header.c 91.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "dso.h"
26
#include "evlist.h"
27
#include "evsel.h"
28
#include "header.h"
29
#include "memswap.h"
30
#include "trace-event.h"
31
#include "session.h"
32
#include "symbol.h"
33
#include "debug.h"
34
#include "cpumap.h"
35
#include "pmu.h"
36
#include "vdso.h"
37
#include "strbuf.h"
38
#include "build-id.h"
39
#include "data.h"
40 41
#include <api/fs/fs.h>
#include "asm/bug.h"
42
#include "tool.h"
43
#include "time-utils.h"
44
#include "units.h"
45
#include "util.h" // page_size, perf_exe()
J
Jiri Olsa 已提交
46
#include "cputopo.h"
47
#include "bpf-event.h"
48
#include "util/synthetic-events.h"
49

50
#include <linux/ctype.h>
51
#include <internal/lib.h>
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65

66
#define PERF_MAGIC	__perf_magic2
67

68 69
const char perf_version_string[] = PERF_VERSION;

70
struct perf_file_attr {
71
	struct perf_event_attr	attr;
72 73 74
	struct perf_file_section	ids;
};

75 76 77
struct feat_fd {
	struct perf_header	*ph;
	int			fd;
78
	void			*buf;	/* Either buf != NULL or fd >= 0 */
79 80
	ssize_t			offset;
	size_t			size;
81
	struct evsel	*events;
82 83
};

84
void perf_header__set_feat(struct perf_header *header, int feat)
85
{
86
	set_bit(feat, header->adds_features);
87 88
}

89
void perf_header__clear_feat(struct perf_header *header, int feat)
90
{
91
	clear_bit(feat, header->adds_features);
92 93
}

94
bool perf_header__has_feat(const struct perf_header *header, int feat)
95
{
96
	return test_bit(feat, header->adds_features);
97 98
}

99
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
100
{
101
	ssize_t ret = writen(ff->fd, buf, size);
102

103 104
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
132 133

	return 0;
134 135
}

136 137 138 139 140 141 142 143
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

163
/* Return: 0 if succeded, -ERR if failed. */
164 165
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
166 167
{
	static const char zero_buf[NAME_ALIGN];
168
	int err = do_write(ff, bf, count);
169 170

	if (!err)
171
		err = do_write(ff, zero_buf, count_aligned - count);
172 173 174 175

	return err;
}

176 177 178
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

179
/* Return: 0 if succeded, -ERR if failed. */
180
static int do_write_string(struct feat_fd *ff, const char *str)
181 182 183 184 185
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
186
	len = PERF_ALIGN(olen, NAME_ALIGN);
187 188

	/* write len, incl. \0 */
189
	ret = do_write(ff, &len, sizeof(len));
190 191 192
	if (ret < 0)
		return ret;

193
	return write_padded(ff, str, olen, len);
194 195
}

196
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
197
{
198
	ssize_t ret = readn(ff->fd, addr, size);
199 200 201 202 203 204

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

224
static int do_read_u32(struct feat_fd *ff, u32 *addr)
225 226 227
{
	int ret;

228
	ret = __do_read(ff, addr, sizeof(*addr));
229 230 231
	if (ret)
		return ret;

232
	if (ff->ph->needs_swap)
233 234 235 236
		*addr = bswap_32(*addr);
	return 0;
}

237
static int do_read_u64(struct feat_fd *ff, u64 *addr)
238 239 240
{
	int ret;

241
	ret = __do_read(ff, addr, sizeof(*addr));
242 243 244
	if (ret)
		return ret;

245
	if (ff->ph->needs_swap)
246 247 248 249
		*addr = bswap_64(*addr);
	return 0;
}

250
static char *do_read_string(struct feat_fd *ff)
251 252 253 254
{
	u32 len;
	char *buf;

255
	if (do_read_u32(ff, &len))
256 257 258 259 260 261
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

262
	if (!__do_read(ff, buf, len)) {
263 264 265 266 267 268 269 270 271 272 273 274
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

305
static int write_tracing_data(struct feat_fd *ff,
306
			      struct evlist *evlist)
307
{
308 309 310
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

311
	return read_tracing_data(ff->fd, &evlist->core.entries);
312 313
}

314
static int write_build_id(struct feat_fd *ff,
315
			  struct evlist *evlist __maybe_unused)
316 317 318 319
{
	struct perf_session *session;
	int err;

320
	session = container_of(ff->ph, struct perf_session, header);
321

322 323 324
	if (!perf_session__read_build_ids(session, true))
		return -1;

325 326 327
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

328
	err = perf_session__write_buildid_table(session, ff);
329 330 331 332
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
333
	perf_session__cache_build_ids(session);
334 335 336 337

	return 0;
}

338
static int write_hostname(struct feat_fd *ff,
339
			  struct evlist *evlist __maybe_unused)
340 341 342 343 344 345 346 347
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

348
	return do_write_string(ff, uts.nodename);
349 350
}

351
static int write_osrelease(struct feat_fd *ff,
352
			   struct evlist *evlist __maybe_unused)
353 354 355 356 357 358 359 360
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

361
	return do_write_string(ff, uts.release);
362 363
}

364
static int write_arch(struct feat_fd *ff,
365
		      struct evlist *evlist __maybe_unused)
366 367 368 369 370 371 372 373
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

374
	return do_write_string(ff, uts.machine);
375 376
}

377
static int write_version(struct feat_fd *ff,
378
			 struct evlist *evlist __maybe_unused)
379
{
380
	return do_write_string(ff, perf_version_string);
381 382
}

383
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
384 385 386 387
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
388
	const char *search = cpuinfo_proc;
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

405 406
	if (ret) {
		ret = -1;
407
		goto done;
408
	}
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
424
			char *q = skip_spaces(r);
425 426 427 428 429 430
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
431
	ret = do_write_string(ff, s);
432 433 434 435 436 437
done:
	free(buf);
	fclose(file);
	return ret;
}

438
static int write_cpudesc(struct feat_fd *ff,
439
		       struct evlist *evlist __maybe_unused)
440
{
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
458
	const char *cpuinfo_procs[] = CPUINFO_PROC;
459
#undef CPUINFO_PROC
460 461 462 463
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
464
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
465 466 467 468 469 470 471
		if (ret >= 0)
			return ret;
	}
	return -1;
}


472
static int write_nrcpus(struct feat_fd *ff,
473
			struct evlist *evlist __maybe_unused)
474 475 476 477 478
{
	long nr;
	u32 nrc, nra;
	int ret;

479
	nrc = cpu__max_present_cpu();
480 481 482 483 484 485 486

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

487
	ret = do_write(ff, &nrc, sizeof(nrc));
488 489 490
	if (ret < 0)
		return ret;

491
	return do_write(ff, &nra, sizeof(nra));
492 493
}

494
static int write_event_desc(struct feat_fd *ff,
495
			    struct evlist *evlist)
496
{
497
	struct evsel *evsel;
498
	u32 nre, nri, sz;
499 500
	int ret;

501
	nre = evlist->core.nr_entries;
502 503 504 505

	/*
	 * write number of events
	 */
506
	ret = do_write(ff, &nre, sizeof(nre));
507 508 509 510 511 512
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
513
	sz = (u32)sizeof(evsel->core.attr);
514
	ret = do_write(ff, &sz, sizeof(sz));
515 516 517
	if (ret < 0)
		return ret;

518
	evlist__for_each_entry(evlist, evsel) {
519
		ret = do_write(ff, &evsel->core.attr, sz);
520 521 522 523 524 525 526 527 528
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
529
		nri = evsel->ids;
530
		ret = do_write(ff, &nri, sizeof(nri));
531 532 533 534 535 536
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
537
		ret = do_write_string(ff, perf_evsel__name(evsel));
538 539 540 541 542
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
543
		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
544 545 546 547 548 549
		if (ret < 0)
			return ret;
	}
	return 0;
}

550
static int write_cmdline(struct feat_fd *ff,
551
			 struct evlist *evlist __maybe_unused)
552
{
553 554
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
555

556
	/* actual path to perf binary */
557
	buf = perf_exe(pbuf, MAXPATHLEN);
558 559

	/* account for binary path */
560
	n = perf_env.nr_cmdline + 1;
561

562
	ret = do_write(ff, &n, sizeof(n));
563 564 565
	if (ret < 0)
		return ret;

566
	ret = do_write_string(ff, buf);
567 568 569
	if (ret < 0)
		return ret;

570
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
571
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
572 573 574 575 576 577 578
		if (ret < 0)
			return ret;
	}
	return 0;
}


579
static int write_cpu_topology(struct feat_fd *ff,
580
			      struct evlist *evlist __maybe_unused)
581
{
J
Jiri Olsa 已提交
582
	struct cpu_topology *tp;
583
	u32 i;
584
	int ret, j;
585

J
Jiri Olsa 已提交
586
	tp = cpu_topology__new();
587 588 589
	if (!tp)
		return -1;

590
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
591 592 593 594
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
595
		ret = do_write_string(ff, tp->core_siblings[i]);
596 597 598
		if (ret < 0)
			goto done;
	}
599
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
600 601 602 603
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
604
		ret = do_write_string(ff, tp->thread_siblings[i]);
605 606 607
		if (ret < 0)
			break;
	}
608

609 610 611 612 613
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
614
		ret = do_write(ff, &perf_env.cpu[j].core_id,
615
			       sizeof(perf_env.cpu[j].core_id));
616 617
		if (ret < 0)
			return ret;
618
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
619
			       sizeof(perf_env.cpu[j].socket_id));
620 621 622
		if (ret < 0)
			return ret;
	}
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

644
done:
J
Jiri Olsa 已提交
645
	cpu_topology__delete(tp);
646 647 648 649 650
	return ret;
}



651
static int write_total_mem(struct feat_fd *ff,
652
			   struct evlist *evlist __maybe_unused)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
672
			ret = do_write(ff, &mem, sizeof(mem));
673 674
	} else
		ret = -1;
675 676 677 678 679
	free(buf);
	fclose(fp);
	return ret;
}

680
static int write_numa_topology(struct feat_fd *ff,
681
			       struct evlist *evlist __maybe_unused)
682
{
J
Jiri Olsa 已提交
683
	struct numa_topology *tp;
684
	int ret = -1;
J
Jiri Olsa 已提交
685
	u32 i;
686

J
Jiri Olsa 已提交
687 688 689
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
690

J
Jiri Olsa 已提交
691 692 693
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
694

J
Jiri Olsa 已提交
695 696
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
697

J
Jiri Olsa 已提交
698 699 700
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
701

J
Jiri Olsa 已提交
702 703 704
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
705

J
Jiri Olsa 已提交
706 707 708
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
709

J
Jiri Olsa 已提交
710
		ret = do_write_string(ff, n->cpus);
711
		if (ret < 0)
J
Jiri Olsa 已提交
712
			goto err;
713
	}
J
Jiri Olsa 已提交
714 715 716 717 718

	ret = 0;

err:
	numa_topology__delete(tp);
719 720 721
	return ret;
}

722 723 724 725 726 727 728 729 730 731 732 733
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

734
static int write_pmu_mappings(struct feat_fd *ff,
735
			      struct evlist *evlist __maybe_unused)
736 737
{
	struct perf_pmu *pmu = NULL;
738
	u32 pmu_num = 0;
739
	int ret;
740

741 742 743 744 745 746 747 748 749 750
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

751
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
752 753
	if (ret < 0)
		return ret;
754 755 756 757

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
758

759
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 761 762
		if (ret < 0)
			return ret;

763
		ret = do_write_string(ff, pmu->name);
764 765
		if (ret < 0)
			return ret;
766 767 768 769 770
	}

	return 0;
}

771 772 773 774 775 776 777 778 779 780 781 782
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
783
static int write_group_desc(struct feat_fd *ff,
784
			    struct evlist *evlist)
785 786
{
	u32 nr_groups = evlist->nr_groups;
787
	struct evsel *evsel;
788 789
	int ret;

790
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 792 793
	if (ret < 0)
		return ret;

794
	evlist__for_each_entry(evlist, evsel) {
795
		if (perf_evsel__is_group_leader(evsel) &&
796
		    evsel->core.nr_members > 1) {
797 798
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
799
			u32 nr_members = evsel->core.nr_members;
800

801
			ret = do_write_string(ff, name);
802 803 804
			if (ret < 0)
				return ret;

805
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
806 807 808
			if (ret < 0)
				return ret;

809
			ret = do_write(ff, &nr_members, sizeof(nr_members));
810 811 812 813 814 815 816
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

856 857
/*
 * default get_cpuid(): nothing gets recorded
858
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
859
 */
860
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
861 862 863 864
{
	return -1;
}

865
static int write_cpuid(struct feat_fd *ff,
866
		       struct evlist *evlist __maybe_unused)
867 868 869 870 871
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
872 873
	if (ret)
		return -1;
874

875
	return do_write_string(ff, buffer);
876 877
}

878
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
879
			      struct evlist *evlist __maybe_unused)
880 881 882 883
{
	return 0;
}

884
static int write_auxtrace(struct feat_fd *ff,
885
			  struct evlist *evlist __maybe_unused)
886
{
887 888 889
	struct perf_session *session;
	int err;

890 891 892
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

893
	session = container_of(ff->ph, struct perf_session, header);
894

895
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
896 897 898
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
899 900
}

901
static int write_clockid(struct feat_fd *ff,
902
			 struct evlist *evlist __maybe_unused)
903 904 905 906 907
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

908
static int write_dir_format(struct feat_fd *ff,
909
			    struct evlist *evlist __maybe_unused)
910 911 912 913 914 915 916 917 918 919 920 921 922
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

923 924
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
925
			       struct evlist *evlist __maybe_unused)
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
967
			       struct evlist *evlist __maybe_unused)
968 969 970 971 972
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

973
static int write_bpf_btf(struct feat_fd *ff,
974
			 struct evlist *evlist __maybe_unused)
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1073
	cache->type = strim(cache->type);
1074 1075 1076

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1077
		zfree(&cache->type);
1078 1079 1080 1081
		return -1;
	}

	cache->size[len] = 0;
1082
	cache->size = strim(cache->size);
1083 1084 1085

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1086 1087
		zfree(&cache->map);
		zfree(&cache->type);
1088 1089 1090 1091
		return -1;
	}

	cache->map[len] = 0;
1092
	cache->map = strim(cache->map);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

1145
#define MAX_CACHE_LVL 4
1146

1147
static int write_cache(struct feat_fd *ff,
1148
		       struct evlist *evlist __maybe_unused)
1149
{
1150 1151
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1152 1153 1154
	u32 cnt = 0, i, version = 1;
	int ret;

1155
	ret = build_caches(caches, max_caches, &cnt);
1156 1157 1158 1159 1160
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1161
	ret = do_write(ff, &version, sizeof(u32));
1162 1163 1164
	if (ret < 0)
		goto out;

1165
	ret = do_write(ff, &cnt, sizeof(u32));
1166 1167 1168 1169 1170 1171 1172
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1173
			ret = do_write(ff, &c->v, sizeof(u32));	\
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1184
			ret = do_write_string(ff, (const char *) c->v);	\
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1200
static int write_stat(struct feat_fd *ff __maybe_unused,
1201
		      struct evlist *evlist __maybe_unused)
1202 1203 1204 1205
{
	return 0;
}

1206
static int write_sample_time(struct feat_fd *ff,
1207
			     struct evlist *evlist)
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1290 1291
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1341
			      struct evlist *evlist __maybe_unused)
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1390
static int write_compressed(struct feat_fd *ff __maybe_unused,
1391
			    struct evlist *evlist __maybe_unused)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1414
static void print_hostname(struct feat_fd *ff, FILE *fp)
1415
{
1416
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1417 1418
}

1419
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1420
{
1421
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1422 1423
}

1424
static void print_arch(struct feat_fd *ff, FILE *fp)
1425
{
1426
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1427 1428
}

1429
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1430
{
1431
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1432 1433
}

1434
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1435
{
1436 1437
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1438 1439
}

1440
static void print_version(struct feat_fd *ff, FILE *fp)
1441
{
1442
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1443 1444
}

1445
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1446
{
1447
	int nr, i;
1448

1449
	nr = ff->ph->env.nr_cmdline;
1450 1451 1452

	fprintf(fp, "# cmdline : ");

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1471 1472 1473
	fputc('\n', fp);
}

1474
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1475
{
1476 1477
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1478
	int nr, i;
1479 1480
	char *str;

1481 1482
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1483 1484

	for (i = 0; i < nr; i++) {
1485
		fprintf(fp, "# sibling sockets : %s\n", str);
1486
		str += strlen(str) + 1;
1487 1488
	}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1499 1500
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1501 1502 1503

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1504
		str += strlen(str) + 1;
1505
	}
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1529 1530
}

1531 1532 1533 1534 1535 1536
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1564 1565 1566

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1567 1568 1569 1570 1571
	}

	up_read(&env->bpf_progs.lock);
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1594
static void free_event_desc(struct evsel *events)
1595
{
1596
	struct evsel *evsel;
1597 1598 1599 1600

	if (!events)
		return;

1601
	for (evsel = events; evsel->core.attr.size; evsel++) {
1602 1603
		zfree(&evsel->name);
		zfree(&evsel->id);
1604 1605 1606 1607 1608
	}

	free(events);
}

1609
static struct evsel *read_event_desc(struct feat_fd *ff)
1610
{
1611
	struct evsel *evsel, *events = NULL;
1612
	u64 *id;
1613
	void *buf = NULL;
1614 1615
	u32 nre, sz, nr, i, j;
	size_t msz;
1616 1617

	/* number of events */
1618
	if (do_read_u32(ff, &nre))
1619 1620
		goto error;

1621
	if (do_read_u32(ff, &sz))
1622 1623
		goto error;

1624
	/* buffer to hold on file attr struct */
1625 1626 1627 1628
	buf = malloc(sz);
	if (!buf)
		goto error;

1629
	/* the last event terminates with evsel->core.attr.size == 0: */
1630 1631 1632 1633
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1634
	msz = sizeof(evsel->core.attr);
1635
	if (sz < msz)
1636 1637
		msz = sz;

1638 1639
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1640

1641 1642 1643 1644
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1645
		if (__do_read(ff, buf, sz))
1646 1647
			goto error;

1648
		if (ff->ph->needs_swap)
1649 1650
			perf_event__attr_swap(buf);

1651
		memcpy(&evsel->core.attr, buf, msz);
1652

1653
		if (do_read_u32(ff, &nr))
1654 1655
			goto error;

1656
		if (ff->ph->needs_swap)
1657
			evsel->needs_swap = true;
1658

1659
		evsel->name = do_read_string(ff);
1660 1661
		if (!evsel->name)
			goto error;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
		evsel->ids = nr;
		evsel->id = id;

		for (j = 0 ; j < nr; j++) {
1673
			if (do_read_u64(ff, id))
1674 1675 1676 1677 1678
				goto error;
			id++;
		}
	}
out:
1679
	free(buf);
1680 1681
	return events;
error:
1682
	free_event_desc(events);
1683 1684 1685 1686
	events = NULL;
	goto out;
}

1687
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1688
				void *priv __maybe_unused)
1689 1690 1691 1692
{
	return fprintf(fp, ", %s = %s", name, val);
}

1693
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1694
{
1695
	struct evsel *evsel, *events;
1696 1697 1698
	u32 j;
	u64 *id;

1699 1700 1701 1702 1703
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1704 1705 1706 1707 1708
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1709
	for (evsel = events; evsel->core.attr.size; evsel++) {
1710
		fprintf(fp, "# event : name = %s, ", evsel->name);
1711

1712
		if (evsel->ids) {
1713
			fprintf(fp, ", id = {");
1714 1715 1716 1717 1718
			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1719
			fprintf(fp, " }");
1720
		}
1721

1722
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1723

1724 1725
		fputc('\n', fp);
	}
1726 1727

	free_event_desc(events);
1728
	ff->events = NULL;
1729 1730
}

1731
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1732
{
1733
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1734 1735
}

1736
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1737
{
1738 1739
	int i;
	struct numa_node *n;
1740

1741 1742
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1743 1744 1745

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1746
			n->node, n->mem_total, n->mem_free);
1747

1748 1749
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1750 1751 1752
	}
}

1753
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1754
{
1755
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1756 1757
}

1758
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1759 1760 1761 1762
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1763
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1764 1765 1766 1767
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1768
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1769 1770 1771 1772
{
	fprintf(fp, "# contains stat data\n");
}

1773
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1774 1775 1776 1777
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1778
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1779
		fprintf(fp, "#  ");
1780
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1781 1782 1783
	}
}

1784 1785 1786 1787 1788 1789 1790
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1791
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1792 1793
{
	const char *delimiter = "# pmu mappings: ";
1794
	char *str, *tmp;
1795 1796 1797
	u32 pmu_num;
	u32 type;

1798
	pmu_num = ff->ph->env.nr_pmu_mappings;
1799 1800 1801 1802 1803
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1804
	str = ff->ph->env.pmu_mappings;
1805

1806
	while (pmu_num) {
1807 1808 1809 1810 1811 1812
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1813

1814
		delimiter = ", ";
1815 1816
		str += strlen(str) + 1;
		pmu_num--;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1827
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1828 1829
{
	struct perf_session *session;
1830
	struct evsel *evsel;
1831 1832
	u32 nr = 0;

1833
	session = container_of(ff->ph, struct perf_session, header);
1834

1835
	evlist__for_each_entry(session->evlist, evsel) {
1836
		if (perf_evsel__is_group_leader(evsel) &&
1837
		    evsel->core.nr_members > 1) {
1838 1839 1840
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

1841
			nr = evsel->core.nr_members - 1;
1842 1843 1844 1845 1846 1847 1848 1849 1850
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1902
static int __event_process_build_id(struct perf_record_header_build_id *bev,
1903 1904 1905 1906 1907
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1908
	u16 cpumode;
1909 1910 1911 1912 1913 1914 1915
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1916
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1917

1918
	switch (cpumode) {
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1933
	dso = machine__findnew_dso(machine, filename);
1934
	if (dso != NULL) {
1935
		char sbuild_id[SBUILD_ID_SIZE];
1936 1937 1938

		dso__set_build_id(dso, &bev->build_id);

1939 1940 1941 1942
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1943
				dso__set_module_info(dso, &m, machine);
1944 1945 1946 1947 1948
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1949 1950 1951 1952 1953

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1954
		dso__put(dso);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1968
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1969 1970
		char			   filename[0];
	} old_bev;
1971
	struct perf_record_header_build_id bev;
1972 1973 1974 1975 1976 1977
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1978
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1979 1980 1981 1982 1983 1984
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1985
		if (readn(input, filename, len) != len)
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2012
	struct perf_record_header_build_id bev;
2013 2014 2015 2016 2017 2018 2019
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2020
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2021 2022 2023 2024 2025 2026
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2027
		if (readn(input, filename, len) != len)
2028 2029 2030 2031 2032 2033
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2034
		 * Added a field to struct perf_record_header_build_id that broke the file
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2057 2058
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2059
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2060
{\
2061
	ff->ph->env.__feat_env = do_read_string(ff); \
2062
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2063 2064 2065 2066 2067 2068 2069 2070 2071
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2072
static int process_tracing_data(struct feat_fd *ff, void *data)
2073
{
2074 2075
	ssize_t ret = trace_report(ff->fd, data, false);

2076
	return ret < 0 ? -1 : 0;
2077 2078
}

2079
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2080
{
2081
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2082 2083 2084 2085
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2086
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2087
{
2088 2089
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2090

2091
	ret = do_read_u32(ff, &nr_cpus_avail);
2092 2093
	if (ret)
		return ret;
2094

2095
	ret = do_read_u32(ff, &nr_cpus_online);
2096 2097
	if (ret)
		return ret;
2098 2099
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2100 2101 2102
	return 0;
}

2103
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2104
{
2105 2106
	u64 total_mem;
	int ret;
2107

2108
	ret = do_read_u64(ff, &total_mem);
2109
	if (ret)
2110
		return -1;
2111
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2112 2113 2114
	return 0;
}

2115
static struct evsel *
2116
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2117
{
2118
	struct evsel *evsel;
2119

2120
	evlist__for_each_entry(evlist, evsel) {
2121 2122 2123 2124 2125 2126 2127 2128
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2129
perf_evlist__set_event_name(struct evlist *evlist,
2130
			    struct evsel *event)
2131
{
2132
	struct evsel *evsel;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2148
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2149
{
2150
	struct perf_session *session;
2151
	struct evsel *evsel, *events = read_event_desc(ff);
2152 2153 2154 2155

	if (!events)
		return 0;

2156
	session = container_of(ff->ph, struct perf_session, header);
2157

2158
	if (session->data->is_pipe) {
2159 2160 2161 2162 2163
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2164
	for (evsel = events; evsel->core.attr.size; evsel++)
2165 2166
		perf_evlist__set_event_name(session->evlist, evsel);

2167
	if (!session->data->is_pipe)
2168
		free_event_desc(events);
2169 2170 2171 2172

	return 0;
}

2173
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2174
{
2175 2176
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2177

2178
	if (do_read_u32(ff, &nr))
2179 2180
		return -1;

2181
	ff->ph->env.nr_cmdline = nr;
2182

2183
	cmdline = zalloc(ff->size + nr + 1);
2184 2185 2186 2187 2188 2189
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2190 2191

	for (i = 0; i < nr; i++) {
2192
		str = do_read_string(ff);
2193 2194 2195
		if (!str)
			goto error;

2196 2197 2198
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2199 2200
		free(str);
	}
2201 2202
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2203 2204 2205
	return 0;

error:
2206 2207
	free(argv);
	free(cmdline);
2208 2209 2210
	return -1;
}

2211
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2212 2213 2214 2215
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2216
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2217
	u64 size = 0;
2218
	struct perf_header *ph = ff->ph;
2219
	bool do_core_id_test = true;
2220 2221 2222 2223

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2224

2225
	if (do_read_u32(ff, &nr))
2226
		goto free_cpu;
2227 2228

	ph->env.nr_sibling_cores = nr;
2229
	size += sizeof(u32);
2230 2231
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2232 2233

	for (i = 0; i < nr; i++) {
2234
		str = do_read_string(ff);
2235 2236 2237 2238
		if (!str)
			goto error;

		/* include a NULL character at the end */
2239 2240
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2241
		size += string_size(str);
2242 2243 2244 2245
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2246
	if (do_read_u32(ff, &nr))
2247 2248 2249
		return -1;

	ph->env.nr_sibling_threads = nr;
2250
	size += sizeof(u32);
2251 2252

	for (i = 0; i < nr; i++) {
2253
		str = do_read_string(ff);
2254 2255 2256 2257
		if (!str)
			goto error;

		/* include a NULL character at the end */
2258 2259
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2260
		size += string_size(str);
2261 2262 2263
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2264 2265 2266 2267 2268

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2269
	if (ff->size <= size) {
2270 2271 2272 2273
		zfree(&ph->env.cpu);
		return 0;
	}

2274 2275 2276
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2277
	 * AArch64 is the same.
2278
	 */
2279 2280
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2281 2282
		do_core_id_test = false;

2283
	for (i = 0; i < (u32)cpu_nr; i++) {
2284
		if (do_read_u32(ff, &nr))
2285 2286 2287
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2288
		size += sizeof(u32);
2289

2290
		if (do_read_u32(ff, &nr))
2291 2292
			goto free_cpu;

2293
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2294 2295 2296 2297 2298 2299
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2334 2335
	}

2336 2337 2338 2339
	return 0;

error:
	strbuf_release(&sb);
2340 2341
free_cpu:
	zfree(&ph->env.cpu);
2342 2343 2344
	return -1;
}

2345
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2346
{
2347 2348
	struct numa_node *nodes, *n;
	u32 nr, i;
2349 2350 2351
	char *str;

	/* nr nodes */
2352
	if (do_read_u32(ff, &nr))
2353
		return -1;
2354

2355 2356 2357
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2358 2359

	for (i = 0; i < nr; i++) {
2360 2361
		n = &nodes[i];

2362
		/* node number */
2363
		if (do_read_u32(ff, &n->node))
2364 2365
			goto error;

2366
		if (do_read_u64(ff, &n->mem_total))
2367 2368
			goto error;

2369
		if (do_read_u64(ff, &n->mem_free))
2370 2371
			goto error;

2372
		str = do_read_string(ff);
2373 2374 2375
		if (!str)
			goto error;

2376
		n->map = perf_cpu_map__new(str);
2377
		if (!n->map)
2378
			goto error;
2379

2380 2381
		free(str);
	}
2382 2383
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2384 2385 2386
	return 0;

error:
2387
	free(nodes);
2388 2389 2390
	return -1;
}

2391
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2392 2393 2394 2395 2396 2397
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2398
	if (do_read_u32(ff, &pmu_num))
2399 2400 2401 2402 2403 2404 2405
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2406
	ff->ph->env.nr_pmu_mappings = pmu_num;
2407 2408
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2409 2410

	while (pmu_num) {
2411
		if (do_read_u32(ff, &type))
2412 2413
			goto error;

2414
		name = do_read_string(ff);
2415 2416 2417
		if (!name)
			goto error;

2418 2419
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2420
		/* include a NULL character at the end */
2421 2422
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2423

2424
		if (!strcmp(name, "msr"))
2425
			ff->ph->env.msr_pmu_type = type;
2426

2427 2428 2429
		free(name);
		pmu_num--;
	}
2430
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2431 2432 2433 2434 2435 2436 2437
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2438
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2439 2440 2441 2442
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2443
	struct evsel *evsel, *leader = NULL;
2444 2445 2446 2447 2448 2449
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2450
	if (do_read_u32(ff, &nr_groups))
2451 2452
		return -1;

2453
	ff->ph->env.nr_groups = nr_groups;
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2464
		desc[i].name = do_read_string(ff);
2465 2466 2467
		if (!desc[i].name)
			goto out_free;

2468
		if (do_read_u32(ff, &desc[i].leader_idx))
2469 2470
			goto out_free;

2471
		if (do_read_u32(ff, &desc[i].nr_members))
2472 2473 2474 2475 2476 2477
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2478
	session = container_of(ff->ph, struct perf_session, header);
2479 2480 2481
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2482
	evlist__for_each_entry(session->evlist, evsel) {
2483 2484 2485
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2486
			if (strcmp(desc[i].name, "{anon_group}")) {
2487
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2488 2489
				desc[i].name = NULL;
			}
2490
			evsel->core.nr_members = desc[i].nr_members;
2491 2492 2493 2494 2495 2496 2497

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2498
			nr = evsel->core.nr_members - 1;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2515
	for (i = 0; i < nr_groups; i++)
2516
		zfree(&desc[i].name);
2517 2518 2519 2520 2521
	free(desc);

	return ret;
}

2522
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2523 2524 2525 2526
{
	struct perf_session *session;
	int err;

2527
	session = container_of(ff->ph, struct perf_session, header);
2528

2529
	err = auxtrace_index__process(ff->fd, ff->size, session,
2530
				      ff->ph->needs_swap);
2531 2532 2533 2534 2535
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2536
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2537 2538 2539 2540
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2541
	if (do_read_u32(ff, &version))
2542 2543 2544 2545 2546
		return -1;

	if (version != 1)
		return -1;

2547
	if (do_read_u32(ff, &cnt))
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2558
			if (do_read_u32(ff, &c.v))\
2559 2560 2561 2562 2563 2564 2565 2566
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2567
		#define _R(v)					\
2568
			c.v = do_read_string(ff);		\
2569
			if (!c.v)				\
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2580 2581
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2582 2583 2584 2585 2586 2587
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2661 2662 2663 2664 2665 2666 2667 2668 2669
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2746
	up_write(&env->bpf_progs.lock);
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2761 2762 2763
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2764
	struct btf_node *node = NULL;
2765
	u32 count, i;
2766
	int err = -1;
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2782
			goto out;
2783
		if (do_read_u32(ff, &data_size))
2784
			goto out;
2785 2786 2787

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2788
			goto out;
2789 2790 2791 2792

		node->id = id;
		node->data_size = data_size;

2793 2794
		if (__do_read(ff, node->data, data_size))
			goto out;
2795 2796

		perf_env__insert_btf(env, node);
2797
		node = NULL;
2798 2799
	}

2800 2801
	err = 0;
out:
2802
	up_write(&env->bpf_progs.lock);
2803 2804
	free(node);
	return err;
2805 2806
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2828
struct feature_ops {
2829
	int (*write)(struct feat_fd *ff, struct evlist *evlist);
2830
	void (*print)(struct feat_fd *ff, FILE *fp);
2831
	int (*process)(struct feat_fd *ff, void *data);
2832 2833
	const char *name;
	bool full_only;
2834
	bool synthesize;
2835 2836
};

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2855 2856

/* feature_ops not implemented: */
2857 2858
#define print_tracing_data	NULL
#define print_build_id		NULL
2859

2860 2861 2862 2863
#define process_branch_stack	NULL
#define process_stat		NULL


2864
static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2881
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2882 2883 2884
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2885
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2886
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2887
	FEAT_OPR(CLOCKID,	clockid,	false),
2888
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2889 2890
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2891
	FEAT_OPR(COMPRESSED,	compressed,	false),
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2904
	struct feat_fd ff;
2905 2906 2907 2908 2909 2910

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2911
	if (feat >= HEADER_LAST_FEATURE) {
2912
		pr_warning("unknown feature %d\n", feat);
2913
		return 0;
2914 2915 2916 2917
	}
	if (!feat_ops[feat].print)
		return 0;

2918 2919 2920 2921 2922
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2923
	if (!feat_ops[feat].full_only || hd->full)
2924
		feat_ops[feat].print(&ff, hd->fp);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2936
	int fd = perf_data__fd(session->data);
2937
	struct stat st;
2938
	time_t stctime;
J
Jiri Olsa 已提交
2939
	int ret, bit;
2940

2941 2942 2943
	hd.fp = fp;
	hd.full = full;

2944 2945 2946 2947
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2948 2949
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2950 2951 2952 2953 2954

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2955

2956 2957
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2958

2959
	if (session->data->is_pipe)
2960 2961
		return 0;

J
Jiri Olsa 已提交
2962 2963 2964 2965 2966 2967 2968
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2969 2970 2971
	return 0;
}

2972
static int do_write_feat(struct feat_fd *ff, int type,
2973
			 struct perf_file_section **p,
2974
			 struct evlist *evlist)
2975 2976 2977 2978
{
	int err;
	int ret = 0;

2979
	if (perf_header__has_feat(ff->ph, type)) {
2980 2981
		if (!feat_ops[type].write)
			return -1;
2982

2983 2984 2985
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2986
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2987

2988
		err = feat_ops[type].write(ff, evlist);
2989
		if (err < 0) {
2990
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2991 2992

			/* undo anything written */
2993
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2994 2995 2996

			return -1;
		}
2997
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2998 2999 3000 3001 3002
		(*p)++;
	}
	return ret;
}

3003
static int perf_header__adds_write(struct perf_header *header,
3004
				   struct evlist *evlist, int fd)
3005
{
3006
	int nr_sections;
3007
	struct feat_fd ff;
3008
	struct perf_file_section *feat_sec, *p;
3009 3010
	int sec_size;
	u64 sec_start;
3011
	int feat;
3012
	int err;
3013

3014 3015 3016 3017 3018
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3019
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3020
	if (!nr_sections)
3021
		return 0;
3022

3023
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3024 3025
	if (feat_sec == NULL)
		return -ENOMEM;
3026 3027 3028

	sec_size = sizeof(*feat_sec) * nr_sections;

3029
	sec_start = header->feat_offset;
3030
	lseek(fd, sec_start + sec_size, SEEK_SET);
3031

3032
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3033
		if (do_write_feat(&ff, feat, &p, evlist))
3034 3035
			perf_header__clear_feat(header, feat);
	}
3036

3037
	lseek(fd, sec_start, SEEK_SET);
3038 3039
	/*
	 * may write more than needed due to dropped feature, but
3040
	 * this is okay, reader will skip the missing entries
3041
	 */
3042
	err = do_write(&ff, feat_sec, sec_size);
3043 3044
	if (err < 0)
		pr_debug("failed to write feature section\n");
3045
	free(feat_sec);
3046
	return err;
3047
}
3048

3049 3050 3051
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3052
	struct feat_fd ff;
3053 3054
	int err;

3055 3056
	ff = (struct feat_fd){ .fd = fd };

3057 3058 3059 3060 3061
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3062
	err = do_write(&ff, &f_header, sizeof(f_header));
3063 3064 3065 3066 3067 3068 3069 3070
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3071
int perf_session__write_header(struct perf_session *session,
3072
			       struct evlist *evlist,
3073
			       int fd, bool at_exit)
3074 3075 3076
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3077
	struct perf_header *header = &session->header;
3078
	struct evsel *evsel;
3079
	struct feat_fd ff;
3080
	u64 attr_offset;
3081
	int err;
3082

3083
	ff = (struct feat_fd){ .fd = fd};
3084 3085
	lseek(fd, sizeof(f_header), SEEK_SET);

3086
	evlist__for_each_entry(session->evlist, evsel) {
3087
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3088
		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3089 3090 3091 3092
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3093 3094
	}

3095
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3096

3097
	evlist__for_each_entry(evlist, evsel) {
3098
		f_attr = (struct perf_file_attr){
3099
			.attr = evsel->core.attr,
3100
			.ids  = {
3101 3102
				.offset = evsel->id_offset,
				.size   = evsel->ids * sizeof(u64),
3103 3104
			}
		};
3105
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3106 3107 3108 3109
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3110 3111
	}

3112 3113
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3114
	header->feat_offset = header->data_offset + header->data_size;
3115

3116
	if (at_exit) {
3117
		err = perf_header__adds_write(header, evlist, fd);
3118 3119 3120
		if (err < 0)
			return err;
	}
3121

3122 3123 3124 3125 3126
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3127
			.offset = attr_offset,
3128
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3129 3130
		},
		.data = {
3131 3132
			.offset = header->data_offset,
			.size	= header->data_size,
3133
		},
3134
		/* event_types is ignored, store zeros */
3135 3136
	};

3137
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3138

3139
	lseek(fd, 0, SEEK_SET);
3140
	err = do_write(&ff, &f_header, sizeof(f_header));
3141 3142 3143 3144
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3145
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3146

3147
	return 0;
3148 3149
}

3150
static int perf_header__getbuffer64(struct perf_header *header,
3151 3152
				    int fd, void *buf, size_t size)
{
3153
	if (readn(fd, buf, size) <= 0)
3154 3155
		return -1;

3156
	if (header->needs_swap)
3157 3158 3159 3160 3161
		mem_bswap_64(buf, size);

	return 0;
}

3162
int perf_header__process_sections(struct perf_header *header, int fd,
3163
				  void *data,
3164
				  int (*process)(struct perf_file_section *section,
3165 3166
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3167
{
3168
	struct perf_file_section *feat_sec, *sec;
3169 3170
	int nr_sections;
	int sec_size;
3171 3172
	int feat;
	int err;
3173

3174
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3175
	if (!nr_sections)
3176
		return 0;
3177

3178
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3179
	if (!feat_sec)
3180
		return -1;
3181 3182 3183

	sec_size = sizeof(*feat_sec) * nr_sections;

3184
	lseek(fd, header->feat_offset, SEEK_SET);
3185

3186 3187
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3188
		goto out_free;
3189

3190 3191 3192 3193
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3194
	}
3195
	err = 0;
3196
out_free:
3197 3198
	free(feat_sec);
	return err;
3199
}
3200

3201 3202 3203
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3204
	[2] = PERF_ATTR_SIZE_VER2,
3205
	[3] = PERF_ATTR_SIZE_VER3,
3206
	[4] = PERF_ATTR_SIZE_VER4,
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3217
{
3218 3219
	uint64_t ref_size, attr_size;
	int i;
3220

3221 3222 3223 3224 3225 3226 3227
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3239

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3264 3265 3266

			ph->needs_swap = true;
		}
3267
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3268 3269
		return 0;
	}
3270 3271 3272
	return -1;
}

F
Feng Tang 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3283 3284 3285 3286 3287 3288 3289 3290
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3291
		ph->version = PERF_HEADER_VERSION_1;
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3303
	ph->version = PERF_HEADER_VERSION_2;
3304

3305 3306
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3307 3308
		return 0;

3309 3310
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3311 3312 3313 3314 3315 3316 3317
		return -1;

	ph->needs_swap = true;

	return 0;
}

3318
int perf_file_header__read(struct perf_file_header *header,
3319 3320
			   struct perf_header *ph, int fd)
{
3321
	ssize_t ret;
3322

3323 3324
	lseek(fd, 0, SEEK_SET);

3325 3326
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3327 3328
		return -1;

3329 3330 3331
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3332
		return -1;
3333
	}
3334

3335
	if (ph->needs_swap) {
3336
		mem_bswap_64(header, offsetof(struct perf_file_header,
3337
			     adds_features));
3338 3339
	}

3340
	if (header->size != sizeof(*header)) {
3341
		/* Support the previous format */
3342 3343
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3344 3345
		else
			return -1;
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3362 3363
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3364 3365

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3366 3367 3368 3369 3370 3371 3372
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3373 3374 3375 3376 3377 3378
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3379
	}
3380

3381
	memcpy(&ph->adds_features, &header->adds_features,
3382
	       sizeof(ph->adds_features));
3383

3384 3385
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3386
	ph->feat_offset  = header->data.offset + header->data.size;
3387 3388 3389
	return 0;
}

3390
static int perf_file_section__process(struct perf_file_section *section,
3391
				      struct perf_header *ph,
3392
				      int feat, int fd, void *data)
3393
{
3394
	struct feat_fd fdd = {
3395 3396
		.fd	= fd,
		.ph	= ph,
3397 3398
		.size	= section->size,
		.offset	= section->offset,
3399 3400
	};

3401
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3402
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3403
			  "%d, continuing...\n", section->offset, feat);
3404 3405 3406
		return 0;
	}

3407 3408 3409 3410 3411
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3412 3413
	if (!feat_ops[feat].process)
		return 0;
3414

3415
	return feat_ops[feat].process(&fdd, data);
3416
}
3417

3418
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3419 3420
				       struct perf_header *ph, int fd,
				       bool repipe)
3421
{
3422 3423 3424 3425
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3426
	ssize_t ret;
3427 3428 3429 3430 3431

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3432 3433
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3434
		return -1;
3435 3436 3437 3438
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3439

3440
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3441 3442
		return -1;

3443 3444 3445
	return 0;
}

3446
static int perf_header__read_pipe(struct perf_session *session)
3447
{
3448
	struct perf_header *header = &session->header;
3449 3450
	struct perf_pipe_file_header f_header;

3451
	if (perf_file_header__read_pipe(&f_header, header,
3452
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3453
					session->repipe) < 0) {
3454 3455 3456 3457 3458 3459 3460
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3461 3462 3463 3464 3465 3466
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3467
	ssize_t ret;
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3481

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3507
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3508
						struct tep_handle *pevent)
3509
{
3510
	struct tep_event *event;
3511 3512
	char bf[128];

3513 3514 3515 3516
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3517 3518 3519 3520 3521
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3522
	event = tep_find_event(pevent, evsel->core.attr.config);
3523
	if (event == NULL) {
3524
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3525
		return -1;
3526
	}
3527

3528 3529 3530 3531 3532 3533
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3534

3535
	evsel->tp_format = event;
3536 3537 3538
	return 0;
}

3539
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3540
						  struct tep_handle *pevent)
3541
{
3542
	struct evsel *pos;
3543

3544
	evlist__for_each_entry(evlist, pos) {
3545
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3546
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3547 3548 3549 3550 3551 3552
			return -1;
	}

	return 0;
}

3553
int perf_session__read_header(struct perf_session *session)
3554
{
3555
	struct perf_data *data = session->data;
3556
	struct perf_header *header = &session->header;
3557
	struct perf_file_header	f_header;
3558 3559 3560
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3561
	int fd = perf_data__fd(data);
3562

3563
	session->evlist = evlist__new();
3564 3565 3566
	if (session->evlist == NULL)
		return -ENOMEM;

3567
	session->evlist->env = &header->env;
3568
	session->machines.host.env = &header->env;
3569
	if (perf_data__is_pipe(data))
3570
		return perf_header__read_pipe(session);
3571

3572
	if (perf_file_header__read(&f_header, header, fd) < 0)
3573
		return -EINVAL;
3574

3575 3576 3577 3578 3579 3580 3581 3582 3583
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3584
			   data->file.path);
3585 3586
	}

3587 3588 3589 3590 3591 3592 3593
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3594
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3595 3596 3597
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3598
		struct evsel *evsel;
3599
		off_t tmp;
3600

3601
		if (read_attr(fd, header, &f_attr) < 0)
3602
			goto out_errno;
3603

3604 3605 3606
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3607
			perf_event__attr_swap(&f_attr.attr);
3608
		}
3609

3610
		tmp = lseek(fd, 0, SEEK_CUR);
3611
		evsel = evsel__new(&f_attr.attr);
3612

3613 3614
		if (evsel == NULL)
			goto out_delete_evlist;
3615 3616

		evsel->needs_swap = header->needs_swap;
3617 3618
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3619
		 * entry gets purged too at evlist__delete().
3620
		 */
3621
		evlist__add(session->evlist, evsel);
3622 3623

		nr_ids = f_attr.ids.size / sizeof(u64);
3624 3625 3626 3627 3628 3629 3630 3631
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
			goto out_delete_evlist;

3632 3633 3634
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3635
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3636
				goto out_errno;
3637

3638
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3639
		}
3640

3641 3642 3643
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3644
	perf_header__process_sections(header, fd, &session->tevent,
3645
				      perf_file_section__process);
3646

3647
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3648
						   session->tevent.pevent))
3649 3650
		goto out_delete_evlist;

3651
	return 0;
3652 3653
out_errno:
	return -errno;
3654 3655

out_delete_evlist:
3656
	evlist__delete(session->evlist);
3657 3658
	session->evlist = NULL;
	return -ENOMEM;
3659
}
3660

3661
int perf_event__synthesize_attr(struct perf_tool *tool,
3662
				struct perf_event_attr *attr, u32 ids, u64 *id,
3663
				perf_event__handler_t process)
3664
{
3665
	union perf_event *ev;
3666 3667 3668 3669
	size_t size;
	int err;

	size = sizeof(struct perf_event_attr);
3670
	size = PERF_ALIGN(size, sizeof(u64));
3671 3672 3673
	size += sizeof(struct perf_event_header);
	size += ids * sizeof(u64);

3674
	ev = zalloc(size);
3675

3676 3677 3678
	if (ev == NULL)
		return -ENOMEM;

3679 3680 3681 3682
	ev->attr.attr = *attr;
	memcpy(ev->attr.id, id, ids * sizeof(u64));

	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3683
	ev->attr.header.size = (u16)size;
3684

3685 3686 3687 3688
	if (ev->attr.header.size == size)
		err = process(tool, ev, NULL, NULL);
	else
		err = -E2BIG;
3689 3690 3691 3692 3693 3694

	free(ev);

	return err;
}

3695 3696
int perf_event__synthesize_features(struct perf_tool *tool,
				    struct perf_session *session,
3697
				    struct evlist *evlist,
3698 3699 3700 3701
				    perf_event__handler_t process)
{
	struct perf_header *header = &session->header;
	struct feat_fd ff;
3702
	struct perf_record_header_feature *fe;
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
	size_t sz, sz_hdr;
	int feat, ret;

	sz_hdr = sizeof(fe->header);
	sz = sizeof(union perf_event);
	/* get a nice alignment */
	sz = PERF_ALIGN(sz, page_size);

	memset(&ff, 0, sizeof(ff));

	ff.buf = malloc(sz);
	if (!ff.buf)
		return -ENOMEM;

	ff.size = sz - sz_hdr;
3718
	ff.ph = &session->header;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746

	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
		if (!feat_ops[feat].synthesize) {
			pr_debug("No record header feature for header :%d\n", feat);
			continue;
		}

		ff.offset = sizeof(*fe);

		ret = feat_ops[feat].write(&ff, evlist);
		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
			pr_debug("Error writing feature\n");
			continue;
		}
		/* ff.buf may have changed due to realloc in do_write() */
		fe = ff.buf;
		memset(fe, 0, sizeof(*fe));

		fe->feat_id = feat;
		fe->header.type = PERF_RECORD_HEADER_FEATURE;
		fe->header.size = ff.offset;

		ret = process(tool, ff.buf, NULL, NULL);
		if (ret) {
			free(ff.buf);
			return ret;
		}
	}
3747 3748 3749 3750 3751 3752 3753 3754 3755

	/* Send HEADER_LAST_FEATURE mark. */
	fe = ff.buf;
	fe->feat_id     = HEADER_LAST_FEATURE;
	fe->header.type = PERF_RECORD_HEADER_FEATURE;
	fe->header.size = sizeof(*fe);

	ret = process(tool, ff.buf, NULL, NULL);

3756
	free(ff.buf);
3757
	return ret;
3758 3759
}

3760 3761
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3762
{
3763
	struct perf_tool *tool = session->tool;
3764
	struct feat_fd ff = { .fd = 0 };
3765
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3766 3767 3768 3769 3770 3771 3772
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3773
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3774 3775 3776 3777 3778 3779 3780 3781
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3782
	ff.size = event->header.size - sizeof(*fe);
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3802
static struct perf_record_event_update *
3803 3804
event_update_event__new(size_t size, u64 type, u64 id)
{
3805
	struct perf_record_event_update *ev;
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

	size += sizeof(*ev);
	size  = PERF_ALIGN(size, sizeof(u64));

	ev = zalloc(size);
	if (ev) {
		ev->header.type = PERF_RECORD_EVENT_UPDATE;
		ev->header.size = (u16)size;
		ev->type = type;
		ev->id = id;
	}
	return ev;
}

int
perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3822
					 struct evsel *evsel,
3823 3824
					 perf_event__handler_t process)
{
3825
	struct perf_record_event_update *ev;
3826 3827 3828 3829 3830 3831 3832
	size_t size = strlen(evsel->unit);
	int err;

	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3833
	strlcpy(ev->data, evsel->unit, size + 1);
3834 3835 3836 3837 3838
	err = process(tool, (union perf_event *)ev, NULL, NULL);
	free(ev);
	return err;
}

3839 3840
int
perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3841
					  struct evsel *evsel,
3842 3843
					  perf_event__handler_t process)
{
3844 3845
	struct perf_record_event_update *ev;
	struct perf_record_event_update_scale *ev_data;
3846 3847 3848 3849 3850 3851
	int err;

	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3852
	ev_data = (struct perf_record_event_update_scale *)ev->data;
3853 3854 3855 3856 3857 3858
	ev_data->scale = evsel->scale;
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3859 3860
int
perf_event__synthesize_event_update_name(struct perf_tool *tool,
3861
					 struct evsel *evsel,
3862 3863
					 perf_event__handler_t process)
{
3864
	struct perf_record_event_update *ev;
3865 3866 3867 3868 3869 3870 3871
	size_t len = strlen(evsel->name);
	int err;

	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3872
	strlcpy(ev->data, evsel->name, len + 1);
3873 3874 3875 3876
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}
3877

3878 3879
int
perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3880
					struct evsel *evsel,
3881 3882
					perf_event__handler_t process)
{
3883 3884
	size_t size = sizeof(struct perf_record_event_update);
	struct perf_record_event_update *ev;
3885 3886 3887
	int max, err;
	u16 type;

3888
	if (!evsel->core.own_cpus)
3889 3890
		return 0;

3891
	ev = cpu_map_data__alloc(evsel->core.own_cpus, &size, &type, &max);
3892 3893 3894 3895 3896 3897 3898 3899
	if (!ev)
		return -ENOMEM;

	ev->header.type = PERF_RECORD_EVENT_UPDATE;
	ev->header.size = (u16)size;
	ev->type = PERF_EVENT_UPDATE__CPUS;
	ev->id   = evsel->id[0];

3900
	cpu_map_data__synthesize((struct perf_record_cpu_map_data *)ev->data,
3901
				 evsel->core.own_cpus,
3902 3903 3904 3905 3906 3907 3908
				 type, max);

	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3909 3910
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3911 3912 3913
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3914
	struct perf_cpu_map *map;
3915 3916
	size_t ret;

3917
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3918 3919 3920

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3921
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3922 3923 3924 3925 3926 3927 3928 3929 3930
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3931
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3947

3948
int perf_event__synthesize_attrs(struct perf_tool *tool,
3949
				 struct evlist *evlist,
3950
				 perf_event__handler_t process)
3951
{
3952
	struct evsel *evsel;
3953
	int err = 0;
3954

3955
	evlist__for_each_entry(evlist, evsel) {
3956
		err = perf_event__synthesize_attr(tool, &evsel->core.attr, evsel->ids,
3957
						  evsel->id, process);
3958 3959 3960 3961 3962 3963 3964 3965 3966
		if (err) {
			pr_debug("failed to create perf header attribute\n");
			return err;
		}
	}

	return err;
}

3967
static bool has_unit(struct evsel *counter)
3968 3969 3970 3971
{
	return counter->unit && *counter->unit;
}

3972
static bool has_scale(struct evsel *counter)
3973 3974 3975 3976 3977
{
	return counter->scale != 1;
}

int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3978
				      struct evlist *evsel_list,
3979 3980 3981
				      perf_event__handler_t process,
				      bool is_pipe)
{
3982
	struct evsel *counter;
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	int err;

	/*
	 * Synthesize other events stuff not carried within
	 * attr event - unit, scale, name
	 */
	evlist__for_each_entry(evsel_list, counter) {
		if (!counter->supported)
			continue;

		/*
		 * Synthesize unit and scale only if it's defined.
		 */
		if (has_unit(counter)) {
			err = perf_event__synthesize_event_update_unit(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel unit.\n");
				return err;
			}
		}

		if (has_scale(counter)) {
			err = perf_event__synthesize_event_update_scale(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel counter.\n");
				return err;
			}
		}

4012
		if (counter->core.own_cpus) {
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel cpus.\n");
				return err;
			}
		}

		/*
		 * Name is needed only for pipe output,
		 * perf.data carries event names.
		 */
		if (is_pipe) {
			err = perf_event__synthesize_event_update_name(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel name.\n");
				return err;
			}
		}
	}
	return 0;
}

4035 4036
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
4037
			     struct evlist **pevlist)
4038
{
4039
	u32 i, ids, n_ids;
4040
	struct evsel *evsel;
4041
	struct evlist *evlist = *pevlist;
4042

4043
	if (evlist == NULL) {
4044
		*pevlist = evlist = evlist__new();
4045
		if (evlist == NULL)
4046 4047 4048
			return -ENOMEM;
	}

4049
	evsel = evsel__new(&event->attr.attr);
4050
	if (evsel == NULL)
4051 4052
		return -ENOMEM;

4053
	evlist__add(evlist, evsel);
4054

4055 4056
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4057
	n_ids = ids / sizeof(u64);
4058 4059 4060 4061 4062 4063 4064
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
	if (perf_evsel__alloc_id(evsel, 1, n_ids))
		return -ENOMEM;
4065 4066

	for (i = 0; i < n_ids; i++) {
4067
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4068 4069 4070 4071
	}

	return 0;
}
4072

4073 4074
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4075
				     struct evlist **pevlist)
4076
{
4077 4078 4079
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
4080
	struct evlist *evlist;
4081
	struct evsel *evsel;
4082
	struct perf_cpu_map *map;
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

4093 4094 4095
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4096
		break;
4097 4098 4099
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4100
	case PERF_EVENT_UPDATE__SCALE:
4101
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4102
		evsel->scale = ev_scale->scale;
4103
		break;
4104
	case PERF_EVENT_UPDATE__CPUS:
4105
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4106 4107 4108

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
4109
			evsel->core.own_cpus = map;
4110 4111
		else
			pr_err("failed to get event_update cpus\n");
4112 4113 4114 4115
	default:
		break;
	}

4116 4117 4118
	return 0;
}

4119
int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4120
					struct evlist *evlist,
4121
					perf_event__handler_t process)
4122
{
4123
	union perf_event ev;
J
Jiri Olsa 已提交
4124
	struct tracing_data *tdata;
4125
	ssize_t size = 0, aligned_size = 0, padding;
4126
	struct feat_fd ff;
4127
	int err __maybe_unused = 0;
4128

J
Jiri Olsa 已提交
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
	/*
	 * We are going to store the size of the data followed
	 * by the data contents. Since the fd descriptor is a pipe,
	 * we cannot seek back to store the size of the data once
	 * we know it. Instead we:
	 *
	 * - write the tracing data to the temp file
	 * - get/write the data size to pipe
	 * - write the tracing data from the temp file
	 *   to the pipe
	 */
4140
	tdata = tracing_data_get(&evlist->core.entries, fd, true);
J
Jiri Olsa 已提交
4141 4142 4143
	if (!tdata)
		return -1;

4144 4145 4146
	memset(&ev, 0, sizeof(ev));

	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
J
Jiri Olsa 已提交
4147
	size = tdata->size;
4148
	aligned_size = PERF_ALIGN(size, sizeof(u64));
4149 4150 4151 4152
	padding = aligned_size - size;
	ev.tracing_data.header.size = sizeof(ev.tracing_data);
	ev.tracing_data.size = aligned_size;

4153
	process(tool, &ev, NULL, NULL);
4154

J
Jiri Olsa 已提交
4155 4156 4157 4158 4159 4160
	/*
	 * The put function will copy all the tracing data
	 * stored in temp file to the pipe.
	 */
	tracing_data_put(tdata);

4161 4162
	ff = (struct feat_fd){ .fd = fd };
	if (write_padded(&ff, NULL, 0, padding))
4163
		return -1;
4164 4165 4166 4167

	return aligned_size;
}

4168 4169
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4170
{
4171
	ssize_t size_read, padding, size = event->tracing_data.size;
4172
	int fd = perf_data__fd(session->data);
4173
	off_t offset = lseek(fd, 0, SEEK_CUR);
4174 4175 4176
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
4177
	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4178 4179
	      SEEK_SET);

J
Jiri Olsa 已提交
4180
	size_read = trace_report(fd, &session->tevent,
4181
				 session->repipe);
4182
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4183

4184
	if (readn(fd, buf, padding) < 0) {
4185 4186 4187
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4188 4189
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4190 4191 4192 4193
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4194
	}
4195

4196 4197 4198 4199
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4200

4201
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4202
					       session->tevent.pevent);
4203

4204 4205
	return size_read + padding;
}
4206

4207
int perf_event__synthesize_build_id(struct perf_tool *tool,
4208
				    struct dso *pos, u16 misc,
4209
				    perf_event__handler_t process,
4210
				    struct machine *machine)
4211
{
4212
	union perf_event ev;
4213 4214 4215 4216 4217 4218 4219 4220 4221
	size_t len;
	int err = 0;

	if (!pos->hit)
		return err;

	memset(&ev, 0, sizeof(ev));

	len = pos->long_name_len + 1;
4222
	len = PERF_ALIGN(len, NAME_ALIGN);
4223 4224 4225
	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
	ev.build_id.header.misc = misc;
4226
	ev.build_id.pid = machine->pid;
4227 4228 4229
	ev.build_id.header.size = sizeof(ev.build_id) + len;
	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);

4230
	err = process(tool, &ev, NULL, machine);
4231 4232 4233 4234

	return err;
}

4235 4236
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4237
{
4238 4239
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4240
				 session);
4241 4242
	return 0;
}