff, &sz, sizeof(sz));
509 510 511
	if (ret < 0)
		return ret;

512
	evlist__for_each_entry(evlist, evsel) {
513
		ret = do_write(ff, &evsel->core.attr, sz);
514 515 516 517 518 519 520 521 522
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
523
		nri = evsel->core.ids;
524
		ret = do_write(ff, &nri, sizeof(nri));
525 526 527 528 529 530
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
531
		ret = do_write_string(ff, evsel__name(evsel));
532 533 534 535 536
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
537
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
538 539 540 541 542 543
		if (ret < 0)
			return ret;
	}
	return 0;
}

544
static int write_cmdline(struct feat_fd *ff,
545
			 struct evlist *evlist __maybe_unused)
546
{
547 548
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
549

550
	/* actual path to perf binary */
551
	buf = perf_exe(pbuf, MAXPATHLEN);
552 553

	/* account for binary path */
554
	n = perf_env.nr_cmdline + 1;
555

556
	ret = do_write(ff, &n, sizeof(n));
557 558 559
	if (ret < 0)
		return ret;

560
	ret = do_write_string(ff, buf);
561 562 563
	if (ret < 0)
		return ret;

564
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
565
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
566 567 568 569 570 571 572
		if (ret < 0)
			return ret;
	}
	return 0;
}


573
static int write_cpu_topology(struct feat_fd *ff,
574
			      struct evlist *evlist __maybe_unused)
575
{
J
Jiri Olsa 已提交
576
	struct cpu_topology *tp;
577
	u32 i;
578
	int ret, j;
579

J
Jiri Olsa 已提交
580
	tp = cpu_topology__new();
581 582 583
	if (!tp)
		return -1;

584
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
585 586 587 588
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
589
		ret = do_write_string(ff, tp->core_siblings[i]);
590 591 592
		if (ret < 0)
			goto done;
	}
593
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
594 595 596 597
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
598
		ret = do_write_string(ff, tp->thread_siblings[i]);
599 600 601
		if (ret < 0)
			break;
	}
602

603 604 605 606 607
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
608
		ret = do_write(ff, &perf_env.cpu[j].core_id,
609
			       sizeof(perf_env.cpu[j].core_id));
610 611
		if (ret < 0)
			return ret;
612
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
613
			       sizeof(perf_env.cpu[j].socket_id));
614 615 616
		if (ret < 0)
			return ret;
	}
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

638
done:
J
Jiri Olsa 已提交
639
	cpu_topology__delete(tp);
640 641 642 643 644
	return ret;
}



645
static int write_total_mem(struct feat_fd *ff,
646
			   struct evlist *evlist __maybe_unused)
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
666
			ret = do_write(ff, &mem, sizeof(mem));
667 668
	} else
		ret = -1;
669 670 671 672 673
	free(buf);
	fclose(fp);
	return ret;
}

674
static int write_numa_topology(struct feat_fd *ff,
675
			       struct evlist *evlist __maybe_unused)
676
{
J
Jiri Olsa 已提交
677
	struct numa_topology *tp;
678
	int ret = -1;
J
Jiri Olsa 已提交
679
	u32 i;
680

J
Jiri Olsa 已提交
681 682 683
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
684

J
Jiri Olsa 已提交
685 686 687
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
688

J
Jiri Olsa 已提交
689 690
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
691

J
Jiri Olsa 已提交
692 693 694
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
695

J
Jiri Olsa 已提交
696 697 698
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
699

J
Jiri Olsa 已提交
700 701 702
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
703

J
Jiri Olsa 已提交
704
		ret = do_write_string(ff, n->cpus);
705
		if (ret < 0)
J
Jiri Olsa 已提交
706
			goto err;
707
	}
J
Jiri Olsa 已提交
708 709 710 711 712

	ret = 0;

err:
	numa_topology__delete(tp);
713 714 715
	return ret;
}

716 717 718 719 720 721 722 723 724 725 726 727
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

728
static int write_pmu_mappings(struct feat_fd *ff,
729
			      struct evlist *evlist __maybe_unused)
730 731
{
	struct perf_pmu *pmu = NULL;
732
	u32 pmu_num = 0;
733
	int ret;
734

735 736 737 738 739 740 741 742 743 744
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

745
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
746 747
	if (ret < 0)
		return ret;
748 749 750 751

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
752

753
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
754 755 756
		if (ret < 0)
			return ret;

757
		ret = do_write_string(ff, pmu->name);
758 759
		if (ret < 0)
			return ret;
760 761 762 763 764
	}

	return 0;
}

765 766 767 768 769 770 771 772 773 774 775 776
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
777
static int write_group_desc(struct feat_fd *ff,
778
			    struct evlist *evlist)
779 780
{
	u32 nr_groups = evlist->nr_groups;
781
	struct evsel *evsel;
782 783
	int ret;

784
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
785 786 787
	if (ret < 0)
		return ret;

788
	evlist__for_each_entry(evlist, evsel) {
789
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
790 791
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
792
			u32 nr_members = evsel->core.nr_members;
793

794
			ret = do_write_string(ff, name);
795 796 797
			if (ret < 0)
				return ret;

798
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
799 800 801
			if (ret < 0)
				return ret;

802
			ret = do_write(ff, &nr_members, sizeof(nr_members));
803 804 805 806 807 808 809
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

849 850
/*
 * default get_cpuid(): nothing gets recorded
851
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
852
 */
853
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
854
{
855
	return ENOSYS; /* Not implemented */
856 857
}

858
static int write_cpuid(struct feat_fd *ff,
859
		       struct evlist *evlist __maybe_unused)
860 861 862 863 864
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
865 866
	if (ret)
		return -1;
867

868
	return do_write_string(ff, buffer);
869 870
}

871
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
872
			      struct evlist *evlist __maybe_unused)
873 874 875 876
{
	return 0;
}

877
static int write_auxtrace(struct feat_fd *ff,
878
			  struct evlist *evlist __maybe_unused)
879
{
880 881 882
	struct perf_session *session;
	int err;

883 884 885
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

886
	session = container_of(ff->ph, struct perf_session, header);
887

888
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
889 890 891
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
892 893
}

894
static int write_clockid(struct feat_fd *ff,
895
			 struct evlist *evlist __maybe_unused)
896
{
897 898
	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
			sizeof(ff->ph->env.clock.clockid_res_ns));
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static int write_clock_data(struct feat_fd *ff,
			    struct evlist *evlist __maybe_unused)
{
	u64 *data64;
	u32 data32;
	int ret;

	/* version */
	data32 = 1;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* clockid */
	data32 = ff->ph->env.clock.clockid;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* TOD ref time */
	data64 = &ff->ph->env.clock.tod_ns;

	ret = do_write(ff, data64, sizeof(*data64));
	if (ret < 0)
		return ret;

	/* clockid ref time */
	data64 = &ff->ph->env.clock.clockid_ns;

	return do_write(ff, data64, sizeof(*data64));
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static int write_hybrid_topology(struct feat_fd *ff,
				 struct evlist *evlist __maybe_unused)
{
	struct hybrid_topology *tp;
	int ret;
	u32 i;

	tp = hybrid_topology__new();
	if (!tp)
		return -ENOENT;

	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;

	for (i = 0; i < tp->nr; i++) {
		struct hybrid_topology_node *n = &tp->nodes[i];

		ret = do_write_string(ff, n->pmu_name);
		if (ret < 0)
			goto err;

		ret = do_write_string(ff, n->cpus);
		if (ret < 0)
			goto err;
	}

	ret = 0;

err:
	hybrid_topology__delete(tp);
	return ret;
}

969
static int write_dir_format(struct feat_fd *ff,
970
			    struct evlist *evlist __maybe_unused)
971 972 973 974 975 976 977 978 979 980 981 982 983
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

984 985
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
986
			       struct evlist *evlist __maybe_unused)
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

1027
static int write_bpf_btf(struct feat_fd *ff,
1028
			 struct evlist *evlist __maybe_unused)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
1059
#endif // HAVE_LIBBPF_SUPPORT
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1128
	cache->type = strim(cache->type);
1129 1130 1131

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1132
		zfree(&cache->type);
1133 1134 1135 1136
		return -1;
	}

	cache->size[len] = 0;
1137
	cache->size = strim(cache->size);
1138 1139 1140

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1141
		zfree(&cache->size);
1142
		zfree(&cache->type);
1143 1144 1145 1146
		return -1;
	}

	cache->map[len] = 0;
1147
	cache->map = strim(cache->map);
1148 1149 1150 1151 1152 1153 1154 1155
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

1156 1157 1158
#define MAX_CACHE_LVL 4

static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1159 1160 1161 1162 1163
{
	u32 i, cnt = 0;
	u32 nr, cpu;
	u16 level;

1164
	nr = cpu__max_cpu();
1165 1166

	for (cpu = 0; cpu < nr; cpu++) {
1167
		for (level = 0; level < MAX_CACHE_LVL; level++) {
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);
		}
	}
	*cntp = cnt;
	return 0;
}

1193
static int write_cache(struct feat_fd *ff,
1194
		       struct evlist *evlist __maybe_unused)
1195
{
1196 1197
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1198 1199 1200
	u32 cnt = 0, i, version = 1;
	int ret;

1201
	ret = build_caches(caches, &cnt);
1202 1203 1204 1205 1206
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1207
	ret = do_write(ff, &version, sizeof(u32));
1208 1209 1210
	if (ret < 0)
		goto out;

1211
	ret = do_write(ff, &cnt, sizeof(u32));
1212 1213 1214 1215 1216 1217 1218
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1219
			ret = do_write(ff, &c->v, sizeof(u32));	\
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1230
			ret = do_write_string(ff, (const char *) c->v);	\
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1246
static int write_stat(struct feat_fd *ff __maybe_unused,
1247
		      struct evlist *evlist __maybe_unused)
1248 1249 1250 1251
{
	return 0;
}

1252
static int write_sample_time(struct feat_fd *ff,
1253
			     struct evlist *evlist)
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1336 1337
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
1354 1355
			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
			closedir(dir);
1356
			return -1;
1357
		}
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1389
			      struct evlist *evlist __maybe_unused)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1438
static int write_compressed(struct feat_fd *ff __maybe_unused,
1439
			    struct evlist *evlist __maybe_unused)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static int write_cpu_pmu_caps(struct feat_fd *ff,
			      struct evlist *evlist __maybe_unused)
{
	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
	struct perf_pmu_caps *caps = NULL;
	int nr_caps;
	int ret;

	if (!cpu_pmu)
		return -ENOENT;

	nr_caps = perf_pmu__caps_parse(cpu_pmu);
	if (nr_caps < 0)
		return nr_caps;

	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
	if (ret < 0)
		return ret;

	list_for_each_entry(caps, &cpu_pmu->caps, list) {
		ret = do_write_string(ff, caps->name);
		if (ret < 0)
			return ret;

		ret = do_write_string(ff, caps->value);
		if (ret < 0)
			return ret;
	}

	return ret;
}

1494
static void print_hostname(struct feat_fd *ff, FILE *fp)
1495
{
1496
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1497 1498
}

1499
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1500
{
1501
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1502 1503
}

1504
static void print_arch(struct feat_fd *ff, FILE *fp)
1505
{
1506
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1507 1508
}

1509
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1510
{
1511
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1512 1513
}

1514
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1515
{
1516 1517
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1518 1519
}

1520
static void print_version(struct feat_fd *ff, FILE *fp)
1521
{
1522
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1523 1524
}

1525
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1526
{
1527
	int nr, i;
1528

1529
	nr = ff->ph->env.nr_cmdline;
1530 1531 1532

	fprintf(fp, "# cmdline : ");

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1551 1552 1553
	fputc('\n', fp);
}

1554
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1555
{
1556 1557
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1558
	int nr, i;
1559 1560
	char *str;

1561 1562
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1563 1564

	for (i = 0; i < nr; i++) {
1565
		fprintf(fp, "# sibling sockets : %s\n", str);
1566
		str += strlen(str) + 1;
1567 1568
	}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1579 1580
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1581 1582 1583

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1584
		str += strlen(str) + 1;
1585
	}
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1609 1610
}

1611 1612 1613
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1614
		ff->ph->env.clock.clockid_res_ns * 1000);
1615 1616
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
static void print_clock_data(struct feat_fd *ff, FILE *fp)
{
	struct timespec clockid_ns;
	char tstr[64], date[64];
	struct timeval tod_ns;
	clockid_t clockid;
	struct tm ltime;
	u64 ref;

	if (!ff->ph->env.clock.enabled) {
		fprintf(fp, "# reference time disabled\n");
		return;
	}

	/* Compute TOD time. */
	ref = ff->ph->env.clock.tod_ns;
	tod_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
	tod_ns.tv_usec = ref / NSEC_PER_USEC;

	/* Compute clockid time. */
	ref = ff->ph->env.clock.clockid_ns;
	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
	clockid_ns.tv_nsec = ref;

	clockid = ff->ph->env.clock.clockid;

	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
		snprintf(tstr, sizeof(tstr), "<error>");
	else {
		strftime(date, sizeof(date), "%F %T", &ltime);
		scnprintf(tstr, sizeof(tstr), "%s.%06d",
			  date, (int) tod_ns.tv_usec);
	}

	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1655 1656
		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1657 1658 1659
		    clockid_name(clockid));
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
{
	int i;
	struct hybrid_node *n;

	fprintf(fp, "# hybrid cpu system:\n");
	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
		n = &ff->ph->env.hybrid_nodes[i];
		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
	}
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1683
#ifdef HAVE_LIBBPF_SUPPORT
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1700 1701 1702

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1703 1704 1705 1706 1707
	}

	up_read(&env->bpf_progs.lock);
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}
1729
#endif // HAVE_LIBBPF_SUPPORT
1730

1731
static void free_event_desc(struct evsel *events)
1732
{
1733
	struct evsel *evsel;
1734 1735 1736 1737

	if (!events)
		return;

1738
	for (evsel = events; evsel->core.attr.size; evsel++) {
1739
		zfree(&evsel->name);
1740
		zfree(&evsel->core.id);
1741 1742 1743 1744 1745
	}

	free(events);
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static bool perf_attr_check(struct perf_event_attr *attr)
{
	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
		pr_warning("Reserved bits are set unexpectedly. "
			   "Please update perf tool.\n");
		return false;
	}

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
		pr_warning("Unknown sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->sample_type);
		return false;
	}

	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
		pr_warning("Unknown read format (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->read_format);
		return false;
	}

	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
		pr_warning("Unknown branch sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->branch_sample_type);

		return false;
	}

	return true;
}

1780
static struct evsel *read_event_desc(struct feat_fd *ff)
1781
{
1782
	struct evsel *evsel, *events = NULL;
1783
	u64 *id;
1784
	void *buf = NULL;
1785 1786
	u32 nre, sz, nr, i, j;
	size_t msz;
1787 1788

	/* number of events */
1789
	if (do_read_u32(ff, &nre))
1790 1791
		goto error;

1792
	if (do_read_u32(ff, &sz))
1793 1794
		goto error;

1795
	/* buffer to hold on file attr struct */
1796 1797 1798 1799
	buf = malloc(sz);
	if (!buf)
		goto error;

1800
	/* the last event terminates with evsel->core.attr.size == 0: */
1801 1802 1803 1804
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1805
	msz = sizeof(evsel->core.attr);
1806
	if (sz < msz)
1807 1808
		msz = sz;

1809 1810
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1811

1812 1813 1814 1815
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1816
		if (__do_read(ff, buf, sz))
1817 1818
			goto error;

1819
		if (ff->ph->needs_swap)
1820 1821
			perf_event__attr_swap(buf);

1822
		memcpy(&evsel->core.attr, buf, msz);
1823

1824 1825 1826
		if (!perf_attr_check(&evsel->core.attr))
			goto error;

1827
		if (do_read_u32(ff, &nr))
1828 1829
			goto error;

1830
		if (ff->ph->needs_swap)
1831
			evsel->needs_swap = true;
1832

1833
		evsel->name = do_read_string(ff);
1834 1835
		if (!evsel->name)
			goto error;
1836 1837 1838 1839 1840 1841 1842

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1843
		evsel->core.ids = nr;
1844
		evsel->core.id = id;
1845 1846

		for (j = 0 ; j < nr; j++) {
1847
			if (do_read_u64(ff, id))
1848 1849 1850 1851 1852
				goto error;
			id++;
		}
	}
out:
1853
	free(buf);
1854 1855
	return events;
error:
1856
	free_event_desc(events);
1857 1858 1859 1860
	events = NULL;
	goto out;
}

1861
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1862
				void *priv __maybe_unused)
1863 1864 1865 1866
{
	return fprintf(fp, ", %s = %s", name, val);
}

1867
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1868
{
1869
	struct evsel *evsel, *events;
1870 1871 1872
	u32 j;
	u64 *id;

1873 1874 1875 1876 1877
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1878 1879 1880 1881 1882
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1883
	for (evsel = events; evsel->core.attr.size; evsel++) {
1884
		fprintf(fp, "# event : name = %s, ", evsel->name);
1885

1886
		if (evsel->core.ids) {
1887
			fprintf(fp, ", id = {");
1888
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1889 1890 1891 1892
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1893
			fprintf(fp, " }");
1894
		}
1895

1896
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1897

1898 1899
		fputc('\n', fp);
	}
1900 1901

	free_event_desc(events);
1902
	ff->events = NULL;
1903 1904
}

1905
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1906
{
1907
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1908 1909
}

1910
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1911
{
1912 1913
	int i;
	struct numa_node *n;
1914

1915 1916
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1917 1918 1919

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1920
			n->node, n->mem_total, n->mem_free);
1921

1922 1923
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1924 1925 1926
	}
}

1927
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1928
{
1929
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1930 1931
}

1932
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1933 1934 1935 1936
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1937
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1938 1939 1940 1941
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1942
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1943 1944 1945 1946
{
	fprintf(fp, "# contains stat data\n");
}

1947
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1948 1949 1950 1951
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1952
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1953
		fprintf(fp, "#  ");
1954
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1955 1956 1957
	}
}

1958 1959 1960 1961 1962 1963 1964
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
{
	const char *delimiter = "# cpu pmu capabilities: ";
	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
	char *str;

	if (!nr_caps) {
		fprintf(fp, "# cpu pmu capabilities: not available\n");
		return;
	}

	str = ff->ph->env.cpu_pmu_caps;
	while (nr_caps--) {
		fprintf(fp, "%s%s", delimiter, str);
		delimiter = ", ";
		str += strlen(str) + 1;
	}

	fprintf(fp, "\n");
}

1986
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1987 1988
{
	const char *delimiter = "# pmu mappings: ";
1989
	char *str, *tmp;
1990 1991 1992
	u32 pmu_num;
	u32 type;

1993
	pmu_num = ff->ph->env.nr_pmu_mappings;
1994 1995 1996 1997 1998
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1999
	str = ff->ph->env.pmu_mappings;
2000

2001
	while (pmu_num) {
2002 2003 2004 2005 2006 2007
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2008

2009
		delimiter = ", ";
2010 2011
		str += strlen(str) + 1;
		pmu_num--;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

2022
static void print_group_desc(struct feat_fd *ff, FILE *fp)
2023 2024
{
	struct perf_session *session;
2025
	struct evsel *evsel;
2026 2027
	u32 nr = 0;

2028
	session = container_of(ff->ph, struct perf_session, header);
2029

2030
	evlist__for_each_entry(session->evlist, evsel) {
2031
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2032
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2033

2034
			nr = evsel->core.nr_members - 1;
2035
		} else if (nr) {
2036
			fprintf(fp, ",%s", evsel__name(evsel));
2037 2038 2039 2040 2041 2042 2043

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

2095
static int __event_process_build_id(struct perf_record_header_build_id *bev,
2096 2097 2098 2099 2100
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
2101
	u16 cpumode;
2102
	struct dso *dso;
2103
	enum dso_space_type dso_space;
2104 2105 2106 2107 2108

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

2109
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2110

2111
	switch (cpumode) {
2112
	case PERF_RECORD_MISC_KERNEL:
2113
		dso_space = DSO_SPACE__KERNEL;
2114 2115
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
2116
		dso_space = DSO_SPACE__KERNEL_GUEST;
2117 2118 2119
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
2120
		dso_space = DSO_SPACE__USER;
2121 2122 2123 2124 2125
		break;
	default:
		goto out;
	}

2126
	dso = machine__findnew_dso(machine, filename);
2127
	if (dso != NULL) {
2128
		char sbuild_id[SBUILD_ID_SIZE];
2129
		struct build_id bid;
2130
		size_t size = BUILD_ID_SIZE;
2131

2132 2133 2134 2135
		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
			size = bev->size;

		build_id__init(&bid, bev->data, size);
2136
		dso__set_build_id(dso, &bid);
2137

2138
		if (dso_space != DSO_SPACE__USER) {
2139 2140 2141
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2142
				dso__set_module_info(dso, &m, machine);
2143

2144
			dso->kernel = dso_space;
2145 2146
			free(m.name);
		}
2147

2148
		build_id__sprintf(&dso->bid, sbuild_id);
2149 2150
		pr_debug("build id event received for %s: %s [%zu]\n",
			 dso->long_name, sbuild_id, size);
2151
		dso__put(dso);
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
2165
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2166 2167
		char			   filename[0];
	} old_bev;
2168
	struct perf_record_header_build_id bev;
2169 2170 2171 2172 2173 2174
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

2175
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2176 2177 2178 2179 2180 2181
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
2182
		if (readn(input, filename, len) != len)
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2209
	struct perf_record_header_build_id bev;
2210 2211 2212 2213 2214 2215 2216
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2217
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2218 2219 2220 2221 2222 2223
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2224
		if (readn(input, filename, len) != len)
2225 2226 2227 2228 2229 2230
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2231
		 * Added a field to struct perf_record_header_build_id that broke the file
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2254 2255
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2256
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2257
{\
2258
	ff->ph->env.__feat_env = do_read_string(ff); \
2259
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2260 2261 2262 2263 2264 2265 2266 2267 2268
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2269
static int process_tracing_data(struct feat_fd *ff, void *data)
2270
{
2271 2272
	ssize_t ret = trace_report(ff->fd, data, false);

2273
	return ret < 0 ? -1 : 0;
2274 2275
}

2276
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2277
{
2278
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2279 2280 2281 2282
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2283
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2284
{
2285 2286
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2287

2288
	ret = do_read_u32(ff, &nr_cpus_avail);
2289 2290
	if (ret)
		return ret;
2291

2292
	ret = do_read_u32(ff, &nr_cpus_online);
2293 2294
	if (ret)
		return ret;
2295 2296
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2297 2298 2299
	return 0;
}

2300
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2301
{
2302 2303
	u64 total_mem;
	int ret;
2304

2305
	ret = do_read_u64(ff, &total_mem);
2306
	if (ret)
2307
		return -1;
2308
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2309 2310 2311
	return 0;
}

2312
static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2313
{
2314
	struct evsel *evsel;
2315

2316
	evlist__for_each_entry(evlist, evsel) {
2317 2318 2319 2320 2321 2322 2323
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

2324
static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2325
{
2326
	struct evsel *evsel;
2327 2328 2329 2330

	if (!event->name)
		return;

2331
	evsel = evlist__find_by_index(evlist, event->idx);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2342
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2343
{
2344
	struct perf_session *session;
2345
	struct evsel *evsel, *events = read_event_desc(ff);
2346 2347 2348 2349

	if (!events)
		return 0;

2350
	session = container_of(ff->ph, struct perf_session, header);
2351

2352
	if (session->data->is_pipe) {
2353 2354 2355 2356 2357
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2358
	for (evsel = events; evsel->core.attr.size; evsel++)
2359
		evlist__set_event_name(session->evlist, evsel);
2360

2361
	if (!session->data->is_pipe)
2362
		free_event_desc(events);
2363 2364 2365 2366

	return 0;
}

2367
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2368
{
2369 2370
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2371

2372
	if (do_read_u32(ff, &nr))
2373 2374
		return -1;

2375
	ff->ph->env.nr_cmdline = nr;
2376

2377
	cmdline = zalloc(ff->size + nr + 1);
2378 2379 2380 2381 2382 2383
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2384 2385

	for (i = 0; i < nr; i++) {
2386
		str = do_read_string(ff);
2387 2388 2389
		if (!str)
			goto error;

2390 2391 2392
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2393 2394
		free(str);
	}
2395 2396
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2397 2398 2399
	return 0;

error:
2400 2401
	free(argv);
	free(cmdline);
2402 2403 2404
	return -1;
}

2405
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2406 2407 2408 2409
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2410
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2411
	u64 size = 0;
2412
	struct perf_header *ph = ff->ph;
2413
	bool do_core_id_test = true;
2414 2415 2416 2417

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2418

2419
	if (do_read_u32(ff, &nr))
2420
		goto free_cpu;
2421 2422

	ph->env.nr_sibling_cores = nr;
2423
	size += sizeof(u32);
2424 2425
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2426 2427

	for (i = 0; i < nr; i++) {
2428
		str = do_read_string(ff);
2429 2430 2431 2432
		if (!str)
			goto error;

		/* include a NULL character at the end */
2433 2434
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2435
		size += string_size(str);
2436 2437 2438 2439
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2440
	if (do_read_u32(ff, &nr))
2441 2442 2443
		return -1;

	ph->env.nr_sibling_threads = nr;
2444
	size += sizeof(u32);
2445 2446

	for (i = 0; i < nr; i++) {
2447
		str = do_read_string(ff);
2448 2449 2450 2451
		if (!str)
			goto error;

		/* include a NULL character at the end */
2452 2453
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2454
		size += string_size(str);
2455 2456 2457
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2458 2459 2460 2461 2462

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2463
	if (ff->size <= size) {
2464 2465 2466 2467
		zfree(&ph->env.cpu);
		return 0;
	}

2468 2469 2470
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2471
	 * AArch64 is the same.
2472
	 */
2473 2474
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2475 2476
		do_core_id_test = false;

2477
	for (i = 0; i < (u32)cpu_nr; i++) {
2478
		if (do_read_u32(ff, &nr))
2479 2480 2481
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2482
		size += sizeof(u32);
2483

2484
		if (do_read_u32(ff, &nr))
2485 2486
			goto free_cpu;

2487
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2488 2489 2490 2491 2492 2493
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2528 2529
	}

2530 2531 2532 2533
	return 0;

error:
	strbuf_release(&sb);
2534 2535
free_cpu:
	zfree(&ph->env.cpu);
2536 2537 2538
	return -1;
}

2539
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2540
{
2541 2542
	struct numa_node *nodes, *n;
	u32 nr, i;
2543 2544 2545
	char *str;

	/* nr nodes */
2546
	if (do_read_u32(ff, &nr))
2547
		return -1;
2548

2549 2550 2551
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2552 2553

	for (i = 0; i < nr; i++) {
2554 2555
		n = &nodes[i];

2556
		/* node number */
2557
		if (do_read_u32(ff, &n->node))
2558 2559
			goto error;

2560
		if (do_read_u64(ff, &n->mem_total))
2561 2562
			goto error;

2563
		if (do_read_u64(ff, &n->mem_free))
2564 2565
			goto error;

2566
		str = do_read_string(ff);
2567 2568 2569
		if (!str)
			goto error;

2570
		n->map = perf_cpu_map__new(str);
2571
		if (!n->map)
2572
			goto error;
2573

2574 2575
		free(str);
	}
2576 2577
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2578 2579 2580
	return 0;

error:
2581
	free(nodes);
2582 2583 2584
	return -1;
}

2585
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2586 2587 2588 2589 2590 2591
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2592
	if (do_read_u32(ff, &pmu_num))
2593 2594 2595 2596 2597 2598 2599
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2600
	ff->ph->env.nr_pmu_mappings = pmu_num;
2601 2602
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2603 2604

	while (pmu_num) {
2605
		if (do_read_u32(ff, &type))
2606 2607
			goto error;

2608
		name = do_read_string(ff);
2609 2610 2611
		if (!name)
			goto error;

2612 2613
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2614
		/* include a NULL character at the end */
2615 2616
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2617

2618
		if (!strcmp(name, "msr"))
2619
			ff->ph->env.msr_pmu_type = type;
2620

2621 2622 2623
		free(name);
		pmu_num--;
	}
2624
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2625 2626 2627 2628 2629 2630 2631
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2632
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2633 2634 2635 2636
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2637
	struct evsel *evsel, *leader = NULL;
2638 2639 2640 2641 2642 2643
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2644
	if (do_read_u32(ff, &nr_groups))
2645 2646
		return -1;

2647
	ff->ph->env.nr_groups = nr_groups;
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2658
		desc[i].name = do_read_string(ff);
2659 2660 2661
		if (!desc[i].name)
			goto out_free;

2662
		if (do_read_u32(ff, &desc[i].leader_idx))
2663 2664
			goto out_free;

2665
		if (do_read_u32(ff, &desc[i].nr_members))
2666 2667 2668 2669 2670 2671
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2672
	session = container_of(ff->ph, struct perf_session, header);
2673 2674 2675
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2676
	evlist__for_each_entry(session->evlist, evsel) {
2677 2678 2679
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2680
			if (strcmp(desc[i].name, "{anon_group}")) {
2681
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2682 2683
				desc[i].name = NULL;
			}
2684
			evsel->core.nr_members = desc[i].nr_members;
2685 2686 2687 2688 2689 2690 2691

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2692
			nr = evsel->core.nr_members - 1;
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2709
	for (i = 0; i < nr_groups; i++)
2710
		zfree(&desc[i].name);
2711 2712 2713 2714 2715
	free(desc);

	return ret;
}

2716
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2717 2718 2719 2720
{
	struct perf_session *session;
	int err;

2721
	session = container_of(ff->ph, struct perf_session, header);
2722

2723
	err = auxtrace_index__process(ff->fd, ff->size, session,
2724
				      ff->ph->needs_swap);
2725 2726 2727 2728 2729
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2730
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2731 2732 2733 2734
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2735
	if (do_read_u32(ff, &version))
2736 2737 2738 2739 2740
		return -1;

	if (version != 1)
		return -1;

2741
	if (do_read_u32(ff, &cnt))
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2752
			if (do_read_u32(ff, &c.v))\
2753 2754 2755 2756 2757 2758 2759 2760
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2761
		#define _R(v)					\
2762
			c.v = do_read_string(ff);		\
2763
			if (!c.v)				\
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2774 2775
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2776 2777 2778 2779 2780 2781
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2855 2856 2857
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
2858
	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2859 2860 2861 2862 2863
		return -1;

	return 0;
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
static int process_clock_data(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	u32 data32;
	u64 data64;

	/* version */
	if (do_read_u32(ff, &data32))
		return -1;

	if (data32 != 1)
		return -1;

	/* clockid */
	if (do_read_u32(ff, &data32))
		return -1;

	ff->ph->env.clock.clockid = data32;

	/* TOD ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.tod_ns = data64;

	/* clockid ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.clockid_ns = data64;
	ff->ph->env.clock.enabled = true;
	return 0;
}

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
static int process_hybrid_topology(struct feat_fd *ff,
				   void *data __maybe_unused)
{
	struct hybrid_node *nodes, *n;
	u32 nr, i;

	/* nr nodes */
	if (do_read_u32(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;

	for (i = 0; i < nr; i++) {
		n = &nodes[i];

		n->pmu_name = do_read_string(ff);
		if (!n->pmu_name)
			goto error;

		n->cpus = do_read_string(ff);
		if (!n->cpus)
			goto error;
	}

	ff->ph->env.nr_hybrid_nodes = nr;
	ff->ph->env.hybrid_nodes = nodes;
	return 0;

error:
	for (i = 0; i < nr; i++) {
		free(nodes[i].pmu_name);
		free(nodes[i].cpus);
	}

	free(nodes);
	return -1;
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
2963
		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

3014
	up_write(&env->bpf_progs.lock);
3015 3016 3017 3018 3019 3020 3021 3022
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}

3023 3024 3025
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
3026
	struct btf_node *node = NULL;
3027
	u32 count, i;
3028
	int err = -1;
3029 3030

	if (ff->ph->needs_swap) {
3031
		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
3044
			goto out;
3045
		if (do_read_u32(ff, &data_size))
3046
			goto out;
3047 3048 3049

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
3050
			goto out;
3051 3052 3053 3054

		node->id = id;
		node->data_size = data_size;

3055 3056
		if (__do_read(ff, node->data, data_size))
			goto out;
3057 3058

		perf_env__insert_btf(env, node);
3059
		node = NULL;
3060 3061
	}

3062 3063
	err = 0;
out:
3064
	up_write(&env->bpf_progs.lock);
3065 3066
	free(node);
	return err;
3067
}
3068
#endif // HAVE_LIBBPF_SUPPORT
3069

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
static int process_cpu_pmu_caps(struct feat_fd *ff,
				void *data __maybe_unused)
{
	char *name, *value;
	struct strbuf sb;
	u32 nr_caps;

	if (do_read_u32(ff, &nr_caps))
		return -1;

	if (!nr_caps) {
		pr_debug("cpu pmu capabilities not available\n");
		return 0;
	}

	ff->ph->env.nr_cpu_pmu_caps = nr_caps;

	if (strbuf_init(&sb, 128) < 0)
		return -1;

	while (nr_caps--) {
		name = do_read_string(ff);
		if (!name)
			goto error;

		value = do_read_string(ff);
		if (!value)
			goto free_name;

		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
			goto free_value;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, "", 1) < 0)
			goto free_value;

		if (!strcmp(name, "branches"))
			ff->ph->env.max_branches = atoi(value);

		free(value);
		free(name);
	}
	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
	return 0;

free_value:
	free(value);
free_name:
	free(name);
error:
	strbuf_release(&sb);
	return -1;
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
3163 3164

/* feature_ops not implemented: */
3165 3166
#define print_tracing_data	NULL
#define print_build_id		NULL
3167

3168 3169 3170
#define process_branch_stack	NULL
#define process_stat		NULL

3171 3172
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3173

3174
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3191
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3192 3193 3194
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
3195
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3196
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3197
	FEAT_OPR(CLOCKID,	clockid,	false),
3198
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3199
#ifdef HAVE_LIBBPF_SUPPORT
3200 3201
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3202
#endif
3203
	FEAT_OPR(COMPRESSED,	compressed,	false),
3204
	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3205
	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3206
	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
3219
	struct feat_fd ff;
3220 3221 3222 3223 3224 3225

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
3226
	if (feat >= HEADER_LAST_FEATURE) {
3227
		pr_warning("unknown feature %d\n", feat);
3228
		return 0;
3229 3230 3231 3232
	}
	if (!feat_ops[feat].print)
		return 0;

3233 3234 3235 3236 3237
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

3238
	if (!feat_ops[feat].full_only || hd->full)
3239
		feat_ops[feat].print(&ff, hd->fp);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
3251
	int fd = perf_data__fd(session->data);
3252
	struct stat st;
3253
	time_t stctime;
J
Jiri Olsa 已提交
3254
	int ret, bit;
3255

3256 3257 3258
	hd.fp = fp;
	hd.full = full;

3259 3260 3261 3262
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

3263
	stctime = st.st_mtime;
3264
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3265 3266 3267 3268 3269

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3270

3271 3272
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
3273

3274
	if (session->data->is_pipe)
3275 3276
		return 0;

J
Jiri Olsa 已提交
3277 3278 3279 3280 3281 3282 3283
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
3284 3285 3286
	return 0;
}

3287
static int do_write_feat(struct feat_fd *ff, int type,
3288
			 struct perf_file_section **p,
3289
			 struct evlist *evlist)
3290 3291 3292 3293
{
	int err;
	int ret = 0;

3294
	if (perf_header__has_feat(ff->ph, type)) {
3295 3296
		if (!feat_ops[type].write)
			return -1;
3297

3298 3299 3300
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

3301
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3302

3303
		err = feat_ops[type].write(ff, evlist);
3304
		if (err < 0) {
3305
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3306 3307

			/* undo anything written */
3308
			lseek(ff->fd, (*p)->offset, SEEK_SET);
3309 3310 3311

			return -1;
		}
3312
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3313 3314 3315 3316 3317
		(*p)++;
	}
	return ret;
}

3318
static int perf_header__adds_write(struct perf_header *header,
3319
				   struct evlist *evlist, int fd)
3320
{
3321
	int nr_sections;
3322
	struct feat_fd ff;
3323
	struct perf_file_section *feat_sec, *p;
3324 3325
	int sec_size;
	u64 sec_start;
3326
	int feat;
3327
	int err;
3328

3329 3330 3331 3332 3333
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3334
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3335
	if (!nr_sections)
3336
		return 0;
3337

3338
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3339 3340
	if (feat_sec == NULL)
		return -ENOMEM;
3341 3342 3343

	sec_size = sizeof(*feat_sec) * nr_sections;

3344
	sec_start = header->feat_offset;
3345
	lseek(fd, sec_start + sec_size, SEEK_SET);
3346

3347
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3348
		if (do_write_feat(&ff, feat, &p, evlist))
3349 3350
			perf_header__clear_feat(header, feat);
	}
3351

3352
	lseek(fd, sec_start, SEEK_SET);
3353 3354
	/*
	 * may write more than needed due to dropped feature, but
3355
	 * this is okay, reader will skip the missing entries
3356
	 */
3357
	err = do_write(&ff, feat_sec, sec_size);
3358 3359
	if (err < 0)
		pr_debug("failed to write feature section\n");
3360
	free(feat_sec);
3361
	return err;
3362
}
3363

3364 3365 3366
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3367
	struct feat_fd ff;
3368 3369
	int err;

3370 3371
	ff = (struct feat_fd){ .fd = fd };

3372 3373 3374 3375 3376
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3377
	err = do_write(&ff, &f_header, sizeof(f_header));
3378 3379 3380 3381 3382 3383 3384 3385
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3386
int perf_session__write_header(struct perf_session *session,
3387
			       struct evlist *evlist,
3388
			       int fd, bool at_exit)
3389 3390 3391
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3392
	struct perf_header *header = &session->header;
3393
	struct evsel *evsel;
3394
	struct feat_fd ff;
3395
	u64 attr_offset;
3396
	int err;
3397

3398
	ff = (struct feat_fd){ .fd = fd};
3399 3400
	lseek(fd, sizeof(f_header), SEEK_SET);

3401
	evlist__for_each_entry(session->evlist, evsel) {
3402
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3403
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3404 3405 3406 3407
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3408 3409
	}

3410
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3411

3412
	evlist__for_each_entry(evlist, evsel) {
3413 3414 3415 3416 3417 3418 3419 3420
		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
			/*
			 * We are likely in "perf inject" and have read
			 * from an older file. Update attr size so that
			 * reader gets the right offset to the ids.
			 */
			evsel->core.attr.size = sizeof(evsel->core.attr);
		}
3421
		f_attr = (struct perf_file_attr){
3422
			.attr = evsel->core.attr,
3423
			.ids  = {
3424
				.offset = evsel->id_offset,
3425
				.size   = evsel->core.ids * sizeof(u64),
3426 3427
			}
		};
3428
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3429 3430 3431 3432
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3433 3434
	}

3435 3436
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3437
	header->feat_offset = header->data_offset + header->data_size;
3438

3439
	if (at_exit) {
3440
		err = perf_header__adds_write(header, evlist, fd);
3441 3442 3443
		if (err < 0)
			return err;
	}
3444

3445 3446 3447 3448 3449
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3450
			.offset = attr_offset,
3451
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3452 3453
		},
		.data = {
3454 3455
			.offset = header->data_offset,
			.size	= header->data_size,
3456
		},
3457
		/* event_types is ignored, store zeros */
3458 3459
	};

3460
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3461

3462
	lseek(fd, 0, SEEK_SET);
3463
	err = do_write(&ff, &f_header, sizeof(f_header));
3464 3465 3466 3467
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3468
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3469

3470
	return 0;
3471 3472
}

3473
static int perf_header__getbuffer64(struct perf_header *header,
3474 3475
				    int fd, void *buf, size_t size)
{
3476
	if (readn(fd, buf, size) <= 0)
3477 3478
		return -1;

3479
	if (header->needs_swap)
3480 3481 3482 3483 3484
		mem_bswap_64(buf, size);

	return 0;
}

3485
int perf_header__process_sections(struct perf_header *header, int fd,
3486
				  void *data,
3487
				  int (*process)(struct perf_file_section *section,
3488 3489
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3490
{
3491
	struct perf_file_section *feat_sec, *sec;
3492 3493
	int nr_sections;
	int sec_size;
3494 3495
	int feat;
	int err;
3496

3497
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3498
	if (!nr_sections)
3499
		return 0;
3500

3501
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3502
	if (!feat_sec)
3503
		return -1;
3504 3505 3506

	sec_size = sizeof(*feat_sec) * nr_sections;

3507
	lseek(fd, header->feat_offset, SEEK_SET);
3508

3509 3510
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3511
		goto out_free;
3512

3513 3514 3515 3516
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3517
	}
3518
	err = 0;
3519
out_free:
3520 3521
	free(feat_sec);
	return err;
3522
}
3523

3524 3525 3526
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3527
	[2] = PERF_ATTR_SIZE_VER2,
3528
	[3] = PERF_ATTR_SIZE_VER3,
3529
	[4] = PERF_ATTR_SIZE_VER4,
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3540
{
3541 3542
	uint64_t ref_size, attr_size;
	int i;
3543

3544 3545 3546 3547 3548 3549 3550
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3562

3563 3564 3565 3566 3567 3568 3569 3570
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
3571
 * In the legacy pipe format, there is an implicit assumption that endianness
3572 3573 3574
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
3575
 * different endianness and perf_event ABI revisions in the perf tool itself.
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3587 3588 3589

			ph->needs_swap = true;
		}
3590
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3591 3592
		return 0;
	}
3593 3594 3595
	return -1;
}

F
Feng Tang 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3606 3607 3608 3609 3610 3611 3612 3613
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3614
		ph->version = PERF_HEADER_VERSION_1;
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3626
	ph->version = PERF_HEADER_VERSION_2;
3627

3628 3629
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3630 3631
		return 0;

3632 3633
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3634 3635 3636 3637 3638 3639 3640
		return -1;

	ph->needs_swap = true;

	return 0;
}

3641
int perf_file_header__read(struct perf_file_header *header,
3642 3643
			   struct perf_header *ph, int fd)
{
3644
	ssize_t ret;
3645

3646 3647
	lseek(fd, 0, SEEK_SET);

3648 3649
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3650 3651
		return -1;

3652 3653 3654
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3655
		return -1;
3656
	}
3657

3658
	if (ph->needs_swap) {
3659
		mem_bswap_64(header, offsetof(struct perf_file_header,
3660
			     adds_features));
3661 3662
	}

3663
	if (header->size != sizeof(*header)) {
3664
		/* Support the previous format */
3665 3666
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3667 3668
		else
			return -1;
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3685 3686
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3687 3688

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3689 3690 3691 3692 3693 3694 3695
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3696 3697 3698 3699 3700 3701
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3702
	}
3703

3704
	memcpy(&ph->adds_features, &header->adds_features,
3705
	       sizeof(ph->adds_features));
3706

3707 3708
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3709
	ph->feat_offset  = header->data.offset + header->data.size;
3710 3711 3712
	return 0;
}

3713
static int perf_file_section__process(struct perf_file_section *section,
3714
				      struct perf_header *ph,
3715
				      int feat, int fd, void *data)
3716
{
3717
	struct feat_fd fdd = {
3718 3719
		.fd	= fd,
		.ph	= ph,
3720 3721
		.size	= section->size,
		.offset	= section->offset,
3722 3723
	};

3724
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3725
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3726
			  "%d, continuing...\n", section->offset, feat);
3727 3728 3729
		return 0;
	}

3730 3731 3732 3733 3734
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3735 3736
	if (!feat_ops[feat].process)
		return 0;
3737

3738
	return feat_ops[feat].process(&fdd, data);
3739
}
3740

3741
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3742 3743
				       struct perf_header *ph,
				       struct perf_data* data,
T
Tom Zanussi 已提交
3744
				       bool repipe)
3745
{
3746 3747 3748 3749
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3750
	ssize_t ret;
3751

3752
	ret = perf_data__read(data, header, sizeof(*header));
3753 3754 3755
	if (ret <= 0)
		return -1;

3756 3757
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3758
		return -1;
3759 3760 3761 3762
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3763

3764
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3765 3766
		return -1;

3767 3768 3769
	return 0;
}

3770
static int perf_header__read_pipe(struct perf_session *session)
3771
{
3772
	struct perf_header *header = &session->header;
3773 3774
	struct perf_pipe_file_header f_header;

3775
	if (perf_file_header__read_pipe(&f_header, header, session->data,
T
Tom Zanussi 已提交
3776
					session->repipe) < 0) {
3777 3778 3779 3780
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

3781
	return f_header.size == sizeof(f_header) ? 0 : -1;
3782 3783
}

3784 3785 3786 3787 3788 3789
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3790
	ssize_t ret;
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3804

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3830
static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3831
{
3832
	struct tep_event *event;
3833 3834
	char bf[128];

3835 3836 3837 3838
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3839 3840 3841 3842 3843
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3844
	event = tep_find_event(pevent, evsel->core.attr.config);
3845
	if (event == NULL) {
3846
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3847
		return -1;
3848
	}
3849

3850 3851 3852 3853 3854 3855
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3856

3857
	evsel->tp_format = event;
3858 3859 3860
	return 0;
}

3861
static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3862
{
3863
	struct evsel *pos;
3864

3865
	evlist__for_each_entry(evlist, pos) {
3866
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3867
		    evsel__prepare_tracepoint_event(pos, pevent))
3868 3869 3870 3871 3872 3873
			return -1;
	}

	return 0;
}

3874
int perf_session__read_header(struct perf_session *session)
3875
{
3876
	struct perf_data *data = session->data;
3877
	struct perf_header *header = &session->header;
3878
	struct perf_file_header	f_header;
3879 3880
	struct perf_file_attr	f_attr;
	u64			f_id;
3881
	int nr_attrs, nr_ids, i, j, err;
3882
	int fd = perf_data__fd(data);
3883

3884
	session->evlist = evlist__new();
3885 3886 3887
	if (session->evlist == NULL)
		return -ENOMEM;

3888
	session->evlist->env = &header->env;
3889
	session->machines.host.env = &header->env;
3890 3891 3892 3893 3894 3895

	/*
	 * We can read 'pipe' data event from regular file,
	 * check for the pipe header regardless of source.
	 */
	err = perf_header__read_pipe(session);
3896
	if (!err || perf_data__is_pipe(data)) {
3897 3898 3899
		data->is_pipe = true;
		return err;
	}
3900

3901
	if (perf_file_header__read(&f_header, header, fd) < 0)
3902
		return -EINVAL;
3903

3904 3905 3906 3907 3908
	if (header->needs_swap && data->in_place_update) {
		pr_err("In-place update not supported when byte-swapping is required\n");
		return -EINVAL;
	}

3909 3910 3911 3912 3913 3914 3915 3916 3917
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3918
			   data->file.path);
3919 3920
	}

3921 3922 3923 3924 3925 3926 3927
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3928
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3929 3930 3931
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3932
		struct evsel *evsel;
3933
		off_t tmp;
3934

3935
		if (read_attr(fd, header, &f_attr) < 0)
3936
			goto out_errno;
3937

3938 3939 3940
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3941
			perf_event__attr_swap(&f_attr.attr);
3942
		}
3943

3944
		tmp = lseek(fd, 0, SEEK_CUR);
3945
		evsel = evsel__new(&f_attr.attr);
3946

3947 3948
		if (evsel == NULL)
			goto out_delete_evlist;
3949 3950

		evsel->needs_swap = header->needs_swap;
3951 3952
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3953
		 * entry gets purged too at evlist__delete().
3954
		 */
3955
		evlist__add(session->evlist, evsel);
3956 3957

		nr_ids = f_attr.ids.size / sizeof(u64);
3958 3959 3960 3961 3962
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3963
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3964 3965
			goto out_delete_evlist;

3966 3967 3968
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3969
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3970
				goto out_errno;
3971

3972
			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3973
		}
3974

3975 3976 3977
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3978
	perf_header__process_sections(header, fd, &session->tevent,
3979
				      perf_file_section__process);
3980

3981
	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
3982 3983
		goto out_delete_evlist;

3984
	return 0;
3985 3986
out_errno:
	return -errno;
3987 3988

out_delete_evlist:
3989
	evlist__delete(session->evlist);
3990 3991
	session->evlist = NULL;
	return -ENOMEM;
3992
}
3993

3994 3995
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3996
{
3997
	struct perf_tool *tool = session->tool;
3998
	struct feat_fd ff = { .fd = 0 };
3999
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4000 4001 4002 4003 4004 4005 4006
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
4007
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4008 4009 4010 4011 4012 4013 4014 4015
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
4016
	ff.size = event->header.size - sizeof(*fe);
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

4036 4037
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
4038 4039 4040
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
4041
	struct perf_cpu_map *map;
4042 4043
	size_t ret;

4044
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4045 4046 4047

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
4048
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4049 4050 4051 4052 4053 4054 4055 4056 4057
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
4058
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
4074

4075 4076
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
4077
			     struct evlist **pevlist)
4078
{
4079
	u32 i, ids, n_ids;
4080
	struct evsel *evsel;
4081
	struct evlist *evlist = *pevlist;
4082

4083
	if (evlist == NULL) {
4084
		*pevlist = evlist = evlist__new();
4085
		if (evlist == NULL)
4086 4087 4088
			return -ENOMEM;
	}

4089
	evsel = evsel__new(&event->attr.attr);
4090
	if (evsel == NULL)
4091 4092
		return -ENOMEM;

4093
	evlist__add(evlist, evsel);
4094

4095 4096
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4097
	n_ids = ids / sizeof(u64);
4098 4099 4100 4101 4102
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
4103
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4104
		return -ENOMEM;
4105 4106

	for (i = 0; i < n_ids; i++) {
4107
		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4108 4109 4110 4111
	}

	return 0;
}
4112

4113 4114
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4115
				     struct evlist **pevlist)
4116
{
4117 4118 4119
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
4120
	struct evlist *evlist;
4121
	struct evsel *evsel;
4122
	struct perf_cpu_map *map;
4123 4124 4125 4126 4127 4128

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

4129
	evsel = evlist__id2evsel(evlist, ev->id);
4130 4131 4132
	if (evsel == NULL)
		return -EINVAL;

4133 4134 4135
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4136
		break;
4137 4138 4139
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4140
	case PERF_EVENT_UPDATE__SCALE:
4141
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4142
		evsel->scale = ev_scale->scale;
4143
		break;
4144
	case PERF_EVENT_UPDATE__CPUS:
4145
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4146 4147 4148

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
4149
			evsel->core.own_cpus = map;
4150 4151
		else
			pr_err("failed to get event_update cpus\n");
4152 4153 4154 4155
	default:
		break;
	}

4156 4157 4158
	return 0;
}

4159 4160
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4161
{
4162
	ssize_t size_read, padding, size = event->tracing_data.size;
4163
	int fd = perf_data__fd(session->data);
4164 4165
	char buf[BUFSIZ];

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
	/*
	 * The pipe fd is already in proper place and in any case
	 * we can't move it, and we'd screw the case where we read
	 * 'pipe' data from regular file. The trace_report reads
	 * data from 'fd' so we need to set it directly behind the
	 * event, where the tracing data starts.
	 */
	if (!perf_data__is_pipe(session->data)) {
		off_t offset = lseek(fd, 0, SEEK_CUR);

		/* setup for reading amidst mmap */
		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
		      SEEK_SET);
	}
4180

J
Jiri Olsa 已提交
4181
	size_read = trace_report(fd, &session->tevent,
4182
				 session->repipe);
4183
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4184

4185
	if (readn(fd, buf, padding) < 0) {
4186 4187 4188
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4189 4190
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4191 4192 4193 4194
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4195
	}
4196

4197 4198 4199 4200
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4201

4202
	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4203

4204 4205
	return size_read + padding;
}
4206

4207 4208
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4209
{
4210 4211
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4212
				 session);
4213 4214
	return 0;
}