header.c 88.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "dso.h"
26
#include "evlist.h"
27
#include "evsel.h"
28
#include "util/evsel_fprintf.h"
29
#include "header.h"
30
#include "memswap.h"
31
#include "trace-event.h"
32
#include "session.h"
33
#include "symbol.h"
34
#include "debug.h"
35
#include "cpumap.h"
36
#include "pmu.h"
37
#include "vdso.h"
38
#include "strbuf.h"
39
#include "build-id.h"
40
#include "data.h"
41 42
#include <api/fs/fs.h>
#include "asm/bug.h"
43
#include "tool.h"
44
#include "time-utils.h"
45
#include "units.h"
46
#include "util/util.h" // perf_exe()
J
Jiri Olsa 已提交
47
#include "cputopo.h"
48
#include "bpf-event.h"
49
#include "clockid.h"
50

51
#include <linux/ctype.h>
52
#include <internal/lib.h>
53

54 55 56 57 58 59 60 61 62 63 64 65
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66

67
#define PERF_MAGIC	__perf_magic2
68

69 70
const char perf_version_string[] = PERF_VERSION;

71
struct perf_file_attr {
72
	struct perf_event_attr	attr;
73 74 75
	struct perf_file_section	ids;
};

76
void perf_header__set_feat(struct perf_header *header, int feat)
77
{
78
	set_bit(feat, header->adds_features);
79 80
}

81
void perf_header__clear_feat(struct perf_header *header, int feat)
82
{
83
	clear_bit(feat, header->adds_features);
84 85
}

86
bool perf_header__has_feat(const struct perf_header *header, int feat)
87
{
88
	return test_bit(feat, header->adds_features);
89 90
}

91
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92
{
93
	ssize_t ret = writen(ff->fd, buf, size);
94

95 96
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
124 125

	return 0;
126 127
}

128 129 130 131 132 133 134 135
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

155
/* Return: 0 if succeded, -ERR if failed. */
156 157
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
158 159
{
	static const char zero_buf[NAME_ALIGN];
160
	int err = do_write(ff, bf, count);
161 162

	if (!err)
163
		err = do_write(ff, zero_buf, count_aligned - count);
164 165 166 167

	return err;
}

168 169 170
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

171
/* Return: 0 if succeded, -ERR if failed. */
172
static int do_write_string(struct feat_fd *ff, const char *str)
173 174 175 176 177
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
178
	len = PERF_ALIGN(olen, NAME_ALIGN);
179 180

	/* write len, incl. \0 */
181
	ret = do_write(ff, &len, sizeof(len));
182 183 184
	if (ret < 0)
		return ret;

185
	return write_padded(ff, str, olen, len);
186 187
}

188
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189
{
190
	ssize_t ret = readn(ff->fd, addr, size);
191 192 193 194 195 196

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

216
static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 218 219
{
	int ret;

220
	ret = __do_read(ff, addr, sizeof(*addr));
221 222 223
	if (ret)
		return ret;

224
	if (ff->ph->needs_swap)
225 226 227 228
		*addr = bswap_32(*addr);
	return 0;
}

229
static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 231 232
{
	int ret;

233
	ret = __do_read(ff, addr, sizeof(*addr));
234 235 236
	if (ret)
		return ret;

237
	if (ff->ph->needs_swap)
238 239 240 241
		*addr = bswap_64(*addr);
	return 0;
}

242
static char *do_read_string(struct feat_fd *ff)
243 244 245 246
{
	u32 len;
	char *buf;

247
	if (do_read_u32(ff, &len))
248 249 250 251 252 253
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

254
	if (!__do_read(ff, buf, len)) {
255 256 257 258 259 260 261 262 263 264 265 266
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

297
static int write_tracing_data(struct feat_fd *ff,
298
			      struct evlist *evlist)
299
{
300 301 302
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

303
	return read_tracing_data(ff->fd, &evlist->core.entries);
304 305
}

306
static int write_build_id(struct feat_fd *ff,
307
			  struct evlist *evlist __maybe_unused)
308 309 310 311
{
	struct perf_session *session;
	int err;

312
	session = container_of(ff->ph, struct perf_session, header);
313

314 315 316
	if (!perf_session__read_build_ids(session, true))
		return -1;

317 318 319
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

320
	err = perf_session__write_buildid_table(session, ff);
321 322 323 324
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
325
	perf_session__cache_build_ids(session);
326 327 328 329

	return 0;
}

330
static int write_hostname(struct feat_fd *ff,
331
			  struct evlist *evlist __maybe_unused)
332 333 334 335 336 337 338 339
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

340
	return do_write_string(ff, uts.nodename);
341 342
}

343
static int write_osrelease(struct feat_fd *ff,
344
			   struct evlist *evlist __maybe_unused)
345 346 347 348 349 350 351 352
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

353
	return do_write_string(ff, uts.release);
354 355
}

356
static int write_arch(struct feat_fd *ff,
357
		      struct evlist *evlist __maybe_unused)
358 359 360 361 362 363 364 365
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

366
	return do_write_string(ff, uts.machine);
367 368
}

369
static int write_version(struct feat_fd *ff,
370
			 struct evlist *evlist __maybe_unused)
371
{
372
	return do_write_string(ff, perf_version_string);
373 374
}

375
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 377 378 379
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
380
	const char *search = cpuinfo_proc;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

397 398
	if (ret) {
		ret = -1;
399
		goto done;
400
	}
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
416
			char *q = skip_spaces(r);
417 418 419 420 421 422
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
423
	ret = do_write_string(ff, s);
424 425 426 427 428 429
done:
	free(buf);
	fclose(file);
	return ret;
}

430
static int write_cpudesc(struct feat_fd *ff,
431
		       struct evlist *evlist __maybe_unused)
432
{
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
450
	const char *cpuinfo_procs[] = CPUINFO_PROC;
451
#undef CPUINFO_PROC
452 453 454 455
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
456
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457 458 459 460 461 462 463
		if (ret >= 0)
			return ret;
	}
	return -1;
}


464
static int write_nrcpus(struct feat_fd *ff,
465
			struct evlist *evlist __maybe_unused)
466 467 468 469 470
{
	long nr;
	u32 nrc, nra;
	int ret;

471
	nrc = cpu__max_present_cpu();
472 473 474 475 476 477 478

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

479
	ret = do_write(ff, &nrc, sizeof(nrc));
480 481 482
	if (ret < 0)
		return ret;

483
	return do_write(ff, &nra, sizeof(nra));
484 485
}

486
static int write_event_desc(struct feat_fd *ff,
487
			    struct evlist *evlist)
488
{
489
	struct evsel *evsel;
490
	u32 nre, nri, sz;
491 492
	int ret;

493
	nre = evlist->core.nr_entries;
494 495 496 497

	/*
	 * write number of events
	 */
498
	ret = do_write(ff, &nre, sizeof(nre));
499 500 501 502 503 504
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
505
	sz = (u32)sizeof(evsel->core.attr);
506
	ret = do_write(ff, &sz, sizeof(sz));
507 508 509
	if (ret < 0)
		return ret;

510
	evlist__for_each_entry(evlist, evsel) {
511
		ret = do_write(ff, &evsel->core.attr, sz);
512 513 514 515 516 517 518 519 520
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
521
		nri = evsel->core.ids;
522
		ret = do_write(ff, &nri, sizeof(nri));
523 524 525 526 527 528
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
529
		ret = do_write_string(ff, evsel__name(evsel));
530 531 532 533 534
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
535
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536 537 538 539 540 541
		if (ret < 0)
			return ret;
	}
	return 0;
}

542
static int write_cmdline(struct feat_fd *ff,
543
			 struct evlist *evlist __maybe_unused)
544
{
545 546
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
547

548
	/* actual path to perf binary */
549
	buf = perf_exe(pbuf, MAXPATHLEN);
550 551

	/* account for binary path */
552
	n = perf_env.nr_cmdline + 1;
553

554
	ret = do_write(ff, &n, sizeof(n));
555 556 557
	if (ret < 0)
		return ret;

558
	ret = do_write_string(ff, buf);
559 560 561
	if (ret < 0)
		return ret;

562
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564 565 566 567 568 569 570
		if (ret < 0)
			return ret;
	}
	return 0;
}


571
static int write_cpu_topology(struct feat_fd *ff,
572
			      struct evlist *evlist __maybe_unused)
573
{
J
Jiri Olsa 已提交
574
	struct cpu_topology *tp;
575
	u32 i;
576
	int ret, j;
577

J
Jiri Olsa 已提交
578
	tp = cpu_topology__new();
579 580 581
	if (!tp)
		return -1;

582
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583 584 585 586
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
587
		ret = do_write_string(ff, tp->core_siblings[i]);
588 589 590
		if (ret < 0)
			goto done;
	}
591
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592 593 594 595
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
596
		ret = do_write_string(ff, tp->thread_siblings[i]);
597 598 599
		if (ret < 0)
			break;
	}
600

601 602 603 604 605
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606
		ret = do_write(ff, &perf_env.cpu[j].core_id,
607
			       sizeof(perf_env.cpu[j].core_id));
608 609
		if (ret < 0)
			return ret;
610
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
611
			       sizeof(perf_env.cpu[j].socket_id));
612 613 614
		if (ret < 0)
			return ret;
	}
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

636
done:
J
Jiri Olsa 已提交
637
	cpu_topology__delete(tp);
638 639 640 641 642
	return ret;
}



643
static int write_total_mem(struct feat_fd *ff,
644
			   struct evlist *evlist __maybe_unused)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
664
			ret = do_write(ff, &mem, sizeof(mem));
665 666
	} else
		ret = -1;
667 668 669 670 671
	free(buf);
	fclose(fp);
	return ret;
}

672
static int write_numa_topology(struct feat_fd *ff,
673
			       struct evlist *evlist __maybe_unused)
674
{
J
Jiri Olsa 已提交
675
	struct numa_topology *tp;
676
	int ret = -1;
J
Jiri Olsa 已提交
677
	u32 i;
678

J
Jiri Olsa 已提交
679 680 681
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
682

J
Jiri Olsa 已提交
683 684 685
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
686

J
Jiri Olsa 已提交
687 688
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
689

J
Jiri Olsa 已提交
690 691 692
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
693

J
Jiri Olsa 已提交
694 695 696
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
697

J
Jiri Olsa 已提交
698 699 700
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
701

J
Jiri Olsa 已提交
702
		ret = do_write_string(ff, n->cpus);
703
		if (ret < 0)
J
Jiri Olsa 已提交
704
			goto err;
705
	}
J
Jiri Olsa 已提交
706 707 708 709 710

	ret = 0;

err:
	numa_topology__delete(tp);
711 712 713
	return ret;
}

714 715 716 717 718 719 720 721 722 723 724 725
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

726
static int write_pmu_mappings(struct feat_fd *ff,
727
			      struct evlist *evlist __maybe_unused)
728 729
{
	struct perf_pmu *pmu = NULL;
730
	u32 pmu_num = 0;
731
	int ret;
732

733 734 735 736 737 738 739 740 741 742
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

743
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744 745
	if (ret < 0)
		return ret;
746 747 748 749

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
750

751
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752 753 754
		if (ret < 0)
			return ret;

755
		ret = do_write_string(ff, pmu->name);
756 757
		if (ret < 0)
			return ret;
758 759 760 761 762
	}

	return 0;
}

763 764 765 766 767 768 769 770 771 772 773 774
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
775
static int write_group_desc(struct feat_fd *ff,
776
			    struct evlist *evlist)
777 778
{
	u32 nr_groups = evlist->nr_groups;
779
	struct evsel *evsel;
780 781
	int ret;

782
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783 784 785
	if (ret < 0)
		return ret;

786
	evlist__for_each_entry(evlist, evsel) {
787
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788 789
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
790
			u32 nr_members = evsel->core.nr_members;
791

792
			ret = do_write_string(ff, name);
793 794 795
			if (ret < 0)
				return ret;

796
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 798 799
			if (ret < 0)
				return ret;

800
			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 802 803 804 805 806 807
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

847 848
/*
 * default get_cpuid(): nothing gets recorded
849
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850
 */
851
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852
{
853
	return ENOSYS; /* Not implemented */
854 855
}

856
static int write_cpuid(struct feat_fd *ff,
857
		       struct evlist *evlist __maybe_unused)
858 859 860 861 862
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
863 864
	if (ret)
		return -1;
865

866
	return do_write_string(ff, buffer);
867 868
}

869
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870
			      struct evlist *evlist __maybe_unused)
871 872 873 874
{
	return 0;
}

875
static int write_auxtrace(struct feat_fd *ff,
876
			  struct evlist *evlist __maybe_unused)
877
{
878 879 880
	struct perf_session *session;
	int err;

881 882 883
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

884
	session = container_of(ff->ph, struct perf_session, header);
885

886
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 888 889
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
890 891
}

892
static int write_clockid(struct feat_fd *ff,
893
			 struct evlist *evlist __maybe_unused)
894
{
895 896
	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
			sizeof(ff->ph->env.clock.clockid_res_ns));
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static int write_clock_data(struct feat_fd *ff,
			    struct evlist *evlist __maybe_unused)
{
	u64 *data64;
	u32 data32;
	int ret;

	/* version */
	data32 = 1;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* clockid */
	data32 = ff->ph->env.clock.clockid;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* TOD ref time */
	data64 = &ff->ph->env.clock.tod_ns;

	ret = do_write(ff, data64, sizeof(*data64));
	if (ret < 0)
		return ret;

	/* clockid ref time */
	data64 = &ff->ph->env.clock.clockid_ns;

	return do_write(ff, data64, sizeof(*data64));
}

933
static int write_dir_format(struct feat_fd *ff,
934
			    struct evlist *evlist __maybe_unused)
935 936 937 938 939 940 941 942 943 944 945 946 947
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

948 949
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
950
			       struct evlist *evlist __maybe_unused)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992
			       struct evlist *evlist __maybe_unused)
993 994 995 996 997
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

998
static int write_bpf_btf(struct feat_fd *ff,
999
			 struct evlist *evlist __maybe_unused)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1098
	cache->type = strim(cache->type);
1099 1100 1101

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1102
		zfree(&cache->type);
1103 1104 1105 1106
		return -1;
	}

	cache->size[len] = 0;
1107
	cache->size = strim(cache->size);
1108 1109 1110

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1111
		zfree(&cache->size);
1112
		zfree(&cache->type);
1113 1114 1115 1116
		return -1;
	}

	cache->map[len] = 0;
1117
	cache->map = strim(cache->map);
1118 1119 1120 1121 1122 1123 1124 1125
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

1126 1127 1128
#define MAX_CACHE_LVL 4

static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129 1130 1131 1132 1133
{
	u32 i, cnt = 0;
	u32 nr, cpu;
	u16 level;

1134
	nr = cpu__max_cpu();
1135 1136

	for (cpu = 0; cpu < nr; cpu++) {
1137
		for (level = 0; level < MAX_CACHE_LVL; level++) {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);
		}
	}
	*cntp = cnt;
	return 0;
}

1163
static int write_cache(struct feat_fd *ff,
1164
		       struct evlist *evlist __maybe_unused)
1165
{
1166 1167
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1168 1169 1170
	u32 cnt = 0, i, version = 1;
	int ret;

1171
	ret = build_caches(caches, &cnt);
1172 1173 1174 1175 1176
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1177
	ret = do_write(ff, &version, sizeof(u32));
1178 1179 1180
	if (ret < 0)
		goto out;

1181
	ret = do_write(ff, &cnt, sizeof(u32));
1182 1183 1184 1185 1186 1187 1188
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1189
			ret = do_write(ff, &c->v, sizeof(u32));	\
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1200
			ret = do_write_string(ff, (const char *) c->v);	\
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1216
static int write_stat(struct feat_fd *ff __maybe_unused,
1217
		      struct evlist *evlist __maybe_unused)
1218 1219 1220 1221
{
	return 0;
}

1222
static int write_sample_time(struct feat_fd *ff,
1223
			     struct evlist *evlist)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1306 1307
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
1324 1325
			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
			closedir(dir);
1326
			return -1;
1327
		}
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359
			      struct evlist *evlist __maybe_unused)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1408
static int write_compressed(struct feat_fd *ff __maybe_unused,
1409
			    struct evlist *evlist __maybe_unused)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int write_cpu_pmu_caps(struct feat_fd *ff,
			      struct evlist *evlist __maybe_unused)
{
	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
	struct perf_pmu_caps *caps = NULL;
	int nr_caps;
	int ret;

	if (!cpu_pmu)
		return -ENOENT;

	nr_caps = perf_pmu__caps_parse(cpu_pmu);
	if (nr_caps < 0)
		return nr_caps;

	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
	if (ret < 0)
		return ret;

	list_for_each_entry(caps, &cpu_pmu->caps, list) {
		ret = do_write_string(ff, caps->name);
		if (ret < 0)
			return ret;

		ret = do_write_string(ff, caps->value);
		if (ret < 0)
			return ret;
	}

	return ret;
}

1464
static void print_hostname(struct feat_fd *ff, FILE *fp)
1465
{
1466
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467 1468
}

1469
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470
{
1471
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472 1473
}

1474
static void print_arch(struct feat_fd *ff, FILE *fp)
1475
{
1476
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477 1478
}

1479
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480
{
1481
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482 1483
}

1484
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485
{
1486 1487
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488 1489
}

1490
static void print_version(struct feat_fd *ff, FILE *fp)
1491
{
1492
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493 1494
}

1495
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496
{
1497
	int nr, i;
1498

1499
	nr = ff->ph->env.nr_cmdline;
1500 1501 1502

	fprintf(fp, "# cmdline : ");

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1521 1522 1523
	fputc('\n', fp);
}

1524
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525
{
1526 1527
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1528
	int nr, i;
1529 1530
	char *str;

1531 1532
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1533 1534

	for (i = 0; i < nr; i++) {
1535
		fprintf(fp, "# sibling sockets : %s\n", str);
1536
		str += strlen(str) + 1;
1537 1538
	}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1549 1550
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1551 1552 1553

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1554
		str += strlen(str) + 1;
1555
	}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1579 1580
}

1581 1582 1583
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584
		ff->ph->env.clock.clockid_res_ns * 1000);
1585 1586
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void print_clock_data(struct feat_fd *ff, FILE *fp)
{
	struct timespec clockid_ns;
	char tstr[64], date[64];
	struct timeval tod_ns;
	clockid_t clockid;
	struct tm ltime;
	u64 ref;

	if (!ff->ph->env.clock.enabled) {
		fprintf(fp, "# reference time disabled\n");
		return;
	}

	/* Compute TOD time. */
	ref = ff->ph->env.clock.tod_ns;
	tod_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
	tod_ns.tv_usec = ref / NSEC_PER_USEC;

	/* Compute clockid time. */
	ref = ff->ph->env.clock.clockid_ns;
	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
	clockid_ns.tv_nsec = ref;

	clockid = ff->ph->env.clock.clockid;

	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
		snprintf(tstr, sizeof(tstr), "<error>");
	else {
		strftime(date, sizeof(date), "%F %T", &ltime);
		scnprintf(tstr, sizeof(tstr), "%s.%06d",
			  date, (int) tod_ns.tv_usec);
	}

	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
		    clockid_name(clockid));
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1657 1658 1659

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1660 1661 1662 1663 1664
	}

	up_read(&env->bpf_progs.lock);
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1687
static void free_event_desc(struct evsel *events)
1688
{
1689
	struct evsel *evsel;
1690 1691 1692 1693

	if (!events)
		return;

1694
	for (evsel = events; evsel->core.attr.size; evsel++) {
1695
		zfree(&evsel->name);
1696
		zfree(&evsel->core.id);
1697 1698 1699 1700 1701
	}

	free(events);
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static bool perf_attr_check(struct perf_event_attr *attr)
{
	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
		pr_warning("Reserved bits are set unexpectedly. "
			   "Please update perf tool.\n");
		return false;
	}

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
		pr_warning("Unknown sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->sample_type);
		return false;
	}

	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
		pr_warning("Unknown read format (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->read_format);
		return false;
	}

	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
		pr_warning("Unknown branch sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->branch_sample_type);

		return false;
	}

	return true;
}

1736
static struct evsel *read_event_desc(struct feat_fd *ff)
1737
{
1738
	struct evsel *evsel, *events = NULL;
1739
	u64 *id;
1740
	void *buf = NULL;
1741 1742
	u32 nre, sz, nr, i, j;
	size_t msz;
1743 1744

	/* number of events */
1745
	if (do_read_u32(ff, &nre))
1746 1747
		goto error;

1748
	if (do_read_u32(ff, &sz))
1749 1750
		goto error;

1751
	/* buffer to hold on file attr struct */
1752 1753 1754 1755
	buf = malloc(sz);
	if (!buf)
		goto error;

1756
	/* the last event terminates with evsel->core.attr.size == 0: */
1757 1758 1759 1760
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1761
	msz = sizeof(evsel->core.attr);
1762
	if (sz < msz)
1763 1764
		msz = sz;

1765 1766
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1767

1768 1769 1770 1771
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1772
		if (__do_read(ff, buf, sz))
1773 1774
			goto error;

1775
		if (ff->ph->needs_swap)
1776 1777
			perf_event__attr_swap(buf);

1778
		memcpy(&evsel->core.attr, buf, msz);
1779

1780 1781 1782
		if (!perf_attr_check(&evsel->core.attr))
			goto error;

1783
		if (do_read_u32(ff, &nr))
1784 1785
			goto error;

1786
		if (ff->ph->needs_swap)
1787
			evsel->needs_swap = true;
1788

1789
		evsel->name = do_read_string(ff);
1790 1791
		if (!evsel->name)
			goto error;
1792 1793 1794 1795 1796 1797 1798

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1799
		evsel->core.ids = nr;
1800
		evsel->core.id = id;
1801 1802

		for (j = 0 ; j < nr; j++) {
1803
			if (do_read_u64(ff, id))
1804 1805 1806 1807 1808
				goto error;
			id++;
		}
	}
out:
1809
	free(buf);
1810 1811
	return events;
error:
1812
	free_event_desc(events);
1813 1814 1815 1816
	events = NULL;
	goto out;
}

1817
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818
				void *priv __maybe_unused)
1819 1820 1821 1822
{
	return fprintf(fp, ", %s = %s", name, val);
}

1823
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824
{
1825
	struct evsel *evsel, *events;
1826 1827 1828
	u32 j;
	u64 *id;

1829 1830 1831 1832 1833
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1834 1835 1836 1837 1838
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1839
	for (evsel = events; evsel->core.attr.size; evsel++) {
1840
		fprintf(fp, "# event : name = %s, ", evsel->name);
1841

1842
		if (evsel->core.ids) {
1843
			fprintf(fp, ", id = {");
1844
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 1846 1847 1848
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1849
			fprintf(fp, " }");
1850
		}
1851

1852
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853

1854 1855
		fputc('\n', fp);
	}
1856 1857

	free_event_desc(events);
1858
	ff->events = NULL;
1859 1860
}

1861
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862
{
1863
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864 1865
}

1866
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867
{
1868 1869
	int i;
	struct numa_node *n;
1870

1871 1872
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1873 1874 1875

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1876
			n->node, n->mem_total, n->mem_free);
1877

1878 1879
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1880 1881 1882
	}
}

1883
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884
{
1885
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886 1887
}

1888
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889 1890 1891 1892
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1893
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894 1895 1896 1897
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1898
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899 1900 1901 1902
{
	fprintf(fp, "# contains stat data\n");
}

1903
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904 1905 1906 1907
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1908
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909
		fprintf(fp, "#  ");
1910
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911 1912 1913
	}
}

1914 1915 1916 1917 1918 1919 1920
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
{
	const char *delimiter = "# cpu pmu capabilities: ";
	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
	char *str;

	if (!nr_caps) {
		fprintf(fp, "# cpu pmu capabilities: not available\n");
		return;
	}

	str = ff->ph->env.cpu_pmu_caps;
	while (nr_caps--) {
		fprintf(fp, "%s%s", delimiter, str);
		delimiter = ", ";
		str += strlen(str) + 1;
	}

	fprintf(fp, "\n");
}

1942
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943 1944
{
	const char *delimiter = "# pmu mappings: ";
1945
	char *str, *tmp;
1946 1947 1948
	u32 pmu_num;
	u32 type;

1949
	pmu_num = ff->ph->env.nr_pmu_mappings;
1950 1951 1952 1953 1954
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1955
	str = ff->ph->env.pmu_mappings;
1956

1957
	while (pmu_num) {
1958 1959 1960 1961 1962 1963
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964

1965
		delimiter = ", ";
1966 1967
		str += strlen(str) + 1;
		pmu_num--;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1978
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979 1980
{
	struct perf_session *session;
1981
	struct evsel *evsel;
1982 1983
	u32 nr = 0;

1984
	session = container_of(ff->ph, struct perf_session, header);
1985

1986
	evlist__for_each_entry(session->evlist, evsel) {
1987
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989

1990
			nr = evsel->core.nr_members - 1;
1991
		} else if (nr) {
1992
			fprintf(fp, ",%s", evsel__name(evsel));
1993 1994 1995 1996 1997 1998 1999

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

2051
static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052 2053 2054 2055 2056
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
2057
	u16 cpumode;
2058
	struct dso *dso;
2059
	enum dso_space_type dso_space;
2060 2061 2062 2063 2064

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

2065
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066

2067
	switch (cpumode) {
2068
	case PERF_RECORD_MISC_KERNEL:
2069
		dso_space = DSO_SPACE__KERNEL;
2070 2071
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
2072
		dso_space = DSO_SPACE__KERNEL_GUEST;
2073 2074 2075
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
2076
		dso_space = DSO_SPACE__USER;
2077 2078 2079 2080 2081
		break;
	default:
		goto out;
	}

2082
	dso = machine__findnew_dso(machine, filename);
2083
	if (dso != NULL) {
2084
		char sbuild_id[SBUILD_ID_SIZE];
2085
		struct build_id bid;
2086

2087 2088
		build_id__init(&bid, bev->build_id, BUILD_ID_SIZE);
		dso__set_build_id(dso, &bid);
2089

2090
		if (dso_space != DSO_SPACE__USER) {
2091 2092 2093
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2094
				dso__set_module_info(dso, &m, machine);
2095

2096
			dso->kernel = dso_space;
2097 2098
			free(m.name);
		}
2099

2100
		build_id__sprintf(&dso->bid, sbuild_id);
2101 2102
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
2103
		dso__put(dso);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
2117
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2118 2119
		char			   filename[0];
	} old_bev;
2120
	struct perf_record_header_build_id bev;
2121 2122 2123 2124 2125 2126
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

2127
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2128 2129 2130 2131 2132 2133
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
2134
		if (readn(input, filename, len) != len)
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2161
	struct perf_record_header_build_id bev;
2162 2163 2164 2165 2166 2167 2168
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2169
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2170 2171 2172 2173 2174 2175
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2176
		if (readn(input, filename, len) != len)
2177 2178 2179 2180 2181 2182
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2183
		 * Added a field to struct perf_record_header_build_id that broke the file
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2206 2207
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2208
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2209
{\
2210
	ff->ph->env.__feat_env = do_read_string(ff); \
2211
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2212 2213 2214 2215 2216 2217 2218 2219 2220
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2221
static int process_tracing_data(struct feat_fd *ff, void *data)
2222
{
2223 2224
	ssize_t ret = trace_report(ff->fd, data, false);

2225
	return ret < 0 ? -1 : 0;
2226 2227
}

2228
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2229
{
2230
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2231 2232 2233 2234
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2235
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2236
{
2237 2238
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2239

2240
	ret = do_read_u32(ff, &nr_cpus_avail);
2241 2242
	if (ret)
		return ret;
2243

2244
	ret = do_read_u32(ff, &nr_cpus_online);
2245 2246
	if (ret)
		return ret;
2247 2248
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2249 2250 2251
	return 0;
}

2252
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2253
{
2254 2255
	u64 total_mem;
	int ret;
2256

2257
	ret = do_read_u64(ff, &total_mem);
2258
	if (ret)
2259
		return -1;
2260
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2261 2262 2263
	return 0;
}

2264
static struct evsel *
2265
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2266
{
2267
	struct evsel *evsel;
2268

2269
	evlist__for_each_entry(evlist, evsel) {
2270 2271 2272 2273 2274 2275 2276 2277
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2278
perf_evlist__set_event_name(struct evlist *evlist,
2279
			    struct evsel *event)
2280
{
2281
	struct evsel *evsel;
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2297
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2298
{
2299
	struct perf_session *session;
2300
	struct evsel *evsel, *events = read_event_desc(ff);
2301 2302 2303 2304

	if (!events)
		return 0;

2305
	session = container_of(ff->ph, struct perf_session, header);
2306

2307
	if (session->data->is_pipe) {
2308 2309 2310 2311 2312
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2313
	for (evsel = events; evsel->core.attr.size; evsel++)
2314 2315
		perf_evlist__set_event_name(session->evlist, evsel);

2316
	if (!session->data->is_pipe)
2317
		free_event_desc(events);
2318 2319 2320 2321

	return 0;
}

2322
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2323
{
2324 2325
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2326

2327
	if (do_read_u32(ff, &nr))
2328 2329
		return -1;

2330
	ff->ph->env.nr_cmdline = nr;
2331

2332
	cmdline = zalloc(ff->size + nr + 1);
2333 2334 2335 2336 2337 2338
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2339 2340

	for (i = 0; i < nr; i++) {
2341
		str = do_read_string(ff);
2342 2343 2344
		if (!str)
			goto error;

2345 2346 2347
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2348 2349
		free(str);
	}
2350 2351
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2352 2353 2354
	return 0;

error:
2355 2356
	free(argv);
	free(cmdline);
2357 2358 2359
	return -1;
}

2360
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2361 2362 2363 2364
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2365
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2366
	u64 size = 0;
2367
	struct perf_header *ph = ff->ph;
2368
	bool do_core_id_test = true;
2369 2370 2371 2372

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2373

2374
	if (do_read_u32(ff, &nr))
2375
		goto free_cpu;
2376 2377

	ph->env.nr_sibling_cores = nr;
2378
	size += sizeof(u32);
2379 2380
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2381 2382

	for (i = 0; i < nr; i++) {
2383
		str = do_read_string(ff);
2384 2385 2386 2387
		if (!str)
			goto error;

		/* include a NULL character at the end */
2388 2389
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2390
		size += string_size(str);
2391 2392 2393 2394
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2395
	if (do_read_u32(ff, &nr))
2396 2397 2398
		return -1;

	ph->env.nr_sibling_threads = nr;
2399
	size += sizeof(u32);
2400 2401

	for (i = 0; i < nr; i++) {
2402
		str = do_read_string(ff);
2403 2404 2405 2406
		if (!str)
			goto error;

		/* include a NULL character at the end */
2407 2408
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2409
		size += string_size(str);
2410 2411 2412
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2413 2414 2415 2416 2417

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2418
	if (ff->size <= size) {
2419 2420 2421 2422
		zfree(&ph->env.cpu);
		return 0;
	}

2423 2424 2425
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2426
	 * AArch64 is the same.
2427
	 */
2428 2429
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2430 2431
		do_core_id_test = false;

2432
	for (i = 0; i < (u32)cpu_nr; i++) {
2433
		if (do_read_u32(ff, &nr))
2434 2435 2436
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2437
		size += sizeof(u32);
2438

2439
		if (do_read_u32(ff, &nr))
2440 2441
			goto free_cpu;

2442
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2443 2444 2445 2446 2447 2448
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2483 2484
	}

2485 2486 2487 2488
	return 0;

error:
	strbuf_release(&sb);
2489 2490
free_cpu:
	zfree(&ph->env.cpu);
2491 2492 2493
	return -1;
}

2494
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2495
{
2496 2497
	struct numa_node *nodes, *n;
	u32 nr, i;
2498 2499 2500
	char *str;

	/* nr nodes */
2501
	if (do_read_u32(ff, &nr))
2502
		return -1;
2503

2504 2505 2506
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2507 2508

	for (i = 0; i < nr; i++) {
2509 2510
		n = &nodes[i];

2511
		/* node number */
2512
		if (do_read_u32(ff, &n->node))
2513 2514
			goto error;

2515
		if (do_read_u64(ff, &n->mem_total))
2516 2517
			goto error;

2518
		if (do_read_u64(ff, &n->mem_free))
2519 2520
			goto error;

2521
		str = do_read_string(ff);
2522 2523 2524
		if (!str)
			goto error;

2525
		n->map = perf_cpu_map__new(str);
2526
		if (!n->map)
2527
			goto error;
2528

2529 2530
		free(str);
	}
2531 2532
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2533 2534 2535
	return 0;

error:
2536
	free(nodes);
2537 2538 2539
	return -1;
}

2540
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2541 2542 2543 2544 2545 2546
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2547
	if (do_read_u32(ff, &pmu_num))
2548 2549 2550 2551 2552 2553 2554
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2555
	ff->ph->env.nr_pmu_mappings = pmu_num;
2556 2557
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2558 2559

	while (pmu_num) {
2560
		if (do_read_u32(ff, &type))
2561 2562
			goto error;

2563
		name = do_read_string(ff);
2564 2565 2566
		if (!name)
			goto error;

2567 2568
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2569
		/* include a NULL character at the end */
2570 2571
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2572

2573
		if (!strcmp(name, "msr"))
2574
			ff->ph->env.msr_pmu_type = type;
2575

2576 2577 2578
		free(name);
		pmu_num--;
	}
2579
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2580 2581 2582 2583 2584 2585 2586
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2587
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2588 2589 2590 2591
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2592
	struct evsel *evsel, *leader = NULL;
2593 2594 2595 2596 2597 2598
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2599
	if (do_read_u32(ff, &nr_groups))
2600 2601
		return -1;

2602
	ff->ph->env.nr_groups = nr_groups;
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2613
		desc[i].name = do_read_string(ff);
2614 2615 2616
		if (!desc[i].name)
			goto out_free;

2617
		if (do_read_u32(ff, &desc[i].leader_idx))
2618 2619
			goto out_free;

2620
		if (do_read_u32(ff, &desc[i].nr_members))
2621 2622 2623 2624 2625 2626
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2627
	session = container_of(ff->ph, struct perf_session, header);
2628 2629 2630
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2631
	evlist__for_each_entry(session->evlist, evsel) {
2632 2633 2634
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2635
			if (strcmp(desc[i].name, "{anon_group}")) {
2636
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2637 2638
				desc[i].name = NULL;
			}
2639
			evsel->core.nr_members = desc[i].nr_members;
2640 2641 2642 2643 2644 2645 2646

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2647
			nr = evsel->core.nr_members - 1;
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2664
	for (i = 0; i < nr_groups; i++)
2665
		zfree(&desc[i].name);
2666 2667 2668 2669 2670
	free(desc);

	return ret;
}

2671
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2672 2673 2674 2675
{
	struct perf_session *session;
	int err;

2676
	session = container_of(ff->ph, struct perf_session, header);
2677

2678
	err = auxtrace_index__process(ff->fd, ff->size, session,
2679
				      ff->ph->needs_swap);
2680 2681 2682 2683 2684
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2685
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2686 2687 2688 2689
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2690
	if (do_read_u32(ff, &version))
2691 2692 2693 2694 2695
		return -1;

	if (version != 1)
		return -1;

2696
	if (do_read_u32(ff, &cnt))
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2707
			if (do_read_u32(ff, &c.v))\
2708 2709 2710 2711 2712 2713 2714 2715
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2716
		#define _R(v)					\
2717
			c.v = do_read_string(ff);		\
2718
			if (!c.v)				\
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2729 2730
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2731 2732 2733 2734 2735 2736
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2810 2811 2812
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
2813
	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2814 2815 2816 2817 2818
		return -1;

	return 0;
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static int process_clock_data(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	u32 data32;
	u64 data64;

	/* version */
	if (do_read_u32(ff, &data32))
		return -1;

	if (data32 != 1)
		return -1;

	/* clockid */
	if (do_read_u32(ff, &data32))
		return -1;

	ff->ph->env.clock.clockid = data32;

	/* TOD ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.tod_ns = data64;

	/* clockid ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.clockid_ns = data64;
	ff->ph->env.clock.enabled = true;
	return 0;
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2929
	up_write(&env->bpf_progs.lock);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2944 2945 2946
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2947
	struct btf_node *node = NULL;
2948
	u32 count, i;
2949
	int err = -1;
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2965
			goto out;
2966
		if (do_read_u32(ff, &data_size))
2967
			goto out;
2968 2969 2970

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2971
			goto out;
2972 2973 2974 2975

		node->id = id;
		node->data_size = data_size;

2976 2977
		if (__do_read(ff, node->data, data_size))
			goto out;
2978 2979

		perf_env__insert_btf(env, node);
2980
		node = NULL;
2981 2982
	}

2983 2984
	err = 0;
out:
2985
	up_write(&env->bpf_progs.lock);
2986 2987
	free(node);
	return err;
2988 2989
}

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
static int process_cpu_pmu_caps(struct feat_fd *ff,
				void *data __maybe_unused)
{
	char *name, *value;
	struct strbuf sb;
	u32 nr_caps;

	if (do_read_u32(ff, &nr_caps))
		return -1;

	if (!nr_caps) {
		pr_debug("cpu pmu capabilities not available\n");
		return 0;
	}

	ff->ph->env.nr_cpu_pmu_caps = nr_caps;

	if (strbuf_init(&sb, 128) < 0)
		return -1;

	while (nr_caps--) {
		name = do_read_string(ff);
		if (!name)
			goto error;

		value = do_read_string(ff);
		if (!value)
			goto free_name;

		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
			goto free_value;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, "", 1) < 0)
			goto free_value;

		if (!strcmp(name, "branches"))
			ff->ph->env.max_branches = atoi(value);

		free(value);
		free(name);
	}
	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
	return 0;

free_value:
	free(value);
free_name:
	free(name);
error:
	strbuf_release(&sb);
	return -1;
}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
3083 3084

/* feature_ops not implemented: */
3085 3086
#define print_tracing_data	NULL
#define print_build_id		NULL
3087

3088 3089 3090
#define process_branch_stack	NULL
#define process_stat		NULL

3091 3092
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3093

3094
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3111
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3112 3113 3114
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
3115
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3116
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3117
	FEAT_OPR(CLOCKID,	clockid,	false),
3118
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3119 3120
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3121
	FEAT_OPR(COMPRESSED,	compressed,	false),
3122
	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3123
	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
3136
	struct feat_fd ff;
3137 3138 3139 3140 3141 3142

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
3143
	if (feat >= HEADER_LAST_FEATURE) {
3144
		pr_warning("unknown feature %d\n", feat);
3145
		return 0;
3146 3147 3148 3149
	}
	if (!feat_ops[feat].print)
		return 0;

3150 3151 3152 3153 3154
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

3155
	if (!feat_ops[feat].full_only || hd->full)
3156
		feat_ops[feat].print(&ff, hd->fp);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
3168
	int fd = perf_data__fd(session->data);
3169
	struct stat st;
3170
	time_t stctime;
J
Jiri Olsa 已提交
3171
	int ret, bit;
3172

3173 3174 3175
	hd.fp = fp;
	hd.full = full;

3176 3177 3178 3179
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

3180
	stctime = st.st_mtime;
3181
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3182 3183 3184 3185 3186

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3187

3188 3189
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
3190

3191
	if (session->data->is_pipe)
3192 3193
		return 0;

J
Jiri Olsa 已提交
3194 3195 3196 3197 3198 3199 3200
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
3201 3202 3203
	return 0;
}

3204
static int do_write_feat(struct feat_fd *ff, int type,
3205
			 struct perf_file_section **p,
3206
			 struct evlist *evlist)
3207 3208 3209 3210
{
	int err;
	int ret = 0;

3211
	if (perf_header__has_feat(ff->ph, type)) {
3212 3213
		if (!feat_ops[type].write)
			return -1;
3214

3215 3216 3217
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

3218
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3219

3220
		err = feat_ops[type].write(ff, evlist);
3221
		if (err < 0) {
3222
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3223 3224

			/* undo anything written */
3225
			lseek(ff->fd, (*p)->offset, SEEK_SET);
3226 3227 3228

			return -1;
		}
3229
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3230 3231 3232 3233 3234
		(*p)++;
	}
	return ret;
}

3235
static int perf_header__adds_write(struct perf_header *header,
3236
				   struct evlist *evlist, int fd)
3237
{
3238
	int nr_sections;
3239
	struct feat_fd ff;
3240
	struct perf_file_section *feat_sec, *p;
3241 3242
	int sec_size;
	u64 sec_start;
3243
	int feat;
3244
	int err;
3245

3246 3247 3248 3249 3250
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3251
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3252
	if (!nr_sections)
3253
		return 0;
3254

3255
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3256 3257
	if (feat_sec == NULL)
		return -ENOMEM;
3258 3259 3260

	sec_size = sizeof(*feat_sec) * nr_sections;

3261
	sec_start = header->feat_offset;
3262
	lseek(fd, sec_start + sec_size, SEEK_SET);
3263

3264
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3265
		if (do_write_feat(&ff, feat, &p, evlist))
3266 3267
			perf_header__clear_feat(header, feat);
	}
3268

3269
	lseek(fd, sec_start, SEEK_SET);
3270 3271
	/*
	 * may write more than needed due to dropped feature, but
3272
	 * this is okay, reader will skip the missing entries
3273
	 */
3274
	err = do_write(&ff, feat_sec, sec_size);
3275 3276
	if (err < 0)
		pr_debug("failed to write feature section\n");
3277
	free(feat_sec);
3278
	return err;
3279
}
3280

3281 3282 3283
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3284
	struct feat_fd ff;
3285 3286
	int err;

3287 3288
	ff = (struct feat_fd){ .fd = fd };

3289 3290 3291 3292 3293
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3294
	err = do_write(&ff, &f_header, sizeof(f_header));
3295 3296 3297 3298 3299 3300 3301 3302
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3303
int perf_session__write_header(struct perf_session *session,
3304
			       struct evlist *evlist,
3305
			       int fd, bool at_exit)
3306 3307 3308
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3309
	struct perf_header *header = &session->header;
3310
	struct evsel *evsel;
3311
	struct feat_fd ff;
3312
	u64 attr_offset;
3313
	int err;
3314

3315
	ff = (struct feat_fd){ .fd = fd};
3316 3317
	lseek(fd, sizeof(f_header), SEEK_SET);

3318
	evlist__for_each_entry(session->evlist, evsel) {
3319
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3320
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3321 3322 3323 3324
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3325 3326
	}

3327
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3328

3329
	evlist__for_each_entry(evlist, evsel) {
3330
		f_attr = (struct perf_file_attr){
3331
			.attr = evsel->core.attr,
3332
			.ids  = {
3333
				.offset = evsel->id_offset,
3334
				.size   = evsel->core.ids * sizeof(u64),
3335 3336
			}
		};
3337
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3338 3339 3340 3341
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3342 3343
	}

3344 3345
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3346
	header->feat_offset = header->data_offset + header->data_size;
3347

3348
	if (at_exit) {
3349
		err = perf_header__adds_write(header, evlist, fd);
3350 3351 3352
		if (err < 0)
			return err;
	}
3353

3354 3355 3356 3357 3358
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3359
			.offset = attr_offset,
3360
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3361 3362
		},
		.data = {
3363 3364
			.offset = header->data_offset,
			.size	= header->data_size,
3365
		},
3366
		/* event_types is ignored, store zeros */
3367 3368
	};

3369
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3370

3371
	lseek(fd, 0, SEEK_SET);
3372
	err = do_write(&ff, &f_header, sizeof(f_header));
3373 3374 3375 3376
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3377
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3378

3379
	return 0;
3380 3381
}

3382
static int perf_header__getbuffer64(struct perf_header *header,
3383 3384
				    int fd, void *buf, size_t size)
{
3385
	if (readn(fd, buf, size) <= 0)
3386 3387
		return -1;

3388
	if (header->needs_swap)
3389 3390 3391 3392 3393
		mem_bswap_64(buf, size);

	return 0;
}

3394
int perf_header__process_sections(struct perf_header *header, int fd,
3395
				  void *data,
3396
				  int (*process)(struct perf_file_section *section,
3397 3398
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3399
{
3400
	struct perf_file_section *feat_sec, *sec;
3401 3402
	int nr_sections;
	int sec_size;
3403 3404
	int feat;
	int err;
3405

3406
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3407
	if (!nr_sections)
3408
		return 0;
3409

3410
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3411
	if (!feat_sec)
3412
		return -1;
3413 3414 3415

	sec_size = sizeof(*feat_sec) * nr_sections;

3416
	lseek(fd, header->feat_offset, SEEK_SET);
3417

3418 3419
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3420
		goto out_free;
3421

3422 3423 3424 3425
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3426
	}
3427
	err = 0;
3428
out_free:
3429 3430
	free(feat_sec);
	return err;
3431
}
3432

3433 3434 3435
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3436
	[2] = PERF_ATTR_SIZE_VER2,
3437
	[3] = PERF_ATTR_SIZE_VER3,
3438
	[4] = PERF_ATTR_SIZE_VER4,
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3449
{
3450 3451
	uint64_t ref_size, attr_size;
	int i;
3452

3453 3454 3455 3456 3457 3458 3459
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3471

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3496 3497 3498

			ph->needs_swap = true;
		}
3499
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3500 3501
		return 0;
	}
3502 3503 3504
	return -1;
}

F
Feng Tang 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3515 3516 3517 3518 3519 3520 3521 3522
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3523
		ph->version = PERF_HEADER_VERSION_1;
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3535
	ph->version = PERF_HEADER_VERSION_2;
3536

3537 3538
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3539 3540
		return 0;

3541 3542
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3543 3544 3545 3546 3547 3548 3549
		return -1;

	ph->needs_swap = true;

	return 0;
}

3550
int perf_file_header__read(struct perf_file_header *header,
3551 3552
			   struct perf_header *ph, int fd)
{
3553
	ssize_t ret;
3554

3555 3556
	lseek(fd, 0, SEEK_SET);

3557 3558
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3559 3560
		return -1;

3561 3562 3563
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3564
		return -1;
3565
	}
3566

3567
	if (ph->needs_swap) {
3568
		mem_bswap_64(header, offsetof(struct perf_file_header,
3569
			     adds_features));
3570 3571
	}

3572
	if (header->size != sizeof(*header)) {
3573
		/* Support the previous format */
3574 3575
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3576 3577
		else
			return -1;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3594 3595
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3596 3597

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3598 3599 3600 3601 3602 3603 3604
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3605 3606 3607 3608 3609 3610
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3611
	}
3612

3613
	memcpy(&ph->adds_features, &header->adds_features,
3614
	       sizeof(ph->adds_features));
3615

3616 3617
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3618
	ph->feat_offset  = header->data.offset + header->data.size;
3619 3620 3621
	return 0;
}

3622
static int perf_file_section__process(struct perf_file_section *section,
3623
				      struct perf_header *ph,
3624
				      int feat, int fd, void *data)
3625
{
3626
	struct feat_fd fdd = {
3627 3628
		.fd	= fd,
		.ph	= ph,
3629 3630
		.size	= section->size,
		.offset	= section->offset,
3631 3632
	};

3633
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3634
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3635
			  "%d, continuing...\n", section->offset, feat);
3636 3637 3638
		return 0;
	}

3639 3640 3641 3642 3643
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3644 3645
	if (!feat_ops[feat].process)
		return 0;
3646

3647
	return feat_ops[feat].process(&fdd, data);
3648
}
3649

3650
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3651 3652
				       struct perf_header *ph, int fd,
				       bool repipe)
3653
{
3654 3655 3656 3657
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3658
	ssize_t ret;
3659 3660 3661 3662 3663

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3664 3665
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3666
		return -1;
3667 3668 3669 3670
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3671

3672
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3673 3674
		return -1;

3675 3676 3677
	return 0;
}

3678
static int perf_header__read_pipe(struct perf_session *session)
3679
{
3680
	struct perf_header *header = &session->header;
3681 3682
	struct perf_pipe_file_header f_header;

3683
	if (perf_file_header__read_pipe(&f_header, header,
3684
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3685
					session->repipe) < 0) {
3686 3687 3688 3689
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

3690
	return f_header.size == sizeof(f_header) ? 0 : -1;
3691 3692
}

3693 3694 3695 3696 3697 3698
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3699
	ssize_t ret;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3739
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3740
						struct tep_handle *pevent)
3741
{
3742
	struct tep_event *event;
3743 3744
	char bf[128];

3745 3746 3747 3748
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3749 3750 3751 3752 3753
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3754
	event = tep_find_event(pevent, evsel->core.attr.config);
3755
	if (event == NULL) {
3756
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3757
		return -1;
3758
	}
3759

3760 3761 3762 3763 3764 3765
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3766

3767
	evsel->tp_format = event;
3768 3769 3770
	return 0;
}

3771
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3772
						  struct tep_handle *pevent)
3773
{
3774
	struct evsel *pos;
3775

3776
	evlist__for_each_entry(evlist, pos) {
3777
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3778
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3779 3780 3781 3782 3783 3784
			return -1;
	}

	return 0;
}

3785
int perf_session__read_header(struct perf_session *session)
3786
{
3787
	struct perf_data *data = session->data;
3788
	struct perf_header *header = &session->header;
3789
	struct perf_file_header	f_header;
3790 3791
	struct perf_file_attr	f_attr;
	u64			f_id;
3792
	int nr_attrs, nr_ids, i, j, err;
3793
	int fd = perf_data__fd(data);
3794

3795
	session->evlist = evlist__new();
3796 3797 3798
	if (session->evlist == NULL)
		return -ENOMEM;

3799
	session->evlist->env = &header->env;
3800
	session->machines.host.env = &header->env;
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

	/*
	 * We can read 'pipe' data event from regular file,
	 * check for the pipe header regardless of source.
	 */
	err = perf_header__read_pipe(session);
	if (!err || (err && perf_data__is_pipe(data))) {
		data->is_pipe = true;
		return err;
	}
3811

3812
	if (perf_file_header__read(&f_header, header, fd) < 0)
3813
		return -EINVAL;
3814

3815 3816 3817 3818 3819 3820 3821 3822 3823
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3824
			   data->file.path);
3825 3826
	}

3827 3828 3829 3830 3831 3832 3833
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3834
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3835 3836 3837
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3838
		struct evsel *evsel;
3839
		off_t tmp;
3840

3841
		if (read_attr(fd, header, &f_attr) < 0)
3842
			goto out_errno;
3843

3844 3845 3846
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3847
			perf_event__attr_swap(&f_attr.attr);
3848
		}
3849

3850
		tmp = lseek(fd, 0, SEEK_CUR);
3851
		evsel = evsel__new(&f_attr.attr);
3852

3853 3854
		if (evsel == NULL)
			goto out_delete_evlist;
3855 3856

		evsel->needs_swap = header->needs_swap;
3857 3858
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3859
		 * entry gets purged too at evlist__delete().
3860
		 */
3861
		evlist__add(session->evlist, evsel);
3862 3863

		nr_ids = f_attr.ids.size / sizeof(u64);
3864 3865 3866 3867 3868
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3869
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3870 3871
			goto out_delete_evlist;

3872 3873 3874
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3875
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3876
				goto out_errno;
3877

3878
			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3879
		}
3880

3881 3882 3883
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3884
	perf_header__process_sections(header, fd, &session->tevent,
3885
				      perf_file_section__process);
3886

3887
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3888
						   session->tevent.pevent))
3889 3890
		goto out_delete_evlist;

3891
	return 0;
3892 3893
out_errno:
	return -errno;
3894 3895

out_delete_evlist:
3896
	evlist__delete(session->evlist);
3897 3898
	session->evlist = NULL;
	return -ENOMEM;
3899
}
3900

3901 3902
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3903
{
3904
	struct perf_tool *tool = session->tool;
3905
	struct feat_fd ff = { .fd = 0 };
3906
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3907 3908 3909 3910 3911 3912 3913
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3914
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3915 3916 3917 3918 3919 3920 3921 3922
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3923
	ff.size = event->header.size - sizeof(*fe);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3943 3944
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3945 3946 3947
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3948
	struct perf_cpu_map *map;
3949 3950
	size_t ret;

3951
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3952 3953 3954

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3955
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3956 3957 3958 3959 3960 3961 3962 3963 3964
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3965
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3981

3982 3983
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3984
			     struct evlist **pevlist)
3985
{
3986
	u32 i, ids, n_ids;
3987
	struct evsel *evsel;
3988
	struct evlist *evlist = *pevlist;
3989

3990
	if (evlist == NULL) {
3991
		*pevlist = evlist = evlist__new();
3992
		if (evlist == NULL)
3993 3994 3995
			return -ENOMEM;
	}

3996
	evsel = evsel__new(&event->attr.attr);
3997
	if (evsel == NULL)
3998 3999
		return -ENOMEM;

4000
	evlist__add(evlist, evsel);
4001

4002 4003
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4004
	n_ids = ids / sizeof(u64);
4005 4006 4007 4008 4009
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
4010
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4011
		return -ENOMEM;
4012 4013

	for (i = 0; i < n_ids; i++) {
4014
		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4015 4016 4017 4018
	}

	return 0;
}
4019

4020 4021
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4022
				     struct evlist **pevlist)
4023
{
4024 4025 4026
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
4027
	struct evlist *evlist;
4028
	struct evsel *evsel;
4029
	struct perf_cpu_map *map;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

4040 4041 4042
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4043
		break;
4044 4045 4046
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4047
	case PERF_EVENT_UPDATE__SCALE:
4048
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4049
		evsel->scale = ev_scale->scale;
4050
		break;
4051
	case PERF_EVENT_UPDATE__CPUS:
4052
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4053 4054 4055

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
4056
			evsel->core.own_cpus = map;
4057 4058
		else
			pr_err("failed to get event_update cpus\n");
4059 4060 4061 4062
	default:
		break;
	}

4063 4064 4065
	return 0;
}

4066 4067
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4068
{
4069
	ssize_t size_read, padding, size = event->tracing_data.size;
4070
	int fd = perf_data__fd(session->data);
4071 4072
	char buf[BUFSIZ];

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	/*
	 * The pipe fd is already in proper place and in any case
	 * we can't move it, and we'd screw the case where we read
	 * 'pipe' data from regular file. The trace_report reads
	 * data from 'fd' so we need to set it directly behind the
	 * event, where the tracing data starts.
	 */
	if (!perf_data__is_pipe(session->data)) {
		off_t offset = lseek(fd, 0, SEEK_CUR);

		/* setup for reading amidst mmap */
		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
		      SEEK_SET);
	}
4087

J
Jiri Olsa 已提交
4088
	size_read = trace_report(fd, &session->tevent,
4089
				 session->repipe);
4090
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4091

4092
	if (readn(fd, buf, padding) < 0) {
4093 4094 4095
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4096 4097
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4098 4099 4100 4101
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4102
	}
4103

4104 4105 4106 4107
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4108

4109
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4110
					       session->tevent.pevent);
4111

4112 4113
	return size_read + padding;
}
4114

4115 4116
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4117
{
4118 4119
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4120
				 session);
4121 4122
	return 0;
}