header.c 87.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "util.h"
5
#include "string2.h"
6
#include <sys/param.h>
7
#include <sys/types.h>
8
#include <byteswap.h>
9 10 11
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
12
#include <linux/compiler.h>
13
#include <linux/list.h>
14
#include <linux/kernel.h>
15
#include <linux/bitops.h>
16
#include <linux/stringify.h>
17
#include <sys/stat.h>
18
#include <sys/utsname.h>
19
#include <linux/time64.h>
20
#include <dirent.h>
21
#include <bpf/libbpf.h>
22

23
#include "evlist.h"
24
#include "evsel.h"
25
#include "header.h"
26
#include "memswap.h"
27 28
#include "../perf.h"
#include "trace-event.h"
29
#include "session.h"
30
#include "symbol.h"
31
#include "debug.h"
32
#include "cpumap.h"
33
#include "pmu.h"
34
#include "vdso.h"
35
#include "strbuf.h"
36
#include "build-id.h"
37
#include "data.h"
38 39
#include <api/fs/fs.h>
#include "asm/bug.h"
40
#include "tool.h"
41
#include "time-utils.h"
42
#include "units.h"
J
Jiri Olsa 已提交
43
#include "cputopo.h"
44
#include "bpf-event.h"
45

46 47
#include "sane_ctype.h"

48 49 50 51 52 53 54 55 56 57 58 59
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
60

61
#define PERF_MAGIC	__perf_magic2
62

63 64
const char perf_version_string[] = PERF_VERSION;

65
struct perf_file_attr {
66
	struct perf_event_attr	attr;
67 68 69
	struct perf_file_section	ids;
};

70 71 72
struct feat_fd {
	struct perf_header	*ph;
	int			fd;
73
	void			*buf;	/* Either buf != NULL or fd >= 0 */
74 75
	ssize_t			offset;
	size_t			size;
76
	struct perf_evsel	*events;
77 78
};

79
void perf_header__set_feat(struct perf_header *header, int feat)
80
{
81
	set_bit(feat, header->adds_features);
82 83
}

84
void perf_header__clear_feat(struct perf_header *header, int feat)
85
{
86
	clear_bit(feat, header->adds_features);
87 88
}

89
bool perf_header__has_feat(const struct perf_header *header, int feat)
90
{
91
	return test_bit(feat, header->adds_features);
92 93
}

94
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95
{
96
	ssize_t ret = writen(ff->fd, buf, size);
97

98 99
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
127 128

	return 0;
129 130
}

131 132 133 134 135 136 137 138
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

158
/* Return: 0 if succeded, -ERR if failed. */
159 160
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
161 162
{
	static const char zero_buf[NAME_ALIGN];
163
	int err = do_write(ff, bf, count);
164 165

	if (!err)
166
		err = do_write(ff, zero_buf, count_aligned - count);
167 168 169 170

	return err;
}

171 172 173
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

174
/* Return: 0 if succeded, -ERR if failed. */
175
static int do_write_string(struct feat_fd *ff, const char *str)
176 177 178 179 180
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
181
	len = PERF_ALIGN(olen, NAME_ALIGN);
182 183

	/* write len, incl. \0 */
184
	ret = do_write(ff, &len, sizeof(len));
185 186 187
	if (ret < 0)
		return ret;

188
	return write_padded(ff, str, olen, len);
189 190
}

191
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192
{
193
	ssize_t ret = readn(ff->fd, addr, size);
194 195 196 197 198 199

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

219
static int do_read_u32(struct feat_fd *ff, u32 *addr)
220 221 222
{
	int ret;

223
	ret = __do_read(ff, addr, sizeof(*addr));
224 225 226
	if (ret)
		return ret;

227
	if (ff->ph->needs_swap)
228 229 230 231
		*addr = bswap_32(*addr);
	return 0;
}

232
static int do_read_u64(struct feat_fd *ff, u64 *addr)
233 234 235
{
	int ret;

236
	ret = __do_read(ff, addr, sizeof(*addr));
237 238 239
	if (ret)
		return ret;

240
	if (ff->ph->needs_swap)
241 242 243 244
		*addr = bswap_64(*addr);
	return 0;
}

245
static char *do_read_string(struct feat_fd *ff)
246 247 248 249
{
	u32 len;
	char *buf;

250
	if (do_read_u32(ff, &len))
251 252 253 254 255 256
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

257
	if (!__do_read(ff, buf, len)) {
258 259 260 261 262 263 264 265 266 267 268 269
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

300 301
static int write_tracing_data(struct feat_fd *ff,
			      struct perf_evlist *evlist)
302
{
303 304 305
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

306
	return read_tracing_data(ff->fd, &evlist->entries);
307 308
}

309
static int write_build_id(struct feat_fd *ff,
310
			  struct perf_evlist *evlist __maybe_unused)
311 312 313 314
{
	struct perf_session *session;
	int err;

315
	session = container_of(ff->ph, struct perf_session, header);
316

317 318 319
	if (!perf_session__read_build_ids(session, true))
		return -1;

320 321 322
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

323
	err = perf_session__write_buildid_table(session, ff);
324 325 326 327
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
328
	perf_session__cache_build_ids(session);
329 330 331 332

	return 0;
}

333
static int write_hostname(struct feat_fd *ff,
334
			  struct perf_evlist *evlist __maybe_unused)
335 336 337 338 339 340 341 342
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

343
	return do_write_string(ff, uts.nodename);
344 345
}

346
static int write_osrelease(struct feat_fd *ff,
347
			   struct perf_evlist *evlist __maybe_unused)
348 349 350 351 352 353 354 355
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

356
	return do_write_string(ff, uts.release);
357 358
}

359
static int write_arch(struct feat_fd *ff,
360
		      struct perf_evlist *evlist __maybe_unused)
361 362 363 364 365 366 367 368
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

369
	return do_write_string(ff, uts.machine);
370 371
}

372
static int write_version(struct feat_fd *ff,
373
			 struct perf_evlist *evlist __maybe_unused)
374
{
375
	return do_write_string(ff, perf_version_string);
376 377
}

378
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379 380 381 382
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
383
	const char *search = cpuinfo_proc;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

400 401
	if (ret) {
		ret = -1;
402
		goto done;
403
	}
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
			char *q = r;
			*p = ' ';
			while (*q && isspace(*q))
				q++;
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
428
	ret = do_write_string(ff, s);
429 430 431 432 433 434
done:
	free(buf);
	fclose(file);
	return ret;
}

435
static int write_cpudesc(struct feat_fd *ff,
436 437 438 439 440 441 442
		       struct perf_evlist *evlist __maybe_unused)
{
	const char *cpuinfo_procs[] = CPUINFO_PROC;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
443
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 445 446 447 448 449 450
		if (ret >= 0)
			return ret;
	}
	return -1;
}


451
static int write_nrcpus(struct feat_fd *ff,
452
			struct perf_evlist *evlist __maybe_unused)
453 454 455 456 457
{
	long nr;
	u32 nrc, nra;
	int ret;

458
	nrc = cpu__max_present_cpu();
459 460 461 462 463 464 465

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

466
	ret = do_write(ff, &nrc, sizeof(nrc));
467 468 469
	if (ret < 0)
		return ret;

470
	return do_write(ff, &nra, sizeof(nra));
471 472
}

473
static int write_event_desc(struct feat_fd *ff,
474 475
			    struct perf_evlist *evlist)
{
476
	struct perf_evsel *evsel;
477
	u32 nre, nri, sz;
478 479
	int ret;

480
	nre = evlist->nr_entries;
481 482 483 484

	/*
	 * write number of events
	 */
485
	ret = do_write(ff, &nre, sizeof(nre));
486 487 488 489 490 491
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
492
	sz = (u32)sizeof(evsel->attr);
493
	ret = do_write(ff, &sz, sizeof(sz));
494 495 496
	if (ret < 0)
		return ret;

497
	evlist__for_each_entry(evlist, evsel) {
498
		ret = do_write(ff, &evsel->attr, sz);
499 500 501 502 503 504 505 506 507
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
508
		nri = evsel->ids;
509
		ret = do_write(ff, &nri, sizeof(nri));
510 511 512 513 514 515
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
516
		ret = do_write_string(ff, perf_evsel__name(evsel));
517 518 519 520 521
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
522
		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 524 525 526 527 528
		if (ret < 0)
			return ret;
	}
	return 0;
}

529
static int write_cmdline(struct feat_fd *ff,
530
			 struct perf_evlist *evlist __maybe_unused)
531
{
532 533
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
534

535
	/* actual path to perf binary */
536
	buf = perf_exe(pbuf, MAXPATHLEN);
537 538

	/* account for binary path */
539
	n = perf_env.nr_cmdline + 1;
540

541
	ret = do_write(ff, &n, sizeof(n));
542 543 544
	if (ret < 0)
		return ret;

545
	ret = do_write_string(ff, buf);
546 547 548
	if (ret < 0)
		return ret;

549
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 552 553 554 555 556 557
		if (ret < 0)
			return ret;
	}
	return 0;
}


558 559
static int write_cpu_topology(struct feat_fd *ff,
			      struct perf_evlist *evlist __maybe_unused)
560
{
J
Jiri Olsa 已提交
561
	struct cpu_topology *tp;
562
	u32 i;
563
	int ret, j;
564

J
Jiri Olsa 已提交
565
	tp = cpu_topology__new();
566 567 568
	if (!tp)
		return -1;

569
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 571 572 573
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
574
		ret = do_write_string(ff, tp->core_siblings[i]);
575 576 577
		if (ret < 0)
			goto done;
	}
578
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 580 581 582
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
583
		ret = do_write_string(ff, tp->thread_siblings[i]);
584 585 586
		if (ret < 0)
			break;
	}
587

588 589 590 591 592
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593
		ret = do_write(ff, &perf_env.cpu[j].core_id,
594
			       sizeof(perf_env.cpu[j].core_id));
595 596
		if (ret < 0)
			return ret;
597
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
598
			       sizeof(perf_env.cpu[j].socket_id));
599 600 601
		if (ret < 0)
			return ret;
	}
602
done:
J
Jiri Olsa 已提交
603
	cpu_topology__delete(tp);
604 605 606 607 608
	return ret;
}



609 610
static int write_total_mem(struct feat_fd *ff,
			   struct perf_evlist *evlist __maybe_unused)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
630
			ret = do_write(ff, &mem, sizeof(mem));
631 632
	} else
		ret = -1;
633 634 635 636 637
	free(buf);
	fclose(fp);
	return ret;
}

638 639
static int write_numa_topology(struct feat_fd *ff,
			       struct perf_evlist *evlist __maybe_unused)
640
{
J
Jiri Olsa 已提交
641
	struct numa_topology *tp;
642
	int ret = -1;
J
Jiri Olsa 已提交
643
	u32 i;
644

J
Jiri Olsa 已提交
645 646 647
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
648

J
Jiri Olsa 已提交
649 650 651
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
652

J
Jiri Olsa 已提交
653 654
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
655

J
Jiri Olsa 已提交
656 657 658
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
659

J
Jiri Olsa 已提交
660 661 662
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
663

J
Jiri Olsa 已提交
664 665 666
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
667

J
Jiri Olsa 已提交
668
		ret = do_write_string(ff, n->cpus);
669
		if (ret < 0)
J
Jiri Olsa 已提交
670
			goto err;
671
	}
J
Jiri Olsa 已提交
672 673 674 675 676

	ret = 0;

err:
	numa_topology__delete(tp);
677 678 679
	return ret;
}

680 681 682 683 684 685 686 687 688 689 690 691
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

692
static int write_pmu_mappings(struct feat_fd *ff,
693
			      struct perf_evlist *evlist __maybe_unused)
694 695
{
	struct perf_pmu *pmu = NULL;
696
	u32 pmu_num = 0;
697
	int ret;
698

699 700 701 702 703 704 705 706 707 708
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

709
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710 711
	if (ret < 0)
		return ret;
712 713 714 715

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
716

717
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718 719 720
		if (ret < 0)
			return ret;

721
		ret = do_write_string(ff, pmu->name);
722 723
		if (ret < 0)
			return ret;
724 725 726 727 728
	}

	return 0;
}

729 730 731 732 733 734 735 736 737 738 739 740
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
741
static int write_group_desc(struct feat_fd *ff,
742 743 744 745 746 747
			    struct perf_evlist *evlist)
{
	u32 nr_groups = evlist->nr_groups;
	struct perf_evsel *evsel;
	int ret;

748
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749 750 751
	if (ret < 0)
		return ret;

752
	evlist__for_each_entry(evlist, evsel) {
753 754 755 756 757 758
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
			u32 nr_members = evsel->nr_members;

759
			ret = do_write_string(ff, name);
760 761 762
			if (ret < 0)
				return ret;

763
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764 765 766
			if (ret < 0)
				return ret;

767
			ret = do_write(ff, &nr_members, sizeof(nr_members));
768 769 770 771 772 773 774
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

814 815
/*
 * default get_cpuid(): nothing gets recorded
816
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
817
 */
818
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
819 820 821 822
{
	return -1;
}

823
static int write_cpuid(struct feat_fd *ff,
824
		       struct perf_evlist *evlist __maybe_unused)
825 826 827 828 829
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
830 831
	if (ret)
		return -1;
832

833
	return do_write_string(ff, buffer);
834 835
}

836 837
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
			      struct perf_evlist *evlist __maybe_unused)
838 839 840 841
{
	return 0;
}

842
static int write_auxtrace(struct feat_fd *ff,
843 844
			  struct perf_evlist *evlist __maybe_unused)
{
845 846 847
	struct perf_session *session;
	int err;

848 849 850
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

851
	session = container_of(ff->ph, struct perf_session, header);
852

853
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854 855 856
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
857 858
}

859 860 861 862 863 864 865
static int write_clockid(struct feat_fd *ff,
			 struct perf_evlist *evlist __maybe_unused)
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
static int write_dir_format(struct feat_fd *ff,
			    struct perf_evlist *evlist __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
			       struct perf_evlist *evlist __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
			       struct perf_evlist *evlist __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static int write_bpf_btf(struct feat_fd *ff,
			 struct perf_evlist *evlist __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
	cache->type = rtrim(cache->type);

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
		free(cache->type);
		return -1;
	}

	cache->size[len] = 0;
	cache->size = rtrim(cache->size);

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
		free(cache->map);
		free(cache->type);
		return -1;
	}

	cache->map[len] = 0;
	cache->map = rtrim(cache->map);
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

#define MAX_CACHES 2000

1105 1106
static int write_cache(struct feat_fd *ff,
		       struct perf_evlist *evlist __maybe_unused)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	struct cpu_cache_level caches[MAX_CACHES];
	u32 cnt = 0, i, version = 1;
	int ret;

	ret = build_caches(caches, MAX_CACHES, &cnt);
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1118
	ret = do_write(ff, &version, sizeof(u32));
1119 1120 1121
	if (ret < 0)
		goto out;

1122
	ret = do_write(ff, &cnt, sizeof(u32));
1123 1124 1125 1126 1127 1128 1129
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1130
			ret = do_write(ff, &c->v, sizeof(u32));	\
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1141
			ret = do_write_string(ff, (const char *) c->v);	\
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1157
static int write_stat(struct feat_fd *ff __maybe_unused,
1158 1159 1160 1161 1162
		      struct perf_evlist *evlist __maybe_unused)
{
	return 0;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static int write_sample_time(struct feat_fd *ff,
			     struct perf_evlist *evlist)
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1247 1248
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
			      struct perf_evlist *evlist __maybe_unused)
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1347
static void print_hostname(struct feat_fd *ff, FILE *fp)
1348
{
1349
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1350 1351
}

1352
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1353
{
1354
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1355 1356
}

1357
static void print_arch(struct feat_fd *ff, FILE *fp)
1358
{
1359
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1360 1361
}

1362
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1363
{
1364
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1365 1366
}

1367
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1368
{
1369 1370
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1371 1372
}

1373
static void print_version(struct feat_fd *ff, FILE *fp)
1374
{
1375
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1376 1377
}

1378
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1379
{
1380
	int nr, i;
1381

1382
	nr = ff->ph->env.nr_cmdline;
1383 1384 1385

	fprintf(fp, "# cmdline : ");

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1404 1405 1406
	fputc('\n', fp);
}

1407
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1408
{
1409 1410
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1411
	int nr, i;
1412 1413
	char *str;

1414 1415
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1416 1417 1418

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling cores   : %s\n", str);
1419
		str += strlen(str) + 1;
1420 1421
	}

1422 1423
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1424 1425 1426

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1427
		str += strlen(str) + 1;
1428
	}
1429 1430 1431 1432 1433 1434 1435

	if (ph->env.cpu != NULL) {
		for (i = 0; i < cpu_nr; i++)
			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
	} else
		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1436 1437
}

1438 1439 1440 1441 1442 1443
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# bpf_prog_info of id %u\n",
			node->info_linear->info.id);
	}

	up_read(&env->bpf_progs.lock);
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1500
static void free_event_desc(struct perf_evsel *events)
1501
{
1502 1503 1504 1505 1506 1507
	struct perf_evsel *evsel;

	if (!events)
		return;

	for (evsel = events; evsel->attr.size; evsel++) {
1508 1509
		zfree(&evsel->name);
		zfree(&evsel->id);
1510 1511 1512 1513 1514
	}

	free(events);
}

1515
static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1516 1517 1518
{
	struct perf_evsel *evsel, *events = NULL;
	u64 *id;
1519
	void *buf = NULL;
1520 1521
	u32 nre, sz, nr, i, j;
	size_t msz;
1522 1523

	/* number of events */
1524
	if (do_read_u32(ff, &nre))
1525 1526
		goto error;

1527
	if (do_read_u32(ff, &sz))
1528 1529
		goto error;

1530
	/* buffer to hold on file attr struct */
1531 1532 1533 1534
	buf = malloc(sz);
	if (!buf)
		goto error;

1535 1536 1537 1538 1539 1540
	/* the last event terminates with evsel->attr.size == 0: */
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

	msz = sizeof(evsel->attr);
1541
	if (sz < msz)
1542 1543
		msz = sz;

1544 1545
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1546

1547 1548 1549 1550
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1551
		if (__do_read(ff, buf, sz))
1552 1553
			goto error;

1554
		if (ff->ph->needs_swap)
1555 1556
			perf_event__attr_swap(buf);

1557
		memcpy(&evsel->attr, buf, msz);
1558

1559
		if (do_read_u32(ff, &nr))
1560 1561
			goto error;

1562
		if (ff->ph->needs_swap)
1563
			evsel->needs_swap = true;
1564

1565
		evsel->name = do_read_string(ff);
1566 1567
		if (!evsel->name)
			goto error;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
		evsel->ids = nr;
		evsel->id = id;

		for (j = 0 ; j < nr; j++) {
1579
			if (do_read_u64(ff, id))
1580 1581 1582 1583 1584
				goto error;
			id++;
		}
	}
out:
1585
	free(buf);
1586 1587
	return events;
error:
1588
	free_event_desc(events);
1589 1590 1591 1592
	events = NULL;
	goto out;
}

1593
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1594
				void *priv __maybe_unused)
1595 1596 1597 1598
{
	return fprintf(fp, ", %s = %s", name, val);
}

1599
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1600
{
1601
	struct perf_evsel *evsel, *events;
1602 1603 1604
	u32 j;
	u64 *id;

1605 1606 1607 1608 1609
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1610 1611 1612 1613 1614 1615 1616
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

	for (evsel = events; evsel->attr.size; evsel++) {
		fprintf(fp, "# event : name = %s, ", evsel->name);
1617

1618
		if (evsel->ids) {
1619
			fprintf(fp, ", id = {");
1620 1621 1622 1623 1624
			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1625
			fprintf(fp, " }");
1626
		}
1627

1628
		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1629

1630 1631
		fputc('\n', fp);
	}
1632 1633

	free_event_desc(events);
1634
	ff->events = NULL;
1635 1636
}

1637
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1638
{
1639
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1640 1641
}

1642
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1643
{
1644 1645
	int i;
	struct numa_node *n;
1646

1647 1648
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1649 1650 1651

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1652
			n->node, n->mem_total, n->mem_free);
1653

1654 1655
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1656 1657 1658
	}
}

1659
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1660
{
1661
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1662 1663
}

1664
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1665 1666 1667 1668
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1669
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1670 1671 1672 1673
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1674
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1675 1676 1677 1678
{
	fprintf(fp, "# contains stat data\n");
}

1679
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1680 1681 1682 1683
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1684
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1685
		fprintf(fp, "#  ");
1686
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1687 1688 1689
	}
}

1690
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1691 1692
{
	const char *delimiter = "# pmu mappings: ";
1693
	char *str, *tmp;
1694 1695 1696
	u32 pmu_num;
	u32 type;

1697
	pmu_num = ff->ph->env.nr_pmu_mappings;
1698 1699 1700 1701 1702
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1703
	str = ff->ph->env.pmu_mappings;
1704

1705
	while (pmu_num) {
1706 1707 1708 1709 1710 1711
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1712

1713
		delimiter = ", ";
1714 1715
		str += strlen(str) + 1;
		pmu_num--;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1726
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1727 1728 1729 1730 1731
{
	struct perf_session *session;
	struct perf_evsel *evsel;
	u32 nr = 0;

1732
	session = container_of(ff->ph, struct perf_session, header);
1733

1734
	evlist__for_each_entry(session->evlist, evsel) {
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

			nr = evsel->nr_members - 1;
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1801 1802 1803 1804 1805 1806
static int __event_process_build_id(struct build_id_event *bev,
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1807
	u16 cpumode;
1808 1809 1810 1811 1812 1813 1814
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1815
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1816

1817
	switch (cpumode) {
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1832
	dso = machine__findnew_dso(machine, filename);
1833
	if (dso != NULL) {
1834
		char sbuild_id[SBUILD_ID_SIZE];
1835 1836 1837

		dso__set_build_id(dso, &bev->build_id);

1838 1839 1840 1841
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1842
				dso__set_module_info(dso, &m, machine);
1843 1844 1845 1846 1847
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1848 1849 1850 1851 1852

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1853
		dso__put(dso);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1867
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1868 1869 1870 1871 1872 1873 1874 1875 1876
		char			   filename[0];
	} old_bev;
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1877
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1878 1879 1880 1881 1882 1883
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1884
		if (readn(input, filename, len) != len)
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

1919
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1920 1921 1922 1923 1924 1925
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
1926
		if (readn(input, filename, len) != len)
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
		 * Added a field to struct build_id_event that broke the file
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

1956 1957
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1958
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1959
{\
1960
	ff->ph->env.__feat_env = do_read_string(ff); \
1961
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1962 1963 1964 1965 1966 1967 1968 1969 1970
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

1971
static int process_tracing_data(struct feat_fd *ff, void *data)
1972
{
1973 1974
	ssize_t ret = trace_report(ff->fd, data, false);

1975
	return ret < 0 ? -1 : 0;
1976 1977
}

1978
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1979
{
1980
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1981 1982 1983 1984
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

1985
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1986
{
1987 1988
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
1989

1990
	ret = do_read_u32(ff, &nr_cpus_avail);
1991 1992
	if (ret)
		return ret;
1993

1994
	ret = do_read_u32(ff, &nr_cpus_online);
1995 1996
	if (ret)
		return ret;
1997 1998
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
1999 2000 2001
	return 0;
}

2002
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2003
{
2004 2005
	u64 total_mem;
	int ret;
2006

2007
	ret = do_read_u64(ff, &total_mem);
2008
	if (ret)
2009
		return -1;
2010
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2011 2012 2013
	return 0;
}

2014 2015 2016 2017 2018
static struct perf_evsel *
perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
{
	struct perf_evsel *evsel;

2019
	evlist__for_each_entry(evlist, evsel) {
2020 2021 2022 2023 2024 2025 2026 2027
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2028 2029
perf_evlist__set_event_name(struct perf_evlist *evlist,
			    struct perf_evsel *event)
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	struct perf_evsel *evsel;

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2047
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2048
{
2049
	struct perf_session *session;
2050
	struct perf_evsel *evsel, *events = read_event_desc(ff);
2051 2052 2053 2054

	if (!events)
		return 0;

2055
	session = container_of(ff->ph, struct perf_session, header);
2056

2057
	if (session->data->is_pipe) {
2058 2059 2060 2061 2062
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2063 2064 2065
	for (evsel = events; evsel->attr.size; evsel++)
		perf_evlist__set_event_name(session->evlist, evsel);

2066
	if (!session->data->is_pipe)
2067
		free_event_desc(events);
2068 2069 2070 2071

	return 0;
}

2072
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2073
{
2074 2075
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2076

2077
	if (do_read_u32(ff, &nr))
2078 2079
		return -1;

2080
	ff->ph->env.nr_cmdline = nr;
2081

2082
	cmdline = zalloc(ff->size + nr + 1);
2083 2084 2085 2086 2087 2088
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2089 2090

	for (i = 0; i < nr; i++) {
2091
		str = do_read_string(ff);
2092 2093 2094
		if (!str)
			goto error;

2095 2096 2097
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2098 2099
		free(str);
	}
2100 2101
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2102 2103 2104
	return 0;

error:
2105 2106
	free(argv);
	free(cmdline);
2107 2108 2109
	return -1;
}

2110
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2111 2112 2113 2114
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2115
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2116
	u64 size = 0;
2117
	struct perf_header *ph = ff->ph;
2118
	bool do_core_id_test = true;
2119 2120 2121 2122

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2123

2124
	if (do_read_u32(ff, &nr))
2125
		goto free_cpu;
2126 2127

	ph->env.nr_sibling_cores = nr;
2128
	size += sizeof(u32);
2129 2130
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2131 2132

	for (i = 0; i < nr; i++) {
2133
		str = do_read_string(ff);
2134 2135 2136 2137
		if (!str)
			goto error;

		/* include a NULL character at the end */
2138 2139
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2140
		size += string_size(str);
2141 2142 2143 2144
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2145
	if (do_read_u32(ff, &nr))
2146 2147 2148
		return -1;

	ph->env.nr_sibling_threads = nr;
2149
	size += sizeof(u32);
2150 2151

	for (i = 0; i < nr; i++) {
2152
		str = do_read_string(ff);
2153 2154 2155 2156
		if (!str)
			goto error;

		/* include a NULL character at the end */
2157 2158
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2159
		size += string_size(str);
2160 2161 2162
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2163 2164 2165 2166 2167

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2168
	if (ff->size <= size) {
2169 2170 2171 2172
		zfree(&ph->env.cpu);
		return 0;
	}

2173 2174 2175 2176 2177 2178 2179
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
	 */
	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
		do_core_id_test = false;

2180
	for (i = 0; i < (u32)cpu_nr; i++) {
2181
		if (do_read_u32(ff, &nr))
2182 2183 2184 2185
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;

2186
		if (do_read_u32(ff, &nr))
2187 2188
			goto free_cpu;

2189
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2190 2191 2192 2193 2194 2195 2196 2197
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
	}

2198 2199 2200 2201
	return 0;

error:
	strbuf_release(&sb);
2202 2203
free_cpu:
	zfree(&ph->env.cpu);
2204 2205 2206
	return -1;
}

2207
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2208
{
2209 2210
	struct numa_node *nodes, *n;
	u32 nr, i;
2211 2212 2213
	char *str;

	/* nr nodes */
2214
	if (do_read_u32(ff, &nr))
2215
		return -1;
2216

2217 2218 2219
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2220 2221

	for (i = 0; i < nr; i++) {
2222 2223
		n = &nodes[i];

2224
		/* node number */
2225
		if (do_read_u32(ff, &n->node))
2226 2227
			goto error;

2228
		if (do_read_u64(ff, &n->mem_total))
2229 2230
			goto error;

2231
		if (do_read_u64(ff, &n->mem_free))
2232 2233
			goto error;

2234
		str = do_read_string(ff);
2235 2236 2237
		if (!str)
			goto error;

2238 2239
		n->map = cpu_map__new(str);
		if (!n->map)
2240
			goto error;
2241

2242 2243
		free(str);
	}
2244 2245
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2246 2247 2248
	return 0;

error:
2249
	free(nodes);
2250 2251 2252
	return -1;
}

2253
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2254 2255 2256 2257 2258 2259
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2260
	if (do_read_u32(ff, &pmu_num))
2261 2262 2263 2264 2265 2266 2267
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2268
	ff->ph->env.nr_pmu_mappings = pmu_num;
2269 2270
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2271 2272

	while (pmu_num) {
2273
		if (do_read_u32(ff, &type))
2274 2275
			goto error;

2276
		name = do_read_string(ff);
2277 2278 2279
		if (!name)
			goto error;

2280 2281
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2282
		/* include a NULL character at the end */
2283 2284
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2285

2286
		if (!strcmp(name, "msr"))
2287
			ff->ph->env.msr_pmu_type = type;
2288

2289 2290 2291
		free(name);
		pmu_num--;
	}
2292
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2293 2294 2295 2296 2297 2298 2299
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2300
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
	struct perf_evsel *evsel, *leader = NULL;
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2312
	if (do_read_u32(ff, &nr_groups))
2313 2314
		return -1;

2315
	ff->ph->env.nr_groups = nr_groups;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2326
		desc[i].name = do_read_string(ff);
2327 2328 2329
		if (!desc[i].name)
			goto out_free;

2330
		if (do_read_u32(ff, &desc[i].leader_idx))
2331 2332
			goto out_free;

2333
		if (do_read_u32(ff, &desc[i].nr_members))
2334 2335 2336 2337 2338 2339
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2340
	session = container_of(ff->ph, struct perf_session, header);
2341 2342 2343
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2344
	evlist__for_each_entry(session->evlist, evsel) {
2345 2346 2347
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2348
			if (strcmp(desc[i].name, "{anon_group}")) {
2349
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2350 2351
				desc[i].name = NULL;
			}
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
			evsel->nr_members = desc[i].nr_members;

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
			nr = evsel->nr_members - 1;
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2377
	for (i = 0; i < nr_groups; i++)
2378
		zfree(&desc[i].name);
2379 2380 2381 2382 2383
	free(desc);

	return ret;
}

2384
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2385 2386 2387 2388
{
	struct perf_session *session;
	int err;

2389
	session = container_of(ff->ph, struct perf_session, header);
2390

2391
	err = auxtrace_index__process(ff->fd, ff->size, session,
2392
				      ff->ph->needs_swap);
2393 2394 2395 2396 2397
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2398
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2399 2400 2401 2402
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2403
	if (do_read_u32(ff, &version))
2404 2405 2406 2407 2408
		return -1;

	if (version != 1)
		return -1;

2409
	if (do_read_u32(ff, &cnt))
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2420
			if (do_read_u32(ff, &c.v))\
2421 2422 2423 2424 2425 2426 2427 2428
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2429
		#define _R(v)					\
2430
			c.v = do_read_string(ff);		\
2431
			if (!c.v)				\
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2442 2443
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2444 2445 2446 2447 2448 2449
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2523 2524 2525 2526 2527 2528 2529 2530 2531
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
	u32 count, i;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		struct btf_node *node;
		u32 id, data_size;

		if (do_read_u32(ff, &id))
			return -1;
		if (do_read_u32(ff, &data_size))
			return -1;

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
			return -1;

		node->id = id;
		node->data_size = data_size;

		if (__do_read(ff, node->data, data_size)) {
			free(node);
			return -1;
		}

		perf_env__insert_btf(env, node);
	}

	up_write(&env->bpf_progs.lock);
	return 0;
}

2665
struct feature_ops {
2666
	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2667
	void (*print)(struct feat_fd *ff, FILE *fp);
2668
	int (*process)(struct feat_fd *ff, void *data);
2669 2670
	const char *name;
	bool full_only;
2671
	bool synthesize;
2672 2673
};

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2692 2693

/* feature_ops not implemented: */
2694 2695
#define print_tracing_data	NULL
#define print_build_id		NULL
2696

2697 2698 2699 2700
#define process_branch_stack	NULL
#define process_stat		NULL


2701
static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2718
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2719 2720 2721
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2722
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2723
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2724
	FEAT_OPR(CLOCKID,	clockid,	false),
2725
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2726 2727
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2740
	struct feat_fd ff;
2741 2742 2743 2744 2745 2746

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2747
	if (feat >= HEADER_LAST_FEATURE) {
2748
		pr_warning("unknown feature %d\n", feat);
2749
		return 0;
2750 2751 2752 2753
	}
	if (!feat_ops[feat].print)
		return 0;

2754 2755 2756 2757 2758
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2759
	if (!feat_ops[feat].full_only || hd->full)
2760
		feat_ops[feat].print(&ff, hd->fp);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2772
	int fd = perf_data__fd(session->data);
2773
	struct stat st;
2774
	time_t stctime;
J
Jiri Olsa 已提交
2775
	int ret, bit;
2776

2777 2778 2779
	hd.fp = fp;
	hd.full = full;

2780 2781 2782 2783
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2784 2785
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2786 2787 2788 2789 2790

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2791

2792 2793
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2794

2795
	if (session->data->is_pipe)
2796 2797
		return 0;

J
Jiri Olsa 已提交
2798 2799 2800 2801 2802 2803 2804
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2805 2806 2807
	return 0;
}

2808
static int do_write_feat(struct feat_fd *ff, int type,
2809 2810 2811 2812 2813 2814
			 struct perf_file_section **p,
			 struct perf_evlist *evlist)
{
	int err;
	int ret = 0;

2815
	if (perf_header__has_feat(ff->ph, type)) {
2816 2817
		if (!feat_ops[type].write)
			return -1;
2818

2819 2820 2821
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2822
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2823

2824
		err = feat_ops[type].write(ff, evlist);
2825
		if (err < 0) {
2826
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2827 2828

			/* undo anything written */
2829
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2830 2831 2832

			return -1;
		}
2833
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2834 2835 2836 2837 2838
		(*p)++;
	}
	return ret;
}

2839
static int perf_header__adds_write(struct perf_header *header,
2840
				   struct perf_evlist *evlist, int fd)
2841
{
2842
	int nr_sections;
2843
	struct feat_fd ff;
2844
	struct perf_file_section *feat_sec, *p;
2845 2846
	int sec_size;
	u64 sec_start;
2847
	int feat;
2848
	int err;
2849

2850 2851 2852 2853 2854
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

2855
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2856
	if (!nr_sections)
2857
		return 0;
2858

2859
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2860 2861
	if (feat_sec == NULL)
		return -ENOMEM;
2862 2863 2864

	sec_size = sizeof(*feat_sec) * nr_sections;

2865
	sec_start = header->feat_offset;
2866
	lseek(fd, sec_start + sec_size, SEEK_SET);
2867

2868
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2869
		if (do_write_feat(&ff, feat, &p, evlist))
2870 2871
			perf_header__clear_feat(header, feat);
	}
2872

2873
	lseek(fd, sec_start, SEEK_SET);
2874 2875
	/*
	 * may write more than needed due to dropped feature, but
2876
	 * this is okay, reader will skip the missing entries
2877
	 */
2878
	err = do_write(&ff, feat_sec, sec_size);
2879 2880
	if (err < 0)
		pr_debug("failed to write feature section\n");
2881
	free(feat_sec);
2882
	return err;
2883
}
2884

2885 2886 2887
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
2888
	struct feat_fd ff;
2889 2890
	int err;

2891 2892
	ff = (struct feat_fd){ .fd = fd };

2893 2894 2895 2896 2897
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

2898
	err = do_write(&ff, &f_header, sizeof(f_header));
2899 2900 2901 2902 2903 2904 2905 2906
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

2907 2908 2909
int perf_session__write_header(struct perf_session *session,
			       struct perf_evlist *evlist,
			       int fd, bool at_exit)
2910 2911 2912
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
2913
	struct perf_header *header = &session->header;
2914
	struct perf_evsel *evsel;
2915
	struct feat_fd ff;
2916
	u64 attr_offset;
2917
	int err;
2918

2919
	ff = (struct feat_fd){ .fd = fd};
2920 2921
	lseek(fd, sizeof(f_header), SEEK_SET);

2922
	evlist__for_each_entry(session->evlist, evsel) {
2923
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2924
		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2925 2926 2927 2928
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
2929 2930
	}

2931
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2932

2933
	evlist__for_each_entry(evlist, evsel) {
2934
		f_attr = (struct perf_file_attr){
2935
			.attr = evsel->attr,
2936
			.ids  = {
2937 2938
				.offset = evsel->id_offset,
				.size   = evsel->ids * sizeof(u64),
2939 2940
			}
		};
2941
		err = do_write(&ff, &f_attr, sizeof(f_attr));
2942 2943 2944 2945
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
2946 2947
	}

2948 2949
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
2950
	header->feat_offset = header->data_offset + header->data_size;
2951

2952
	if (at_exit) {
2953
		err = perf_header__adds_write(header, evlist, fd);
2954 2955 2956
		if (err < 0)
			return err;
	}
2957

2958 2959 2960 2961 2962
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
2963
			.offset = attr_offset,
2964
			.size   = evlist->nr_entries * sizeof(f_attr),
2965 2966
		},
		.data = {
2967 2968
			.offset = header->data_offset,
			.size	= header->data_size,
2969
		},
2970
		/* event_types is ignored, store zeros */
2971 2972
	};

2973
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2974

2975
	lseek(fd, 0, SEEK_SET);
2976
	err = do_write(&ff, &f_header, sizeof(f_header));
2977 2978 2979 2980
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
2981
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2982

2983
	return 0;
2984 2985
}

2986
static int perf_header__getbuffer64(struct perf_header *header,
2987 2988
				    int fd, void *buf, size_t size)
{
2989
	if (readn(fd, buf, size) <= 0)
2990 2991
		return -1;

2992
	if (header->needs_swap)
2993 2994 2995 2996 2997
		mem_bswap_64(buf, size);

	return 0;
}

2998
int perf_header__process_sections(struct perf_header *header, int fd,
2999
				  void *data,
3000
				  int (*process)(struct perf_file_section *section,
3001 3002
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3003
{
3004
	struct perf_file_section *feat_sec, *sec;
3005 3006
	int nr_sections;
	int sec_size;
3007 3008
	int feat;
	int err;
3009

3010
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3011
	if (!nr_sections)
3012
		return 0;
3013

3014
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3015
	if (!feat_sec)
3016
		return -1;
3017 3018 3019

	sec_size = sizeof(*feat_sec) * nr_sections;

3020
	lseek(fd, header->feat_offset, SEEK_SET);
3021

3022 3023
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3024
		goto out_free;
3025

3026 3027 3028 3029
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3030
	}
3031
	err = 0;
3032
out_free:
3033 3034
	free(feat_sec);
	return err;
3035
}
3036

3037 3038 3039
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3040
	[2] = PERF_ATTR_SIZE_VER2,
3041
	[3] = PERF_ATTR_SIZE_VER3,
3042
	[4] = PERF_ATTR_SIZE_VER4,
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3053
{
3054 3055
	uint64_t ref_size, attr_size;
	int i;
3056

3057 3058 3059 3060 3061 3062 3063
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3064

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3075

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3100 3101 3102

			ph->needs_swap = true;
		}
3103
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3104 3105
		return 0;
	}
3106 3107 3108
	return -1;
}

F
Feng Tang 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3119 3120 3121 3122 3123 3124 3125 3126
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3127
		ph->version = PERF_HEADER_VERSION_1;
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3139
	ph->version = PERF_HEADER_VERSION_2;
3140

3141 3142
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3143 3144
		return 0;

3145 3146
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3147 3148 3149 3150 3151 3152 3153
		return -1;

	ph->needs_swap = true;

	return 0;
}

3154
int perf_file_header__read(struct perf_file_header *header,
3155 3156
			   struct perf_header *ph, int fd)
{
3157
	ssize_t ret;
3158

3159 3160
	lseek(fd, 0, SEEK_SET);

3161 3162
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3163 3164
		return -1;

3165 3166 3167
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3168
		return -1;
3169
	}
3170

3171
	if (ph->needs_swap) {
3172
		mem_bswap_64(header, offsetof(struct perf_file_header,
3173
			     adds_features));
3174 3175
	}

3176
	if (header->size != sizeof(*header)) {
3177
		/* Support the previous format */
3178 3179
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3180 3181
		else
			return -1;
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3198 3199
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3200 3201

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3202 3203 3204 3205 3206 3207 3208
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3209 3210 3211 3212 3213 3214
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3215
	}
3216

3217
	memcpy(&ph->adds_features, &header->adds_features,
3218
	       sizeof(ph->adds_features));
3219

3220 3221
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3222
	ph->feat_offset  = header->data.offset + header->data.size;
3223 3224 3225
	return 0;
}

3226
static int perf_file_section__process(struct perf_file_section *section,
3227
				      struct perf_header *ph,
3228
				      int feat, int fd, void *data)
3229
{
3230
	struct feat_fd fdd = {
3231 3232
		.fd	= fd,
		.ph	= ph,
3233 3234
		.size	= section->size,
		.offset	= section->offset,
3235 3236
	};

3237
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3238
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3239
			  "%d, continuing...\n", section->offset, feat);
3240 3241 3242
		return 0;
	}

3243 3244 3245 3246 3247
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3248 3249
	if (!feat_ops[feat].process)
		return 0;
3250

3251
	return feat_ops[feat].process(&fdd, data);
3252
}
3253

3254
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3255 3256
				       struct perf_header *ph, int fd,
				       bool repipe)
3257
{
3258 3259 3260 3261
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3262
	ssize_t ret;
3263 3264 3265 3266 3267

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3268 3269
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3270
		return -1;
3271 3272 3273 3274
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3275

3276
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3277 3278
		return -1;

3279 3280 3281
	return 0;
}

3282
static int perf_header__read_pipe(struct perf_session *session)
3283
{
3284
	struct perf_header *header = &session->header;
3285 3286
	struct perf_pipe_file_header f_header;

3287
	if (perf_file_header__read_pipe(&f_header, header,
3288
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3289
					session->repipe) < 0) {
3290 3291 3292 3293 3294 3295 3296
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3297 3298 3299 3300 3301 3302
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3303
	ssize_t ret;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3343
static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3344
						struct tep_handle *pevent)
3345
{
3346
	struct tep_event *event;
3347 3348
	char bf[128];

3349 3350 3351 3352
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3353 3354 3355 3356 3357
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3358
	event = tep_find_event(pevent, evsel->attr.config);
3359 3360
	if (event == NULL) {
		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3361
		return -1;
3362
	}
3363

3364 3365 3366 3367 3368 3369
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3370

3371
	evsel->tp_format = event;
3372 3373 3374
	return 0;
}

3375
static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3376
						  struct tep_handle *pevent)
3377 3378 3379
{
	struct perf_evsel *pos;

3380
	evlist__for_each_entry(evlist, pos) {
3381 3382
		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3383 3384 3385 3386 3387 3388
			return -1;
	}

	return 0;
}

3389
int perf_session__read_header(struct perf_session *session)
3390
{
3391
	struct perf_data *data = session->data;
3392
	struct perf_header *header = &session->header;
3393
	struct perf_file_header	f_header;
3394 3395 3396
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3397
	int fd = perf_data__fd(data);
3398

3399
	session->evlist = perf_evlist__new();
3400 3401 3402
	if (session->evlist == NULL)
		return -ENOMEM;

3403
	session->evlist->env = &header->env;
3404
	session->machines.host.env = &header->env;
3405
	if (perf_data__is_pipe(data))
3406
		return perf_header__read_pipe(session);
3407

3408
	if (perf_file_header__read(&f_header, header, fd) < 0)
3409
		return -EINVAL;
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3420
			   data->file.path);
3421 3422
	}

3423
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3424 3425 3426
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3427
		struct perf_evsel *evsel;
3428
		off_t tmp;
3429

3430
		if (read_attr(fd, header, &f_attr) < 0)
3431
			goto out_errno;
3432

3433 3434 3435
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3436
			perf_event__attr_swap(&f_attr.attr);
3437
		}
3438

3439
		tmp = lseek(fd, 0, SEEK_CUR);
3440
		evsel = perf_evsel__new(&f_attr.attr);
3441

3442 3443
		if (evsel == NULL)
			goto out_delete_evlist;
3444 3445

		evsel->needs_swap = header->needs_swap;
3446 3447 3448 3449 3450
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
		 * entry gets purged too at perf_evlist__delete().
		 */
		perf_evlist__add(session->evlist, evsel);
3451 3452

		nr_ids = f_attr.ids.size / sizeof(u64);
3453 3454 3455 3456 3457 3458 3459 3460
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
			goto out_delete_evlist;

3461 3462 3463
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3464
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3465
				goto out_errno;
3466

3467
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3468
		}
3469

3470 3471 3472
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3473
	perf_header__process_sections(header, fd, &session->tevent,
3474
				      perf_file_section__process);
3475

3476
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3477
						   session->tevent.pevent))
3478 3479
		goto out_delete_evlist;

3480
	return 0;
3481 3482
out_errno:
	return -errno;
3483 3484 3485 3486 3487

out_delete_evlist:
	perf_evlist__delete(session->evlist);
	session->evlist = NULL;
	return -ENOMEM;
3488
}
3489

3490
int perf_event__synthesize_attr(struct perf_tool *tool,
3491
				struct perf_event_attr *attr, u32 ids, u64 *id,
3492
				perf_event__handler_t process)
3493
{
3494
	union perf_event *ev;
3495 3496 3497 3498
	size_t size;
	int err;

	size = sizeof(struct perf_event_attr);
3499
	size = PERF_ALIGN(size, sizeof(u64));
3500 3501 3502 3503 3504
	size += sizeof(struct perf_event_header);
	size += ids * sizeof(u64);

	ev = malloc(size);

3505 3506 3507
	if (ev == NULL)
		return -ENOMEM;

3508 3509 3510 3511
	ev->attr.attr = *attr;
	memcpy(ev->attr.id, id, ids * sizeof(u64));

	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3512
	ev->attr.header.size = (u16)size;
3513

3514 3515 3516 3517
	if (ev->attr.header.size == size)
		err = process(tool, ev, NULL, NULL);
	else
		err = -E2BIG;
3518 3519 3520 3521 3522 3523

	free(ev);

	return err;
}

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
int perf_event__synthesize_features(struct perf_tool *tool,
				    struct perf_session *session,
				    struct perf_evlist *evlist,
				    perf_event__handler_t process)
{
	struct perf_header *header = &session->header;
	struct feat_fd ff;
	struct feature_event *fe;
	size_t sz, sz_hdr;
	int feat, ret;

	sz_hdr = sizeof(fe->header);
	sz = sizeof(union perf_event);
	/* get a nice alignment */
	sz = PERF_ALIGN(sz, page_size);

	memset(&ff, 0, sizeof(ff));

	ff.buf = malloc(sz);
	if (!ff.buf)
		return -ENOMEM;

	ff.size = sz - sz_hdr;

	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
		if (!feat_ops[feat].synthesize) {
			pr_debug("No record header feature for header :%d\n", feat);
			continue;
		}

		ff.offset = sizeof(*fe);

		ret = feat_ops[feat].write(&ff, evlist);
		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
			pr_debug("Error writing feature\n");
			continue;
		}
		/* ff.buf may have changed due to realloc in do_write() */
		fe = ff.buf;
		memset(fe, 0, sizeof(*fe));

		fe->feat_id = feat;
		fe->header.type = PERF_RECORD_HEADER_FEATURE;
		fe->header.size = ff.offset;

		ret = process(tool, ff.buf, NULL, NULL);
		if (ret) {
			free(ff.buf);
			return ret;
		}
	}
3575 3576 3577 3578 3579 3580 3581 3582 3583

	/* Send HEADER_LAST_FEATURE mark. */
	fe = ff.buf;
	fe->feat_id     = HEADER_LAST_FEATURE;
	fe->header.type = PERF_RECORD_HEADER_FEATURE;
	fe->header.size = sizeof(*fe);

	ret = process(tool, ff.buf, NULL, NULL);

3584
	free(ff.buf);
3585
	return ret;
3586 3587
}

3588 3589
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3590
{
3591
	struct perf_tool *tool = session->tool;
3592 3593 3594 3595 3596 3597 3598 3599 3600
	struct feat_fd ff = { .fd = 0 };
	struct feature_event *fe = (struct feature_event *)event;
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3601
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
	ff.size = event->header.size - sizeof(event->header);
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
static struct event_update_event *
event_update_event__new(size_t size, u64 type, u64 id)
{
	struct event_update_event *ev;

	size += sizeof(*ev);
	size  = PERF_ALIGN(size, sizeof(u64));

	ev = zalloc(size);
	if (ev) {
		ev->header.type = PERF_RECORD_EVENT_UPDATE;
		ev->header.size = (u16)size;
		ev->type = type;
		ev->id = id;
	}
	return ev;
}

int
perf_event__synthesize_event_update_unit(struct perf_tool *tool,
					 struct perf_evsel *evsel,
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t size = strlen(evsel->unit);
	int err;

	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3661
	strlcpy(ev->data, evsel->unit, size + 1);
3662 3663 3664 3665 3666
	err = process(tool, (union perf_event *)ev, NULL, NULL);
	free(ev);
	return err;
}

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
int
perf_event__synthesize_event_update_scale(struct perf_tool *tool,
					  struct perf_evsel *evsel,
					  perf_event__handler_t process)
{
	struct event_update_event *ev;
	struct event_update_event_scale *ev_data;
	int err;

	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

	ev_data = (struct event_update_event_scale *) ev->data;
	ev_data->scale = evsel->scale;
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
int
perf_event__synthesize_event_update_name(struct perf_tool *tool,
					 struct perf_evsel *evsel,
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t len = strlen(evsel->name);
	int err;

	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3700
	strlcpy(ev->data, evsel->name, len + 1);
3701 3702 3703 3704
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}
3705

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
int
perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
					struct perf_evsel *evsel,
					perf_event__handler_t process)
{
	size_t size = sizeof(struct event_update_event);
	struct event_update_event *ev;
	int max, err;
	u16 type;

	if (!evsel->own_cpus)
		return 0;

	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
	if (!ev)
		return -ENOMEM;

	ev->header.type = PERF_RECORD_EVENT_UPDATE;
	ev->header.size = (u16)size;
	ev->type = PERF_EVENT_UPDATE__CPUS;
	ev->id   = evsel->id[0];

	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
				 evsel->own_cpus,
				 type, max);

	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
	struct event_update_event *ev = &event->event_update;
	struct event_update_event_scale *ev_scale;
	struct event_update_event_cpus *ev_cpus;
	struct cpu_map *map;
	size_t ret;

	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3775

3776
int perf_event__synthesize_attrs(struct perf_tool *tool,
3777 3778
				 struct perf_evlist *evlist,
				 perf_event__handler_t process)
3779
{
3780
	struct perf_evsel *evsel;
3781
	int err = 0;
3782

3783
	evlist__for_each_entry(evlist, evsel) {
3784 3785
		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
						  evsel->id, process);
3786 3787 3788 3789 3790 3791 3792 3793 3794
		if (err) {
			pr_debug("failed to create perf header attribute\n");
			return err;
		}
	}

	return err;
}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
static bool has_unit(struct perf_evsel *counter)
{
	return counter->unit && *counter->unit;
}

static bool has_scale(struct perf_evsel *counter)
{
	return counter->scale != 1;
}

int perf_event__synthesize_extra_attr(struct perf_tool *tool,
				      struct perf_evlist *evsel_list,
				      perf_event__handler_t process,
				      bool is_pipe)
{
	struct perf_evsel *counter;
	int err;

	/*
	 * Synthesize other events stuff not carried within
	 * attr event - unit, scale, name
	 */
	evlist__for_each_entry(evsel_list, counter) {
		if (!counter->supported)
			continue;

		/*
		 * Synthesize unit and scale only if it's defined.
		 */
		if (has_unit(counter)) {
			err = perf_event__synthesize_event_update_unit(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel unit.\n");
				return err;
			}
		}

		if (has_scale(counter)) {
			err = perf_event__synthesize_event_update_scale(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel counter.\n");
				return err;
			}
		}

		if (counter->own_cpus) {
			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel cpus.\n");
				return err;
			}
		}

		/*
		 * Name is needed only for pipe output,
		 * perf.data carries event names.
		 */
		if (is_pipe) {
			err = perf_event__synthesize_event_update_name(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel name.\n");
				return err;
			}
		}
	}
	return 0;
}

3863 3864
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3865
			     struct perf_evlist **pevlist)
3866
{
3867
	u32 i, ids, n_ids;
3868
	struct perf_evsel *evsel;
3869
	struct perf_evlist *evlist = *pevlist;
3870

3871
	if (evlist == NULL) {
3872
		*pevlist = evlist = perf_evlist__new();
3873
		if (evlist == NULL)
3874 3875 3876
			return -ENOMEM;
	}

3877
	evsel = perf_evsel__new(&event->attr.attr);
3878
	if (evsel == NULL)
3879 3880
		return -ENOMEM;

3881
	perf_evlist__add(evlist, evsel);
3882

3883 3884
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
3885
	n_ids = ids / sizeof(u64);
3886 3887 3888 3889 3890 3891 3892
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
	if (perf_evsel__alloc_id(evsel, 1, n_ids))
		return -ENOMEM;
3893 3894

	for (i = 0; i < n_ids; i++) {
3895
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3896 3897 3898 3899
	}

	return 0;
}
3900

3901 3902 3903 3904 3905
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
				     struct perf_evlist **pevlist)
{
	struct event_update_event *ev = &event->event_update;
3906
	struct event_update_event_scale *ev_scale;
3907
	struct event_update_event_cpus *ev_cpus;
3908 3909
	struct perf_evlist *evlist;
	struct perf_evsel *evsel;
3910
	struct cpu_map *map;
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

3921 3922 3923
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
3924
		break;
3925 3926 3927
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
3928 3929 3930
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		evsel->scale = ev_scale->scale;
3931
		break;
3932 3933 3934 3935 3936 3937 3938 3939
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			evsel->own_cpus = map;
		else
			pr_err("failed to get event_update cpus\n");
3940 3941 3942 3943
	default:
		break;
	}

3944 3945 3946
	return 0;
}

3947
int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3948
					struct perf_evlist *evlist,
3949
					perf_event__handler_t process)
3950
{
3951
	union perf_event ev;
J
Jiri Olsa 已提交
3952
	struct tracing_data *tdata;
3953
	ssize_t size = 0, aligned_size = 0, padding;
3954
	struct feat_fd ff;
3955
	int err __maybe_unused = 0;
3956

J
Jiri Olsa 已提交
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	/*
	 * We are going to store the size of the data followed
	 * by the data contents. Since the fd descriptor is a pipe,
	 * we cannot seek back to store the size of the data once
	 * we know it. Instead we:
	 *
	 * - write the tracing data to the temp file
	 * - get/write the data size to pipe
	 * - write the tracing data from the temp file
	 *   to the pipe
	 */
	tdata = tracing_data_get(&evlist->entries, fd, true);
	if (!tdata)
		return -1;

3972 3973 3974
	memset(&ev, 0, sizeof(ev));

	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
J
Jiri Olsa 已提交
3975
	size = tdata->size;
3976
	aligned_size = PERF_ALIGN(size, sizeof(u64));
3977 3978 3979 3980
	padding = aligned_size - size;
	ev.tracing_data.header.size = sizeof(ev.tracing_data);
	ev.tracing_data.size = aligned_size;

3981
	process(tool, &ev, NULL, NULL);
3982

J
Jiri Olsa 已提交
3983 3984 3985 3986 3987 3988
	/*
	 * The put function will copy all the tracing data
	 * stored in temp file to the pipe.
	 */
	tracing_data_put(tdata);

3989 3990
	ff = (struct feat_fd){ .fd = fd };
	if (write_padded(&ff, NULL, 0, padding))
3991
		return -1;
3992 3993 3994 3995

	return aligned_size;
}

3996 3997
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
3998
{
3999
	ssize_t size_read, padding, size = event->tracing_data.size;
4000
	int fd = perf_data__fd(session->data);
4001
	off_t offset = lseek(fd, 0, SEEK_CUR);
4002 4003 4004
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
4005
	lseek(fd, offset + sizeof(struct tracing_data_event),
4006 4007
	      SEEK_SET);

J
Jiri Olsa 已提交
4008
	size_read = trace_report(fd, &session->tevent,
4009
				 session->repipe);
4010
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4011

4012
	if (readn(fd, buf, padding) < 0) {
4013 4014 4015
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4016 4017
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4018 4019 4020 4021
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4022
	}
4023

4024 4025 4026 4027
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4028

4029
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4030
					       session->tevent.pevent);
4031

4032 4033
	return size_read + padding;
}
4034

4035
int perf_event__synthesize_build_id(struct perf_tool *tool,
4036
				    struct dso *pos, u16 misc,
4037
				    perf_event__handler_t process,
4038
				    struct machine *machine)
4039
{
4040
	union perf_event ev;
4041 4042 4043 4044 4045 4046 4047 4048 4049
	size_t len;
	int err = 0;

	if (!pos->hit)
		return err;

	memset(&ev, 0, sizeof(ev));

	len = pos->long_name_len + 1;
4050
	len = PERF_ALIGN(len, NAME_ALIGN);
4051 4052 4053
	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
	ev.build_id.header.misc = misc;
4054
	ev.build_id.pid = machine->pid;
4055 4056 4057
	ev.build_id.header.size = sizeof(ev.build_id) + len;
	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);

4058
	err = process(tool, &ev, NULL, machine);
4059 4060 4061 4062

	return err;
}

4063 4064
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4065
{
4066 4067
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4068
				 session);
4069 4070
	return 0;
}