header.c 90.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "evlist.h"
26
#include "evsel.h"
27
#include "header.h"
28
#include "memswap.h"
29 30
#include "../perf.h"
#include "trace-event.h"
31
#include "session.h"
32
#include "symbol.h"
33
#include "debug.h"
34
#include "cpumap.h"
35
#include "pmu.h"
36
#include "vdso.h"
37
#include "strbuf.h"
38
#include "build-id.h"
39
#include "data.h"
40 41
#include <api/fs/fs.h>
#include "asm/bug.h"
42
#include "tool.h"
43
#include "time-utils.h"
44
#include "units.h"
45
#include "util.h"
J
Jiri Olsa 已提交
46
#include "cputopo.h"
47
#include "bpf-event.h"
48

49
#include <linux/ctype.h>
50

51 52 53 54 55 56 57 58 59 60 61 62
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
63

64
#define PERF_MAGIC	__perf_magic2
65

66 67
const char perf_version_string[] = PERF_VERSION;

68
struct perf_file_attr {
69
	struct perf_event_attr	attr;
70 71 72
	struct perf_file_section	ids;
};

73 74 75
struct feat_fd {
	struct perf_header	*ph;
	int			fd;
76
	void			*buf;	/* Either buf != NULL or fd >= 0 */
77 78
	ssize_t			offset;
	size_t			size;
79
	struct evsel	*events;
80 81
};

82
void perf_header__set_feat(struct perf_header *header, int feat)
83
{
84
	set_bit(feat, header->adds_features);
85 86
}

87
void perf_header__clear_feat(struct perf_header *header, int feat)
88
{
89
	clear_bit(feat, header->adds_features);
90 91
}

92
bool perf_header__has_feat(const struct perf_header *header, int feat)
93
{
94
	return test_bit(feat, header->adds_features);
95 96
}

97
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
98
{
99
	ssize_t ret = writen(ff->fd, buf, size);
100

101 102
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
130 131

	return 0;
132 133
}

134 135 136 137 138 139 140 141
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

161
/* Return: 0 if succeded, -ERR if failed. */
162 163
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
164 165
{
	static const char zero_buf[NAME_ALIGN];
166
	int err = do_write(ff, bf, count);
167 168

	if (!err)
169
		err = do_write(ff, zero_buf, count_aligned - count);
170 171 172 173

	return err;
}

174 175 176
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

177
/* Return: 0 if succeded, -ERR if failed. */
178
static int do_write_string(struct feat_fd *ff, const char *str)
179 180 181 182 183
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
184
	len = PERF_ALIGN(olen, NAME_ALIGN);
185 186

	/* write len, incl. \0 */
187
	ret = do_write(ff, &len, sizeof(len));
188 189 190
	if (ret < 0)
		return ret;

191
	return write_padded(ff, str, olen, len);
192 193
}

194
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
195
{
196
	ssize_t ret = readn(ff->fd, addr, size);
197 198 199 200 201 202

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

222
static int do_read_u32(struct feat_fd *ff, u32 *addr)
223 224 225
{
	int ret;

226
	ret = __do_read(ff, addr, sizeof(*addr));
227 228 229
	if (ret)
		return ret;

230
	if (ff->ph->needs_swap)
231 232 233 234
		*addr = bswap_32(*addr);
	return 0;
}

235
static int do_read_u64(struct feat_fd *ff, u64 *addr)
236 237 238
{
	int ret;

239
	ret = __do_read(ff, addr, sizeof(*addr));
240 241 242
	if (ret)
		return ret;

243
	if (ff->ph->needs_swap)
244 245 246 247
		*addr = bswap_64(*addr);
	return 0;
}

248
static char *do_read_string(struct feat_fd *ff)
249 250 251 252
{
	u32 len;
	char *buf;

253
	if (do_read_u32(ff, &len))
254 255 256 257 258 259
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

260
	if (!__do_read(ff, buf, len)) {
261 262 263 264 265 266 267 268 269 270 271 272
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

303
static int write_tracing_data(struct feat_fd *ff,
304
			      struct evlist *evlist)
305
{
306 307 308
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

309
	return read_tracing_data(ff->fd, &evlist->core.entries);
310 311
}

312
static int write_build_id(struct feat_fd *ff,
313
			  struct evlist *evlist __maybe_unused)
314 315 316 317
{
	struct perf_session *session;
	int err;

318
	session = container_of(ff->ph, struct perf_session, header);
319

320 321 322
	if (!perf_session__read_build_ids(session, true))
		return -1;

323 324 325
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

326
	err = perf_session__write_buildid_table(session, ff);
327 328 329 330
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
331
	perf_session__cache_build_ids(session);
332 333 334 335

	return 0;
}

336
static int write_hostname(struct feat_fd *ff,
337
			  struct evlist *evlist __maybe_unused)
338 339 340 341 342 343 344 345
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

346
	return do_write_string(ff, uts.nodename);
347 348
}

349
static int write_osrelease(struct feat_fd *ff,
350
			   struct evlist *evlist __maybe_unused)
351 352 353 354 355 356 357 358
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

359
	return do_write_string(ff, uts.release);
360 361
}

362
static int write_arch(struct feat_fd *ff,
363
		      struct evlist *evlist __maybe_unused)
364 365 366 367 368 369 370 371
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

372
	return do_write_string(ff, uts.machine);
373 374
}

375
static int write_version(struct feat_fd *ff,
376
			 struct evlist *evlist __maybe_unused)
377
{
378
	return do_write_string(ff, perf_version_string);
379 380
}

381
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
382 383 384 385
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
386
	const char *search = cpuinfo_proc;
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

403 404
	if (ret) {
		ret = -1;
405
		goto done;
406
	}
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
422
			char *q = skip_spaces(r);
423 424 425 426 427 428
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
429
	ret = do_write_string(ff, s);
430 431 432 433 434 435
done:
	free(buf);
	fclose(file);
	return ret;
}

436
static int write_cpudesc(struct feat_fd *ff,
437
		       struct evlist *evlist __maybe_unused)
438 439 440 441 442 443
{
	const char *cpuinfo_procs[] = CPUINFO_PROC;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
444
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
445 446 447 448 449 450 451
		if (ret >= 0)
			return ret;
	}
	return -1;
}


452
static int write_nrcpus(struct feat_fd *ff,
453
			struct evlist *evlist __maybe_unused)
454 455 456 457 458
{
	long nr;
	u32 nrc, nra;
	int ret;

459
	nrc = cpu__max_present_cpu();
460 461 462 463 464 465 466

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

467
	ret = do_write(ff, &nrc, sizeof(nrc));
468 469 470
	if (ret < 0)
		return ret;

471
	return do_write(ff, &nra, sizeof(nra));
472 473
}

474
static int write_event_desc(struct feat_fd *ff,
475
			    struct evlist *evlist)
476
{
477
	struct evsel *evsel;
478
	u32 nre, nri, sz;
479 480
	int ret;

481
	nre = evlist->core.nr_entries;
482 483 484 485

	/*
	 * write number of events
	 */
486
	ret = do_write(ff, &nre, sizeof(nre));
487 488 489 490 491 492
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
493
	sz = (u32)sizeof(evsel->core.attr);
494
	ret = do_write(ff, &sz, sizeof(sz));
495 496 497
	if (ret < 0)
		return ret;

498
	evlist__for_each_entry(evlist, evsel) {
499
		ret = do_write(ff, &evsel->core.attr, sz);
500 501 502 503 504 505 506 507 508
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
509
		nri = evsel->ids;
510
		ret = do_write(ff, &nri, sizeof(nri));
511 512 513 514 515 516
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
517
		ret = do_write_string(ff, perf_evsel__name(evsel));
518 519 520 521 522
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
523
		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
524 525 526 527 528 529
		if (ret < 0)
			return ret;
	}
	return 0;
}

530
static int write_cmdline(struct feat_fd *ff,
531
			 struct evlist *evlist __maybe_unused)
532
{
533 534
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
535

536
	/* actual path to perf binary */
537
	buf = perf_exe(pbuf, MAXPATHLEN);
538 539

	/* account for binary path */
540
	n = perf_env.nr_cmdline + 1;
541

542
	ret = do_write(ff, &n, sizeof(n));
543 544 545
	if (ret < 0)
		return ret;

546
	ret = do_write_string(ff, buf);
547 548 549
	if (ret < 0)
		return ret;

550
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
551
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
552 553 554 555 556 557 558
		if (ret < 0)
			return ret;
	}
	return 0;
}


559
static int write_cpu_topology(struct feat_fd *ff,
560
			      struct evlist *evlist __maybe_unused)
561
{
J
Jiri Olsa 已提交
562
	struct cpu_topology *tp;
563
	u32 i;
564
	int ret, j;
565

J
Jiri Olsa 已提交
566
	tp = cpu_topology__new();
567 568 569
	if (!tp)
		return -1;

570
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
571 572 573 574
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
575
		ret = do_write_string(ff, tp->core_siblings[i]);
576 577 578
		if (ret < 0)
			goto done;
	}
579
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
580 581 582 583
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
584
		ret = do_write_string(ff, tp->thread_siblings[i]);
585 586 587
		if (ret < 0)
			break;
	}
588

589 590 591 592 593
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
594
		ret = do_write(ff, &perf_env.cpu[j].core_id,
595
			       sizeof(perf_env.cpu[j].core_id));
596 597
		if (ret < 0)
			return ret;
598
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
599
			       sizeof(perf_env.cpu[j].socket_id));
600 601 602
		if (ret < 0)
			return ret;
	}
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

624
done:
J
Jiri Olsa 已提交
625
	cpu_topology__delete(tp);
626 627 628 629 630
	return ret;
}



631
static int write_total_mem(struct feat_fd *ff,
632
			   struct evlist *evlist __maybe_unused)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
652
			ret = do_write(ff, &mem, sizeof(mem));
653 654
	} else
		ret = -1;
655 656 657 658 659
	free(buf);
	fclose(fp);
	return ret;
}

660
static int write_numa_topology(struct feat_fd *ff,
661
			       struct evlist *evlist __maybe_unused)
662
{
J
Jiri Olsa 已提交
663
	struct numa_topology *tp;
664
	int ret = -1;
J
Jiri Olsa 已提交
665
	u32 i;
666

J
Jiri Olsa 已提交
667 668 669
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
670

J
Jiri Olsa 已提交
671 672 673
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
674

J
Jiri Olsa 已提交
675 676
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
677

J
Jiri Olsa 已提交
678 679 680
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
681

J
Jiri Olsa 已提交
682 683 684
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
685

J
Jiri Olsa 已提交
686 687 688
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
689

J
Jiri Olsa 已提交
690
		ret = do_write_string(ff, n->cpus);
691
		if (ret < 0)
J
Jiri Olsa 已提交
692
			goto err;
693
	}
J
Jiri Olsa 已提交
694 695 696 697 698

	ret = 0;

err:
	numa_topology__delete(tp);
699 700 701
	return ret;
}

702 703 704 705 706 707 708 709 710 711 712 713
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

714
static int write_pmu_mappings(struct feat_fd *ff,
715
			      struct evlist *evlist __maybe_unused)
716 717
{
	struct perf_pmu *pmu = NULL;
718
	u32 pmu_num = 0;
719
	int ret;
720

721 722 723 724 725 726 727 728 729 730
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

731
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
732 733
	if (ret < 0)
		return ret;
734 735 736 737

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
738

739
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
740 741 742
		if (ret < 0)
			return ret;

743
		ret = do_write_string(ff, pmu->name);
744 745
		if (ret < 0)
			return ret;
746 747 748 749 750
	}

	return 0;
}

751 752 753 754 755 756 757 758 759 760 761 762
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
763
static int write_group_desc(struct feat_fd *ff,
764
			    struct evlist *evlist)
765 766
{
	u32 nr_groups = evlist->nr_groups;
767
	struct evsel *evsel;
768 769
	int ret;

770
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
771 772 773
	if (ret < 0)
		return ret;

774
	evlist__for_each_entry(evlist, evsel) {
775
		if (perf_evsel__is_group_leader(evsel) &&
776
		    evsel->core.nr_members > 1) {
777 778
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
779
			u32 nr_members = evsel->core.nr_members;
780

781
			ret = do_write_string(ff, name);
782 783 784
			if (ret < 0)
				return ret;

785
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
786 787 788
			if (ret < 0)
				return ret;

789
			ret = do_write(ff, &nr_members, sizeof(nr_members));
790 791 792 793 794 795 796
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

836 837
/*
 * default get_cpuid(): nothing gets recorded
838
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
839
 */
840
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
841 842 843 844
{
	return -1;
}

845
static int write_cpuid(struct feat_fd *ff,
846
		       struct evlist *evlist __maybe_unused)
847 848 849 850 851
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
852 853
	if (ret)
		return -1;
854

855
	return do_write_string(ff, buffer);
856 857
}

858
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
859
			      struct evlist *evlist __maybe_unused)
860 861 862 863
{
	return 0;
}

864
static int write_auxtrace(struct feat_fd *ff,
865
			  struct evlist *evlist __maybe_unused)
866
{
867 868 869
	struct perf_session *session;
	int err;

870 871 872
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

873
	session = container_of(ff->ph, struct perf_session, header);
874

875
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
876 877 878
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
879 880
}

881
static int write_clockid(struct feat_fd *ff,
882
			 struct evlist *evlist __maybe_unused)
883 884 885 886 887
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

888
static int write_dir_format(struct feat_fd *ff,
889
			    struct evlist *evlist __maybe_unused)
890 891 892 893 894 895 896 897 898 899 900 901 902
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

903 904
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
905
			       struct evlist *evlist __maybe_unused)
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
947
			       struct evlist *evlist __maybe_unused)
948 949 950 951 952
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

953
static int write_bpf_btf(struct feat_fd *ff,
954
			 struct evlist *evlist __maybe_unused)
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1053
	cache->type = strim(cache->type);
1054 1055 1056

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1057
		zfree(&cache->type);
1058 1059 1060 1061
		return -1;
	}

	cache->size[len] = 0;
1062
	cache->size = strim(cache->size);
1063 1064 1065

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1066 1067
		zfree(&cache->map);
		zfree(&cache->type);
1068 1069 1070 1071
		return -1;
	}

	cache->map[len] = 0;
1072
	cache->map = strim(cache->map);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

1125
#define MAX_CACHES (MAX_NR_CPUS * 4)
1126

1127
static int write_cache(struct feat_fd *ff,
1128
		       struct evlist *evlist __maybe_unused)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
{
	struct cpu_cache_level caches[MAX_CACHES];
	u32 cnt = 0, i, version = 1;
	int ret;

	ret = build_caches(caches, MAX_CACHES, &cnt);
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1140
	ret = do_write(ff, &version, sizeof(u32));
1141 1142 1143
	if (ret < 0)
		goto out;

1144
	ret = do_write(ff, &cnt, sizeof(u32));
1145 1146 1147 1148 1149 1150 1151
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1152
			ret = do_write(ff, &c->v, sizeof(u32));	\
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1163
			ret = do_write_string(ff, (const char *) c->v);	\
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1179
static int write_stat(struct feat_fd *ff __maybe_unused,
1180
		      struct evlist *evlist __maybe_unused)
1181 1182 1183 1184
{
	return 0;
}

1185
static int write_sample_time(struct feat_fd *ff,
1186
			     struct evlist *evlist)
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1269 1270
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1320
			      struct evlist *evlist __maybe_unused)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1369
static int write_compressed(struct feat_fd *ff __maybe_unused,
1370
			    struct evlist *evlist __maybe_unused)
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1393
static void print_hostname(struct feat_fd *ff, FILE *fp)
1394
{
1395
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1396 1397
}

1398
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1399
{
1400
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1401 1402
}

1403
static void print_arch(struct feat_fd *ff, FILE *fp)
1404
{
1405
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1406 1407
}

1408
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1409
{
1410
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1411 1412
}

1413
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1414
{
1415 1416
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1417 1418
}

1419
static void print_version(struct feat_fd *ff, FILE *fp)
1420
{
1421
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1422 1423
}

1424
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1425
{
1426
	int nr, i;
1427

1428
	nr = ff->ph->env.nr_cmdline;
1429 1430 1431

	fprintf(fp, "# cmdline : ");

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1450 1451 1452
	fputc('\n', fp);
}

1453
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1454
{
1455 1456
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1457
	int nr, i;
1458 1459
	char *str;

1460 1461
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1462 1463

	for (i = 0; i < nr; i++) {
1464
		fprintf(fp, "# sibling sockets : %s\n", str);
1465
		str += strlen(str) + 1;
1466 1467
	}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1478 1479
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1480 1481 1482

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1483
		str += strlen(str) + 1;
1484
	}
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1508 1509
}

1510 1511 1512 1513 1514 1515
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1543 1544 1545

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1546 1547 1548 1549 1550
	}

	up_read(&env->bpf_progs.lock);
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1573
static void free_event_desc(struct evsel *events)
1574
{
1575
	struct evsel *evsel;
1576 1577 1578 1579

	if (!events)
		return;

1580
	for (evsel = events; evsel->core.attr.size; evsel++) {
1581 1582
		zfree(&evsel->name);
		zfree(&evsel->id);
1583 1584 1585 1586 1587
	}

	free(events);
}

1588
static struct evsel *read_event_desc(struct feat_fd *ff)
1589
{
1590
	struct evsel *evsel, *events = NULL;
1591
	u64 *id;
1592
	void *buf = NULL;
1593 1594
	u32 nre, sz, nr, i, j;
	size_t msz;
1595 1596

	/* number of events */
1597
	if (do_read_u32(ff, &nre))
1598 1599
		goto error;

1600
	if (do_read_u32(ff, &sz))
1601 1602
		goto error;

1603
	/* buffer to hold on file attr struct */
1604 1605 1606 1607
	buf = malloc(sz);
	if (!buf)
		goto error;

1608
	/* the last event terminates with evsel->core.attr.size == 0: */
1609 1610 1611 1612
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1613
	msz = sizeof(evsel->core.attr);
1614
	if (sz < msz)
1615 1616
		msz = sz;

1617 1618
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1619

1620 1621 1622 1623
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1624
		if (__do_read(ff, buf, sz))
1625 1626
			goto error;

1627
		if (ff->ph->needs_swap)
1628 1629
			perf_event__attr_swap(buf);

1630
		memcpy(&evsel->core.attr, buf, msz);
1631

1632
		if (do_read_u32(ff, &nr))
1633 1634
			goto error;

1635
		if (ff->ph->needs_swap)
1636
			evsel->needs_swap = true;
1637

1638
		evsel->name = do_read_string(ff);
1639 1640
		if (!evsel->name)
			goto error;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
		evsel->ids = nr;
		evsel->id = id;

		for (j = 0 ; j < nr; j++) {
1652
			if (do_read_u64(ff, id))
1653 1654 1655 1656 1657
				goto error;
			id++;
		}
	}
out:
1658
	free(buf);
1659 1660
	return events;
error:
1661
	free_event_desc(events);
1662 1663 1664 1665
	events = NULL;
	goto out;
}

1666
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1667
				void *priv __maybe_unused)
1668 1669 1670 1671
{
	return fprintf(fp, ", %s = %s", name, val);
}

1672
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1673
{
1674
	struct evsel *evsel, *events;
1675 1676 1677
	u32 j;
	u64 *id;

1678 1679 1680 1681 1682
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1683 1684 1685 1686 1687
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1688
	for (evsel = events; evsel->core.attr.size; evsel++) {
1689
		fprintf(fp, "# event : name = %s, ", evsel->name);
1690

1691
		if (evsel->ids) {
1692
			fprintf(fp, ", id = {");
1693 1694 1695 1696 1697
			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1698
			fprintf(fp, " }");
1699
		}
1700

1701
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1702

1703 1704
		fputc('\n', fp);
	}
1705 1706

	free_event_desc(events);
1707
	ff->events = NULL;
1708 1709
}

1710
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1711
{
1712
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1713 1714
}

1715
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1716
{
1717 1718
	int i;
	struct numa_node *n;
1719

1720 1721
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1722 1723 1724

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1725
			n->node, n->mem_total, n->mem_free);
1726

1727 1728
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1729 1730 1731
	}
}

1732
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1733
{
1734
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1735 1736
}

1737
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1738 1739 1740 1741
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1742
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1743 1744 1745 1746
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1747
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1748 1749 1750 1751
{
	fprintf(fp, "# contains stat data\n");
}

1752
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1753 1754 1755 1756
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1757
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1758
		fprintf(fp, "#  ");
1759
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1760 1761 1762
	}
}

1763 1764 1765 1766 1767 1768 1769
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1770
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1771 1772
{
	const char *delimiter = "# pmu mappings: ";
1773
	char *str, *tmp;
1774 1775 1776
	u32 pmu_num;
	u32 type;

1777
	pmu_num = ff->ph->env.nr_pmu_mappings;
1778 1779 1780 1781 1782
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1783
	str = ff->ph->env.pmu_mappings;
1784

1785
	while (pmu_num) {
1786 1787 1788 1789 1790 1791
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1792

1793
		delimiter = ", ";
1794 1795
		str += strlen(str) + 1;
		pmu_num--;
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1806
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1807 1808
{
	struct perf_session *session;
1809
	struct evsel *evsel;
1810 1811
	u32 nr = 0;

1812
	session = container_of(ff->ph, struct perf_session, header);
1813

1814
	evlist__for_each_entry(session->evlist, evsel) {
1815
		if (perf_evsel__is_group_leader(evsel) &&
1816
		    evsel->core.nr_members > 1) {
1817 1818 1819
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

1820
			nr = evsel->core.nr_members - 1;
1821 1822 1823 1824 1825 1826 1827 1828 1829
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1881 1882 1883 1884 1885 1886
static int __event_process_build_id(struct build_id_event *bev,
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1887
	u16 cpumode;
1888 1889 1890 1891 1892 1893 1894
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1895
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1896

1897
	switch (cpumode) {
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1912
	dso = machine__findnew_dso(machine, filename);
1913
	if (dso != NULL) {
1914
		char sbuild_id[SBUILD_ID_SIZE];
1915 1916 1917

		dso__set_build_id(dso, &bev->build_id);

1918 1919 1920 1921
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1922
				dso__set_module_info(dso, &m, machine);
1923 1924 1925 1926 1927
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1928 1929 1930 1931 1932

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1933
		dso__put(dso);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1947
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1948 1949 1950 1951 1952 1953 1954 1955 1956
		char			   filename[0];
	} old_bev;
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1957
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1958 1959 1960 1961 1962 1963
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1964
		if (readn(input, filename, len) != len)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

1999
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2000 2001 2002 2003 2004 2005
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2006
		if (readn(input, filename, len) != len)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
		 * Added a field to struct build_id_event that broke the file
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2036 2037
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2038
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2039
{\
2040
	ff->ph->env.__feat_env = do_read_string(ff); \
2041
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2042 2043 2044 2045 2046 2047 2048 2049 2050
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2051
static int process_tracing_data(struct feat_fd *ff, void *data)
2052
{
2053 2054
	ssize_t ret = trace_report(ff->fd, data, false);

2055
	return ret < 0 ? -1 : 0;
2056 2057
}

2058
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2059
{
2060
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2061 2062 2063 2064
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2065
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2066
{
2067 2068
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2069

2070
	ret = do_read_u32(ff, &nr_cpus_avail);
2071 2072
	if (ret)
		return ret;
2073

2074
	ret = do_read_u32(ff, &nr_cpus_online);
2075 2076
	if (ret)
		return ret;
2077 2078
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2079 2080 2081
	return 0;
}

2082
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2083
{
2084 2085
	u64 total_mem;
	int ret;
2086

2087
	ret = do_read_u64(ff, &total_mem);
2088
	if (ret)
2089
		return -1;
2090
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2091 2092 2093
	return 0;
}

2094
static struct evsel *
2095
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2096
{
2097
	struct evsel *evsel;
2098

2099
	evlist__for_each_entry(evlist, evsel) {
2100 2101 2102 2103 2104 2105 2106 2107
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2108
perf_evlist__set_event_name(struct evlist *evlist,
2109
			    struct evsel *event)
2110
{
2111
	struct evsel *evsel;
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2127
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2128
{
2129
	struct perf_session *session;
2130
	struct evsel *evsel, *events = read_event_desc(ff);
2131 2132 2133 2134

	if (!events)
		return 0;

2135
	session = container_of(ff->ph, struct perf_session, header);
2136

2137
	if (session->data->is_pipe) {
2138 2139 2140 2141 2142
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2143
	for (evsel = events; evsel->core.attr.size; evsel++)
2144 2145
		perf_evlist__set_event_name(session->evlist, evsel);

2146
	if (!session->data->is_pipe)
2147
		free_event_desc(events);
2148 2149 2150 2151

	return 0;
}

2152
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2153
{
2154 2155
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2156

2157
	if (do_read_u32(ff, &nr))
2158 2159
		return -1;

2160
	ff->ph->env.nr_cmdline = nr;
2161

2162
	cmdline = zalloc(ff->size + nr + 1);
2163 2164 2165 2166 2167 2168
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2169 2170

	for (i = 0; i < nr; i++) {
2171
		str = do_read_string(ff);
2172 2173 2174
		if (!str)
			goto error;

2175 2176 2177
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2178 2179
		free(str);
	}
2180 2181
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2182 2183 2184
	return 0;

error:
2185 2186
	free(argv);
	free(cmdline);
2187 2188 2189
	return -1;
}

2190
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2191 2192 2193 2194
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2195
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2196
	u64 size = 0;
2197
	struct perf_header *ph = ff->ph;
2198
	bool do_core_id_test = true;
2199 2200 2201 2202

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2203

2204
	if (do_read_u32(ff, &nr))
2205
		goto free_cpu;
2206 2207

	ph->env.nr_sibling_cores = nr;
2208
	size += sizeof(u32);
2209 2210
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2211 2212

	for (i = 0; i < nr; i++) {
2213
		str = do_read_string(ff);
2214 2215 2216 2217
		if (!str)
			goto error;

		/* include a NULL character at the end */
2218 2219
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2220
		size += string_size(str);
2221 2222 2223 2224
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2225
	if (do_read_u32(ff, &nr))
2226 2227 2228
		return -1;

	ph->env.nr_sibling_threads = nr;
2229
	size += sizeof(u32);
2230 2231

	for (i = 0; i < nr; i++) {
2232
		str = do_read_string(ff);
2233 2234 2235 2236
		if (!str)
			goto error;

		/* include a NULL character at the end */
2237 2238
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2239
		size += string_size(str);
2240 2241 2242
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2243 2244 2245 2246 2247

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2248
	if (ff->size <= size) {
2249 2250 2251 2252
		zfree(&ph->env.cpu);
		return 0;
	}

2253 2254 2255
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2256
	 * AArch64 is the same.
2257
	 */
2258 2259
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2260 2261
		do_core_id_test = false;

2262
	for (i = 0; i < (u32)cpu_nr; i++) {
2263
		if (do_read_u32(ff, &nr))
2264 2265 2266
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2267
		size += sizeof(u32);
2268

2269
		if (do_read_u32(ff, &nr))
2270 2271
			goto free_cpu;

2272
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2273 2274 2275 2276 2277 2278
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2313 2314
	}

2315 2316 2317 2318
	return 0;

error:
	strbuf_release(&sb);
2319 2320
free_cpu:
	zfree(&ph->env.cpu);
2321 2322 2323
	return -1;
}

2324
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2325
{
2326 2327
	struct numa_node *nodes, *n;
	u32 nr, i;
2328 2329 2330
	char *str;

	/* nr nodes */
2331
	if (do_read_u32(ff, &nr))
2332
		return -1;
2333

2334 2335 2336
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2337 2338

	for (i = 0; i < nr; i++) {
2339 2340
		n = &nodes[i];

2341
		/* node number */
2342
		if (do_read_u32(ff, &n->node))
2343 2344
			goto error;

2345
		if (do_read_u64(ff, &n->mem_total))
2346 2347
			goto error;

2348
		if (do_read_u64(ff, &n->mem_free))
2349 2350
			goto error;

2351
		str = do_read_string(ff);
2352 2353 2354
		if (!str)
			goto error;

2355
		n->map = perf_cpu_map__new(str);
2356
		if (!n->map)
2357
			goto error;
2358

2359 2360
		free(str);
	}
2361 2362
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2363 2364 2365
	return 0;

error:
2366
	free(nodes);
2367 2368 2369
	return -1;
}

2370
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2371 2372 2373 2374 2375 2376
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2377
	if (do_read_u32(ff, &pmu_num))
2378 2379 2380 2381 2382 2383 2384
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2385
	ff->ph->env.nr_pmu_mappings = pmu_num;
2386 2387
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2388 2389

	while (pmu_num) {
2390
		if (do_read_u32(ff, &type))
2391 2392
			goto error;

2393
		name = do_read_string(ff);
2394 2395 2396
		if (!name)
			goto error;

2397 2398
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2399
		/* include a NULL character at the end */
2400 2401
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2402

2403
		if (!strcmp(name, "msr"))
2404
			ff->ph->env.msr_pmu_type = type;
2405

2406 2407 2408
		free(name);
		pmu_num--;
	}
2409
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2410 2411 2412 2413 2414 2415 2416
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2417
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2418 2419 2420 2421
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2422
	struct evsel *evsel, *leader = NULL;
2423 2424 2425 2426 2427 2428
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2429
	if (do_read_u32(ff, &nr_groups))
2430 2431
		return -1;

2432
	ff->ph->env.nr_groups = nr_groups;
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2443
		desc[i].name = do_read_string(ff);
2444 2445 2446
		if (!desc[i].name)
			goto out_free;

2447
		if (do_read_u32(ff, &desc[i].leader_idx))
2448 2449
			goto out_free;

2450
		if (do_read_u32(ff, &desc[i].nr_members))
2451 2452 2453 2454 2455 2456
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2457
	session = container_of(ff->ph, struct perf_session, header);
2458 2459 2460
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2461
	evlist__for_each_entry(session->evlist, evsel) {
2462 2463 2464
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2465
			if (strcmp(desc[i].name, "{anon_group}")) {
2466
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2467 2468
				desc[i].name = NULL;
			}
2469
			evsel->core.nr_members = desc[i].nr_members;
2470 2471 2472 2473 2474 2475 2476

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2477
			nr = evsel->core.nr_members - 1;
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2494
	for (i = 0; i < nr_groups; i++)
2495
		zfree(&desc[i].name);
2496 2497 2498 2499 2500
	free(desc);

	return ret;
}

2501
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2502 2503 2504 2505
{
	struct perf_session *session;
	int err;

2506
	session = container_of(ff->ph, struct perf_session, header);
2507

2508
	err = auxtrace_index__process(ff->fd, ff->size, session,
2509
				      ff->ph->needs_swap);
2510 2511 2512 2513 2514
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2515
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2516 2517 2518 2519
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2520
	if (do_read_u32(ff, &version))
2521 2522 2523 2524 2525
		return -1;

	if (version != 1)
		return -1;

2526
	if (do_read_u32(ff, &cnt))
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2537
			if (do_read_u32(ff, &c.v))\
2538 2539 2540 2541 2542 2543 2544 2545
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2546
		#define _R(v)					\
2547
			c.v = do_read_string(ff);		\
2548
			if (!c.v)				\
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2559 2560
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2561 2562 2563 2564 2565 2566
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2640 2641 2642 2643 2644 2645 2646 2647 2648
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2725
	up_write(&env->bpf_progs.lock);
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2740 2741 2742
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2743
	struct btf_node *node = NULL;
2744
	u32 count, i;
2745
	int err = -1;
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2761
			goto out;
2762
		if (do_read_u32(ff, &data_size))
2763
			goto out;
2764 2765 2766

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2767
			goto out;
2768 2769 2770 2771

		node->id = id;
		node->data_size = data_size;

2772 2773
		if (__do_read(ff, node->data, data_size))
			goto out;
2774 2775

		perf_env__insert_btf(env, node);
2776
		node = NULL;
2777 2778
	}

2779 2780
	err = 0;
out:
2781
	up_write(&env->bpf_progs.lock);
2782 2783
	free(node);
	return err;
2784 2785
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2807
struct feature_ops {
2808
	int (*write)(struct feat_fd *ff, struct evlist *evlist);
2809
	void (*print)(struct feat_fd *ff, FILE *fp);
2810
	int (*process)(struct feat_fd *ff, void *data);
2811 2812
	const char *name;
	bool full_only;
2813
	bool synthesize;
2814 2815
};

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2834 2835

/* feature_ops not implemented: */
2836 2837
#define print_tracing_data	NULL
#define print_build_id		NULL
2838

2839 2840 2841 2842
#define process_branch_stack	NULL
#define process_stat		NULL


2843
static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2860
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2861 2862 2863
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2864
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2865
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2866
	FEAT_OPR(CLOCKID,	clockid,	false),
2867
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2868 2869
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2870
	FEAT_OPR(COMPRESSED,	compressed,	false),
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2883
	struct feat_fd ff;
2884 2885 2886 2887 2888 2889

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2890
	if (feat >= HEADER_LAST_FEATURE) {
2891
		pr_warning("unknown feature %d\n", feat);
2892
		return 0;
2893 2894 2895 2896
	}
	if (!feat_ops[feat].print)
		return 0;

2897 2898 2899 2900 2901
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2902
	if (!feat_ops[feat].full_only || hd->full)
2903
		feat_ops[feat].print(&ff, hd->fp);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2915
	int fd = perf_data__fd(session->data);
2916
	struct stat st;
2917
	time_t stctime;
J
Jiri Olsa 已提交
2918
	int ret, bit;
2919

2920 2921 2922
	hd.fp = fp;
	hd.full = full;

2923 2924 2925 2926
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2927 2928
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2929 2930 2931 2932 2933

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2934

2935 2936
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2937

2938
	if (session->data->is_pipe)
2939 2940
		return 0;

J
Jiri Olsa 已提交
2941 2942 2943 2944 2945 2946 2947
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2948 2949 2950
	return 0;
}

2951
static int do_write_feat(struct feat_fd *ff, int type,
2952
			 struct perf_file_section **p,
2953
			 struct evlist *evlist)
2954 2955 2956 2957
{
	int err;
	int ret = 0;

2958
	if (perf_header__has_feat(ff->ph, type)) {
2959 2960
		if (!feat_ops[type].write)
			return -1;
2961

2962 2963 2964
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2965
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2966

2967
		err = feat_ops[type].write(ff, evlist);
2968
		if (err < 0) {
2969
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2970 2971

			/* undo anything written */
2972
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2973 2974 2975

			return -1;
		}
2976
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2977 2978 2979 2980 2981
		(*p)++;
	}
	return ret;
}

2982
static int perf_header__adds_write(struct perf_header *header,
2983
				   struct evlist *evlist, int fd)
2984
{
2985
	int nr_sections;
2986
	struct feat_fd ff;
2987
	struct perf_file_section *feat_sec, *p;
2988 2989
	int sec_size;
	u64 sec_start;
2990
	int feat;
2991
	int err;
2992

2993 2994 2995 2996 2997
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

2998
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2999
	if (!nr_sections)
3000
		return 0;
3001

3002
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3003 3004
	if (feat_sec == NULL)
		return -ENOMEM;
3005 3006 3007

	sec_size = sizeof(*feat_sec) * nr_sections;

3008
	sec_start = header->feat_offset;
3009
	lseek(fd, sec_start + sec_size, SEEK_SET);
3010

3011
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3012
		if (do_write_feat(&ff, feat, &p, evlist))
3013 3014
			perf_header__clear_feat(header, feat);
	}
3015

3016
	lseek(fd, sec_start, SEEK_SET);
3017 3018
	/*
	 * may write more than needed due to dropped feature, but
3019
	 * this is okay, reader will skip the missing entries
3020
	 */
3021
	err = do_write(&ff, feat_sec, sec_size);
3022 3023
	if (err < 0)
		pr_debug("failed to write feature section\n");
3024
	free(feat_sec);
3025
	return err;
3026
}
3027

3028 3029 3030
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3031
	struct feat_fd ff;
3032 3033
	int err;

3034 3035
	ff = (struct feat_fd){ .fd = fd };

3036 3037 3038 3039 3040
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3041
	err = do_write(&ff, &f_header, sizeof(f_header));
3042 3043 3044 3045 3046 3047 3048 3049
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3050
int perf_session__write_header(struct perf_session *session,
3051
			       struct evlist *evlist,
3052
			       int fd, bool at_exit)
3053 3054 3055
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3056
	struct perf_header *header = &session->header;
3057
	struct evsel *evsel;
3058
	struct feat_fd ff;
3059
	u64 attr_offset;
3060
	int err;
3061

3062
	ff = (struct feat_fd){ .fd = fd};
3063 3064
	lseek(fd, sizeof(f_header), SEEK_SET);

3065
	evlist__for_each_entry(session->evlist, evsel) {
3066
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3067
		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3068 3069 3070 3071
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3072 3073
	}

3074
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3075

3076
	evlist__for_each_entry(evlist, evsel) {
3077
		f_attr = (struct perf_file_attr){
3078
			.attr = evsel->core.attr,
3079
			.ids  = {
3080 3081
				.offset = evsel->id_offset,
				.size   = evsel->ids * sizeof(u64),
3082 3083
			}
		};
3084
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3085 3086 3087 3088
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3089 3090
	}

3091 3092
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3093
	header->feat_offset = header->data_offset + header->data_size;
3094

3095
	if (at_exit) {
3096
		err = perf_header__adds_write(header, evlist, fd);
3097 3098 3099
		if (err < 0)
			return err;
	}
3100

3101 3102 3103 3104 3105
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3106
			.offset = attr_offset,
3107
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3108 3109
		},
		.data = {
3110 3111
			.offset = header->data_offset,
			.size	= header->data_size,
3112
		},
3113
		/* event_types is ignored, store zeros */
3114 3115
	};

3116
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3117

3118
	lseek(fd, 0, SEEK_SET);
3119
	err = do_write(&ff, &f_header, sizeof(f_header));
3120 3121 3122 3123
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3124
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3125

3126
	return 0;
3127 3128
}

3129
static int perf_header__getbuffer64(struct perf_header *header,
3130 3131
				    int fd, void *buf, size_t size)
{
3132
	if (readn(fd, buf, size) <= 0)
3133 3134
		return -1;

3135
	if (header->needs_swap)
3136 3137 3138 3139 3140
		mem_bswap_64(buf, size);

	return 0;
}

3141
int perf_header__process_sections(struct perf_header *header, int fd,
3142
				  void *data,
3143
				  int (*process)(struct perf_file_section *section,
3144 3145
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3146
{
3147
	struct perf_file_section *feat_sec, *sec;
3148 3149
	int nr_sections;
	int sec_size;
3150 3151
	int feat;
	int err;
3152

3153
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3154
	if (!nr_sections)
3155
		return 0;
3156

3157
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3158
	if (!feat_sec)
3159
		return -1;
3160 3161 3162

	sec_size = sizeof(*feat_sec) * nr_sections;

3163
	lseek(fd, header->feat_offset, SEEK_SET);
3164

3165 3166
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3167
		goto out_free;
3168

3169 3170 3171 3172
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3173
	}
3174
	err = 0;
3175
out_free:
3176 3177
	free(feat_sec);
	return err;
3178
}
3179

3180 3181 3182
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3183
	[2] = PERF_ATTR_SIZE_VER2,
3184
	[3] = PERF_ATTR_SIZE_VER3,
3185
	[4] = PERF_ATTR_SIZE_VER4,
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3196
{
3197 3198
	uint64_t ref_size, attr_size;
	int i;
3199

3200 3201 3202 3203 3204 3205 3206
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3207

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3218

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3243 3244 3245

			ph->needs_swap = true;
		}
3246
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3247 3248
		return 0;
	}
3249 3250 3251
	return -1;
}

F
Feng Tang 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3262 3263 3264 3265 3266 3267 3268 3269
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3270
		ph->version = PERF_HEADER_VERSION_1;
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3282
	ph->version = PERF_HEADER_VERSION_2;
3283

3284 3285
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3286 3287
		return 0;

3288 3289
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3290 3291 3292 3293 3294 3295 3296
		return -1;

	ph->needs_swap = true;

	return 0;
}

3297
int perf_file_header__read(struct perf_file_header *header,
3298 3299
			   struct perf_header *ph, int fd)
{
3300
	ssize_t ret;
3301

3302 3303
	lseek(fd, 0, SEEK_SET);

3304 3305
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3306 3307
		return -1;

3308 3309 3310
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3311
		return -1;
3312
	}
3313

3314
	if (ph->needs_swap) {
3315
		mem_bswap_64(header, offsetof(struct perf_file_header,
3316
			     adds_features));
3317 3318
	}

3319
	if (header->size != sizeof(*header)) {
3320
		/* Support the previous format */
3321 3322
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3323 3324
		else
			return -1;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3341 3342
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3343 3344

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3345 3346 3347 3348 3349 3350 3351
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3352 3353 3354 3355 3356 3357
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3358
	}
3359

3360
	memcpy(&ph->adds_features, &header->adds_features,
3361
	       sizeof(ph->adds_features));
3362

3363 3364
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3365
	ph->feat_offset  = header->data.offset + header->data.size;
3366 3367 3368
	return 0;
}

3369
static int perf_file_section__process(struct perf_file_section *section,
3370
				      struct perf_header *ph,
3371
				      int feat, int fd, void *data)
3372
{
3373
	struct feat_fd fdd = {
3374 3375
		.fd	= fd,
		.ph	= ph,
3376 3377
		.size	= section->size,
		.offset	= section->offset,
3378 3379
	};

3380
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3381
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3382
			  "%d, continuing...\n", section->offset, feat);
3383 3384 3385
		return 0;
	}

3386 3387 3388 3389 3390
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3391 3392
	if (!feat_ops[feat].process)
		return 0;
3393

3394
	return feat_ops[feat].process(&fdd, data);
3395
}
3396

3397
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3398 3399
				       struct perf_header *ph, int fd,
				       bool repipe)
3400
{
3401 3402 3403 3404
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3405
	ssize_t ret;
3406 3407 3408 3409 3410

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3411 3412
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3413
		return -1;
3414 3415 3416 3417
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3418

3419
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3420 3421
		return -1;

3422 3423 3424
	return 0;
}

3425
static int perf_header__read_pipe(struct perf_session *session)
3426
{
3427
	struct perf_header *header = &session->header;
3428 3429
	struct perf_pipe_file_header f_header;

3430
	if (perf_file_header__read_pipe(&f_header, header,
3431
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3432
					session->repipe) < 0) {
3433 3434 3435 3436 3437 3438 3439
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3440 3441 3442 3443 3444 3445
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3446
	ssize_t ret;
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3486
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3487
						struct tep_handle *pevent)
3488
{
3489
	struct tep_event *event;
3490 3491
	char bf[128];

3492 3493 3494 3495
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3496 3497 3498 3499 3500
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3501
	event = tep_find_event(pevent, evsel->core.attr.config);
3502
	if (event == NULL) {
3503
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3504
		return -1;
3505
	}
3506

3507 3508 3509 3510 3511 3512
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3513

3514
	evsel->tp_format = event;
3515 3516 3517
	return 0;
}

3518
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3519
						  struct tep_handle *pevent)
3520
{
3521
	struct evsel *pos;
3522

3523
	evlist__for_each_entry(evlist, pos) {
3524
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3525
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3526 3527 3528 3529 3530 3531
			return -1;
	}

	return 0;
}

3532
int perf_session__read_header(struct perf_session *session)
3533
{
3534
	struct perf_data *data = session->data;
3535
	struct perf_header *header = &session->header;
3536
	struct perf_file_header	f_header;
3537 3538 3539
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3540
	int fd = perf_data__fd(data);
3541

3542
	session->evlist = evlist__new();
3543 3544 3545
	if (session->evlist == NULL)
		return -ENOMEM;

3546
	session->evlist->env = &header->env;
3547
	session->machines.host.env = &header->env;
3548
	if (perf_data__is_pipe(data))
3549
		return perf_header__read_pipe(session);
3550

3551
	if (perf_file_header__read(&f_header, header, fd) < 0)
3552
		return -EINVAL;
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3563
			   data->file.path);
3564 3565
	}

3566 3567 3568 3569 3570 3571 3572
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3573
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3574 3575 3576
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3577
		struct evsel *evsel;
3578
		off_t tmp;
3579

3580
		if (read_attr(fd, header, &f_attr) < 0)
3581
			goto out_errno;
3582

3583 3584 3585
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3586
			perf_event__attr_swap(&f_attr.attr);
3587
		}
3588

3589
		tmp = lseek(fd, 0, SEEK_CUR);
3590
		evsel = evsel__new(&f_attr.attr);
3591

3592 3593
		if (evsel == NULL)
			goto out_delete_evlist;
3594 3595

		evsel->needs_swap = header->needs_swap;
3596 3597
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3598
		 * entry gets purged too at evlist__delete().
3599
		 */
3600
		evlist__add(session->evlist, evsel);
3601 3602

		nr_ids = f_attr.ids.size / sizeof(u64);
3603 3604 3605 3606 3607 3608 3609 3610
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
			goto out_delete_evlist;

3611 3612 3613
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3614
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3615
				goto out_errno;
3616

3617
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3618
		}
3619

3620 3621 3622
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3623
	perf_header__process_sections(header, fd, &session->tevent,
3624
				      perf_file_section__process);
3625

3626
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3627
						   session->tevent.pevent))
3628 3629
		goto out_delete_evlist;

3630
	return 0;
3631 3632
out_errno:
	return -errno;
3633 3634

out_delete_evlist:
3635
	evlist__delete(session->evlist);
3636 3637
	session->evlist = NULL;
	return -ENOMEM;
3638
}
3639

3640
int perf_event__synthesize_attr(struct perf_tool *tool,
3641
				struct perf_event_attr *attr, u32 ids, u64 *id,
3642
				perf_event__handler_t process)
3643
{
3644
	union perf_event *ev;
3645 3646 3647 3648
	size_t size;
	int err;

	size = sizeof(struct perf_event_attr);
3649
	size = PERF_ALIGN(size, sizeof(u64));
3650 3651 3652
	size += sizeof(struct perf_event_header);
	size += ids * sizeof(u64);

3653
	ev = zalloc(size);
3654

3655 3656 3657
	if (ev == NULL)
		return -ENOMEM;

3658 3659 3660 3661
	ev->attr.attr = *attr;
	memcpy(ev->attr.id, id, ids * sizeof(u64));

	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3662
	ev->attr.header.size = (u16)size;
3663

3664 3665 3666 3667
	if (ev->attr.header.size == size)
		err = process(tool, ev, NULL, NULL);
	else
		err = -E2BIG;
3668 3669 3670 3671 3672 3673

	free(ev);

	return err;
}

3674 3675
int perf_event__synthesize_features(struct perf_tool *tool,
				    struct perf_session *session,
3676
				    struct evlist *evlist,
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
				    perf_event__handler_t process)
{
	struct perf_header *header = &session->header;
	struct feat_fd ff;
	struct feature_event *fe;
	size_t sz, sz_hdr;
	int feat, ret;

	sz_hdr = sizeof(fe->header);
	sz = sizeof(union perf_event);
	/* get a nice alignment */
	sz = PERF_ALIGN(sz, page_size);

	memset(&ff, 0, sizeof(ff));

	ff.buf = malloc(sz);
	if (!ff.buf)
		return -ENOMEM;

	ff.size = sz - sz_hdr;
3697
	ff.ph = &session->header;
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
		if (!feat_ops[feat].synthesize) {
			pr_debug("No record header feature for header :%d\n", feat);
			continue;
		}

		ff.offset = sizeof(*fe);

		ret = feat_ops[feat].write(&ff, evlist);
		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
			pr_debug("Error writing feature\n");
			continue;
		}
		/* ff.buf may have changed due to realloc in do_write() */
		fe = ff.buf;
		memset(fe, 0, sizeof(*fe));

		fe->feat_id = feat;
		fe->header.type = PERF_RECORD_HEADER_FEATURE;
		fe->header.size = ff.offset;

		ret = process(tool, ff.buf, NULL, NULL);
		if (ret) {
			free(ff.buf);
			return ret;
		}
	}
3726 3727 3728 3729 3730 3731 3732 3733 3734

	/* Send HEADER_LAST_FEATURE mark. */
	fe = ff.buf;
	fe->feat_id     = HEADER_LAST_FEATURE;
	fe->header.type = PERF_RECORD_HEADER_FEATURE;
	fe->header.size = sizeof(*fe);

	ret = process(tool, ff.buf, NULL, NULL);

3735
	free(ff.buf);
3736
	return ret;
3737 3738
}

3739 3740
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3741
{
3742
	struct perf_tool *tool = session->tool;
3743 3744 3745 3746 3747 3748 3749 3750 3751
	struct feat_fd ff = { .fd = 0 };
	struct feature_event *fe = (struct feature_event *)event;
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3752
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3753 3754 3755 3756 3757 3758 3759 3760
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3761
	ff.size = event->header.size - sizeof(*fe);
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
static struct event_update_event *
event_update_event__new(size_t size, u64 type, u64 id)
{
	struct event_update_event *ev;

	size += sizeof(*ev);
	size  = PERF_ALIGN(size, sizeof(u64));

	ev = zalloc(size);
	if (ev) {
		ev->header.type = PERF_RECORD_EVENT_UPDATE;
		ev->header.size = (u16)size;
		ev->type = type;
		ev->id = id;
	}
	return ev;
}

int
perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3801
					 struct evsel *evsel,
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t size = strlen(evsel->unit);
	int err;

	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3812
	strlcpy(ev->data, evsel->unit, size + 1);
3813 3814 3815 3816 3817
	err = process(tool, (union perf_event *)ev, NULL, NULL);
	free(ev);
	return err;
}

3818 3819
int
perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3820
					  struct evsel *evsel,
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
					  perf_event__handler_t process)
{
	struct event_update_event *ev;
	struct event_update_event_scale *ev_data;
	int err;

	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

	ev_data = (struct event_update_event_scale *) ev->data;
	ev_data->scale = evsel->scale;
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3838 3839
int
perf_event__synthesize_event_update_name(struct perf_tool *tool,
3840
					 struct evsel *evsel,
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t len = strlen(evsel->name);
	int err;

	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3851
	strlcpy(ev->data, evsel->name, len + 1);
3852 3853 3854 3855
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}
3856

3857 3858
int
perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3859
					struct evsel *evsel,
3860 3861 3862 3863 3864 3865 3866
					perf_event__handler_t process)
{
	size_t size = sizeof(struct event_update_event);
	struct event_update_event *ev;
	int max, err;
	u16 type;

3867
	if (!evsel->core.own_cpus)
3868 3869
		return 0;

3870
	ev = cpu_map_data__alloc(evsel->core.own_cpus, &size, &type, &max);
3871 3872 3873 3874 3875 3876 3877 3878 3879
	if (!ev)
		return -ENOMEM;

	ev->header.type = PERF_RECORD_EVENT_UPDATE;
	ev->header.size = (u16)size;
	ev->type = PERF_EVENT_UPDATE__CPUS;
	ev->id   = evsel->id[0];

	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3880
				 evsel->core.own_cpus,
3881 3882 3883 3884 3885 3886 3887
				 type, max);

	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3888 3889 3890 3891 3892
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
	struct event_update_event *ev = &event->event_update;
	struct event_update_event_scale *ev_scale;
	struct event_update_event_cpus *ev_cpus;
3893
	struct perf_cpu_map *map;
3894 3895
	size_t ret;

3896
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3926

3927
int perf_event__synthesize_attrs(struct perf_tool *tool,
3928
				 struct evlist *evlist,
3929
				 perf_event__handler_t process)
3930
{
3931
	struct evsel *evsel;
3932
	int err = 0;
3933

3934
	evlist__for_each_entry(evlist, evsel) {
3935
		err = perf_event__synthesize_attr(tool, &evsel->core.attr, evsel->ids,
3936
						  evsel->id, process);
3937 3938 3939 3940 3941 3942 3943 3944 3945
		if (err) {
			pr_debug("failed to create perf header attribute\n");
			return err;
		}
	}

	return err;
}

3946
static bool has_unit(struct evsel *counter)
3947 3948 3949 3950
{
	return counter->unit && *counter->unit;
}

3951
static bool has_scale(struct evsel *counter)
3952 3953 3954 3955 3956
{
	return counter->scale != 1;
}

int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3957
				      struct evlist *evsel_list,
3958 3959 3960
				      perf_event__handler_t process,
				      bool is_pipe)
{
3961
	struct evsel *counter;
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	int err;

	/*
	 * Synthesize other events stuff not carried within
	 * attr event - unit, scale, name
	 */
	evlist__for_each_entry(evsel_list, counter) {
		if (!counter->supported)
			continue;

		/*
		 * Synthesize unit and scale only if it's defined.
		 */
		if (has_unit(counter)) {
			err = perf_event__synthesize_event_update_unit(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel unit.\n");
				return err;
			}
		}

		if (has_scale(counter)) {
			err = perf_event__synthesize_event_update_scale(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel counter.\n");
				return err;
			}
		}

3991
		if (counter->core.own_cpus) {
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel cpus.\n");
				return err;
			}
		}

		/*
		 * Name is needed only for pipe output,
		 * perf.data carries event names.
		 */
		if (is_pipe) {
			err = perf_event__synthesize_event_update_name(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel name.\n");
				return err;
			}
		}
	}
	return 0;
}

4014 4015
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
4016
			     struct evlist **pevlist)
4017
{
4018
	u32 i, ids, n_ids;
4019
	struct evsel *evsel;
4020
	struct evlist *evlist = *pevlist;
4021

4022
	if (evlist == NULL) {
4023
		*pevlist = evlist = evlist__new();
4024
		if (evlist == NULL)
4025 4026 4027
			return -ENOMEM;
	}

4028
	evsel = evsel__new(&event->attr.attr);
4029
	if (evsel == NULL)
4030 4031
		return -ENOMEM;

4032
	evlist__add(evlist, evsel);
4033

4034 4035
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4036
	n_ids = ids / sizeof(u64);
4037 4038 4039 4040 4041 4042 4043
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
	if (perf_evsel__alloc_id(evsel, 1, n_ids))
		return -ENOMEM;
4044 4045

	for (i = 0; i < n_ids; i++) {
4046
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4047 4048 4049 4050
	}

	return 0;
}
4051

4052 4053
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4054
				     struct evlist **pevlist)
4055 4056
{
	struct event_update_event *ev = &event->event_update;
4057
	struct event_update_event_scale *ev_scale;
4058
	struct event_update_event_cpus *ev_cpus;
4059
	struct evlist *evlist;
4060
	struct evsel *evsel;
4061
	struct perf_cpu_map *map;
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

4072 4073 4074
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4075
		break;
4076 4077 4078
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4079 4080 4081
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		evsel->scale = ev_scale->scale;
4082
		break;
4083 4084 4085 4086 4087
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
4088
			evsel->core.own_cpus = map;
4089 4090
		else
			pr_err("failed to get event_update cpus\n");
4091 4092 4093 4094
	default:
		break;
	}

4095 4096 4097
	return 0;
}

4098
int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4099
					struct evlist *evlist,
4100
					perf_event__handler_t process)
4101
{
4102
	union perf_event ev;
J
Jiri Olsa 已提交
4103
	struct tracing_data *tdata;
4104
	ssize_t size = 0, aligned_size = 0, padding;
4105
	struct feat_fd ff;
4106
	int err __maybe_unused = 0;
4107

J
Jiri Olsa 已提交
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	/*
	 * We are going to store the size of the data followed
	 * by the data contents. Since the fd descriptor is a pipe,
	 * we cannot seek back to store the size of the data once
	 * we know it. Instead we:
	 *
	 * - write the tracing data to the temp file
	 * - get/write the data size to pipe
	 * - write the tracing data from the temp file
	 *   to the pipe
	 */
4119
	tdata = tracing_data_get(&evlist->core.entries, fd, true);
J
Jiri Olsa 已提交
4120 4121 4122
	if (!tdata)
		return -1;

4123 4124 4125
	memset(&ev, 0, sizeof(ev));

	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
J
Jiri Olsa 已提交
4126
	size = tdata->size;
4127
	aligned_size = PERF_ALIGN(size, sizeof(u64));
4128 4129 4130 4131
	padding = aligned_size - size;
	ev.tracing_data.header.size = sizeof(ev.tracing_data);
	ev.tracing_data.size = aligned_size;

4132
	process(tool, &ev, NULL, NULL);
4133

J
Jiri Olsa 已提交
4134 4135 4136 4137 4138 4139
	/*
	 * The put function will copy all the tracing data
	 * stored in temp file to the pipe.
	 */
	tracing_data_put(tdata);

4140 4141
	ff = (struct feat_fd){ .fd = fd };
	if (write_padded(&ff, NULL, 0, padding))
4142
		return -1;
4143 4144 4145 4146

	return aligned_size;
}

4147 4148
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4149
{
4150
	ssize_t size_read, padding, size = event->tracing_data.size;
4151
	int fd = perf_data__fd(session->data);
4152
	off_t offset = lseek(fd, 0, SEEK_CUR);
4153 4154 4155
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
4156
	lseek(fd, offset + sizeof(struct tracing_data_event),
4157 4158
	      SEEK_SET);

J
Jiri Olsa 已提交
4159
	size_read = trace_report(fd, &session->tevent,
4160
				 session->repipe);
4161
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4162

4163
	if (readn(fd, buf, padding) < 0) {
4164 4165 4166
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4167 4168
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4169 4170 4171 4172
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4173
	}
4174

4175 4176 4177 4178
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4179

4180
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4181
					       session->tevent.pevent);
4182

4183 4184
	return size_read + padding;
}
4185

4186
int perf_event__synthesize_build_id(struct perf_tool *tool,
4187
				    struct dso *pos, u16 misc,
4188
				    perf_event__handler_t process,
4189
				    struct machine *machine)
4190
{
4191
	union perf_event ev;
4192 4193 4194 4195 4196 4197 4198 4199 4200
	size_t len;
	int err = 0;

	if (!pos->hit)
		return err;

	memset(&ev, 0, sizeof(ev));

	len = pos->long_name_len + 1;
4201
	len = PERF_ALIGN(len, NAME_ALIGN);
4202 4203 4204
	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
	ev.build_id.header.misc = misc;
4205
	ev.build_id.pid = machine->pid;
4206 4207 4208
	ev.build_id.header.size = sizeof(ev.build_id) + len;
	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);

4209
	err = process(tool, &ev, NULL, machine);
4210 4211 4212 4213

	return err;
}

4214 4215
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4216
{
4217 4218
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4219
				 session);
4220 4221
	return 0;
}