header.c 88.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "util.h"
5
#include "string2.h"
6
#include <sys/param.h>
7
#include <sys/types.h>
8
#include <byteswap.h>
9 10 11
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
12
#include <linux/compiler.h>
13
#include <linux/list.h>
14
#include <linux/kernel.h>
15
#include <linux/bitops.h>
16
#include <linux/stringify.h>
17
#include <sys/stat.h>
18
#include <sys/utsname.h>
19
#include <linux/time64.h>
20
#include <dirent.h>
21
#include <bpf/libbpf.h>
22

23
#include "evlist.h"
24
#include "evsel.h"
25
#include "header.h"
26
#include "memswap.h"
27 28
#include "../perf.h"
#include "trace-event.h"
29
#include "session.h"
30
#include "symbol.h"
31
#include "debug.h"
32
#include "cpumap.h"
33
#include "pmu.h"
34
#include "vdso.h"
35
#include "strbuf.h"
36
#include "build-id.h"
37
#include "data.h"
38 39
#include <api/fs/fs.h>
#include "asm/bug.h"
40
#include "tool.h"
41
#include "time-utils.h"
42
#include "units.h"
J
Jiri Olsa 已提交
43
#include "cputopo.h"
44
#include "bpf-event.h"
45

46 47
#include "sane_ctype.h"

48 49 50 51 52 53 54 55 56 57 58 59
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
60

61
#define PERF_MAGIC	__perf_magic2
62

63 64
const char perf_version_string[] = PERF_VERSION;

65
struct perf_file_attr {
66
	struct perf_event_attr	attr;
67 68 69
	struct perf_file_section	ids;
};

70 71 72
struct feat_fd {
	struct perf_header	*ph;
	int			fd;
73
	void			*buf;	/* Either buf != NULL or fd >= 0 */
74 75
	ssize_t			offset;
	size_t			size;
76
	struct perf_evsel	*events;
77 78
};

79
void perf_header__set_feat(struct perf_header *header, int feat)
80
{
81
	set_bit(feat, header->adds_features);
82 83
}

84
void perf_header__clear_feat(struct perf_header *header, int feat)
85
{
86
	clear_bit(feat, header->adds_features);
87 88
}

89
bool perf_header__has_feat(const struct perf_header *header, int feat)
90
{
91
	return test_bit(feat, header->adds_features);
92 93
}

94
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95
{
96
	ssize_t ret = writen(ff->fd, buf, size);
97

98 99
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
127 128

	return 0;
129 130
}

131 132 133 134 135 136 137 138
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

158
/* Return: 0 if succeded, -ERR if failed. */
159 160
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
161 162
{
	static const char zero_buf[NAME_ALIGN];
163
	int err = do_write(ff, bf, count);
164 165

	if (!err)
166
		err = do_write(ff, zero_buf, count_aligned - count);
167 168 169 170

	return err;
}

171 172 173
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

174
/* Return: 0 if succeded, -ERR if failed. */
175
static int do_write_string(struct feat_fd *ff, const char *str)
176 177 178 179 180
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
181
	len = PERF_ALIGN(olen, NAME_ALIGN);
182 183

	/* write len, incl. \0 */
184
	ret = do_write(ff, &len, sizeof(len));
185 186 187
	if (ret < 0)
		return ret;

188
	return write_padded(ff, str, olen, len);
189 190
}

191
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192
{
193
	ssize_t ret = readn(ff->fd, addr, size);
194 195 196 197 198 199

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

219
static int do_read_u32(struct feat_fd *ff, u32 *addr)
220 221 222
{
	int ret;

223
	ret = __do_read(ff, addr, sizeof(*addr));
224 225 226
	if (ret)
		return ret;

227
	if (ff->ph->needs_swap)
228 229 230 231
		*addr = bswap_32(*addr);
	return 0;
}

232
static int do_read_u64(struct feat_fd *ff, u64 *addr)
233 234 235
{
	int ret;

236
	ret = __do_read(ff, addr, sizeof(*addr));
237 238 239
	if (ret)
		return ret;

240
	if (ff->ph->needs_swap)
241 242 243 244
		*addr = bswap_64(*addr);
	return 0;
}

245
static char *do_read_string(struct feat_fd *ff)
246 247 248 249
{
	u32 len;
	char *buf;

250
	if (do_read_u32(ff, &len))
251 252 253 254 255 256
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

257
	if (!__do_read(ff, buf, len)) {
258 259 260 261 262 263 264 265 266 267 268 269
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

300 301
static int write_tracing_data(struct feat_fd *ff,
			      struct perf_evlist *evlist)
302
{
303 304 305
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

306
	return read_tracing_data(ff->fd, &evlist->entries);
307 308
}

309
static int write_build_id(struct feat_fd *ff,
310
			  struct perf_evlist *evlist __maybe_unused)
311 312 313 314
{
	struct perf_session *session;
	int err;

315
	session = container_of(ff->ph, struct perf_session, header);
316

317 318 319
	if (!perf_session__read_build_ids(session, true))
		return -1;

320 321 322
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

323
	err = perf_session__write_buildid_table(session, ff);
324 325 326 327
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
328
	perf_session__cache_build_ids(session);
329 330 331 332

	return 0;
}

333
static int write_hostname(struct feat_fd *ff,
334
			  struct perf_evlist *evlist __maybe_unused)
335 336 337 338 339 340 341 342
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

343
	return do_write_string(ff, uts.nodename);
344 345
}

346
static int write_osrelease(struct feat_fd *ff,
347
			   struct perf_evlist *evlist __maybe_unused)
348 349 350 351 352 353 354 355
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

356
	return do_write_string(ff, uts.release);
357 358
}

359
static int write_arch(struct feat_fd *ff,
360
		      struct perf_evlist *evlist __maybe_unused)
361 362 363 364 365 366 367 368
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

369
	return do_write_string(ff, uts.machine);
370 371
}

372
static int write_version(struct feat_fd *ff,
373
			 struct perf_evlist *evlist __maybe_unused)
374
{
375
	return do_write_string(ff, perf_version_string);
376 377
}

378
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379 380 381 382
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
383
	const char *search = cpuinfo_proc;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

400 401
	if (ret) {
		ret = -1;
402
		goto done;
403
	}
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
			char *q = r;
			*p = ' ';
			while (*q && isspace(*q))
				q++;
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
428
	ret = do_write_string(ff, s);
429 430 431 432 433 434
done:
	free(buf);
	fclose(file);
	return ret;
}

435
static int write_cpudesc(struct feat_fd *ff,
436 437 438 439 440 441 442
		       struct perf_evlist *evlist __maybe_unused)
{
	const char *cpuinfo_procs[] = CPUINFO_PROC;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
443
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 445 446 447 448 449 450
		if (ret >= 0)
			return ret;
	}
	return -1;
}


451
static int write_nrcpus(struct feat_fd *ff,
452
			struct perf_evlist *evlist __maybe_unused)
453 454 455 456 457
{
	long nr;
	u32 nrc, nra;
	int ret;

458
	nrc = cpu__max_present_cpu();
459 460 461 462 463 464 465

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

466
	ret = do_write(ff, &nrc, sizeof(nrc));
467 468 469
	if (ret < 0)
		return ret;

470
	return do_write(ff, &nra, sizeof(nra));
471 472
}

473
static int write_event_desc(struct feat_fd *ff,
474 475
			    struct perf_evlist *evlist)
{
476
	struct perf_evsel *evsel;
477
	u32 nre, nri, sz;
478 479
	int ret;

480
	nre = evlist->nr_entries;
481 482 483 484

	/*
	 * write number of events
	 */
485
	ret = do_write(ff, &nre, sizeof(nre));
486 487 488 489 490 491
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
492
	sz = (u32)sizeof(evsel->attr);
493
	ret = do_write(ff, &sz, sizeof(sz));
494 495 496
	if (ret < 0)
		return ret;

497
	evlist__for_each_entry(evlist, evsel) {
498
		ret = do_write(ff, &evsel->attr, sz);
499 500 501 502 503 504 505 506 507
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
508
		nri = evsel->ids;
509
		ret = do_write(ff, &nri, sizeof(nri));
510 511 512 513 514 515
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
516
		ret = do_write_string(ff, perf_evsel__name(evsel));
517 518 519 520 521
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
522
		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 524 525 526 527 528
		if (ret < 0)
			return ret;
	}
	return 0;
}

529
static int write_cmdline(struct feat_fd *ff,
530
			 struct perf_evlist *evlist __maybe_unused)
531
{
532 533
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
534

535
	/* actual path to perf binary */
536
	buf = perf_exe(pbuf, MAXPATHLEN);
537 538

	/* account for binary path */
539
	n = perf_env.nr_cmdline + 1;
540

541
	ret = do_write(ff, &n, sizeof(n));
542 543 544
	if (ret < 0)
		return ret;

545
	ret = do_write_string(ff, buf);
546 547 548
	if (ret < 0)
		return ret;

549
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 552 553 554 555 556 557
		if (ret < 0)
			return ret;
	}
	return 0;
}


558 559
static int write_cpu_topology(struct feat_fd *ff,
			      struct perf_evlist *evlist __maybe_unused)
560
{
J
Jiri Olsa 已提交
561
	struct cpu_topology *tp;
562
	u32 i;
563
	int ret, j;
564

J
Jiri Olsa 已提交
565
	tp = cpu_topology__new();
566 567 568
	if (!tp)
		return -1;

569
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 571 572 573
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
574
		ret = do_write_string(ff, tp->core_siblings[i]);
575 576 577
		if (ret < 0)
			goto done;
	}
578
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 580 581 582
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
583
		ret = do_write_string(ff, tp->thread_siblings[i]);
584 585 586
		if (ret < 0)
			break;
	}
587

588 589 590 591 592
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593
		ret = do_write(ff, &perf_env.cpu[j].core_id,
594
			       sizeof(perf_env.cpu[j].core_id));
595 596
		if (ret < 0)
			return ret;
597
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
598
			       sizeof(perf_env.cpu[j].socket_id));
599 600 601
		if (ret < 0)
			return ret;
	}
602
done:
J
Jiri Olsa 已提交
603
	cpu_topology__delete(tp);
604 605 606 607 608
	return ret;
}



609 610
static int write_total_mem(struct feat_fd *ff,
			   struct perf_evlist *evlist __maybe_unused)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
630
			ret = do_write(ff, &mem, sizeof(mem));
631 632
	} else
		ret = -1;
633 634 635 636 637
	free(buf);
	fclose(fp);
	return ret;
}

638 639
static int write_numa_topology(struct feat_fd *ff,
			       struct perf_evlist *evlist __maybe_unused)
640
{
J
Jiri Olsa 已提交
641
	struct numa_topology *tp;
642
	int ret = -1;
J
Jiri Olsa 已提交
643
	u32 i;
644

J
Jiri Olsa 已提交
645 646 647
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
648

J
Jiri Olsa 已提交
649 650 651
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
652

J
Jiri Olsa 已提交
653 654
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
655

J
Jiri Olsa 已提交
656 657 658
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
659

J
Jiri Olsa 已提交
660 661 662
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
663

J
Jiri Olsa 已提交
664 665 666
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
667

J
Jiri Olsa 已提交
668
		ret = do_write_string(ff, n->cpus);
669
		if (ret < 0)
J
Jiri Olsa 已提交
670
			goto err;
671
	}
J
Jiri Olsa 已提交
672 673 674 675 676

	ret = 0;

err:
	numa_topology__delete(tp);
677 678 679
	return ret;
}

680 681 682 683 684 685 686 687 688 689 690 691
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

692
static int write_pmu_mappings(struct feat_fd *ff,
693
			      struct perf_evlist *evlist __maybe_unused)
694 695
{
	struct perf_pmu *pmu = NULL;
696
	u32 pmu_num = 0;
697
	int ret;
698

699 700 701 702 703 704 705 706 707 708
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

709
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710 711
	if (ret < 0)
		return ret;
712 713 714 715

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
716

717
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718 719 720
		if (ret < 0)
			return ret;

721
		ret = do_write_string(ff, pmu->name);
722 723
		if (ret < 0)
			return ret;
724 725 726 727 728
	}

	return 0;
}

729 730 731 732 733 734 735 736 737 738 739 740
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
741
static int write_group_desc(struct feat_fd *ff,
742 743 744 745 746 747
			    struct perf_evlist *evlist)
{
	u32 nr_groups = evlist->nr_groups;
	struct perf_evsel *evsel;
	int ret;

748
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749 750 751
	if (ret < 0)
		return ret;

752
	evlist__for_each_entry(evlist, evsel) {
753 754 755 756 757 758
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
			u32 nr_members = evsel->nr_members;

759
			ret = do_write_string(ff, name);
760 761 762
			if (ret < 0)
				return ret;

763
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764 765 766
			if (ret < 0)
				return ret;

767
			ret = do_write(ff, &nr_members, sizeof(nr_members));
768 769 770 771 772 773 774
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

814 815
/*
 * default get_cpuid(): nothing gets recorded
816
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
817
 */
818
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
819 820 821 822
{
	return -1;
}

823
static int write_cpuid(struct feat_fd *ff,
824
		       struct perf_evlist *evlist __maybe_unused)
825 826 827 828 829
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
830 831
	if (ret)
		return -1;
832

833
	return do_write_string(ff, buffer);
834 835
}

836 837
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
			      struct perf_evlist *evlist __maybe_unused)
838 839 840 841
{
	return 0;
}

842
static int write_auxtrace(struct feat_fd *ff,
843 844
			  struct perf_evlist *evlist __maybe_unused)
{
845 846 847
	struct perf_session *session;
	int err;

848 849 850
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

851
	session = container_of(ff->ph, struct perf_session, header);
852

853
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854 855 856
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
857 858
}

859 860 861 862 863 864 865
static int write_clockid(struct feat_fd *ff,
			 struct perf_evlist *evlist __maybe_unused)
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
static int write_dir_format(struct feat_fd *ff,
			    struct perf_evlist *evlist __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
			       struct perf_evlist *evlist __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
			       struct perf_evlist *evlist __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static int write_bpf_btf(struct feat_fd *ff,
			 struct perf_evlist *evlist __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
	cache->type = rtrim(cache->type);

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
		free(cache->type);
		return -1;
	}

	cache->size[len] = 0;
	cache->size = rtrim(cache->size);

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
		free(cache->map);
		free(cache->type);
		return -1;
	}

	cache->map[len] = 0;
	cache->map = rtrim(cache->map);
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

#define MAX_CACHES 2000

1105 1106
static int write_cache(struct feat_fd *ff,
		       struct perf_evlist *evlist __maybe_unused)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	struct cpu_cache_level caches[MAX_CACHES];
	u32 cnt = 0, i, version = 1;
	int ret;

	ret = build_caches(caches, MAX_CACHES, &cnt);
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1118
	ret = do_write(ff, &version, sizeof(u32));
1119 1120 1121
	if (ret < 0)
		goto out;

1122
	ret = do_write(ff, &cnt, sizeof(u32));
1123 1124 1125 1126 1127 1128 1129
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1130
			ret = do_write(ff, &c->v, sizeof(u32));	\
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1141
			ret = do_write_string(ff, (const char *) c->v);	\
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1157
static int write_stat(struct feat_fd *ff __maybe_unused,
1158 1159 1160 1161 1162
		      struct perf_evlist *evlist __maybe_unused)
{
	return 0;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static int write_sample_time(struct feat_fd *ff,
			     struct perf_evlist *evlist)
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1247 1248
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
			      struct perf_evlist *evlist __maybe_unused)
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static int write_compressed(struct feat_fd *ff __maybe_unused,
			    struct perf_evlist *evlist __maybe_unused)
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1371
static void print_hostname(struct feat_fd *ff, FILE *fp)
1372
{
1373
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1374 1375
}

1376
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1377
{
1378
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1379 1380
}

1381
static void print_arch(struct feat_fd *ff, FILE *fp)
1382
{
1383
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1384 1385
}

1386
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1387
{
1388
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1389 1390
}

1391
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1392
{
1393 1394
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1395 1396
}

1397
static void print_version(struct feat_fd *ff, FILE *fp)
1398
{
1399
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1400 1401
}

1402
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1403
{
1404
	int nr, i;
1405

1406
	nr = ff->ph->env.nr_cmdline;
1407 1408 1409

	fprintf(fp, "# cmdline : ");

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1428 1429 1430
	fputc('\n', fp);
}

1431
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1432
{
1433 1434
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1435
	int nr, i;
1436 1437
	char *str;

1438 1439
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1440 1441 1442

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling cores   : %s\n", str);
1443
		str += strlen(str) + 1;
1444 1445
	}

1446 1447
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1448 1449 1450

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1451
		str += strlen(str) + 1;
1452
	}
1453 1454 1455 1456 1457 1458 1459

	if (ph->env.cpu != NULL) {
		for (i = 0; i < cpu_nr; i++)
			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
	} else
		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1460 1461
}

1462 1463 1464 1465 1466 1467
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1495 1496 1497

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1498 1499 1500 1501 1502
	}

	up_read(&env->bpf_progs.lock);
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1525
static void free_event_desc(struct perf_evsel *events)
1526
{
1527 1528 1529 1530 1531 1532
	struct perf_evsel *evsel;

	if (!events)
		return;

	for (evsel = events; evsel->attr.size; evsel++) {
1533 1534
		zfree(&evsel->name);
		zfree(&evsel->id);
1535 1536 1537 1538 1539
	}

	free(events);
}

1540
static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1541 1542 1543
{
	struct perf_evsel *evsel, *events = NULL;
	u64 *id;
1544
	void *buf = NULL;
1545 1546
	u32 nre, sz, nr, i, j;
	size_t msz;
1547 1548

	/* number of events */
1549
	if (do_read_u32(ff, &nre))
1550 1551
		goto error;

1552
	if (do_read_u32(ff, &sz))
1553 1554
		goto error;

1555
	/* buffer to hold on file attr struct */
1556 1557 1558 1559
	buf = malloc(sz);
	if (!buf)
		goto error;

1560 1561 1562 1563 1564 1565
	/* the last event terminates with evsel->attr.size == 0: */
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

	msz = sizeof(evsel->attr);
1566
	if (sz < msz)
1567 1568
		msz = sz;

1569 1570
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1571

1572 1573 1574 1575
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1576
		if (__do_read(ff, buf, sz))
1577 1578
			goto error;

1579
		if (ff->ph->needs_swap)
1580 1581
			perf_event__attr_swap(buf);

1582
		memcpy(&evsel->attr, buf, msz);
1583

1584
		if (do_read_u32(ff, &nr))
1585 1586
			goto error;

1587
		if (ff->ph->needs_swap)
1588
			evsel->needs_swap = true;
1589

1590
		evsel->name = do_read_string(ff);
1591 1592
		if (!evsel->name)
			goto error;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
		evsel->ids = nr;
		evsel->id = id;

		for (j = 0 ; j < nr; j++) {
1604
			if (do_read_u64(ff, id))
1605 1606 1607 1608 1609
				goto error;
			id++;
		}
	}
out:
1610
	free(buf);
1611 1612
	return events;
error:
1613
	free_event_desc(events);
1614 1615 1616 1617
	events = NULL;
	goto out;
}

1618
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1619
				void *priv __maybe_unused)
1620 1621 1622 1623
{
	return fprintf(fp, ", %s = %s", name, val);
}

1624
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1625
{
1626
	struct perf_evsel *evsel, *events;
1627 1628 1629
	u32 j;
	u64 *id;

1630 1631 1632 1633 1634
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1635 1636 1637 1638 1639 1640 1641
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

	for (evsel = events; evsel->attr.size; evsel++) {
		fprintf(fp, "# event : name = %s, ", evsel->name);
1642

1643
		if (evsel->ids) {
1644
			fprintf(fp, ", id = {");
1645 1646 1647 1648 1649
			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1650
			fprintf(fp, " }");
1651
		}
1652

1653
		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1654

1655 1656
		fputc('\n', fp);
	}
1657 1658

	free_event_desc(events);
1659
	ff->events = NULL;
1660 1661
}

1662
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1663
{
1664
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1665 1666
}

1667
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1668
{
1669 1670
	int i;
	struct numa_node *n;
1671

1672 1673
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1674 1675 1676

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1677
			n->node, n->mem_total, n->mem_free);
1678

1679 1680
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1681 1682 1683
	}
}

1684
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1685
{
1686
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1687 1688
}

1689
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1690 1691 1692 1693
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1694
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1695 1696 1697 1698
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1699
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1700 1701 1702 1703
{
	fprintf(fp, "# contains stat data\n");
}

1704
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1705 1706 1707 1708
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1709
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1710
		fprintf(fp, "#  ");
1711
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1712 1713 1714
	}
}

1715 1716 1717 1718 1719 1720 1721
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1722
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1723 1724
{
	const char *delimiter = "# pmu mappings: ";
1725
	char *str, *tmp;
1726 1727 1728
	u32 pmu_num;
	u32 type;

1729
	pmu_num = ff->ph->env.nr_pmu_mappings;
1730 1731 1732 1733 1734
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1735
	str = ff->ph->env.pmu_mappings;
1736

1737
	while (pmu_num) {
1738 1739 1740 1741 1742 1743
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1744

1745
		delimiter = ", ";
1746 1747
		str += strlen(str) + 1;
		pmu_num--;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1758
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1759 1760 1761 1762 1763
{
	struct perf_session *session;
	struct perf_evsel *evsel;
	u32 nr = 0;

1764
	session = container_of(ff->ph, struct perf_session, header);
1765

1766
	evlist__for_each_entry(session->evlist, evsel) {
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

			nr = evsel->nr_members - 1;
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1833 1834 1835 1836 1837 1838
static int __event_process_build_id(struct build_id_event *bev,
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1839
	u16 cpumode;
1840 1841 1842 1843 1844 1845 1846
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1847
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1848

1849
	switch (cpumode) {
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1864
	dso = machine__findnew_dso(machine, filename);
1865
	if (dso != NULL) {
1866
		char sbuild_id[SBUILD_ID_SIZE];
1867 1868 1869

		dso__set_build_id(dso, &bev->build_id);

1870 1871 1872 1873
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1874
				dso__set_module_info(dso, &m, machine);
1875 1876 1877 1878 1879
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1880 1881 1882 1883 1884

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1885
		dso__put(dso);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1899
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1900 1901 1902 1903 1904 1905 1906 1907 1908
		char			   filename[0];
	} old_bev;
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1909
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1910 1911 1912 1913 1914 1915
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1916
		if (readn(input, filename, len) != len)
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

1951
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1952 1953 1954 1955 1956 1957
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
1958
		if (readn(input, filename, len) != len)
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
		 * Added a field to struct build_id_event that broke the file
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

1988 1989
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1990
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1991
{\
1992
	ff->ph->env.__feat_env = do_read_string(ff); \
1993
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1994 1995 1996 1997 1998 1999 2000 2001 2002
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2003
static int process_tracing_data(struct feat_fd *ff, void *data)
2004
{
2005 2006
	ssize_t ret = trace_report(ff->fd, data, false);

2007
	return ret < 0 ? -1 : 0;
2008 2009
}

2010
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2011
{
2012
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2013 2014 2015 2016
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2017
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2018
{
2019 2020
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2021

2022
	ret = do_read_u32(ff, &nr_cpus_avail);
2023 2024
	if (ret)
		return ret;
2025

2026
	ret = do_read_u32(ff, &nr_cpus_online);
2027 2028
	if (ret)
		return ret;
2029 2030
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2031 2032 2033
	return 0;
}

2034
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2035
{
2036 2037
	u64 total_mem;
	int ret;
2038

2039
	ret = do_read_u64(ff, &total_mem);
2040
	if (ret)
2041
		return -1;
2042
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2043 2044 2045
	return 0;
}

2046 2047 2048 2049 2050
static struct perf_evsel *
perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
{
	struct perf_evsel *evsel;

2051
	evlist__for_each_entry(evlist, evsel) {
2052 2053 2054 2055 2056 2057 2058 2059
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2060 2061
perf_evlist__set_event_name(struct perf_evlist *evlist,
			    struct perf_evsel *event)
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
{
	struct perf_evsel *evsel;

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2079
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2080
{
2081
	struct perf_session *session;
2082
	struct perf_evsel *evsel, *events = read_event_desc(ff);
2083 2084 2085 2086

	if (!events)
		return 0;

2087
	session = container_of(ff->ph, struct perf_session, header);
2088

2089
	if (session->data->is_pipe) {
2090 2091 2092 2093 2094
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2095 2096 2097
	for (evsel = events; evsel->attr.size; evsel++)
		perf_evlist__set_event_name(session->evlist, evsel);

2098
	if (!session->data->is_pipe)
2099
		free_event_desc(events);
2100 2101 2102 2103

	return 0;
}

2104
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2105
{
2106 2107
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2108

2109
	if (do_read_u32(ff, &nr))
2110 2111
		return -1;

2112
	ff->ph->env.nr_cmdline = nr;
2113

2114
	cmdline = zalloc(ff->size + nr + 1);
2115 2116 2117 2118 2119 2120
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2121 2122

	for (i = 0; i < nr; i++) {
2123
		str = do_read_string(ff);
2124 2125 2126
		if (!str)
			goto error;

2127 2128 2129
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2130 2131
		free(str);
	}
2132 2133
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2134 2135 2136
	return 0;

error:
2137 2138
	free(argv);
	free(cmdline);
2139 2140 2141
	return -1;
}

2142
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2143 2144 2145 2146
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2147
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2148
	u64 size = 0;
2149
	struct perf_header *ph = ff->ph;
2150
	bool do_core_id_test = true;
2151 2152 2153 2154

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2155

2156
	if (do_read_u32(ff, &nr))
2157
		goto free_cpu;
2158 2159

	ph->env.nr_sibling_cores = nr;
2160
	size += sizeof(u32);
2161 2162
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2163 2164

	for (i = 0; i < nr; i++) {
2165
		str = do_read_string(ff);
2166 2167 2168 2169
		if (!str)
			goto error;

		/* include a NULL character at the end */
2170 2171
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2172
		size += string_size(str);
2173 2174 2175 2176
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2177
	if (do_read_u32(ff, &nr))
2178 2179 2180
		return -1;

	ph->env.nr_sibling_threads = nr;
2181
	size += sizeof(u32);
2182 2183

	for (i = 0; i < nr; i++) {
2184
		str = do_read_string(ff);
2185 2186 2187 2188
		if (!str)
			goto error;

		/* include a NULL character at the end */
2189 2190
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2191
		size += string_size(str);
2192 2193 2194
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2195 2196 2197 2198 2199

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2200
	if (ff->size <= size) {
2201 2202 2203 2204
		zfree(&ph->env.cpu);
		return 0;
	}

2205 2206 2207 2208 2209 2210 2211
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
	 */
	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
		do_core_id_test = false;

2212
	for (i = 0; i < (u32)cpu_nr; i++) {
2213
		if (do_read_u32(ff, &nr))
2214 2215 2216 2217
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;

2218
		if (do_read_u32(ff, &nr))
2219 2220
			goto free_cpu;

2221
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2222 2223 2224 2225 2226 2227 2228 2229
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
	}

2230 2231 2232 2233
	return 0;

error:
	strbuf_release(&sb);
2234 2235
free_cpu:
	zfree(&ph->env.cpu);
2236 2237 2238
	return -1;
}

2239
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2240
{
2241 2242
	struct numa_node *nodes, *n;
	u32 nr, i;
2243 2244 2245
	char *str;

	/* nr nodes */
2246
	if (do_read_u32(ff, &nr))
2247
		return -1;
2248

2249 2250 2251
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2252 2253

	for (i = 0; i < nr; i++) {
2254 2255
		n = &nodes[i];

2256
		/* node number */
2257
		if (do_read_u32(ff, &n->node))
2258 2259
			goto error;

2260
		if (do_read_u64(ff, &n->mem_total))
2261 2262
			goto error;

2263
		if (do_read_u64(ff, &n->mem_free))
2264 2265
			goto error;

2266
		str = do_read_string(ff);
2267 2268 2269
		if (!str)
			goto error;

2270 2271
		n->map = cpu_map__new(str);
		if (!n->map)
2272
			goto error;
2273

2274 2275
		free(str);
	}
2276 2277
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2278 2279 2280
	return 0;

error:
2281
	free(nodes);
2282 2283 2284
	return -1;
}

2285
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2286 2287 2288 2289 2290 2291
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2292
	if (do_read_u32(ff, &pmu_num))
2293 2294 2295 2296 2297 2298 2299
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2300
	ff->ph->env.nr_pmu_mappings = pmu_num;
2301 2302
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2303 2304

	while (pmu_num) {
2305
		if (do_read_u32(ff, &type))
2306 2307
			goto error;

2308
		name = do_read_string(ff);
2309 2310 2311
		if (!name)
			goto error;

2312 2313
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2314
		/* include a NULL character at the end */
2315 2316
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2317

2318
		if (!strcmp(name, "msr"))
2319
			ff->ph->env.msr_pmu_type = type;
2320

2321 2322 2323
		free(name);
		pmu_num--;
	}
2324
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2325 2326 2327 2328 2329 2330 2331
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2332
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
	struct perf_evsel *evsel, *leader = NULL;
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2344
	if (do_read_u32(ff, &nr_groups))
2345 2346
		return -1;

2347
	ff->ph->env.nr_groups = nr_groups;
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2358
		desc[i].name = do_read_string(ff);
2359 2360 2361
		if (!desc[i].name)
			goto out_free;

2362
		if (do_read_u32(ff, &desc[i].leader_idx))
2363 2364
			goto out_free;

2365
		if (do_read_u32(ff, &desc[i].nr_members))
2366 2367 2368 2369 2370 2371
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2372
	session = container_of(ff->ph, struct perf_session, header);
2373 2374 2375
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2376
	evlist__for_each_entry(session->evlist, evsel) {
2377 2378 2379
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2380
			if (strcmp(desc[i].name, "{anon_group}")) {
2381
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2382 2383
				desc[i].name = NULL;
			}
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
			evsel->nr_members = desc[i].nr_members;

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
			nr = evsel->nr_members - 1;
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2409
	for (i = 0; i < nr_groups; i++)
2410
		zfree(&desc[i].name);
2411 2412 2413 2414 2415
	free(desc);

	return ret;
}

2416
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2417 2418 2419 2420
{
	struct perf_session *session;
	int err;

2421
	session = container_of(ff->ph, struct perf_session, header);
2422

2423
	err = auxtrace_index__process(ff->fd, ff->size, session,
2424
				      ff->ph->needs_swap);
2425 2426 2427 2428 2429
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2430
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2431 2432 2433 2434
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2435
	if (do_read_u32(ff, &version))
2436 2437 2438 2439 2440
		return -1;

	if (version != 1)
		return -1;

2441
	if (do_read_u32(ff, &cnt))
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2452
			if (do_read_u32(ff, &c.v))\
2453 2454 2455 2456 2457 2458 2459 2460
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2461
		#define _R(v)					\
2462
			c.v = do_read_string(ff);		\
2463
			if (!c.v)				\
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2474 2475
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2476 2477 2478 2479 2480 2481
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2555 2556 2557 2558 2559 2560 2561 2562 2563
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2640
	up_write(&env->bpf_progs.lock);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2655 2656 2657
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2658
	struct btf_node *node = NULL;
2659
	u32 count, i;
2660
	int err = -1;
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2676
			goto out;
2677
		if (do_read_u32(ff, &data_size))
2678
			goto out;
2679 2680 2681

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2682
			goto out;
2683 2684 2685 2686

		node->id = id;
		node->data_size = data_size;

2687 2688
		if (__do_read(ff, node->data, data_size))
			goto out;
2689 2690

		perf_env__insert_btf(env, node);
2691
		node = NULL;
2692 2693
	}

2694 2695
	err = 0;
out:
2696
	up_write(&env->bpf_progs.lock);
2697 2698
	free(node);
	return err;
2699 2700
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2722
struct feature_ops {
2723
	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2724
	void (*print)(struct feat_fd *ff, FILE *fp);
2725
	int (*process)(struct feat_fd *ff, void *data);
2726 2727
	const char *name;
	bool full_only;
2728
	bool synthesize;
2729 2730
};

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2749 2750

/* feature_ops not implemented: */
2751 2752
#define print_tracing_data	NULL
#define print_build_id		NULL
2753

2754 2755 2756 2757
#define process_branch_stack	NULL
#define process_stat		NULL


2758
static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2775
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2776 2777 2778
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2779
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2780
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2781
	FEAT_OPR(CLOCKID,	clockid,	false),
2782
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2783 2784
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2785
	FEAT_OPR(COMPRESSED,	compressed,	false),
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2798
	struct feat_fd ff;
2799 2800 2801 2802 2803 2804

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2805
	if (feat >= HEADER_LAST_FEATURE) {
2806
		pr_warning("unknown feature %d\n", feat);
2807
		return 0;
2808 2809 2810 2811
	}
	if (!feat_ops[feat].print)
		return 0;

2812 2813 2814 2815 2816
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2817
	if (!feat_ops[feat].full_only || hd->full)
2818
		feat_ops[feat].print(&ff, hd->fp);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2830
	int fd = perf_data__fd(session->data);
2831
	struct stat st;
2832
	time_t stctime;
J
Jiri Olsa 已提交
2833
	int ret, bit;
2834

2835 2836 2837
	hd.fp = fp;
	hd.full = full;

2838 2839 2840 2841
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2842 2843
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2844 2845 2846 2847 2848

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2849

2850 2851
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2852

2853
	if (session->data->is_pipe)
2854 2855
		return 0;

J
Jiri Olsa 已提交
2856 2857 2858 2859 2860 2861 2862
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2863 2864 2865
	return 0;
}

2866
static int do_write_feat(struct feat_fd *ff, int type,
2867 2868 2869 2870 2871 2872
			 struct perf_file_section **p,
			 struct perf_evlist *evlist)
{
	int err;
	int ret = 0;

2873
	if (perf_header__has_feat(ff->ph, type)) {
2874 2875
		if (!feat_ops[type].write)
			return -1;
2876

2877 2878 2879
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2880
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2881

2882
		err = feat_ops[type].write(ff, evlist);
2883
		if (err < 0) {
2884
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2885 2886

			/* undo anything written */
2887
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2888 2889 2890

			return -1;
		}
2891
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2892 2893 2894 2895 2896
		(*p)++;
	}
	return ret;
}

2897
static int perf_header__adds_write(struct perf_header *header,
2898
				   struct perf_evlist *evlist, int fd)
2899
{
2900
	int nr_sections;
2901
	struct feat_fd ff;
2902
	struct perf_file_section *feat_sec, *p;
2903 2904
	int sec_size;
	u64 sec_start;
2905
	int feat;
2906
	int err;
2907

2908 2909 2910 2911 2912
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

2913
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2914
	if (!nr_sections)
2915
		return 0;
2916

2917
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2918 2919
	if (feat_sec == NULL)
		return -ENOMEM;
2920 2921 2922

	sec_size = sizeof(*feat_sec) * nr_sections;

2923
	sec_start = header->feat_offset;
2924
	lseek(fd, sec_start + sec_size, SEEK_SET);
2925

2926
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2927
		if (do_write_feat(&ff, feat, &p, evlist))
2928 2929
			perf_header__clear_feat(header, feat);
	}
2930

2931
	lseek(fd, sec_start, SEEK_SET);
2932 2933
	/*
	 * may write more than needed due to dropped feature, but
2934
	 * this is okay, reader will skip the missing entries
2935
	 */
2936
	err = do_write(&ff, feat_sec, sec_size);
2937 2938
	if (err < 0)
		pr_debug("failed to write feature section\n");
2939
	free(feat_sec);
2940
	return err;
2941
}
2942

2943 2944 2945
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
2946
	struct feat_fd ff;
2947 2948
	int err;

2949 2950
	ff = (struct feat_fd){ .fd = fd };

2951 2952 2953 2954 2955
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

2956
	err = do_write(&ff, &f_header, sizeof(f_header));
2957 2958 2959 2960 2961 2962 2963 2964
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

2965 2966 2967
int perf_session__write_header(struct perf_session *session,
			       struct perf_evlist *evlist,
			       int fd, bool at_exit)
2968 2969 2970
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
2971
	struct perf_header *header = &session->header;
2972
	struct perf_evsel *evsel;
2973
	struct feat_fd ff;
2974
	u64 attr_offset;
2975
	int err;
2976

2977
	ff = (struct feat_fd){ .fd = fd};
2978 2979
	lseek(fd, sizeof(f_header), SEEK_SET);

2980
	evlist__for_each_entry(session->evlist, evsel) {
2981
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2982
		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2983 2984 2985 2986
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
2987 2988
	}

2989
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2990

2991
	evlist__for_each_entry(evlist, evsel) {
2992
		f_attr = (struct perf_file_attr){
2993
			.attr = evsel->attr,
2994
			.ids  = {
2995 2996
				.offset = evsel->id_offset,
				.size   = evsel->ids * sizeof(u64),
2997 2998
			}
		};
2999
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3000 3001 3002 3003
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3004 3005
	}

3006 3007
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3008
	header->feat_offset = header->data_offset + header->data_size;
3009

3010
	if (at_exit) {
3011
		err = perf_header__adds_write(header, evlist, fd);
3012 3013 3014
		if (err < 0)
			return err;
	}
3015

3016 3017 3018 3019 3020
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3021
			.offset = attr_offset,
3022
			.size   = evlist->nr_entries * sizeof(f_attr),
3023 3024
		},
		.data = {
3025 3026
			.offset = header->data_offset,
			.size	= header->data_size,
3027
		},
3028
		/* event_types is ignored, store zeros */
3029 3030
	};

3031
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3032

3033
	lseek(fd, 0, SEEK_SET);
3034
	err = do_write(&ff, &f_header, sizeof(f_header));
3035 3036 3037 3038
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3039
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3040

3041
	return 0;
3042 3043
}

3044
static int perf_header__getbuffer64(struct perf_header *header,
3045 3046
				    int fd, void *buf, size_t size)
{
3047
	if (readn(fd, buf, size) <= 0)
3048 3049
		return -1;

3050
	if (header->needs_swap)
3051 3052 3053 3054 3055
		mem_bswap_64(buf, size);

	return 0;
}

3056
int perf_header__process_sections(struct perf_header *header, int fd,
3057
				  void *data,
3058
				  int (*process)(struct perf_file_section *section,
3059 3060
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3061
{
3062
	struct perf_file_section *feat_sec, *sec;
3063 3064
	int nr_sections;
	int sec_size;
3065 3066
	int feat;
	int err;
3067

3068
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3069
	if (!nr_sections)
3070
		return 0;
3071

3072
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3073
	if (!feat_sec)
3074
		return -1;
3075 3076 3077

	sec_size = sizeof(*feat_sec) * nr_sections;

3078
	lseek(fd, header->feat_offset, SEEK_SET);
3079

3080 3081
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3082
		goto out_free;
3083

3084 3085 3086 3087
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3088
	}
3089
	err = 0;
3090
out_free:
3091 3092
	free(feat_sec);
	return err;
3093
}
3094

3095 3096 3097
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3098
	[2] = PERF_ATTR_SIZE_VER2,
3099
	[3] = PERF_ATTR_SIZE_VER3,
3100
	[4] = PERF_ATTR_SIZE_VER4,
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3111
{
3112 3113
	uint64_t ref_size, attr_size;
	int i;
3114

3115 3116 3117 3118 3119 3120 3121
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3122

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3133

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3158 3159 3160

			ph->needs_swap = true;
		}
3161
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3162 3163
		return 0;
	}
3164 3165 3166
	return -1;
}

F
Feng Tang 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3177 3178 3179 3180 3181 3182 3183 3184
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3185
		ph->version = PERF_HEADER_VERSION_1;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3197
	ph->version = PERF_HEADER_VERSION_2;
3198

3199 3200
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3201 3202
		return 0;

3203 3204
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3205 3206 3207 3208 3209 3210 3211
		return -1;

	ph->needs_swap = true;

	return 0;
}

3212
int perf_file_header__read(struct perf_file_header *header,
3213 3214
			   struct perf_header *ph, int fd)
{
3215
	ssize_t ret;
3216

3217 3218
	lseek(fd, 0, SEEK_SET);

3219 3220
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3221 3222
		return -1;

3223 3224 3225
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3226
		return -1;
3227
	}
3228

3229
	if (ph->needs_swap) {
3230
		mem_bswap_64(header, offsetof(struct perf_file_header,
3231
			     adds_features));
3232 3233
	}

3234
	if (header->size != sizeof(*header)) {
3235
		/* Support the previous format */
3236 3237
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3238 3239
		else
			return -1;
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3256 3257
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3258 3259

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3260 3261 3262 3263 3264 3265 3266
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3267 3268 3269 3270 3271 3272
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3273
	}
3274

3275
	memcpy(&ph->adds_features, &header->adds_features,
3276
	       sizeof(ph->adds_features));
3277

3278 3279
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3280
	ph->feat_offset  = header->data.offset + header->data.size;
3281 3282 3283
	return 0;
}

3284
static int perf_file_section__process(struct perf_file_section *section,
3285
				      struct perf_header *ph,
3286
				      int feat, int fd, void *data)
3287
{
3288
	struct feat_fd fdd = {
3289 3290
		.fd	= fd,
		.ph	= ph,
3291 3292
		.size	= section->size,
		.offset	= section->offset,
3293 3294
	};

3295
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3296
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3297
			  "%d, continuing...\n", section->offset, feat);
3298 3299 3300
		return 0;
	}

3301 3302 3303 3304 3305
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3306 3307
	if (!feat_ops[feat].process)
		return 0;
3308

3309
	return feat_ops[feat].process(&fdd, data);
3310
}
3311

3312
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3313 3314
				       struct perf_header *ph, int fd,
				       bool repipe)
3315
{
3316 3317 3318 3319
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3320
	ssize_t ret;
3321 3322 3323 3324 3325

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3326 3327
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3328
		return -1;
3329 3330 3331 3332
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3333

3334
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3335 3336
		return -1;

3337 3338 3339
	return 0;
}

3340
static int perf_header__read_pipe(struct perf_session *session)
3341
{
3342
	struct perf_header *header = &session->header;
3343 3344
	struct perf_pipe_file_header f_header;

3345
	if (perf_file_header__read_pipe(&f_header, header,
3346
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3347
					session->repipe) < 0) {
3348 3349 3350 3351 3352 3353 3354
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3355 3356 3357 3358 3359 3360
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3361
	ssize_t ret;
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3401
static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3402
						struct tep_handle *pevent)
3403
{
3404
	struct tep_event *event;
3405 3406
	char bf[128];

3407 3408 3409 3410
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3411 3412 3413 3414 3415
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3416
	event = tep_find_event(pevent, evsel->attr.config);
3417 3418
	if (event == NULL) {
		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3419
		return -1;
3420
	}
3421

3422 3423 3424 3425 3426 3427
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3428

3429
	evsel->tp_format = event;
3430 3431 3432
	return 0;
}

3433
static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3434
						  struct tep_handle *pevent)
3435 3436 3437
{
	struct perf_evsel *pos;

3438
	evlist__for_each_entry(evlist, pos) {
3439 3440
		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3441 3442 3443 3444 3445 3446
			return -1;
	}

	return 0;
}

3447
int perf_session__read_header(struct perf_session *session)
3448
{
3449
	struct perf_data *data = session->data;
3450
	struct perf_header *header = &session->header;
3451
	struct perf_file_header	f_header;
3452 3453 3454
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3455
	int fd = perf_data__fd(data);
3456

3457
	session->evlist = perf_evlist__new();
3458 3459 3460
	if (session->evlist == NULL)
		return -ENOMEM;

3461
	session->evlist->env = &header->env;
3462
	session->machines.host.env = &header->env;
3463
	if (perf_data__is_pipe(data))
3464
		return perf_header__read_pipe(session);
3465

3466
	if (perf_file_header__read(&f_header, header, fd) < 0)
3467
		return -EINVAL;
3468

3469 3470 3471 3472 3473 3474 3475 3476 3477
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3478
			   data->file.path);
3479 3480
	}

3481
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3482 3483 3484
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3485
		struct perf_evsel *evsel;
3486
		off_t tmp;
3487

3488
		if (read_attr(fd, header, &f_attr) < 0)
3489
			goto out_errno;
3490

3491 3492 3493
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3494
			perf_event__attr_swap(&f_attr.attr);
3495
		}
3496

3497
		tmp = lseek(fd, 0, SEEK_CUR);
3498
		evsel = perf_evsel__new(&f_attr.attr);
3499

3500 3501
		if (evsel == NULL)
			goto out_delete_evlist;
3502 3503

		evsel->needs_swap = header->needs_swap;
3504 3505 3506 3507 3508
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
		 * entry gets purged too at perf_evlist__delete().
		 */
		perf_evlist__add(session->evlist, evsel);
3509 3510

		nr_ids = f_attr.ids.size / sizeof(u64);
3511 3512 3513 3514 3515 3516 3517 3518
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
			goto out_delete_evlist;

3519 3520 3521
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3522
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3523
				goto out_errno;
3524

3525
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3526
		}
3527

3528 3529 3530
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3531
	perf_header__process_sections(header, fd, &session->tevent,
3532
				      perf_file_section__process);
3533

3534
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3535
						   session->tevent.pevent))
3536 3537
		goto out_delete_evlist;

3538
	return 0;
3539 3540
out_errno:
	return -errno;
3541 3542 3543 3544 3545

out_delete_evlist:
	perf_evlist__delete(session->evlist);
	session->evlist = NULL;
	return -ENOMEM;
3546
}
3547

3548
int perf_event__synthesize_attr(struct perf_tool *tool,
3549
				struct perf_event_attr *attr, u32 ids, u64 *id,
3550
				perf_event__handler_t process)
3551
{
3552
	union perf_event *ev;
3553 3554 3555 3556
	size_t size;
	int err;

	size = sizeof(struct perf_event_attr);
3557
	size = PERF_ALIGN(size, sizeof(u64));
3558 3559 3560 3561 3562
	size += sizeof(struct perf_event_header);
	size += ids * sizeof(u64);

	ev = malloc(size);

3563 3564 3565
	if (ev == NULL)
		return -ENOMEM;

3566 3567 3568 3569
	ev->attr.attr = *attr;
	memcpy(ev->attr.id, id, ids * sizeof(u64));

	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3570
	ev->attr.header.size = (u16)size;
3571

3572 3573 3574 3575
	if (ev->attr.header.size == size)
		err = process(tool, ev, NULL, NULL);
	else
		err = -E2BIG;
3576 3577 3578 3579 3580 3581

	free(ev);

	return err;
}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
int perf_event__synthesize_features(struct perf_tool *tool,
				    struct perf_session *session,
				    struct perf_evlist *evlist,
				    perf_event__handler_t process)
{
	struct perf_header *header = &session->header;
	struct feat_fd ff;
	struct feature_event *fe;
	size_t sz, sz_hdr;
	int feat, ret;

	sz_hdr = sizeof(fe->header);
	sz = sizeof(union perf_event);
	/* get a nice alignment */
	sz = PERF_ALIGN(sz, page_size);

	memset(&ff, 0, sizeof(ff));

	ff.buf = malloc(sz);
	if (!ff.buf)
		return -ENOMEM;

	ff.size = sz - sz_hdr;

	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
		if (!feat_ops[feat].synthesize) {
			pr_debug("No record header feature for header :%d\n", feat);
			continue;
		}

		ff.offset = sizeof(*fe);

		ret = feat_ops[feat].write(&ff, evlist);
		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
			pr_debug("Error writing feature\n");
			continue;
		}
		/* ff.buf may have changed due to realloc in do_write() */
		fe = ff.buf;
		memset(fe, 0, sizeof(*fe));

		fe->feat_id = feat;
		fe->header.type = PERF_RECORD_HEADER_FEATURE;
		fe->header.size = ff.offset;

		ret = process(tool, ff.buf, NULL, NULL);
		if (ret) {
			free(ff.buf);
			return ret;
		}
	}
3633 3634 3635 3636 3637 3638 3639 3640 3641

	/* Send HEADER_LAST_FEATURE mark. */
	fe = ff.buf;
	fe->feat_id     = HEADER_LAST_FEATURE;
	fe->header.type = PERF_RECORD_HEADER_FEATURE;
	fe->header.size = sizeof(*fe);

	ret = process(tool, ff.buf, NULL, NULL);

3642
	free(ff.buf);
3643
	return ret;
3644 3645
}

3646 3647
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3648
{
3649
	struct perf_tool *tool = session->tool;
3650 3651 3652 3653 3654 3655 3656 3657 3658
	struct feat_fd ff = { .fd = 0 };
	struct feature_event *fe = (struct feature_event *)event;
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3659
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
	ff.size = event->header.size - sizeof(event->header);
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
static struct event_update_event *
event_update_event__new(size_t size, u64 type, u64 id)
{
	struct event_update_event *ev;

	size += sizeof(*ev);
	size  = PERF_ALIGN(size, sizeof(u64));

	ev = zalloc(size);
	if (ev) {
		ev->header.type = PERF_RECORD_EVENT_UPDATE;
		ev->header.size = (u16)size;
		ev->type = type;
		ev->id = id;
	}
	return ev;
}

int
perf_event__synthesize_event_update_unit(struct perf_tool *tool,
					 struct perf_evsel *evsel,
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t size = strlen(evsel->unit);
	int err;

	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3719
	strlcpy(ev->data, evsel->unit, size + 1);
3720 3721 3722 3723 3724
	err = process(tool, (union perf_event *)ev, NULL, NULL);
	free(ev);
	return err;
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
int
perf_event__synthesize_event_update_scale(struct perf_tool *tool,
					  struct perf_evsel *evsel,
					  perf_event__handler_t process)
{
	struct event_update_event *ev;
	struct event_update_event_scale *ev_data;
	int err;

	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

	ev_data = (struct event_update_event_scale *) ev->data;
	ev_data->scale = evsel->scale;
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
int
perf_event__synthesize_event_update_name(struct perf_tool *tool,
					 struct perf_evsel *evsel,
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t len = strlen(evsel->name);
	int err;

	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3758
	strlcpy(ev->data, evsel->name, len + 1);
3759 3760 3761 3762
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}
3763

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
int
perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
					struct perf_evsel *evsel,
					perf_event__handler_t process)
{
	size_t size = sizeof(struct event_update_event);
	struct event_update_event *ev;
	int max, err;
	u16 type;

	if (!evsel->own_cpus)
		return 0;

	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
	if (!ev)
		return -ENOMEM;

	ev->header.type = PERF_RECORD_EVENT_UPDATE;
	ev->header.size = (u16)size;
	ev->type = PERF_EVENT_UPDATE__CPUS;
	ev->id   = evsel->id[0];

	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
				 evsel->own_cpus,
				 type, max);

	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
	struct event_update_event *ev = &event->event_update;
	struct event_update_event_scale *ev_scale;
	struct event_update_event_cpus *ev_cpus;
	struct cpu_map *map;
	size_t ret;

	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3833

3834
int perf_event__synthesize_attrs(struct perf_tool *tool,
3835 3836
				 struct perf_evlist *evlist,
				 perf_event__handler_t process)
3837
{
3838
	struct perf_evsel *evsel;
3839
	int err = 0;
3840

3841
	evlist__for_each_entry(evlist, evsel) {
3842 3843
		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
						  evsel->id, process);
3844 3845 3846 3847 3848 3849 3850 3851 3852
		if (err) {
			pr_debug("failed to create perf header attribute\n");
			return err;
		}
	}

	return err;
}

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
static bool has_unit(struct perf_evsel *counter)
{
	return counter->unit && *counter->unit;
}

static bool has_scale(struct perf_evsel *counter)
{
	return counter->scale != 1;
}

int perf_event__synthesize_extra_attr(struct perf_tool *tool,
				      struct perf_evlist *evsel_list,
				      perf_event__handler_t process,
				      bool is_pipe)
{
	struct perf_evsel *counter;
	int err;

	/*
	 * Synthesize other events stuff not carried within
	 * attr event - unit, scale, name
	 */
	evlist__for_each_entry(evsel_list, counter) {
		if (!counter->supported)
			continue;

		/*
		 * Synthesize unit and scale only if it's defined.
		 */
		if (has_unit(counter)) {
			err = perf_event__synthesize_event_update_unit(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel unit.\n");
				return err;
			}
		}

		if (has_scale(counter)) {
			err = perf_event__synthesize_event_update_scale(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel counter.\n");
				return err;
			}
		}

		if (counter->own_cpus) {
			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel cpus.\n");
				return err;
			}
		}

		/*
		 * Name is needed only for pipe output,
		 * perf.data carries event names.
		 */
		if (is_pipe) {
			err = perf_event__synthesize_event_update_name(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel name.\n");
				return err;
			}
		}
	}
	return 0;
}

3921 3922
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3923
			     struct perf_evlist **pevlist)
3924
{
3925
	u32 i, ids, n_ids;
3926
	struct perf_evsel *evsel;
3927
	struct perf_evlist *evlist = *pevlist;
3928

3929
	if (evlist == NULL) {
3930
		*pevlist = evlist = perf_evlist__new();
3931
		if (evlist == NULL)
3932 3933 3934
			return -ENOMEM;
	}

3935
	evsel = perf_evsel__new(&event->attr.attr);
3936
	if (evsel == NULL)
3937 3938
		return -ENOMEM;

3939
	perf_evlist__add(evlist, evsel);
3940

3941 3942
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
3943
	n_ids = ids / sizeof(u64);
3944 3945 3946 3947 3948 3949 3950
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
	if (perf_evsel__alloc_id(evsel, 1, n_ids))
		return -ENOMEM;
3951 3952

	for (i = 0; i < n_ids; i++) {
3953
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3954 3955 3956 3957
	}

	return 0;
}
3958

3959 3960 3961 3962 3963
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
				     struct perf_evlist **pevlist)
{
	struct event_update_event *ev = &event->event_update;
3964
	struct event_update_event_scale *ev_scale;
3965
	struct event_update_event_cpus *ev_cpus;
3966 3967
	struct perf_evlist *evlist;
	struct perf_evsel *evsel;
3968
	struct cpu_map *map;
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

3979 3980 3981
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
3982
		break;
3983 3984 3985
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
3986 3987 3988
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		evsel->scale = ev_scale->scale;
3989
		break;
3990 3991 3992 3993 3994 3995 3996 3997
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			evsel->own_cpus = map;
		else
			pr_err("failed to get event_update cpus\n");
3998 3999 4000 4001
	default:
		break;
	}

4002 4003 4004
	return 0;
}

4005
int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4006
					struct perf_evlist *evlist,
4007
					perf_event__handler_t process)
4008
{
4009
	union perf_event ev;
J
Jiri Olsa 已提交
4010
	struct tracing_data *tdata;
4011
	ssize_t size = 0, aligned_size = 0, padding;
4012
	struct feat_fd ff;
4013
	int err __maybe_unused = 0;
4014

J
Jiri Olsa 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	/*
	 * We are going to store the size of the data followed
	 * by the data contents. Since the fd descriptor is a pipe,
	 * we cannot seek back to store the size of the data once
	 * we know it. Instead we:
	 *
	 * - write the tracing data to the temp file
	 * - get/write the data size to pipe
	 * - write the tracing data from the temp file
	 *   to the pipe
	 */
	tdata = tracing_data_get(&evlist->entries, fd, true);
	if (!tdata)
		return -1;

4030 4031 4032
	memset(&ev, 0, sizeof(ev));

	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
J
Jiri Olsa 已提交
4033
	size = tdata->size;
4034
	aligned_size = PERF_ALIGN(size, sizeof(u64));
4035 4036 4037 4038
	padding = aligned_size - size;
	ev.tracing_data.header.size = sizeof(ev.tracing_data);
	ev.tracing_data.size = aligned_size;

4039
	process(tool, &ev, NULL, NULL);
4040

J
Jiri Olsa 已提交
4041 4042 4043 4044 4045 4046
	/*
	 * The put function will copy all the tracing data
	 * stored in temp file to the pipe.
	 */
	tracing_data_put(tdata);

4047 4048
	ff = (struct feat_fd){ .fd = fd };
	if (write_padded(&ff, NULL, 0, padding))
4049
		return -1;
4050 4051 4052 4053

	return aligned_size;
}

4054 4055
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4056
{
4057
	ssize_t size_read, padding, size = event->tracing_data.size;
4058
	int fd = perf_data__fd(session->data);
4059
	off_t offset = lseek(fd, 0, SEEK_CUR);
4060 4061 4062
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
4063
	lseek(fd, offset + sizeof(struct tracing_data_event),
4064 4065
	      SEEK_SET);

J
Jiri Olsa 已提交
4066
	size_read = trace_report(fd, &session->tevent,
4067
				 session->repipe);
4068
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4069

4070
	if (readn(fd, buf, padding) < 0) {
4071 4072 4073
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4074 4075
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4076 4077 4078 4079
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4080
	}
4081

4082 4083 4084 4085
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4086

4087
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4088
					       session->tevent.pevent);
4089

4090 4091
	return size_read + padding;
}
4092

4093
int perf_event__synthesize_build_id(struct perf_tool *tool,
4094
				    struct dso *pos, u16 misc,
4095
				    perf_event__handler_t process,
4096
				    struct machine *machine)
4097
{
4098
	union perf_event ev;
4099 4100 4101 4102 4103 4104 4105 4106 4107
	size_t len;
	int err = 0;

	if (!pos->hit)
		return err;

	memset(&ev, 0, sizeof(ev));

	len = pos->long_name_len + 1;
4108
	len = PERF_ALIGN(len, NAME_ALIGN);
4109 4110 4111
	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
	ev.build_id.header.misc = misc;
4112
	ev.build_id.pid = machine->pid;
4113 4114 4115
	ev.build_id.header.size = sizeof(ev.build_id) + len;
	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);

4116
	err = process(tool, &ev, NULL, machine);
4117 4118 4119 4120

	return err;
}

4121 4122
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4123
{
4124 4125
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4126
				 session);
4127 4128
	return 0;
}