header.c 90.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23

24
#include "evlist.h"
25
#include "evsel.h"
26
#include "header.h"
27
#include "memswap.h"
28 29
#include "../perf.h"
#include "trace-event.h"
30
#include "session.h"
31
#include "symbol.h"
32
#include "debug.h"
33
#include "cpumap.h"
34
#include "pmu.h"
35
#include "vdso.h"
36
#include "strbuf.h"
37
#include "build-id.h"
38
#include "data.h"
39 40
#include <api/fs/fs.h>
#include "asm/bug.h"
41
#include "tool.h"
42
#include "time-utils.h"
43
#include "units.h"
J
Jiri Olsa 已提交
44
#include "cputopo.h"
45
#include "bpf-event.h"
46

47
#include <linux/ctype.h>
48

49 50 51 52 53 54 55 56 57 58 59 60
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
61

62
#define PERF_MAGIC	__perf_magic2
63

64 65
const char perf_version_string[] = PERF_VERSION;

66
struct perf_file_attr {
67
	struct perf_event_attr	attr;
68 69 70
	struct perf_file_section	ids;
};

71 72 73
struct feat_fd {
	struct perf_header	*ph;
	int			fd;
74
	void			*buf;	/* Either buf != NULL or fd >= 0 */
75 76
	ssize_t			offset;
	size_t			size;
77
	struct evsel	*events;
78 79
};

80
void perf_header__set_feat(struct perf_header *header, int feat)
81
{
82
	set_bit(feat, header->adds_features);
83 84
}

85
void perf_header__clear_feat(struct perf_header *header, int feat)
86
{
87
	clear_bit(feat, header->adds_features);
88 89
}

90
bool perf_header__has_feat(const struct perf_header *header, int feat)
91
{
92
	return test_bit(feat, header->adds_features);
93 94
}

95
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96
{
97
	ssize_t ret = writen(ff->fd, buf, size);
98

99 100
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
128 129

	return 0;
130 131
}

132 133 134 135 136 137 138 139
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

159
/* Return: 0 if succeded, -ERR if failed. */
160 161
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
162 163
{
	static const char zero_buf[NAME_ALIGN];
164
	int err = do_write(ff, bf, count);
165 166

	if (!err)
167
		err = do_write(ff, zero_buf, count_aligned - count);
168 169 170 171

	return err;
}

172 173 174
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

175
/* Return: 0 if succeded, -ERR if failed. */
176
static int do_write_string(struct feat_fd *ff, const char *str)
177 178 179 180 181
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
182
	len = PERF_ALIGN(olen, NAME_ALIGN);
183 184

	/* write len, incl. \0 */
185
	ret = do_write(ff, &len, sizeof(len));
186 187 188
	if (ret < 0)
		return ret;

189
	return write_padded(ff, str, olen, len);
190 191
}

192
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193
{
194
	ssize_t ret = readn(ff->fd, addr, size);
195 196 197 198 199 200

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

220
static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 222 223
{
	int ret;

224
	ret = __do_read(ff, addr, sizeof(*addr));
225 226 227
	if (ret)
		return ret;

228
	if (ff->ph->needs_swap)
229 230 231 232
		*addr = bswap_32(*addr);
	return 0;
}

233
static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 235 236
{
	int ret;

237
	ret = __do_read(ff, addr, sizeof(*addr));
238 239 240
	if (ret)
		return ret;

241
	if (ff->ph->needs_swap)
242 243 244 245
		*addr = bswap_64(*addr);
	return 0;
}

246
static char *do_read_string(struct feat_fd *ff)
247 248 249 250
{
	u32 len;
	char *buf;

251
	if (do_read_u32(ff, &len))
252 253 254 255 256 257
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

258
	if (!__do_read(ff, buf, len)) {
259 260 261 262 263 264 265 266 267 268 269 270
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

301
static int write_tracing_data(struct feat_fd *ff,
302
			      struct evlist *evlist)
303
{
304 305 306
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

307
	return read_tracing_data(ff->fd, &evlist->entries);
308 309
}

310
static int write_build_id(struct feat_fd *ff,
311
			  struct evlist *evlist __maybe_unused)
312 313 314 315
{
	struct perf_session *session;
	int err;

316
	session = container_of(ff->ph, struct perf_session, header);
317

318 319 320
	if (!perf_session__read_build_ids(session, true))
		return -1;

321 322 323
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

324
	err = perf_session__write_buildid_table(session, ff);
325 326 327 328
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
329
	perf_session__cache_build_ids(session);
330 331 332 333

	return 0;
}

334
static int write_hostname(struct feat_fd *ff,
335
			  struct evlist *evlist __maybe_unused)
336 337 338 339 340 341 342 343
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

344
	return do_write_string(ff, uts.nodename);
345 346
}

347
static int write_osrelease(struct feat_fd *ff,
348
			   struct evlist *evlist __maybe_unused)
349 350 351 352 353 354 355 356
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

357
	return do_write_string(ff, uts.release);
358 359
}

360
static int write_arch(struct feat_fd *ff,
361
		      struct evlist *evlist __maybe_unused)
362 363 364 365 366 367 368 369
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

370
	return do_write_string(ff, uts.machine);
371 372
}

373
static int write_version(struct feat_fd *ff,
374
			 struct evlist *evlist __maybe_unused)
375
{
376
	return do_write_string(ff, perf_version_string);
377 378
}

379
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 381 382 383
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
384
	const char *search = cpuinfo_proc;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

401 402
	if (ret) {
		ret = -1;
403
		goto done;
404
	}
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
420
			char *q = skip_spaces(r);
421 422 423 424 425 426
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
427
	ret = do_write_string(ff, s);
428 429 430 431 432 433
done:
	free(buf);
	fclose(file);
	return ret;
}

434
static int write_cpudesc(struct feat_fd *ff,
435
		       struct evlist *evlist __maybe_unused)
436 437 438 439 440 441
{
	const char *cpuinfo_procs[] = CPUINFO_PROC;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
442
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
443 444 445 446 447 448 449
		if (ret >= 0)
			return ret;
	}
	return -1;
}


450
static int write_nrcpus(struct feat_fd *ff,
451
			struct evlist *evlist __maybe_unused)
452 453 454 455 456
{
	long nr;
	u32 nrc, nra;
	int ret;

457
	nrc = cpu__max_present_cpu();
458 459 460 461 462 463 464

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

465
	ret = do_write(ff, &nrc, sizeof(nrc));
466 467 468
	if (ret < 0)
		return ret;

469
	return do_write(ff, &nra, sizeof(nra));
470 471
}

472
static int write_event_desc(struct feat_fd *ff,
473
			    struct evlist *evlist)
474
{
475
	struct evsel *evsel;
476
	u32 nre, nri, sz;
477 478
	int ret;

479
	nre = evlist->nr_entries;
480 481 482 483

	/*
	 * write number of events
	 */
484
	ret = do_write(ff, &nre, sizeof(nre));
485 486 487 488 489 490
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
491
	sz = (u32)sizeof(evsel->attr);
492
	ret = do_write(ff, &sz, sizeof(sz));
493 494 495
	if (ret < 0)
		return ret;

496
	evlist__for_each_entry(evlist, evsel) {
497
		ret = do_write(ff, &evsel->attr, sz);
498 499 500 501 502 503 504 505 506
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
507
		nri = evsel->ids;
508
		ret = do_write(ff, &nri, sizeof(nri));
509 510 511 512 513 514
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
515
		ret = do_write_string(ff, perf_evsel__name(evsel));
516 517 518 519 520
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
521
		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
522 523 524 525 526 527
		if (ret < 0)
			return ret;
	}
	return 0;
}

528
static int write_cmdline(struct feat_fd *ff,
529
			 struct evlist *evlist __maybe_unused)
530
{
531 532
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
533

534
	/* actual path to perf binary */
535
	buf = perf_exe(pbuf, MAXPATHLEN);
536 537

	/* account for binary path */
538
	n = perf_env.nr_cmdline + 1;
539

540
	ret = do_write(ff, &n, sizeof(n));
541 542 543
	if (ret < 0)
		return ret;

544
	ret = do_write_string(ff, buf);
545 546 547
	if (ret < 0)
		return ret;

548
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
549
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
550 551 552 553 554 555 556
		if (ret < 0)
			return ret;
	}
	return 0;
}


557
static int write_cpu_topology(struct feat_fd *ff,
558
			      struct evlist *evlist __maybe_unused)
559
{
J
Jiri Olsa 已提交
560
	struct cpu_topology *tp;
561
	u32 i;
562
	int ret, j;
563

J
Jiri Olsa 已提交
564
	tp = cpu_topology__new();
565 566 567
	if (!tp)
		return -1;

568
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
569 570 571 572
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
573
		ret = do_write_string(ff, tp->core_siblings[i]);
574 575 576
		if (ret < 0)
			goto done;
	}
577
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
578 579 580 581
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
582
		ret = do_write_string(ff, tp->thread_siblings[i]);
583 584 585
		if (ret < 0)
			break;
	}
586

587 588 589 590 591
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
592
		ret = do_write(ff, &perf_env.cpu[j].core_id,
593
			       sizeof(perf_env.cpu[j].core_id));
594 595
		if (ret < 0)
			return ret;
596
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
597
			       sizeof(perf_env.cpu[j].socket_id));
598 599 600
		if (ret < 0)
			return ret;
	}
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

622
done:
J
Jiri Olsa 已提交
623
	cpu_topology__delete(tp);
624 625 626 627 628
	return ret;
}



629
static int write_total_mem(struct feat_fd *ff,
630
			   struct evlist *evlist __maybe_unused)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
650
			ret = do_write(ff, &mem, sizeof(mem));
651 652
	} else
		ret = -1;
653 654 655 656 657
	free(buf);
	fclose(fp);
	return ret;
}

658
static int write_numa_topology(struct feat_fd *ff,
659
			       struct evlist *evlist __maybe_unused)
660
{
J
Jiri Olsa 已提交
661
	struct numa_topology *tp;
662
	int ret = -1;
J
Jiri Olsa 已提交
663
	u32 i;
664

J
Jiri Olsa 已提交
665 666 667
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
668

J
Jiri Olsa 已提交
669 670 671
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
672

J
Jiri Olsa 已提交
673 674
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
675

J
Jiri Olsa 已提交
676 677 678
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
679

J
Jiri Olsa 已提交
680 681 682
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
683

J
Jiri Olsa 已提交
684 685 686
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
687

J
Jiri Olsa 已提交
688
		ret = do_write_string(ff, n->cpus);
689
		if (ret < 0)
J
Jiri Olsa 已提交
690
			goto err;
691
	}
J
Jiri Olsa 已提交
692 693 694 695 696

	ret = 0;

err:
	numa_topology__delete(tp);
697 698 699
	return ret;
}

700 701 702 703 704 705 706 707 708 709 710 711
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

712
static int write_pmu_mappings(struct feat_fd *ff,
713
			      struct evlist *evlist __maybe_unused)
714 715
{
	struct perf_pmu *pmu = NULL;
716
	u32 pmu_num = 0;
717
	int ret;
718

719 720 721 722 723 724 725 726 727 728
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

729
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
730 731
	if (ret < 0)
		return ret;
732 733 734 735

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
736

737
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
738 739 740
		if (ret < 0)
			return ret;

741
		ret = do_write_string(ff, pmu->name);
742 743
		if (ret < 0)
			return ret;
744 745 746 747 748
	}

	return 0;
}

749 750 751 752 753 754 755 756 757 758 759 760
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
761
static int write_group_desc(struct feat_fd *ff,
762
			    struct evlist *evlist)
763 764
{
	u32 nr_groups = evlist->nr_groups;
765
	struct evsel *evsel;
766 767
	int ret;

768
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
769 770 771
	if (ret < 0)
		return ret;

772
	evlist__for_each_entry(evlist, evsel) {
773 774 775 776 777 778
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
			u32 nr_members = evsel->nr_members;

779
			ret = do_write_string(ff, name);
780 781 782
			if (ret < 0)
				return ret;

783
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
784 785 786
			if (ret < 0)
				return ret;

787
			ret = do_write(ff, &nr_members, sizeof(nr_members));
788 789 790 791 792 793 794
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

834 835
/*
 * default get_cpuid(): nothing gets recorded
836
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
837
 */
838
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
839 840 841 842
{
	return -1;
}

843
static int write_cpuid(struct feat_fd *ff,
844
		       struct evlist *evlist __maybe_unused)
845 846 847 848 849
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
850 851
	if (ret)
		return -1;
852

853
	return do_write_string(ff, buffer);
854 855
}

856
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
857
			      struct evlist *evlist __maybe_unused)
858 859 860 861
{
	return 0;
}

862
static int write_auxtrace(struct feat_fd *ff,
863
			  struct evlist *evlist __maybe_unused)
864
{
865 866 867
	struct perf_session *session;
	int err;

868 869 870
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

871
	session = container_of(ff->ph, struct perf_session, header);
872

873
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
874 875 876
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
877 878
}

879
static int write_clockid(struct feat_fd *ff,
880
			 struct evlist *evlist __maybe_unused)
881 882 883 884 885
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

886
static int write_dir_format(struct feat_fd *ff,
887
			    struct evlist *evlist __maybe_unused)
888 889 890 891 892 893 894 895 896 897 898 899 900
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

901 902
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
903
			       struct evlist *evlist __maybe_unused)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
945
			       struct evlist *evlist __maybe_unused)
946 947 948 949 950
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

951
static int write_bpf_btf(struct feat_fd *ff,
952
			 struct evlist *evlist __maybe_unused)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1051
	cache->type = strim(cache->type);
1052 1053 1054

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1055
		zfree(&cache->type);
1056 1057 1058 1059
		return -1;
	}

	cache->size[len] = 0;
1060
	cache->size = strim(cache->size);
1061 1062 1063

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1064 1065
		zfree(&cache->map);
		zfree(&cache->type);
1066 1067 1068 1069
		return -1;
	}

	cache->map[len] = 0;
1070
	cache->map = strim(cache->map);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

1123
#define MAX_CACHES (MAX_NR_CPUS * 4)
1124

1125
static int write_cache(struct feat_fd *ff,
1126
		       struct evlist *evlist __maybe_unused)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
{
	struct cpu_cache_level caches[MAX_CACHES];
	u32 cnt = 0, i, version = 1;
	int ret;

	ret = build_caches(caches, MAX_CACHES, &cnt);
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1138
	ret = do_write(ff, &version, sizeof(u32));
1139 1140 1141
	if (ret < 0)
		goto out;

1142
	ret = do_write(ff, &cnt, sizeof(u32));
1143 1144 1145 1146 1147 1148 1149
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1150
			ret = do_write(ff, &c->v, sizeof(u32));	\
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1161
			ret = do_write_string(ff, (const char *) c->v);	\
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1177
static int write_stat(struct feat_fd *ff __maybe_unused,
1178
		      struct evlist *evlist __maybe_unused)
1179 1180 1181 1182
{
	return 0;
}

1183
static int write_sample_time(struct feat_fd *ff,
1184
			     struct evlist *evlist)
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1267 1268
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1318
			      struct evlist *evlist __maybe_unused)
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1367
static int write_compressed(struct feat_fd *ff __maybe_unused,
1368
			    struct evlist *evlist __maybe_unused)
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1391
static void print_hostname(struct feat_fd *ff, FILE *fp)
1392
{
1393
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1394 1395
}

1396
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1397
{
1398
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1399 1400
}

1401
static void print_arch(struct feat_fd *ff, FILE *fp)
1402
{
1403
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1404 1405
}

1406
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1407
{
1408
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1409 1410
}

1411
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1412
{
1413 1414
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1415 1416
}

1417
static void print_version(struct feat_fd *ff, FILE *fp)
1418
{
1419
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1420 1421
}

1422
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1423
{
1424
	int nr, i;
1425

1426
	nr = ff->ph->env.nr_cmdline;
1427 1428 1429

	fprintf(fp, "# cmdline : ");

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1448 1449 1450
	fputc('\n', fp);
}

1451
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1452
{
1453 1454
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1455
	int nr, i;
1456 1457
	char *str;

1458 1459
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1460 1461

	for (i = 0; i < nr; i++) {
1462
		fprintf(fp, "# sibling sockets : %s\n", str);
1463
		str += strlen(str) + 1;
1464 1465
	}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1476 1477
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1478 1479 1480

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1481
		str += strlen(str) + 1;
1482
	}
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1506 1507
}

1508 1509 1510 1511 1512 1513
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1541 1542 1543

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1544 1545 1546 1547 1548
	}

	up_read(&env->bpf_progs.lock);
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1571
static void free_event_desc(struct evsel *events)
1572
{
1573
	struct evsel *evsel;
1574 1575 1576 1577 1578

	if (!events)
		return;

	for (evsel = events; evsel->attr.size; evsel++) {
1579 1580
		zfree(&evsel->name);
		zfree(&evsel->id);
1581 1582 1583 1584 1585
	}

	free(events);
}

1586
static struct evsel *read_event_desc(struct feat_fd *ff)
1587
{
1588
	struct evsel *evsel, *events = NULL;
1589
	u64 *id;
1590
	void *buf = NULL;
1591 1592
	u32 nre, sz, nr, i, j;
	size_t msz;
1593 1594

	/* number of events */
1595
	if (do_read_u32(ff, &nre))
1596 1597
		goto error;

1598
	if (do_read_u32(ff, &sz))
1599 1600
		goto error;

1601
	/* buffer to hold on file attr struct */
1602 1603 1604 1605
	buf = malloc(sz);
	if (!buf)
		goto error;

1606 1607 1608 1609 1610 1611
	/* the last event terminates with evsel->attr.size == 0: */
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

	msz = sizeof(evsel->attr);
1612
	if (sz < msz)
1613 1614
		msz = sz;

1615 1616
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1617

1618 1619 1620 1621
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1622
		if (__do_read(ff, buf, sz))
1623 1624
			goto error;

1625
		if (ff->ph->needs_swap)
1626 1627
			perf_event__attr_swap(buf);

1628
		memcpy(&evsel->attr, buf, msz);
1629

1630
		if (do_read_u32(ff, &nr))
1631 1632
			goto error;

1633
		if (ff->ph->needs_swap)
1634
			evsel->needs_swap = true;
1635

1636
		evsel->name = do_read_string(ff);
1637 1638
		if (!evsel->name)
			goto error;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
		evsel->ids = nr;
		evsel->id = id;

		for (j = 0 ; j < nr; j++) {
1650
			if (do_read_u64(ff, id))
1651 1652 1653 1654 1655
				goto error;
			id++;
		}
	}
out:
1656
	free(buf);
1657 1658
	return events;
error:
1659
	free_event_desc(events);
1660 1661 1662 1663
	events = NULL;
	goto out;
}

1664
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1665
				void *priv __maybe_unused)
1666 1667 1668 1669
{
	return fprintf(fp, ", %s = %s", name, val);
}

1670
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1671
{
1672
	struct evsel *evsel, *events;
1673 1674 1675
	u32 j;
	u64 *id;

1676 1677 1678 1679 1680
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1681 1682 1683 1684 1685 1686 1687
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

	for (evsel = events; evsel->attr.size; evsel++) {
		fprintf(fp, "# event : name = %s, ", evsel->name);
1688

1689
		if (evsel->ids) {
1690
			fprintf(fp, ", id = {");
1691 1692 1693 1694 1695
			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1696
			fprintf(fp, " }");
1697
		}
1698

1699
		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1700

1701 1702
		fputc('\n', fp);
	}
1703 1704

	free_event_desc(events);
1705
	ff->events = NULL;
1706 1707
}

1708
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1709
{
1710
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1711 1712
}

1713
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1714
{
1715 1716
	int i;
	struct numa_node *n;
1717

1718 1719
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1720 1721 1722

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1723
			n->node, n->mem_total, n->mem_free);
1724

1725 1726
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1727 1728 1729
	}
}

1730
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1731
{
1732
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1733 1734
}

1735
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1736 1737 1738 1739
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1740
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1741 1742 1743 1744
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1745
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1746 1747 1748 1749
{
	fprintf(fp, "# contains stat data\n");
}

1750
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1751 1752 1753 1754
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1755
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1756
		fprintf(fp, "#  ");
1757
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1758 1759 1760
	}
}

1761 1762 1763 1764 1765 1766 1767
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1768
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1769 1770
{
	const char *delimiter = "# pmu mappings: ";
1771
	char *str, *tmp;
1772 1773 1774
	u32 pmu_num;
	u32 type;

1775
	pmu_num = ff->ph->env.nr_pmu_mappings;
1776 1777 1778 1779 1780
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1781
	str = ff->ph->env.pmu_mappings;
1782

1783
	while (pmu_num) {
1784 1785 1786 1787 1788 1789
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1790

1791
		delimiter = ", ";
1792 1793
		str += strlen(str) + 1;
		pmu_num--;
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1804
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1805 1806
{
	struct perf_session *session;
1807
	struct evsel *evsel;
1808 1809
	u32 nr = 0;

1810
	session = container_of(ff->ph, struct perf_session, header);
1811

1812
	evlist__for_each_entry(session->evlist, evsel) {
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

			nr = evsel->nr_members - 1;
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1879 1880 1881 1882 1883 1884
static int __event_process_build_id(struct build_id_event *bev,
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1885
	u16 cpumode;
1886 1887 1888 1889 1890 1891 1892
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1893
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1894

1895
	switch (cpumode) {
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1910
	dso = machine__findnew_dso(machine, filename);
1911
	if (dso != NULL) {
1912
		char sbuild_id[SBUILD_ID_SIZE];
1913 1914 1915

		dso__set_build_id(dso, &bev->build_id);

1916 1917 1918 1919
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1920
				dso__set_module_info(dso, &m, machine);
1921 1922 1923 1924 1925
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1926 1927 1928 1929 1930

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1931
		dso__put(dso);
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1945
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1946 1947 1948 1949 1950 1951 1952 1953 1954
		char			   filename[0];
	} old_bev;
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1955
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1956 1957 1958 1959 1960 1961
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1962
		if (readn(input, filename, len) != len)
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

1997
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1998 1999 2000 2001 2002 2003
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2004
		if (readn(input, filename, len) != len)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
		 * Added a field to struct build_id_event that broke the file
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2034 2035
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2036
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2037
{\
2038
	ff->ph->env.__feat_env = do_read_string(ff); \
2039
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2040 2041 2042 2043 2044 2045 2046 2047 2048
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2049
static int process_tracing_data(struct feat_fd *ff, void *data)
2050
{
2051 2052
	ssize_t ret = trace_report(ff->fd, data, false);

2053
	return ret < 0 ? -1 : 0;
2054 2055
}

2056
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2057
{
2058
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2059 2060 2061 2062
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2063
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2064
{
2065 2066
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2067

2068
	ret = do_read_u32(ff, &nr_cpus_avail);
2069 2070
	if (ret)
		return ret;
2071

2072
	ret = do_read_u32(ff, &nr_cpus_online);
2073 2074
	if (ret)
		return ret;
2075 2076
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2077 2078 2079
	return 0;
}

2080
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2081
{
2082 2083
	u64 total_mem;
	int ret;
2084

2085
	ret = do_read_u64(ff, &total_mem);
2086
	if (ret)
2087
		return -1;
2088
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2089 2090 2091
	return 0;
}

2092
static struct evsel *
2093
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2094
{
2095
	struct evsel *evsel;
2096

2097
	evlist__for_each_entry(evlist, evsel) {
2098 2099 2100 2101 2102 2103 2104 2105
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2106
perf_evlist__set_event_name(struct evlist *evlist,
2107
			    struct evsel *event)
2108
{
2109
	struct evsel *evsel;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2125
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2126
{
2127
	struct perf_session *session;
2128
	struct evsel *evsel, *events = read_event_desc(ff);
2129 2130 2131 2132

	if (!events)
		return 0;

2133
	session = container_of(ff->ph, struct perf_session, header);
2134

2135
	if (session->data->is_pipe) {
2136 2137 2138 2139 2140
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2141 2142 2143
	for (evsel = events; evsel->attr.size; evsel++)
		perf_evlist__set_event_name(session->evlist, evsel);

2144
	if (!session->data->is_pipe)
2145
		free_event_desc(events);
2146 2147 2148 2149

	return 0;
}

2150
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2151
{
2152 2153
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2154

2155
	if (do_read_u32(ff, &nr))
2156 2157
		return -1;

2158
	ff->ph->env.nr_cmdline = nr;
2159

2160
	cmdline = zalloc(ff->size + nr + 1);
2161 2162 2163 2164 2165 2166
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2167 2168

	for (i = 0; i < nr; i++) {
2169
		str = do_read_string(ff);
2170 2171 2172
		if (!str)
			goto error;

2173 2174 2175
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2176 2177
		free(str);
	}
2178 2179
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2180 2181 2182
	return 0;

error:
2183 2184
	free(argv);
	free(cmdline);
2185 2186 2187
	return -1;
}

2188
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2189 2190 2191 2192
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2193
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2194
	u64 size = 0;
2195
	struct perf_header *ph = ff->ph;
2196
	bool do_core_id_test = true;
2197 2198 2199 2200

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2201

2202
	if (do_read_u32(ff, &nr))
2203
		goto free_cpu;
2204 2205

	ph->env.nr_sibling_cores = nr;
2206
	size += sizeof(u32);
2207 2208
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2209 2210

	for (i = 0; i < nr; i++) {
2211
		str = do_read_string(ff);
2212 2213 2214 2215
		if (!str)
			goto error;

		/* include a NULL character at the end */
2216 2217
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2218
		size += string_size(str);
2219 2220 2221 2222
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2223
	if (do_read_u32(ff, &nr))
2224 2225 2226
		return -1;

	ph->env.nr_sibling_threads = nr;
2227
	size += sizeof(u32);
2228 2229

	for (i = 0; i < nr; i++) {
2230
		str = do_read_string(ff);
2231 2232 2233 2234
		if (!str)
			goto error;

		/* include a NULL character at the end */
2235 2236
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2237
		size += string_size(str);
2238 2239 2240
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2241 2242 2243 2244 2245

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2246
	if (ff->size <= size) {
2247 2248 2249 2250
		zfree(&ph->env.cpu);
		return 0;
	}

2251 2252 2253 2254 2255 2256 2257
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
	 */
	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
		do_core_id_test = false;

2258
	for (i = 0; i < (u32)cpu_nr; i++) {
2259
		if (do_read_u32(ff, &nr))
2260 2261 2262
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2263
		size += sizeof(u32);
2264

2265
		if (do_read_u32(ff, &nr))
2266 2267
			goto free_cpu;

2268
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2269 2270 2271 2272 2273 2274
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2309 2310
	}

2311 2312 2313 2314
	return 0;

error:
	strbuf_release(&sb);
2315 2316
free_cpu:
	zfree(&ph->env.cpu);
2317 2318 2319
	return -1;
}

2320
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2321
{
2322 2323
	struct numa_node *nodes, *n;
	u32 nr, i;
2324 2325 2326
	char *str;

	/* nr nodes */
2327
	if (do_read_u32(ff, &nr))
2328
		return -1;
2329

2330 2331 2332
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2333 2334

	for (i = 0; i < nr; i++) {
2335 2336
		n = &nodes[i];

2337
		/* node number */
2338
		if (do_read_u32(ff, &n->node))
2339 2340
			goto error;

2341
		if (do_read_u64(ff, &n->mem_total))
2342 2343
			goto error;

2344
		if (do_read_u64(ff, &n->mem_free))
2345 2346
			goto error;

2347
		str = do_read_string(ff);
2348 2349 2350
		if (!str)
			goto error;

2351 2352
		n->map = cpu_map__new(str);
		if (!n->map)
2353
			goto error;
2354

2355 2356
		free(str);
	}
2357 2358
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2359 2360 2361
	return 0;

error:
2362
	free(nodes);
2363 2364 2365
	return -1;
}

2366
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2367 2368 2369 2370 2371 2372
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2373
	if (do_read_u32(ff, &pmu_num))
2374 2375 2376 2377 2378 2379 2380
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2381
	ff->ph->env.nr_pmu_mappings = pmu_num;
2382 2383
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2384 2385

	while (pmu_num) {
2386
		if (do_read_u32(ff, &type))
2387 2388
			goto error;

2389
		name = do_read_string(ff);
2390 2391 2392
		if (!name)
			goto error;

2393 2394
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2395
		/* include a NULL character at the end */
2396 2397
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2398

2399
		if (!strcmp(name, "msr"))
2400
			ff->ph->env.msr_pmu_type = type;
2401

2402 2403 2404
		free(name);
		pmu_num--;
	}
2405
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2406 2407 2408 2409 2410 2411 2412
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2413
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2414 2415 2416 2417
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2418
	struct evsel *evsel, *leader = NULL;
2419 2420 2421 2422 2423 2424
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2425
	if (do_read_u32(ff, &nr_groups))
2426 2427
		return -1;

2428
	ff->ph->env.nr_groups = nr_groups;
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2439
		desc[i].name = do_read_string(ff);
2440 2441 2442
		if (!desc[i].name)
			goto out_free;

2443
		if (do_read_u32(ff, &desc[i].leader_idx))
2444 2445
			goto out_free;

2446
		if (do_read_u32(ff, &desc[i].nr_members))
2447 2448 2449 2450 2451 2452
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2453
	session = container_of(ff->ph, struct perf_session, header);
2454 2455 2456
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2457
	evlist__for_each_entry(session->evlist, evsel) {
2458 2459 2460
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2461
			if (strcmp(desc[i].name, "{anon_group}")) {
2462
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2463 2464
				desc[i].name = NULL;
			}
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
			evsel->nr_members = desc[i].nr_members;

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
			nr = evsel->nr_members - 1;
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2490
	for (i = 0; i < nr_groups; i++)
2491
		zfree(&desc[i].name);
2492 2493 2494 2495 2496
	free(desc);

	return ret;
}

2497
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2498 2499 2500 2501
{
	struct perf_session *session;
	int err;

2502
	session = container_of(ff->ph, struct perf_session, header);
2503

2504
	err = auxtrace_index__process(ff->fd, ff->size, session,
2505
				      ff->ph->needs_swap);
2506 2507 2508 2509 2510
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2511
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2512 2513 2514 2515
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2516
	if (do_read_u32(ff, &version))
2517 2518 2519 2520 2521
		return -1;

	if (version != 1)
		return -1;

2522
	if (do_read_u32(ff, &cnt))
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2533
			if (do_read_u32(ff, &c.v))\
2534 2535 2536 2537 2538 2539 2540 2541
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2542
		#define _R(v)					\
2543
			c.v = do_read_string(ff);		\
2544
			if (!c.v)				\
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2555 2556
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2557 2558 2559 2560 2561 2562
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2636 2637 2638 2639 2640 2641 2642 2643 2644
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2721
	up_write(&env->bpf_progs.lock);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2736 2737 2738
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2739
	struct btf_node *node = NULL;
2740
	u32 count, i;
2741
	int err = -1;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2757
			goto out;
2758
		if (do_read_u32(ff, &data_size))
2759
			goto out;
2760 2761 2762

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2763
			goto out;
2764 2765 2766 2767

		node->id = id;
		node->data_size = data_size;

2768 2769
		if (__do_read(ff, node->data, data_size))
			goto out;
2770 2771

		perf_env__insert_btf(env, node);
2772
		node = NULL;
2773 2774
	}

2775 2776
	err = 0;
out:
2777
	up_write(&env->bpf_progs.lock);
2778 2779
	free(node);
	return err;
2780 2781
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2803
struct feature_ops {
2804
	int (*write)(struct feat_fd *ff, struct evlist *evlist);
2805
	void (*print)(struct feat_fd *ff, FILE *fp);
2806
	int (*process)(struct feat_fd *ff, void *data);
2807 2808
	const char *name;
	bool full_only;
2809
	bool synthesize;
2810 2811
};

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2830 2831

/* feature_ops not implemented: */
2832 2833
#define print_tracing_data	NULL
#define print_build_id		NULL
2834

2835 2836 2837 2838
#define process_branch_stack	NULL
#define process_stat		NULL


2839
static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2856
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2857 2858 2859
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2860
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2861
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2862
	FEAT_OPR(CLOCKID,	clockid,	false),
2863
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2864 2865
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2866
	FEAT_OPR(COMPRESSED,	compressed,	false),
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2879
	struct feat_fd ff;
2880 2881 2882 2883 2884 2885

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2886
	if (feat >= HEADER_LAST_FEATURE) {
2887
		pr_warning("unknown feature %d\n", feat);
2888
		return 0;
2889 2890 2891 2892
	}
	if (!feat_ops[feat].print)
		return 0;

2893 2894 2895 2896 2897
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2898
	if (!feat_ops[feat].full_only || hd->full)
2899
		feat_ops[feat].print(&ff, hd->fp);
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2911
	int fd = perf_data__fd(session->data);
2912
	struct stat st;
2913
	time_t stctime;
J
Jiri Olsa 已提交
2914
	int ret, bit;
2915

2916 2917 2918
	hd.fp = fp;
	hd.full = full;

2919 2920 2921 2922
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2923 2924
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2925 2926 2927 2928 2929

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2930

2931 2932
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2933

2934
	if (session->data->is_pipe)
2935 2936
		return 0;

J
Jiri Olsa 已提交
2937 2938 2939 2940 2941 2942 2943
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2944 2945 2946
	return 0;
}

2947
static int do_write_feat(struct feat_fd *ff, int type,
2948
			 struct perf_file_section **p,
2949
			 struct evlist *evlist)
2950 2951 2952 2953
{
	int err;
	int ret = 0;

2954
	if (perf_header__has_feat(ff->ph, type)) {
2955 2956
		if (!feat_ops[type].write)
			return -1;
2957

2958 2959 2960
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2961
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2962

2963
		err = feat_ops[type].write(ff, evlist);
2964
		if (err < 0) {
2965
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2966 2967

			/* undo anything written */
2968
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2969 2970 2971

			return -1;
		}
2972
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2973 2974 2975 2976 2977
		(*p)++;
	}
	return ret;
}

2978
static int perf_header__adds_write(struct perf_header *header,
2979
				   struct evlist *evlist, int fd)
2980
{
2981
	int nr_sections;
2982
	struct feat_fd ff;
2983
	struct perf_file_section *feat_sec, *p;
2984 2985
	int sec_size;
	u64 sec_start;
2986
	int feat;
2987
	int err;
2988

2989 2990 2991 2992 2993
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

2994
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2995
	if (!nr_sections)
2996
		return 0;
2997

2998
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2999 3000
	if (feat_sec == NULL)
		return -ENOMEM;
3001 3002 3003

	sec_size = sizeof(*feat_sec) * nr_sections;

3004
	sec_start = header->feat_offset;
3005
	lseek(fd, sec_start + sec_size, SEEK_SET);
3006

3007
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3008
		if (do_write_feat(&ff, feat, &p, evlist))
3009 3010
			perf_header__clear_feat(header, feat);
	}
3011

3012
	lseek(fd, sec_start, SEEK_SET);
3013 3014
	/*
	 * may write more than needed due to dropped feature, but
3015
	 * this is okay, reader will skip the missing entries
3016
	 */
3017
	err = do_write(&ff, feat_sec, sec_size);
3018 3019
	if (err < 0)
		pr_debug("failed to write feature section\n");
3020
	free(feat_sec);
3021
	return err;
3022
}
3023

3024 3025 3026
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3027
	struct feat_fd ff;
3028 3029
	int err;

3030 3031
	ff = (struct feat_fd){ .fd = fd };

3032 3033 3034 3035 3036
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3037
	err = do_write(&ff, &f_header, sizeof(f_header));
3038 3039 3040 3041 3042 3043 3044 3045
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3046
int perf_session__write_header(struct perf_session *session,
3047
			       struct evlist *evlist,
3048
			       int fd, bool at_exit)
3049 3050 3051
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3052
	struct perf_header *header = &session->header;
3053
	struct evsel *evsel;
3054
	struct feat_fd ff;
3055
	u64 attr_offset;
3056
	int err;
3057

3058
	ff = (struct feat_fd){ .fd = fd};
3059 3060
	lseek(fd, sizeof(f_header), SEEK_SET);

3061
	evlist__for_each_entry(session->evlist, evsel) {
3062
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3063
		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3064 3065 3066 3067
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3068 3069
	}

3070
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3071

3072
	evlist__for_each_entry(evlist, evsel) {
3073
		f_attr = (struct perf_file_attr){
3074
			.attr = evsel->attr,
3075
			.ids  = {
3076 3077
				.offset = evsel->id_offset,
				.size   = evsel->ids * sizeof(u64),
3078 3079
			}
		};
3080
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3081 3082 3083 3084
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3085 3086
	}

3087 3088
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3089
	header->feat_offset = header->data_offset + header->data_size;
3090

3091
	if (at_exit) {
3092
		err = perf_header__adds_write(header, evlist, fd);
3093 3094 3095
		if (err < 0)
			return err;
	}
3096

3097 3098 3099 3100 3101
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3102
			.offset = attr_offset,
3103
			.size   = evlist->nr_entries * sizeof(f_attr),
3104 3105
		},
		.data = {
3106 3107
			.offset = header->data_offset,
			.size	= header->data_size,
3108
		},
3109
		/* event_types is ignored, store zeros */
3110 3111
	};

3112
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3113

3114
	lseek(fd, 0, SEEK_SET);
3115
	err = do_write(&ff, &f_header, sizeof(f_header));
3116 3117 3118 3119
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3120
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3121

3122
	return 0;
3123 3124
}

3125
static int perf_header__getbuffer64(struct perf_header *header,
3126 3127
				    int fd, void *buf, size_t size)
{
3128
	if (readn(fd, buf, size) <= 0)
3129 3130
		return -1;

3131
	if (header->needs_swap)
3132 3133 3134 3135 3136
		mem_bswap_64(buf, size);

	return 0;
}

3137
int perf_header__process_sections(struct perf_header *header, int fd,
3138
				  void *data,
3139
				  int (*process)(struct perf_file_section *section,
3140 3141
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3142
{
3143
	struct perf_file_section *feat_sec, *sec;
3144 3145
	int nr_sections;
	int sec_size;
3146 3147
	int feat;
	int err;
3148

3149
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3150
	if (!nr_sections)
3151
		return 0;
3152

3153
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3154
	if (!feat_sec)
3155
		return -1;
3156 3157 3158

	sec_size = sizeof(*feat_sec) * nr_sections;

3159
	lseek(fd, header->feat_offset, SEEK_SET);
3160

3161 3162
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3163
		goto out_free;
3164

3165 3166 3167 3168
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3169
	}
3170
	err = 0;
3171
out_free:
3172 3173
	free(feat_sec);
	return err;
3174
}
3175

3176 3177 3178
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3179
	[2] = PERF_ATTR_SIZE_VER2,
3180
	[3] = PERF_ATTR_SIZE_VER3,
3181
	[4] = PERF_ATTR_SIZE_VER4,
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3192
{
3193 3194
	uint64_t ref_size, attr_size;
	int i;
3195

3196 3197 3198 3199 3200 3201 3202
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3239 3240 3241

			ph->needs_swap = true;
		}
3242
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3243 3244
		return 0;
	}
3245 3246 3247
	return -1;
}

F
Feng Tang 已提交
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3258 3259 3260 3261 3262 3263 3264 3265
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3266
		ph->version = PERF_HEADER_VERSION_1;
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3278
	ph->version = PERF_HEADER_VERSION_2;
3279

3280 3281
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3282 3283
		return 0;

3284 3285
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3286 3287 3288 3289 3290 3291 3292
		return -1;

	ph->needs_swap = true;

	return 0;
}

3293
int perf_file_header__read(struct perf_file_header *header,
3294 3295
			   struct perf_header *ph, int fd)
{
3296
	ssize_t ret;
3297

3298 3299
	lseek(fd, 0, SEEK_SET);

3300 3301
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3302 3303
		return -1;

3304 3305 3306
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3307
		return -1;
3308
	}
3309

3310
	if (ph->needs_swap) {
3311
		mem_bswap_64(header, offsetof(struct perf_file_header,
3312
			     adds_features));
3313 3314
	}

3315
	if (header->size != sizeof(*header)) {
3316
		/* Support the previous format */
3317 3318
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3319 3320
		else
			return -1;
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3337 3338
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3339 3340

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3341 3342 3343 3344 3345 3346 3347
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3348 3349 3350 3351 3352 3353
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3354
	}
3355

3356
	memcpy(&ph->adds_features, &header->adds_features,
3357
	       sizeof(ph->adds_features));
3358

3359 3360
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3361
	ph->feat_offset  = header->data.offset + header->data.size;
3362 3363 3364
	return 0;
}

3365
static int perf_file_section__process(struct perf_file_section *section,
3366
				      struct perf_header *ph,
3367
				      int feat, int fd, void *data)
3368
{
3369
	struct feat_fd fdd = {
3370 3371
		.fd	= fd,
		.ph	= ph,
3372 3373
		.size	= section->size,
		.offset	= section->offset,
3374 3375
	};

3376
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3377
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3378
			  "%d, continuing...\n", section->offset, feat);
3379 3380 3381
		return 0;
	}

3382 3383 3384 3385 3386
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3387 3388
	if (!feat_ops[feat].process)
		return 0;
3389

3390
	return feat_ops[feat].process(&fdd, data);
3391
}
3392

3393
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3394 3395
				       struct perf_header *ph, int fd,
				       bool repipe)
3396
{
3397 3398 3399 3400
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3401
	ssize_t ret;
3402 3403 3404 3405 3406

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3407 3408
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3409
		return -1;
3410 3411 3412 3413
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3414

3415
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3416 3417
		return -1;

3418 3419 3420
	return 0;
}

3421
static int perf_header__read_pipe(struct perf_session *session)
3422
{
3423
	struct perf_header *header = &session->header;
3424 3425
	struct perf_pipe_file_header f_header;

3426
	if (perf_file_header__read_pipe(&f_header, header,
3427
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3428
					session->repipe) < 0) {
3429 3430 3431 3432 3433 3434 3435
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3436 3437 3438 3439 3440 3441
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3442
	ssize_t ret;
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3456

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3482
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3483
						struct tep_handle *pevent)
3484
{
3485
	struct tep_event *event;
3486 3487
	char bf[128];

3488 3489 3490 3491
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3492 3493 3494 3495 3496
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3497
	event = tep_find_event(pevent, evsel->attr.config);
3498 3499
	if (event == NULL) {
		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3500
		return -1;
3501
	}
3502

3503 3504 3505 3506 3507 3508
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3509

3510
	evsel->tp_format = event;
3511 3512 3513
	return 0;
}

3514
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3515
						  struct tep_handle *pevent)
3516
{
3517
	struct evsel *pos;
3518

3519
	evlist__for_each_entry(evlist, pos) {
3520 3521
		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3522 3523 3524 3525 3526 3527
			return -1;
	}

	return 0;
}

3528
int perf_session__read_header(struct perf_session *session)
3529
{
3530
	struct perf_data *data = session->data;
3531
	struct perf_header *header = &session->header;
3532
	struct perf_file_header	f_header;
3533 3534 3535
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3536
	int fd = perf_data__fd(data);
3537

3538
	session->evlist = evlist__new();
3539 3540 3541
	if (session->evlist == NULL)
		return -ENOMEM;

3542
	session->evlist->env = &header->env;
3543
	session->machines.host.env = &header->env;
3544
	if (perf_data__is_pipe(data))
3545
		return perf_header__read_pipe(session);
3546

3547
	if (perf_file_header__read(&f_header, header, fd) < 0)
3548
		return -EINVAL;
3549

3550 3551 3552 3553 3554 3555 3556 3557 3558
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3559
			   data->file.path);
3560 3561
	}

3562 3563 3564 3565 3566 3567 3568
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3569
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3570 3571 3572
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3573
		struct evsel *evsel;
3574
		off_t tmp;
3575

3576
		if (read_attr(fd, header, &f_attr) < 0)
3577
			goto out_errno;
3578

3579 3580 3581
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3582
			perf_event__attr_swap(&f_attr.attr);
3583
		}
3584

3585
		tmp = lseek(fd, 0, SEEK_CUR);
3586
		evsel = perf_evsel__new(&f_attr.attr);
3587

3588 3589
		if (evsel == NULL)
			goto out_delete_evlist;
3590 3591

		evsel->needs_swap = header->needs_swap;
3592 3593
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3594
		 * entry gets purged too at evlist__delete().
3595 3596
		 */
		perf_evlist__add(session->evlist, evsel);
3597 3598

		nr_ids = f_attr.ids.size / sizeof(u64);
3599 3600 3601 3602 3603 3604 3605 3606
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
			goto out_delete_evlist;

3607 3608 3609
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3610
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3611
				goto out_errno;
3612

3613
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3614
		}
3615

3616 3617 3618
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3619
	perf_header__process_sections(header, fd, &session->tevent,
3620
				      perf_file_section__process);
3621

3622
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3623
						   session->tevent.pevent))
3624 3625
		goto out_delete_evlist;

3626
	return 0;
3627 3628
out_errno:
	return -errno;
3629 3630

out_delete_evlist:
3631
	evlist__delete(session->evlist);
3632 3633
	session->evlist = NULL;
	return -ENOMEM;
3634
}
3635

3636
int perf_event__synthesize_attr(struct perf_tool *tool,
3637
				struct perf_event_attr *attr, u32 ids, u64 *id,
3638
				perf_event__handler_t process)
3639
{
3640
	union perf_event *ev;
3641 3642 3643 3644
	size_t size;
	int err;

	size = sizeof(struct perf_event_attr);
3645
	size = PERF_ALIGN(size, sizeof(u64));
3646 3647 3648
	size += sizeof(struct perf_event_header);
	size += ids * sizeof(u64);

3649
	ev = zalloc(size);
3650

3651 3652 3653
	if (ev == NULL)
		return -ENOMEM;

3654 3655 3656 3657
	ev->attr.attr = *attr;
	memcpy(ev->attr.id, id, ids * sizeof(u64));

	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3658
	ev->attr.header.size = (u16)size;
3659

3660 3661 3662 3663
	if (ev->attr.header.size == size)
		err = process(tool, ev, NULL, NULL);
	else
		err = -E2BIG;
3664 3665 3666 3667 3668 3669

	free(ev);

	return err;
}

3670 3671
int perf_event__synthesize_features(struct perf_tool *tool,
				    struct perf_session *session,
3672
				    struct evlist *evlist,
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
				    perf_event__handler_t process)
{
	struct perf_header *header = &session->header;
	struct feat_fd ff;
	struct feature_event *fe;
	size_t sz, sz_hdr;
	int feat, ret;

	sz_hdr = sizeof(fe->header);
	sz = sizeof(union perf_event);
	/* get a nice alignment */
	sz = PERF_ALIGN(sz, page_size);

	memset(&ff, 0, sizeof(ff));

	ff.buf = malloc(sz);
	if (!ff.buf)
		return -ENOMEM;

	ff.size = sz - sz_hdr;
3693
	ff.ph = &session->header;
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
		if (!feat_ops[feat].synthesize) {
			pr_debug("No record header feature for header :%d\n", feat);
			continue;
		}

		ff.offset = sizeof(*fe);

		ret = feat_ops[feat].write(&ff, evlist);
		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
			pr_debug("Error writing feature\n");
			continue;
		}
		/* ff.buf may have changed due to realloc in do_write() */
		fe = ff.buf;
		memset(fe, 0, sizeof(*fe));

		fe->feat_id = feat;
		fe->header.type = PERF_RECORD_HEADER_FEATURE;
		fe->header.size = ff.offset;

		ret = process(tool, ff.buf, NULL, NULL);
		if (ret) {
			free(ff.buf);
			return ret;
		}
	}
3722 3723 3724 3725 3726 3727 3728 3729 3730

	/* Send HEADER_LAST_FEATURE mark. */
	fe = ff.buf;
	fe->feat_id     = HEADER_LAST_FEATURE;
	fe->header.type = PERF_RECORD_HEADER_FEATURE;
	fe->header.size = sizeof(*fe);

	ret = process(tool, ff.buf, NULL, NULL);

3731
	free(ff.buf);
3732
	return ret;
3733 3734
}

3735 3736
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3737
{
3738
	struct perf_tool *tool = session->tool;
3739 3740 3741 3742 3743 3744 3745 3746 3747
	struct feat_fd ff = { .fd = 0 };
	struct feature_event *fe = (struct feature_event *)event;
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3748
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3749 3750 3751 3752 3753 3754 3755 3756
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3757
	ff.size = event->header.size - sizeof(*fe);
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
static struct event_update_event *
event_update_event__new(size_t size, u64 type, u64 id)
{
	struct event_update_event *ev;

	size += sizeof(*ev);
	size  = PERF_ALIGN(size, sizeof(u64));

	ev = zalloc(size);
	if (ev) {
		ev->header.type = PERF_RECORD_EVENT_UPDATE;
		ev->header.size = (u16)size;
		ev->type = type;
		ev->id = id;
	}
	return ev;
}

int
perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3797
					 struct evsel *evsel,
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t size = strlen(evsel->unit);
	int err;

	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3808
	strlcpy(ev->data, evsel->unit, size + 1);
3809 3810 3811 3812 3813
	err = process(tool, (union perf_event *)ev, NULL, NULL);
	free(ev);
	return err;
}

3814 3815
int
perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3816
					  struct evsel *evsel,
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
					  perf_event__handler_t process)
{
	struct event_update_event *ev;
	struct event_update_event_scale *ev_data;
	int err;

	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

	ev_data = (struct event_update_event_scale *) ev->data;
	ev_data->scale = evsel->scale;
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3834 3835
int
perf_event__synthesize_event_update_name(struct perf_tool *tool,
3836
					 struct evsel *evsel,
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t len = strlen(evsel->name);
	int err;

	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3847
	strlcpy(ev->data, evsel->name, len + 1);
3848 3849 3850 3851
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}
3852

3853 3854
int
perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3855
					struct evsel *evsel,
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
					perf_event__handler_t process)
{
	size_t size = sizeof(struct event_update_event);
	struct event_update_event *ev;
	int max, err;
	u16 type;

	if (!evsel->own_cpus)
		return 0;

	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
	if (!ev)
		return -ENOMEM;

	ev->header.type = PERF_RECORD_EVENT_UPDATE;
	ev->header.size = (u16)size;
	ev->type = PERF_EVENT_UPDATE__CPUS;
	ev->id   = evsel->id[0];

	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
				 evsel->own_cpus,
				 type, max);

	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3884 3885 3886 3887 3888
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
	struct event_update_event *ev = &event->event_update;
	struct event_update_event_scale *ev_scale;
	struct event_update_event_cpus *ev_cpus;
3889
	struct perf_cpu_map *map;
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	size_t ret;

	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3922

3923
int perf_event__synthesize_attrs(struct perf_tool *tool,
3924
				 struct evlist *evlist,
3925
				 perf_event__handler_t process)
3926
{
3927
	struct evsel *evsel;
3928
	int err = 0;
3929

3930
	evlist__for_each_entry(evlist, evsel) {
3931 3932
		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
						  evsel->id, process);
3933 3934 3935 3936 3937 3938 3939 3940 3941
		if (err) {
			pr_debug("failed to create perf header attribute\n");
			return err;
		}
	}

	return err;
}

3942
static bool has_unit(struct evsel *counter)
3943 3944 3945 3946
{
	return counter->unit && *counter->unit;
}

3947
static bool has_scale(struct evsel *counter)
3948 3949 3950 3951 3952
{
	return counter->scale != 1;
}

int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3953
				      struct evlist *evsel_list,
3954 3955 3956
				      perf_event__handler_t process,
				      bool is_pipe)
{
3957
	struct evsel *counter;
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	int err;

	/*
	 * Synthesize other events stuff not carried within
	 * attr event - unit, scale, name
	 */
	evlist__for_each_entry(evsel_list, counter) {
		if (!counter->supported)
			continue;

		/*
		 * Synthesize unit and scale only if it's defined.
		 */
		if (has_unit(counter)) {
			err = perf_event__synthesize_event_update_unit(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel unit.\n");
				return err;
			}
		}

		if (has_scale(counter)) {
			err = perf_event__synthesize_event_update_scale(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel counter.\n");
				return err;
			}
		}

		if (counter->own_cpus) {
			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel cpus.\n");
				return err;
			}
		}

		/*
		 * Name is needed only for pipe output,
		 * perf.data carries event names.
		 */
		if (is_pipe) {
			err = perf_event__synthesize_event_update_name(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel name.\n");
				return err;
			}
		}
	}
	return 0;
}

4010 4011
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
4012
			     struct evlist **pevlist)
4013
{
4014
	u32 i, ids, n_ids;
4015
	struct evsel *evsel;
4016
	struct evlist *evlist = *pevlist;
4017

4018
	if (evlist == NULL) {
4019
		*pevlist = evlist = evlist__new();
4020
		if (evlist == NULL)
4021 4022 4023
			return -ENOMEM;
	}

4024
	evsel = perf_evsel__new(&event->attr.attr);
4025
	if (evsel == NULL)
4026 4027
		return -ENOMEM;

4028
	perf_evlist__add(evlist, evsel);
4029

4030 4031
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4032
	n_ids = ids / sizeof(u64);
4033 4034 4035 4036 4037 4038 4039
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
	if (perf_evsel__alloc_id(evsel, 1, n_ids))
		return -ENOMEM;
4040 4041

	for (i = 0; i < n_ids; i++) {
4042
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4043 4044 4045 4046
	}

	return 0;
}
4047

4048 4049
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4050
				     struct evlist **pevlist)
4051 4052
{
	struct event_update_event *ev = &event->event_update;
4053
	struct event_update_event_scale *ev_scale;
4054
	struct event_update_event_cpus *ev_cpus;
4055
	struct evlist *evlist;
4056
	struct evsel *evsel;
4057
	struct perf_cpu_map *map;
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

4068 4069 4070
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4071
		break;
4072 4073 4074
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4075 4076 4077
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		evsel->scale = ev_scale->scale;
4078
		break;
4079 4080 4081 4082 4083 4084 4085 4086
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			evsel->own_cpus = map;
		else
			pr_err("failed to get event_update cpus\n");
4087 4088 4089 4090
	default:
		break;
	}

4091 4092 4093
	return 0;
}

4094
int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4095
					struct evlist *evlist,
4096
					perf_event__handler_t process)
4097
{
4098
	union perf_event ev;
J
Jiri Olsa 已提交
4099
	struct tracing_data *tdata;
4100
	ssize_t size = 0, aligned_size = 0, padding;
4101
	struct feat_fd ff;
4102
	int err __maybe_unused = 0;
4103

J
Jiri Olsa 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	/*
	 * We are going to store the size of the data followed
	 * by the data contents. Since the fd descriptor is a pipe,
	 * we cannot seek back to store the size of the data once
	 * we know it. Instead we:
	 *
	 * - write the tracing data to the temp file
	 * - get/write the data size to pipe
	 * - write the tracing data from the temp file
	 *   to the pipe
	 */
	tdata = tracing_data_get(&evlist->entries, fd, true);
	if (!tdata)
		return -1;

4119 4120 4121
	memset(&ev, 0, sizeof(ev));

	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
J
Jiri Olsa 已提交
4122
	size = tdata->size;
4123
	aligned_size = PERF_ALIGN(size, sizeof(u64));
4124 4125 4126 4127
	padding = aligned_size - size;
	ev.tracing_data.header.size = sizeof(ev.tracing_data);
	ev.tracing_data.size = aligned_size;

4128
	process(tool, &ev, NULL, NULL);
4129

J
Jiri Olsa 已提交
4130 4131 4132 4133 4134 4135
	/*
	 * The put function will copy all the tracing data
	 * stored in temp file to the pipe.
	 */
	tracing_data_put(tdata);

4136 4137
	ff = (struct feat_fd){ .fd = fd };
	if (write_padded(&ff, NULL, 0, padding))
4138
		return -1;
4139 4140 4141 4142

	return aligned_size;
}

4143 4144
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4145
{
4146
	ssize_t size_read, padding, size = event->tracing_data.size;
4147
	int fd = perf_data__fd(session->data);
4148
	off_t offset = lseek(fd, 0, SEEK_CUR);
4149 4150 4151
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
4152
	lseek(fd, offset + sizeof(struct tracing_data_event),
4153 4154
	      SEEK_SET);

J
Jiri Olsa 已提交
4155
	size_read = trace_report(fd, &session->tevent,
4156
				 session->repipe);
4157
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4158

4159
	if (readn(fd, buf, padding) < 0) {
4160 4161 4162
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4163 4164
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4165 4166 4167 4168
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4169
	}
4170

4171 4172 4173 4174
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4175

4176
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4177
					       session->tevent.pevent);
4178

4179 4180
	return size_read + padding;
}
4181

4182
int perf_event__synthesize_build_id(struct perf_tool *tool,
4183
				    struct dso *pos, u16 misc,
4184
				    perf_event__handler_t process,
4185
				    struct machine *machine)
4186
{
4187
	union perf_event ev;
4188 4189 4190 4191 4192 4193 4194 4195 4196
	size_t len;
	int err = 0;

	if (!pos->hit)
		return err;

	memset(&ev, 0, sizeof(ev));

	len = pos->long_name_len + 1;
4197
	len = PERF_ALIGN(len, NAME_ALIGN);
4198 4199 4200
	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
	ev.build_id.header.misc = misc;
4201
	ev.build_id.pid = machine->pid;
4202 4203 4204
	ev.build_id.header.size = sizeof(ev.build_id) + len;
	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);

4205
	err = process(tool, &ev, NULL, machine);
4206 4207 4208 4209

	return err;
}

4210 4211
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4212
{
4213 4214
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4215
				 session);
4216 4217
	return 0;
}