header.c 90.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "evlist.h"
26
#include "evsel.h"
27
#include "header.h"
28
#include "memswap.h"
29 30
#include "../perf.h"
#include "trace-event.h"
31
#include "session.h"
32
#include "symbol.h"
33
#include "debug.h"
34
#include "cpumap.h"
35
#include "pmu.h"
36
#include "vdso.h"
37
#include "strbuf.h"
38
#include "build-id.h"
39
#include "data.h"
40 41
#include <api/fs/fs.h>
#include "asm/bug.h"
42
#include "tool.h"
43
#include "time-utils.h"
44
#include "units.h"
J
Jiri Olsa 已提交
45
#include "cputopo.h"
46
#include "bpf-event.h"
47

48
#include <linux/ctype.h>
49

50 51 52 53 54 55 56 57 58 59 60 61
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
62

63
#define PERF_MAGIC	__perf_magic2
64

65 66
const char perf_version_string[] = PERF_VERSION;

67
struct perf_file_attr {
68
	struct perf_event_attr	attr;
69 70 71
	struct perf_file_section	ids;
};

72 73 74
struct feat_fd {
	struct perf_header	*ph;
	int			fd;
75
	void			*buf;	/* Either buf != NULL or fd >= 0 */
76 77
	ssize_t			offset;
	size_t			size;
78
	struct evsel	*events;
79 80
};

81
void perf_header__set_feat(struct perf_header *header, int feat)
82
{
83
	set_bit(feat, header->adds_features);
84 85
}

86
void perf_header__clear_feat(struct perf_header *header, int feat)
87
{
88
	clear_bit(feat, header->adds_features);
89 90
}

91
bool perf_header__has_feat(const struct perf_header *header, int feat)
92
{
93
	return test_bit(feat, header->adds_features);
94 95
}

96
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
97
{
98
	ssize_t ret = writen(ff->fd, buf, size);
99

100 101
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
129 130

	return 0;
131 132
}

133 134 135 136 137 138 139 140
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

160
/* Return: 0 if succeded, -ERR if failed. */
161 162
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
163 164
{
	static const char zero_buf[NAME_ALIGN];
165
	int err = do_write(ff, bf, count);
166 167

	if (!err)
168
		err = do_write(ff, zero_buf, count_aligned - count);
169 170 171 172

	return err;
}

173 174 175
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

176
/* Return: 0 if succeded, -ERR if failed. */
177
static int do_write_string(struct feat_fd *ff, const char *str)
178 179 180 181 182
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
183
	len = PERF_ALIGN(olen, NAME_ALIGN);
184 185

	/* write len, incl. \0 */
186
	ret = do_write(ff, &len, sizeof(len));
187 188 189
	if (ret < 0)
		return ret;

190
	return write_padded(ff, str, olen, len);
191 192
}

193
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
194
{
195
	ssize_t ret = readn(ff->fd, addr, size);
196 197 198 199 200 201

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

221
static int do_read_u32(struct feat_fd *ff, u32 *addr)
222 223 224
{
	int ret;

225
	ret = __do_read(ff, addr, sizeof(*addr));
226 227 228
	if (ret)
		return ret;

229
	if (ff->ph->needs_swap)
230 231 232 233
		*addr = bswap_32(*addr);
	return 0;
}

234
static int do_read_u64(struct feat_fd *ff, u64 *addr)
235 236 237
{
	int ret;

238
	ret = __do_read(ff, addr, sizeof(*addr));
239 240 241
	if (ret)
		return ret;

242
	if (ff->ph->needs_swap)
243 244 245 246
		*addr = bswap_64(*addr);
	return 0;
}

247
static char *do_read_string(struct feat_fd *ff)
248 249 250 251
{
	u32 len;
	char *buf;

252
	if (do_read_u32(ff, &len))
253 254 255 256 257 258
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

259
	if (!__do_read(ff, buf, len)) {
260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

302
static int write_tracing_data(struct feat_fd *ff,
303
			      struct evlist *evlist)
304
{
305 306 307
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

308
	return read_tracing_data(ff->fd, &evlist->core.entries);
309 310
}

311
static int write_build_id(struct feat_fd *ff,
312
			  struct evlist *evlist __maybe_unused)
313 314 315 316
{
	struct perf_session *session;
	int err;

317
	session = container_of(ff->ph, struct perf_session, header);
318

319 320 321
	if (!perf_session__read_build_ids(session, true))
		return -1;

322 323 324
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

325
	err = perf_session__write_buildid_table(session, ff);
326 327 328 329
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
330
	perf_session__cache_build_ids(session);
331 332 333 334

	return 0;
}

335
static int write_hostname(struct feat_fd *ff,
336
			  struct evlist *evlist __maybe_unused)
337 338 339 340 341 342 343 344
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

345
	return do_write_string(ff, uts.nodename);
346 347
}

348
static int write_osrelease(struct feat_fd *ff,
349
			   struct evlist *evlist __maybe_unused)
350 351 352 353 354 355 356 357
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

358
	return do_write_string(ff, uts.release);
359 360
}

361
static int write_arch(struct feat_fd *ff,
362
		      struct evlist *evlist __maybe_unused)
363 364 365 366 367 368 369 370
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

371
	return do_write_string(ff, uts.machine);
372 373
}

374
static int write_version(struct feat_fd *ff,
375
			 struct evlist *evlist __maybe_unused)
376
{
377
	return do_write_string(ff, perf_version_string);
378 379
}

380
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
381 382 383 384
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
385
	const char *search = cpuinfo_proc;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

402 403
	if (ret) {
		ret = -1;
404
		goto done;
405
	}
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
421
			char *q = skip_spaces(r);
422 423 424 425 426 427
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
428
	ret = do_write_string(ff, s);
429 430 431 432 433 434
done:
	free(buf);
	fclose(file);
	return ret;
}

435
static int write_cpudesc(struct feat_fd *ff,
436
		       struct evlist *evlist __maybe_unused)
437 438 439 440 441 442
{
	const char *cpuinfo_procs[] = CPUINFO_PROC;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
443
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 445 446 447 448 449 450
		if (ret >= 0)
			return ret;
	}
	return -1;
}


451
static int write_nrcpus(struct feat_fd *ff,
452
			struct evlist *evlist __maybe_unused)
453 454 455 456 457
{
	long nr;
	u32 nrc, nra;
	int ret;

458
	nrc = cpu__max_present_cpu();
459 460 461 462 463 464 465

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

466
	ret = do_write(ff, &nrc, sizeof(nrc));
467 468 469
	if (ret < 0)
		return ret;

470
	return do_write(ff, &nra, sizeof(nra));
471 472
}

473
static int write_event_desc(struct feat_fd *ff,
474
			    struct evlist *evlist)
475
{
476
	struct evsel *evsel;
477
	u32 nre, nri, sz;
478 479
	int ret;

480
	nre = evlist->core.nr_entries;
481 482 483 484

	/*
	 * write number of events
	 */
485
	ret = do_write(ff, &nre, sizeof(nre));
486 487 488 489 490 491
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
492
	sz = (u32)sizeof(evsel->core.attr);
493
	ret = do_write(ff, &sz, sizeof(sz));
494 495 496
	if (ret < 0)
		return ret;

497
	evlist__for_each_entry(evlist, evsel) {
498
		ret = do_write(ff, &evsel->core.attr, sz);
499 500 501 502 503 504 505 506 507
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
508
		nri = evsel->ids;
509
		ret = do_write(ff, &nri, sizeof(nri));
510 511 512 513 514 515
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
516
		ret = do_write_string(ff, perf_evsel__name(evsel));
517 518 519 520 521
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
522
		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 524 525 526 527 528
		if (ret < 0)
			return ret;
	}
	return 0;
}

529
static int write_cmdline(struct feat_fd *ff,
530
			 struct evlist *evlist __maybe_unused)
531
{
532 533
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
534

535
	/* actual path to perf binary */
536
	buf = perf_exe(pbuf, MAXPATHLEN);
537 538

	/* account for binary path */
539
	n = perf_env.nr_cmdline + 1;
540

541
	ret = do_write(ff, &n, sizeof(n));
542 543 544
	if (ret < 0)
		return ret;

545
	ret = do_write_string(ff, buf);
546 547 548
	if (ret < 0)
		return ret;

549
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 552 553 554 555 556 557
		if (ret < 0)
			return ret;
	}
	return 0;
}


558
static int write_cpu_topology(struct feat_fd *ff,
559
			      struct evlist *evlist __maybe_unused)
560
{
J
Jiri Olsa 已提交
561
	struct cpu_topology *tp;
562
	u32 i;
563
	int ret, j;
564

J
Jiri Olsa 已提交
565
	tp = cpu_topology__new();
566 567 568
	if (!tp)
		return -1;

569
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 571 572 573
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
574
		ret = do_write_string(ff, tp->core_siblings[i]);
575 576 577
		if (ret < 0)
			goto done;
	}
578
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 580 581 582
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
583
		ret = do_write_string(ff, tp->thread_siblings[i]);
584 585 586
		if (ret < 0)
			break;
	}
587

588 589 590 591 592
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593
		ret = do_write(ff, &perf_env.cpu[j].core_id,
594
			       sizeof(perf_env.cpu[j].core_id));
595 596
		if (ret < 0)
			return ret;
597
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
598
			       sizeof(perf_env.cpu[j].socket_id));
599 600 601
		if (ret < 0)
			return ret;
	}
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

623
done:
J
Jiri Olsa 已提交
624
	cpu_topology__delete(tp);
625 626 627 628 629
	return ret;
}



630
static int write_total_mem(struct feat_fd *ff,
631
			   struct evlist *evlist __maybe_unused)
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
651
			ret = do_write(ff, &mem, sizeof(mem));
652 653
	} else
		ret = -1;
654 655 656 657 658
	free(buf);
	fclose(fp);
	return ret;
}

659
static int write_numa_topology(struct feat_fd *ff,
660
			       struct evlist *evlist __maybe_unused)
661
{
J
Jiri Olsa 已提交
662
	struct numa_topology *tp;
663
	int ret = -1;
J
Jiri Olsa 已提交
664
	u32 i;
665

J
Jiri Olsa 已提交
666 667 668
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
669

J
Jiri Olsa 已提交
670 671 672
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
673

J
Jiri Olsa 已提交
674 675
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
676

J
Jiri Olsa 已提交
677 678 679
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
680

J
Jiri Olsa 已提交
681 682 683
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
684

J
Jiri Olsa 已提交
685 686 687
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
688

J
Jiri Olsa 已提交
689
		ret = do_write_string(ff, n->cpus);
690
		if (ret < 0)
J
Jiri Olsa 已提交
691
			goto err;
692
	}
J
Jiri Olsa 已提交
693 694 695 696 697

	ret = 0;

err:
	numa_topology__delete(tp);
698 699 700
	return ret;
}

701 702 703 704 705 706 707 708 709 710 711 712
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

713
static int write_pmu_mappings(struct feat_fd *ff,
714
			      struct evlist *evlist __maybe_unused)
715 716
{
	struct perf_pmu *pmu = NULL;
717
	u32 pmu_num = 0;
718
	int ret;
719

720 721 722 723 724 725 726 727 728 729
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

730
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
731 732
	if (ret < 0)
		return ret;
733 734 735 736

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
737

738
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
739 740 741
		if (ret < 0)
			return ret;

742
		ret = do_write_string(ff, pmu->name);
743 744
		if (ret < 0)
			return ret;
745 746 747 748 749
	}

	return 0;
}

750 751 752 753 754 755 756 757 758 759 760 761
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
762
static int write_group_desc(struct feat_fd *ff,
763
			    struct evlist *evlist)
764 765
{
	u32 nr_groups = evlist->nr_groups;
766
	struct evsel *evsel;
767 768
	int ret;

769
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
770 771 772
	if (ret < 0)
		return ret;

773
	evlist__for_each_entry(evlist, evsel) {
774 775 776 777 778 779
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
			u32 nr_members = evsel->nr_members;

780
			ret = do_write_string(ff, name);
781 782 783
			if (ret < 0)
				return ret;

784
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
785 786 787
			if (ret < 0)
				return ret;

788
			ret = do_write(ff, &nr_members, sizeof(nr_members));
789 790 791 792 793 794 795
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

835 836
/*
 * default get_cpuid(): nothing gets recorded
837
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
838
 */
839
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
840 841 842 843
{
	return -1;
}

844
static int write_cpuid(struct feat_fd *ff,
845
		       struct evlist *evlist __maybe_unused)
846 847 848 849 850
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
851 852
	if (ret)
		return -1;
853

854
	return do_write_string(ff, buffer);
855 856
}

857
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
858
			      struct evlist *evlist __maybe_unused)
859 860 861 862
{
	return 0;
}

863
static int write_auxtrace(struct feat_fd *ff,
864
			  struct evlist *evlist __maybe_unused)
865
{
866 867 868
	struct perf_session *session;
	int err;

869 870 871
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

872
	session = container_of(ff->ph, struct perf_session, header);
873

874
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
875 876 877
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
878 879
}

880
static int write_clockid(struct feat_fd *ff,
881
			 struct evlist *evlist __maybe_unused)
882 883 884 885 886
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

887
static int write_dir_format(struct feat_fd *ff,
888
			    struct evlist *evlist __maybe_unused)
889 890 891 892 893 894 895 896 897 898 899 900 901
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

902 903
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
904
			       struct evlist *evlist __maybe_unused)
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
946
			       struct evlist *evlist __maybe_unused)
947 948 949 950 951
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

952
static int write_bpf_btf(struct feat_fd *ff,
953
			 struct evlist *evlist __maybe_unused)
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1052
	cache->type = strim(cache->type);
1053 1054 1055

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1056
		zfree(&cache->type);
1057 1058 1059 1060
		return -1;
	}

	cache->size[len] = 0;
1061
	cache->size = strim(cache->size);
1062 1063 1064

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1065 1066
		zfree(&cache->map);
		zfree(&cache->type);
1067 1068 1069 1070
		return -1;
	}

	cache->map[len] = 0;
1071
	cache->map = strim(cache->map);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

1124
#define MAX_CACHES (MAX_NR_CPUS * 4)
1125

1126
static int write_cache(struct feat_fd *ff,
1127
		       struct evlist *evlist __maybe_unused)
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
{
	struct cpu_cache_level caches[MAX_CACHES];
	u32 cnt = 0, i, version = 1;
	int ret;

	ret = build_caches(caches, MAX_CACHES, &cnt);
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1139
	ret = do_write(ff, &version, sizeof(u32));
1140 1141 1142
	if (ret < 0)
		goto out;

1143
	ret = do_write(ff, &cnt, sizeof(u32));
1144 1145 1146 1147 1148 1149 1150
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1151
			ret = do_write(ff, &c->v, sizeof(u32));	\
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1162
			ret = do_write_string(ff, (const char *) c->v);	\
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1178
static int write_stat(struct feat_fd *ff __maybe_unused,
1179
		      struct evlist *evlist __maybe_unused)
1180 1181 1182 1183
{
	return 0;
}

1184
static int write_sample_time(struct feat_fd *ff,
1185
			     struct evlist *evlist)
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1268 1269
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1319
			      struct evlist *evlist __maybe_unused)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1368
static int write_compressed(struct feat_fd *ff __maybe_unused,
1369
			    struct evlist *evlist __maybe_unused)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1392
static void print_hostname(struct feat_fd *ff, FILE *fp)
1393
{
1394
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1395 1396
}

1397
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1398
{
1399
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1400 1401
}

1402
static void print_arch(struct feat_fd *ff, FILE *fp)
1403
{
1404
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1405 1406
}

1407
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1408
{
1409
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1410 1411
}

1412
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1413
{
1414 1415
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1416 1417
}

1418
static void print_version(struct feat_fd *ff, FILE *fp)
1419
{
1420
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1421 1422
}

1423
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1424
{
1425
	int nr, i;
1426

1427
	nr = ff->ph->env.nr_cmdline;
1428 1429 1430

	fprintf(fp, "# cmdline : ");

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1449 1450 1451
	fputc('\n', fp);
}

1452
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1453
{
1454 1455
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1456
	int nr, i;
1457 1458
	char *str;

1459 1460
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1461 1462

	for (i = 0; i < nr; i++) {
1463
		fprintf(fp, "# sibling sockets : %s\n", str);
1464
		str += strlen(str) + 1;
1465 1466
	}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1477 1478
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1479 1480 1481

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1482
		str += strlen(str) + 1;
1483
	}
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1507 1508
}

1509 1510 1511 1512 1513 1514
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1542 1543 1544

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1545 1546 1547 1548 1549
	}

	up_read(&env->bpf_progs.lock);
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1572
static void free_event_desc(struct evsel *events)
1573
{
1574
	struct evsel *evsel;
1575 1576 1577 1578

	if (!events)
		return;

1579
	for (evsel = events; evsel->core.attr.size; evsel++) {
1580 1581
		zfree(&evsel->name);
		zfree(&evsel->id);
1582 1583 1584 1585 1586
	}

	free(events);
}

1587
static struct evsel *read_event_desc(struct feat_fd *ff)
1588
{
1589
	struct evsel *evsel, *events = NULL;
1590
	u64 *id;
1591
	void *buf = NULL;
1592 1593
	u32 nre, sz, nr, i, j;
	size_t msz;
1594 1595

	/* number of events */
1596
	if (do_read_u32(ff, &nre))
1597 1598
		goto error;

1599
	if (do_read_u32(ff, &sz))
1600 1601
		goto error;

1602
	/* buffer to hold on file attr struct */
1603 1604 1605 1606
	buf = malloc(sz);
	if (!buf)
		goto error;

1607
	/* the last event terminates with evsel->core.attr.size == 0: */
1608 1609 1610 1611
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1612
	msz = sizeof(evsel->core.attr);
1613
	if (sz < msz)
1614 1615
		msz = sz;

1616 1617
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1618

1619 1620 1621 1622
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1623
		if (__do_read(ff, buf, sz))
1624 1625
			goto error;

1626
		if (ff->ph->needs_swap)
1627 1628
			perf_event__attr_swap(buf);

1629
		memcpy(&evsel->core.attr, buf, msz);
1630

1631
		if (do_read_u32(ff, &nr))
1632 1633
			goto error;

1634
		if (ff->ph->needs_swap)
1635
			evsel->needs_swap = true;
1636

1637
		evsel->name = do_read_string(ff);
1638 1639
		if (!evsel->name)
			goto error;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
		evsel->ids = nr;
		evsel->id = id;

		for (j = 0 ; j < nr; j++) {
1651
			if (do_read_u64(ff, id))
1652 1653 1654 1655 1656
				goto error;
			id++;
		}
	}
out:
1657
	free(buf);
1658 1659
	return events;
error:
1660
	free_event_desc(events);
1661 1662 1663 1664
	events = NULL;
	goto out;
}

1665
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1666
				void *priv __maybe_unused)
1667 1668 1669 1670
{
	return fprintf(fp, ", %s = %s", name, val);
}

1671
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1672
{
1673
	struct evsel *evsel, *events;
1674 1675 1676
	u32 j;
	u64 *id;

1677 1678 1679 1680 1681
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1682 1683 1684 1685 1686
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1687
	for (evsel = events; evsel->core.attr.size; evsel++) {
1688
		fprintf(fp, "# event : name = %s, ", evsel->name);
1689

1690
		if (evsel->ids) {
1691
			fprintf(fp, ", id = {");
1692 1693 1694 1695 1696
			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1697
			fprintf(fp, " }");
1698
		}
1699

1700
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1701

1702 1703
		fputc('\n', fp);
	}
1704 1705

	free_event_desc(events);
1706
	ff->events = NULL;
1707 1708
}

1709
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1710
{
1711
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1712 1713
}

1714
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1715
{
1716 1717
	int i;
	struct numa_node *n;
1718

1719 1720
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1721 1722 1723

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1724
			n->node, n->mem_total, n->mem_free);
1725

1726 1727
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1728 1729 1730
	}
}

1731
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1732
{
1733
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1734 1735
}

1736
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1737 1738 1739 1740
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1741
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1742 1743 1744 1745
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1746
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1747 1748 1749 1750
{
	fprintf(fp, "# contains stat data\n");
}

1751
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1752 1753 1754 1755
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1756
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1757
		fprintf(fp, "#  ");
1758
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1759 1760 1761
	}
}

1762 1763 1764 1765 1766 1767 1768
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1769
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1770 1771
{
	const char *delimiter = "# pmu mappings: ";
1772
	char *str, *tmp;
1773 1774 1775
	u32 pmu_num;
	u32 type;

1776
	pmu_num = ff->ph->env.nr_pmu_mappings;
1777 1778 1779 1780 1781
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1782
	str = ff->ph->env.pmu_mappings;
1783

1784
	while (pmu_num) {
1785 1786 1787 1788 1789 1790
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1791

1792
		delimiter = ", ";
1793 1794
		str += strlen(str) + 1;
		pmu_num--;
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1805
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1806 1807
{
	struct perf_session *session;
1808
	struct evsel *evsel;
1809 1810
	u32 nr = 0;

1811
	session = container_of(ff->ph, struct perf_session, header);
1812

1813
	evlist__for_each_entry(session->evlist, evsel) {
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

			nr = evsel->nr_members - 1;
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1880 1881 1882 1883 1884 1885
static int __event_process_build_id(struct build_id_event *bev,
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1886
	u16 cpumode;
1887 1888 1889 1890 1891 1892 1893
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1894
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1895

1896
	switch (cpumode) {
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1911
	dso = machine__findnew_dso(machine, filename);
1912
	if (dso != NULL) {
1913
		char sbuild_id[SBUILD_ID_SIZE];
1914 1915 1916

		dso__set_build_id(dso, &bev->build_id);

1917 1918 1919 1920
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1921
				dso__set_module_info(dso, &m, machine);
1922 1923 1924 1925 1926
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1927 1928 1929 1930 1931

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1932
		dso__put(dso);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1946
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1947 1948 1949 1950 1951 1952 1953 1954 1955
		char			   filename[0];
	} old_bev;
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1956
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1957 1958 1959 1960 1961 1962
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1963
		if (readn(input, filename, len) != len)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

1998
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1999 2000 2001 2002 2003 2004
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2005
		if (readn(input, filename, len) != len)
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
		 * Added a field to struct build_id_event that broke the file
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2035 2036
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2037
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2038
{\
2039
	ff->ph->env.__feat_env = do_read_string(ff); \
2040
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2041 2042 2043 2044 2045 2046 2047 2048 2049
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2050
static int process_tracing_data(struct feat_fd *ff, void *data)
2051
{
2052 2053
	ssize_t ret = trace_report(ff->fd, data, false);

2054
	return ret < 0 ? -1 : 0;
2055 2056
}

2057
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2058
{
2059
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2060 2061 2062 2063
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2064
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2065
{
2066 2067
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2068

2069
	ret = do_read_u32(ff, &nr_cpus_avail);
2070 2071
	if (ret)
		return ret;
2072

2073
	ret = do_read_u32(ff, &nr_cpus_online);
2074 2075
	if (ret)
		return ret;
2076 2077
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2078 2079 2080
	return 0;
}

2081
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2082
{
2083 2084
	u64 total_mem;
	int ret;
2085

2086
	ret = do_read_u64(ff, &total_mem);
2087
	if (ret)
2088
		return -1;
2089
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2090 2091 2092
	return 0;
}

2093
static struct evsel *
2094
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2095
{
2096
	struct evsel *evsel;
2097

2098
	evlist__for_each_entry(evlist, evsel) {
2099 2100 2101 2102 2103 2104 2105 2106
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2107
perf_evlist__set_event_name(struct evlist *evlist,
2108
			    struct evsel *event)
2109
{
2110
	struct evsel *evsel;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2126
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2127
{
2128
	struct perf_session *session;
2129
	struct evsel *evsel, *events = read_event_desc(ff);
2130 2131 2132 2133

	if (!events)
		return 0;

2134
	session = container_of(ff->ph, struct perf_session, header);
2135

2136
	if (session->data->is_pipe) {
2137 2138 2139 2140 2141
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2142
	for (evsel = events; evsel->core.attr.size; evsel++)
2143 2144
		perf_evlist__set_event_name(session->evlist, evsel);

2145
	if (!session->data->is_pipe)
2146
		free_event_desc(events);
2147 2148 2149 2150

	return 0;
}

2151
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2152
{
2153 2154
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2155

2156
	if (do_read_u32(ff, &nr))
2157 2158
		return -1;

2159
	ff->ph->env.nr_cmdline = nr;
2160

2161
	cmdline = zalloc(ff->size + nr + 1);
2162 2163 2164 2165 2166 2167
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2168 2169

	for (i = 0; i < nr; i++) {
2170
		str = do_read_string(ff);
2171 2172 2173
		if (!str)
			goto error;

2174 2175 2176
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2177 2178
		free(str);
	}
2179 2180
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2181 2182 2183
	return 0;

error:
2184 2185
	free(argv);
	free(cmdline);
2186 2187 2188
	return -1;
}

2189
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2190 2191 2192 2193
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2194
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2195
	u64 size = 0;
2196
	struct perf_header *ph = ff->ph;
2197
	bool do_core_id_test = true;
2198 2199 2200 2201

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2202

2203
	if (do_read_u32(ff, &nr))
2204
		goto free_cpu;
2205 2206

	ph->env.nr_sibling_cores = nr;
2207
	size += sizeof(u32);
2208 2209
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2210 2211

	for (i = 0; i < nr; i++) {
2212
		str = do_read_string(ff);
2213 2214 2215 2216
		if (!str)
			goto error;

		/* include a NULL character at the end */
2217 2218
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2219
		size += string_size(str);
2220 2221 2222 2223
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2224
	if (do_read_u32(ff, &nr))
2225 2226 2227
		return -1;

	ph->env.nr_sibling_threads = nr;
2228
	size += sizeof(u32);
2229 2230

	for (i = 0; i < nr; i++) {
2231
		str = do_read_string(ff);
2232 2233 2234 2235
		if (!str)
			goto error;

		/* include a NULL character at the end */
2236 2237
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2238
		size += string_size(str);
2239 2240 2241
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2242 2243 2244 2245 2246

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2247
	if (ff->size <= size) {
2248 2249 2250 2251
		zfree(&ph->env.cpu);
		return 0;
	}

2252 2253 2254 2255 2256 2257 2258
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
	 */
	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
		do_core_id_test = false;

2259
	for (i = 0; i < (u32)cpu_nr; i++) {
2260
		if (do_read_u32(ff, &nr))
2261 2262 2263
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2264
		size += sizeof(u32);
2265

2266
		if (do_read_u32(ff, &nr))
2267 2268
			goto free_cpu;

2269
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2270 2271 2272 2273 2274 2275
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2310 2311
	}

2312 2313 2314 2315
	return 0;

error:
	strbuf_release(&sb);
2316 2317
free_cpu:
	zfree(&ph->env.cpu);
2318 2319 2320
	return -1;
}

2321
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2322
{
2323 2324
	struct numa_node *nodes, *n;
	u32 nr, i;
2325 2326 2327
	char *str;

	/* nr nodes */
2328
	if (do_read_u32(ff, &nr))
2329
		return -1;
2330

2331 2332 2333
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2334 2335

	for (i = 0; i < nr; i++) {
2336 2337
		n = &nodes[i];

2338
		/* node number */
2339
		if (do_read_u32(ff, &n->node))
2340 2341
			goto error;

2342
		if (do_read_u64(ff, &n->mem_total))
2343 2344
			goto error;

2345
		if (do_read_u64(ff, &n->mem_free))
2346 2347
			goto error;

2348
		str = do_read_string(ff);
2349 2350 2351
		if (!str)
			goto error;

2352
		n->map = perf_cpu_map__new(str);
2353
		if (!n->map)
2354
			goto error;
2355

2356 2357
		free(str);
	}
2358 2359
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2360 2361 2362
	return 0;

error:
2363
	free(nodes);
2364 2365 2366
	return -1;
}

2367
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2368 2369 2370 2371 2372 2373
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2374
	if (do_read_u32(ff, &pmu_num))
2375 2376 2377 2378 2379 2380 2381
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2382
	ff->ph->env.nr_pmu_mappings = pmu_num;
2383 2384
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2385 2386

	while (pmu_num) {
2387
		if (do_read_u32(ff, &type))
2388 2389
			goto error;

2390
		name = do_read_string(ff);
2391 2392 2393
		if (!name)
			goto error;

2394 2395
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2396
		/* include a NULL character at the end */
2397 2398
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2399

2400
		if (!strcmp(name, "msr"))
2401
			ff->ph->env.msr_pmu_type = type;
2402

2403 2404 2405
		free(name);
		pmu_num--;
	}
2406
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2407 2408 2409 2410 2411 2412 2413
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2414
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2415 2416 2417 2418
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2419
	struct evsel *evsel, *leader = NULL;
2420 2421 2422 2423 2424 2425
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2426
	if (do_read_u32(ff, &nr_groups))
2427 2428
		return -1;

2429
	ff->ph->env.nr_groups = nr_groups;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2440
		desc[i].name = do_read_string(ff);
2441 2442 2443
		if (!desc[i].name)
			goto out_free;

2444
		if (do_read_u32(ff, &desc[i].leader_idx))
2445 2446
			goto out_free;

2447
		if (do_read_u32(ff, &desc[i].nr_members))
2448 2449 2450 2451 2452 2453
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2454
	session = container_of(ff->ph, struct perf_session, header);
2455 2456 2457
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2458
	evlist__for_each_entry(session->evlist, evsel) {
2459 2460 2461
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2462
			if (strcmp(desc[i].name, "{anon_group}")) {
2463
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2464 2465
				desc[i].name = NULL;
			}
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
			evsel->nr_members = desc[i].nr_members;

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
			nr = evsel->nr_members - 1;
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2491
	for (i = 0; i < nr_groups; i++)
2492
		zfree(&desc[i].name);
2493 2494 2495 2496 2497
	free(desc);

	return ret;
}

2498
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2499 2500 2501 2502
{
	struct perf_session *session;
	int err;

2503
	session = container_of(ff->ph, struct perf_session, header);
2504

2505
	err = auxtrace_index__process(ff->fd, ff->size, session,
2506
				      ff->ph->needs_swap);
2507 2508 2509 2510 2511
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2512
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2513 2514 2515 2516
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2517
	if (do_read_u32(ff, &version))
2518 2519 2520 2521 2522
		return -1;

	if (version != 1)
		return -1;

2523
	if (do_read_u32(ff, &cnt))
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2534
			if (do_read_u32(ff, &c.v))\
2535 2536 2537 2538 2539 2540 2541 2542
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2543
		#define _R(v)					\
2544
			c.v = do_read_string(ff);		\
2545
			if (!c.v)				\
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2556 2557
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2558 2559 2560 2561 2562 2563
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2637 2638 2639 2640 2641 2642 2643 2644 2645
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2722
	up_write(&env->bpf_progs.lock);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2737 2738 2739
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2740
	struct btf_node *node = NULL;
2741
	u32 count, i;
2742
	int err = -1;
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2758
			goto out;
2759
		if (do_read_u32(ff, &data_size))
2760
			goto out;
2761 2762 2763

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2764
			goto out;
2765 2766 2767 2768

		node->id = id;
		node->data_size = data_size;

2769 2770
		if (__do_read(ff, node->data, data_size))
			goto out;
2771 2772

		perf_env__insert_btf(env, node);
2773
		node = NULL;
2774 2775
	}

2776 2777
	err = 0;
out:
2778
	up_write(&env->bpf_progs.lock);
2779 2780
	free(node);
	return err;
2781 2782
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2804
struct feature_ops {
2805
	int (*write)(struct feat_fd *ff, struct evlist *evlist);
2806
	void (*print)(struct feat_fd *ff, FILE *fp);
2807
	int (*process)(struct feat_fd *ff, void *data);
2808 2809
	const char *name;
	bool full_only;
2810
	bool synthesize;
2811 2812
};

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2831 2832

/* feature_ops not implemented: */
2833 2834
#define print_tracing_data	NULL
#define print_build_id		NULL
2835

2836 2837 2838 2839
#define process_branch_stack	NULL
#define process_stat		NULL


2840
static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2857
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2858 2859 2860
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2861
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2862
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2863
	FEAT_OPR(CLOCKID,	clockid,	false),
2864
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2865 2866
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2867
	FEAT_OPR(COMPRESSED,	compressed,	false),
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2880
	struct feat_fd ff;
2881 2882 2883 2884 2885 2886

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2887
	if (feat >= HEADER_LAST_FEATURE) {
2888
		pr_warning("unknown feature %d\n", feat);
2889
		return 0;
2890 2891 2892 2893
	}
	if (!feat_ops[feat].print)
		return 0;

2894 2895 2896 2897 2898
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2899
	if (!feat_ops[feat].full_only || hd->full)
2900
		feat_ops[feat].print(&ff, hd->fp);
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2912
	int fd = perf_data__fd(session->data);
2913
	struct stat st;
2914
	time_t stctime;
J
Jiri Olsa 已提交
2915
	int ret, bit;
2916

2917 2918 2919
	hd.fp = fp;
	hd.full = full;

2920 2921 2922 2923
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2924 2925
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2926 2927 2928 2929 2930

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2931

2932 2933
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2934

2935
	if (session->data->is_pipe)
2936 2937
		return 0;

J
Jiri Olsa 已提交
2938 2939 2940 2941 2942 2943 2944
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2945 2946 2947
	return 0;
}

2948
static int do_write_feat(struct feat_fd *ff, int type,
2949
			 struct perf_file_section **p,
2950
			 struct evlist *evlist)
2951 2952 2953 2954
{
	int err;
	int ret = 0;

2955
	if (perf_header__has_feat(ff->ph, type)) {
2956 2957
		if (!feat_ops[type].write)
			return -1;
2958

2959 2960 2961
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2962
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2963

2964
		err = feat_ops[type].write(ff, evlist);
2965
		if (err < 0) {
2966
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2967 2968

			/* undo anything written */
2969
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2970 2971 2972

			return -1;
		}
2973
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2974 2975 2976 2977 2978
		(*p)++;
	}
	return ret;
}

2979
static int perf_header__adds_write(struct perf_header *header,
2980
				   struct evlist *evlist, int fd)
2981
{
2982
	int nr_sections;
2983
	struct feat_fd ff;
2984
	struct perf_file_section *feat_sec, *p;
2985 2986
	int sec_size;
	u64 sec_start;
2987
	int feat;
2988
	int err;
2989

2990 2991 2992 2993 2994
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

2995
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2996
	if (!nr_sections)
2997
		return 0;
2998

2999
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3000 3001
	if (feat_sec == NULL)
		return -ENOMEM;
3002 3003 3004

	sec_size = sizeof(*feat_sec) * nr_sections;

3005
	sec_start = header->feat_offset;
3006
	lseek(fd, sec_start + sec_size, SEEK_SET);
3007

3008
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3009
		if (do_write_feat(&ff, feat, &p, evlist))
3010 3011
			perf_header__clear_feat(header, feat);
	}
3012

3013
	lseek(fd, sec_start, SEEK_SET);
3014 3015
	/*
	 * may write more than needed due to dropped feature, but
3016
	 * this is okay, reader will skip the missing entries
3017
	 */
3018
	err = do_write(&ff, feat_sec, sec_size);
3019 3020
	if (err < 0)
		pr_debug("failed to write feature section\n");
3021
	free(feat_sec);
3022
	return err;
3023
}
3024

3025 3026 3027
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3028
	struct feat_fd ff;
3029 3030
	int err;

3031 3032
	ff = (struct feat_fd){ .fd = fd };

3033 3034 3035 3036 3037
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3038
	err = do_write(&ff, &f_header, sizeof(f_header));
3039 3040 3041 3042 3043 3044 3045 3046
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3047
int perf_session__write_header(struct perf_session *session,
3048
			       struct evlist *evlist,
3049
			       int fd, bool at_exit)
3050 3051 3052
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3053
	struct perf_header *header = &session->header;
3054
	struct evsel *evsel;
3055
	struct feat_fd ff;
3056
	u64 attr_offset;
3057
	int err;
3058

3059
	ff = (struct feat_fd){ .fd = fd};
3060 3061
	lseek(fd, sizeof(f_header), SEEK_SET);

3062
	evlist__for_each_entry(session->evlist, evsel) {
3063
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3064
		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3065 3066 3067 3068
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3069 3070
	}

3071
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3072

3073
	evlist__for_each_entry(evlist, evsel) {
3074
		f_attr = (struct perf_file_attr){
3075
			.attr = evsel->core.attr,
3076
			.ids  = {
3077 3078
				.offset = evsel->id_offset,
				.size   = evsel->ids * sizeof(u64),
3079 3080
			}
		};
3081
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3082 3083 3084 3085
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3086 3087
	}

3088 3089
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3090
	header->feat_offset = header->data_offset + header->data_size;
3091

3092
	if (at_exit) {
3093
		err = perf_header__adds_write(header, evlist, fd);
3094 3095 3096
		if (err < 0)
			return err;
	}
3097

3098 3099 3100 3101 3102
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3103
			.offset = attr_offset,
3104
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3105 3106
		},
		.data = {
3107 3108
			.offset = header->data_offset,
			.size	= header->data_size,
3109
		},
3110
		/* event_types is ignored, store zeros */
3111 3112
	};

3113
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3114

3115
	lseek(fd, 0, SEEK_SET);
3116
	err = do_write(&ff, &f_header, sizeof(f_header));
3117 3118 3119 3120
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3121
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3122

3123
	return 0;
3124 3125
}

3126
static int perf_header__getbuffer64(struct perf_header *header,
3127 3128
				    int fd, void *buf, size_t size)
{
3129
	if (readn(fd, buf, size) <= 0)
3130 3131
		return -1;

3132
	if (header->needs_swap)
3133 3134 3135 3136 3137
		mem_bswap_64(buf, size);

	return 0;
}

3138
int perf_header__process_sections(struct perf_header *header, int fd,
3139
				  void *data,
3140
				  int (*process)(struct perf_file_section *section,
3141 3142
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3143
{
3144
	struct perf_file_section *feat_sec, *sec;
3145 3146
	int nr_sections;
	int sec_size;
3147 3148
	int feat;
	int err;
3149

3150
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3151
	if (!nr_sections)
3152
		return 0;
3153

3154
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3155
	if (!feat_sec)
3156
		return -1;
3157 3158 3159

	sec_size = sizeof(*feat_sec) * nr_sections;

3160
	lseek(fd, header->feat_offset, SEEK_SET);
3161

3162 3163
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3164
		goto out_free;
3165

3166 3167 3168 3169
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3170
	}
3171
	err = 0;
3172
out_free:
3173 3174
	free(feat_sec);
	return err;
3175
}
3176

3177 3178 3179
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3180
	[2] = PERF_ATTR_SIZE_VER2,
3181
	[3] = PERF_ATTR_SIZE_VER3,
3182
	[4] = PERF_ATTR_SIZE_VER4,
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3193
{
3194 3195
	uint64_t ref_size, attr_size;
	int i;
3196

3197 3198 3199 3200 3201 3202 3203
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3215

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3240 3241 3242

			ph->needs_swap = true;
		}
3243
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3244 3245
		return 0;
	}
3246 3247 3248
	return -1;
}

F
Feng Tang 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3259 3260 3261 3262 3263 3264 3265 3266
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3267
		ph->version = PERF_HEADER_VERSION_1;
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3279
	ph->version = PERF_HEADER_VERSION_2;
3280

3281 3282
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3283 3284
		return 0;

3285 3286
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3287 3288 3289 3290 3291 3292 3293
		return -1;

	ph->needs_swap = true;

	return 0;
}

3294
int perf_file_header__read(struct perf_file_header *header,
3295 3296
			   struct perf_header *ph, int fd)
{
3297
	ssize_t ret;
3298

3299 3300
	lseek(fd, 0, SEEK_SET);

3301 3302
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3303 3304
		return -1;

3305 3306 3307
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3308
		return -1;
3309
	}
3310

3311
	if (ph->needs_swap) {
3312
		mem_bswap_64(header, offsetof(struct perf_file_header,
3313
			     adds_features));
3314 3315
	}

3316
	if (header->size != sizeof(*header)) {
3317
		/* Support the previous format */
3318 3319
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3320 3321
		else
			return -1;
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3338 3339
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3340 3341

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3342 3343 3344 3345 3346 3347 3348
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3349 3350 3351 3352 3353 3354
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3355
	}
3356

3357
	memcpy(&ph->adds_features, &header->adds_features,
3358
	       sizeof(ph->adds_features));
3359

3360 3361
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3362
	ph->feat_offset  = header->data.offset + header->data.size;
3363 3364 3365
	return 0;
}

3366
static int perf_file_section__process(struct perf_file_section *section,
3367
				      struct perf_header *ph,
3368
				      int feat, int fd, void *data)
3369
{
3370
	struct feat_fd fdd = {
3371 3372
		.fd	= fd,
		.ph	= ph,
3373 3374
		.size	= section->size,
		.offset	= section->offset,
3375 3376
	};

3377
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3378
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3379
			  "%d, continuing...\n", section->offset, feat);
3380 3381 3382
		return 0;
	}

3383 3384 3385 3386 3387
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3388 3389
	if (!feat_ops[feat].process)
		return 0;
3390

3391
	return feat_ops[feat].process(&fdd, data);
3392
}
3393

3394
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3395 3396
				       struct perf_header *ph, int fd,
				       bool repipe)
3397
{
3398 3399 3400 3401
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3402
	ssize_t ret;
3403 3404 3405 3406 3407

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3408 3409
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3410
		return -1;
3411 3412 3413 3414
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3415

3416
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3417 3418
		return -1;

3419 3420 3421
	return 0;
}

3422
static int perf_header__read_pipe(struct perf_session *session)
3423
{
3424
	struct perf_header *header = &session->header;
3425 3426
	struct perf_pipe_file_header f_header;

3427
	if (perf_file_header__read_pipe(&f_header, header,
3428
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3429
					session->repipe) < 0) {
3430 3431 3432 3433 3434 3435 3436
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3437 3438 3439 3440 3441 3442
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3443
	ssize_t ret;
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3457

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3483
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3484
						struct tep_handle *pevent)
3485
{
3486
	struct tep_event *event;
3487 3488
	char bf[128];

3489 3490 3491 3492
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3493 3494 3495 3496 3497
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3498
	event = tep_find_event(pevent, evsel->core.attr.config);
3499
	if (event == NULL) {
3500
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3501
		return -1;
3502
	}
3503

3504 3505 3506 3507 3508 3509
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3510

3511
	evsel->tp_format = event;
3512 3513 3514
	return 0;
}

3515
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3516
						  struct tep_handle *pevent)
3517
{
3518
	struct evsel *pos;
3519

3520
	evlist__for_each_entry(evlist, pos) {
3521
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3522
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3523 3524 3525 3526 3527 3528
			return -1;
	}

	return 0;
}

3529
int perf_session__read_header(struct perf_session *session)
3530
{
3531
	struct perf_data *data = session->data;
3532
	struct perf_header *header = &session->header;
3533
	struct perf_file_header	f_header;
3534 3535 3536
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3537
	int fd = perf_data__fd(data);
3538

3539
	session->evlist = evlist__new();
3540 3541 3542
	if (session->evlist == NULL)
		return -ENOMEM;

3543
	session->evlist->env = &header->env;
3544
	session->machines.host.env = &header->env;
3545
	if (perf_data__is_pipe(data))
3546
		return perf_header__read_pipe(session);
3547

3548
	if (perf_file_header__read(&f_header, header, fd) < 0)
3549
		return -EINVAL;
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3560
			   data->file.path);
3561 3562
	}

3563 3564 3565 3566 3567 3568 3569
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3570
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3571 3572 3573
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3574
		struct evsel *evsel;
3575
		off_t tmp;
3576

3577
		if (read_attr(fd, header, &f_attr) < 0)
3578
			goto out_errno;
3579

3580 3581 3582
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3583
			perf_event__attr_swap(&f_attr.attr);
3584
		}
3585

3586
		tmp = lseek(fd, 0, SEEK_CUR);
3587
		evsel = evsel__new(&f_attr.attr);
3588

3589 3590
		if (evsel == NULL)
			goto out_delete_evlist;
3591 3592

		evsel->needs_swap = header->needs_swap;
3593 3594
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3595
		 * entry gets purged too at evlist__delete().
3596
		 */
3597
		evlist__add(session->evlist, evsel);
3598 3599

		nr_ids = f_attr.ids.size / sizeof(u64);
3600 3601 3602 3603 3604 3605 3606 3607
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
			goto out_delete_evlist;

3608 3609 3610
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3611
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3612
				goto out_errno;
3613

3614
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3615
		}
3616

3617 3618 3619
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3620
	perf_header__process_sections(header, fd, &session->tevent,
3621
				      perf_file_section__process);
3622

3623
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3624
						   session->tevent.pevent))
3625 3626
		goto out_delete_evlist;

3627
	return 0;
3628 3629
out_errno:
	return -errno;
3630 3631

out_delete_evlist:
3632
	evlist__delete(session->evlist);
3633 3634
	session->evlist = NULL;
	return -ENOMEM;
3635
}
3636

3637
int perf_event__synthesize_attr(struct perf_tool *tool,
3638
				struct perf_event_attr *attr, u32 ids, u64 *id,
3639
				perf_event__handler_t process)
3640
{
3641
	union perf_event *ev;
3642 3643 3644 3645
	size_t size;
	int err;

	size = sizeof(struct perf_event_attr);
3646
	size = PERF_ALIGN(size, sizeof(u64));
3647 3648 3649
	size += sizeof(struct perf_event_header);
	size += ids * sizeof(u64);

3650
	ev = zalloc(size);
3651

3652 3653 3654
	if (ev == NULL)
		return -ENOMEM;

3655 3656 3657 3658
	ev->attr.attr = *attr;
	memcpy(ev->attr.id, id, ids * sizeof(u64));

	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3659
	ev->attr.header.size = (u16)size;
3660

3661 3662 3663 3664
	if (ev->attr.header.size == size)
		err = process(tool, ev, NULL, NULL);
	else
		err = -E2BIG;
3665 3666 3667 3668 3669 3670

	free(ev);

	return err;
}

3671 3672
int perf_event__synthesize_features(struct perf_tool *tool,
				    struct perf_session *session,
3673
				    struct evlist *evlist,
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
				    perf_event__handler_t process)
{
	struct perf_header *header = &session->header;
	struct feat_fd ff;
	struct feature_event *fe;
	size_t sz, sz_hdr;
	int feat, ret;

	sz_hdr = sizeof(fe->header);
	sz = sizeof(union perf_event);
	/* get a nice alignment */
	sz = PERF_ALIGN(sz, page_size);

	memset(&ff, 0, sizeof(ff));

	ff.buf = malloc(sz);
	if (!ff.buf)
		return -ENOMEM;

	ff.size = sz - sz_hdr;
3694
	ff.ph = &session->header;
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722

	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
		if (!feat_ops[feat].synthesize) {
			pr_debug("No record header feature for header :%d\n", feat);
			continue;
		}

		ff.offset = sizeof(*fe);

		ret = feat_ops[feat].write(&ff, evlist);
		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
			pr_debug("Error writing feature\n");
			continue;
		}
		/* ff.buf may have changed due to realloc in do_write() */
		fe = ff.buf;
		memset(fe, 0, sizeof(*fe));

		fe->feat_id = feat;
		fe->header.type = PERF_RECORD_HEADER_FEATURE;
		fe->header.size = ff.offset;

		ret = process(tool, ff.buf, NULL, NULL);
		if (ret) {
			free(ff.buf);
			return ret;
		}
	}
3723 3724 3725 3726 3727 3728 3729 3730 3731

	/* Send HEADER_LAST_FEATURE mark. */
	fe = ff.buf;
	fe->feat_id     = HEADER_LAST_FEATURE;
	fe->header.type = PERF_RECORD_HEADER_FEATURE;
	fe->header.size = sizeof(*fe);

	ret = process(tool, ff.buf, NULL, NULL);

3732
	free(ff.buf);
3733
	return ret;
3734 3735
}

3736 3737
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3738
{
3739
	struct perf_tool *tool = session->tool;
3740 3741 3742 3743 3744 3745 3746 3747 3748
	struct feat_fd ff = { .fd = 0 };
	struct feature_event *fe = (struct feature_event *)event;
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3749
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3750 3751 3752 3753 3754 3755 3756 3757
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3758
	ff.size = event->header.size - sizeof(*fe);
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
static struct event_update_event *
event_update_event__new(size_t size, u64 type, u64 id)
{
	struct event_update_event *ev;

	size += sizeof(*ev);
	size  = PERF_ALIGN(size, sizeof(u64));

	ev = zalloc(size);
	if (ev) {
		ev->header.type = PERF_RECORD_EVENT_UPDATE;
		ev->header.size = (u16)size;
		ev->type = type;
		ev->id = id;
	}
	return ev;
}

int
perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3798
					 struct evsel *evsel,
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t size = strlen(evsel->unit);
	int err;

	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3809
	strlcpy(ev->data, evsel->unit, size + 1);
3810 3811 3812 3813 3814
	err = process(tool, (union perf_event *)ev, NULL, NULL);
	free(ev);
	return err;
}

3815 3816
int
perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3817
					  struct evsel *evsel,
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
					  perf_event__handler_t process)
{
	struct event_update_event *ev;
	struct event_update_event_scale *ev_data;
	int err;

	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

	ev_data = (struct event_update_event_scale *) ev->data;
	ev_data->scale = evsel->scale;
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3835 3836
int
perf_event__synthesize_event_update_name(struct perf_tool *tool,
3837
					 struct evsel *evsel,
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t len = strlen(evsel->name);
	int err;

	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3848
	strlcpy(ev->data, evsel->name, len + 1);
3849 3850 3851 3852
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}
3853

3854 3855
int
perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3856
					struct evsel *evsel,
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
					perf_event__handler_t process)
{
	size_t size = sizeof(struct event_update_event);
	struct event_update_event *ev;
	int max, err;
	u16 type;

	if (!evsel->own_cpus)
		return 0;

	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
	if (!ev)
		return -ENOMEM;

	ev->header.type = PERF_RECORD_EVENT_UPDATE;
	ev->header.size = (u16)size;
	ev->type = PERF_EVENT_UPDATE__CPUS;
	ev->id   = evsel->id[0];

	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
				 evsel->own_cpus,
				 type, max);

	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3885 3886 3887 3888 3889
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
	struct event_update_event *ev = &event->event_update;
	struct event_update_event_scale *ev_scale;
	struct event_update_event_cpus *ev_cpus;
3890
	struct perf_cpu_map *map;
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	size_t ret;

	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3923

3924
int perf_event__synthesize_attrs(struct perf_tool *tool,
3925
				 struct evlist *evlist,
3926
				 perf_event__handler_t process)
3927
{
3928
	struct evsel *evsel;
3929
	int err = 0;
3930

3931
	evlist__for_each_entry(evlist, evsel) {
3932
		err = perf_event__synthesize_attr(tool, &evsel->core.attr, evsel->ids,
3933
						  evsel->id, process);
3934 3935 3936 3937 3938 3939 3940 3941 3942
		if (err) {
			pr_debug("failed to create perf header attribute\n");
			return err;
		}
	}

	return err;
}

3943
static bool has_unit(struct evsel *counter)
3944 3945 3946 3947
{
	return counter->unit && *counter->unit;
}

3948
static bool has_scale(struct evsel *counter)
3949 3950 3951 3952 3953
{
	return counter->scale != 1;
}

int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3954
				      struct evlist *evsel_list,
3955 3956 3957
				      perf_event__handler_t process,
				      bool is_pipe)
{
3958
	struct evsel *counter;
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	int err;

	/*
	 * Synthesize other events stuff not carried within
	 * attr event - unit, scale, name
	 */
	evlist__for_each_entry(evsel_list, counter) {
		if (!counter->supported)
			continue;

		/*
		 * Synthesize unit and scale only if it's defined.
		 */
		if (has_unit(counter)) {
			err = perf_event__synthesize_event_update_unit(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel unit.\n");
				return err;
			}
		}

		if (has_scale(counter)) {
			err = perf_event__synthesize_event_update_scale(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel counter.\n");
				return err;
			}
		}

		if (counter->own_cpus) {
			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel cpus.\n");
				return err;
			}
		}

		/*
		 * Name is needed only for pipe output,
		 * perf.data carries event names.
		 */
		if (is_pipe) {
			err = perf_event__synthesize_event_update_name(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel name.\n");
				return err;
			}
		}
	}
	return 0;
}

4011 4012
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
4013
			     struct evlist **pevlist)
4014
{
4015
	u32 i, ids, n_ids;
4016
	struct evsel *evsel;
4017
	struct evlist *evlist = *pevlist;
4018

4019
	if (evlist == NULL) {
4020
		*pevlist = evlist = evlist__new();
4021
		if (evlist == NULL)
4022 4023 4024
			return -ENOMEM;
	}

4025
	evsel = evsel__new(&event->attr.attr);
4026
	if (evsel == NULL)
4027 4028
		return -ENOMEM;

4029
	evlist__add(evlist, evsel);
4030

4031 4032
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4033
	n_ids = ids / sizeof(u64);
4034 4035 4036 4037 4038 4039 4040
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
	if (perf_evsel__alloc_id(evsel, 1, n_ids))
		return -ENOMEM;
4041 4042

	for (i = 0; i < n_ids; i++) {
4043
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4044 4045 4046 4047
	}

	return 0;
}
4048

4049 4050
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4051
				     struct evlist **pevlist)
4052 4053
{
	struct event_update_event *ev = &event->event_update;
4054
	struct event_update_event_scale *ev_scale;
4055
	struct event_update_event_cpus *ev_cpus;
4056
	struct evlist *evlist;
4057
	struct evsel *evsel;
4058
	struct perf_cpu_map *map;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

4069 4070 4071
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4072
		break;
4073 4074 4075
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4076 4077 4078
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		evsel->scale = ev_scale->scale;
4079
		break;
4080 4081 4082 4083 4084 4085 4086 4087
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			evsel->own_cpus = map;
		else
			pr_err("failed to get event_update cpus\n");
4088 4089 4090 4091
	default:
		break;
	}

4092 4093 4094
	return 0;
}

4095
int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4096
					struct evlist *evlist,
4097
					perf_event__handler_t process)
4098
{
4099
	union perf_event ev;
J
Jiri Olsa 已提交
4100
	struct tracing_data *tdata;
4101
	ssize_t size = 0, aligned_size = 0, padding;
4102
	struct feat_fd ff;
4103
	int err __maybe_unused = 0;
4104

J
Jiri Olsa 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	/*
	 * We are going to store the size of the data followed
	 * by the data contents. Since the fd descriptor is a pipe,
	 * we cannot seek back to store the size of the data once
	 * we know it. Instead we:
	 *
	 * - write the tracing data to the temp file
	 * - get/write the data size to pipe
	 * - write the tracing data from the temp file
	 *   to the pipe
	 */
4116
	tdata = tracing_data_get(&evlist->core.entries, fd, true);
J
Jiri Olsa 已提交
4117 4118 4119
	if (!tdata)
		return -1;

4120 4121 4122
	memset(&ev, 0, sizeof(ev));

	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
J
Jiri Olsa 已提交
4123
	size = tdata->size;
4124
	aligned_size = PERF_ALIGN(size, sizeof(u64));
4125 4126 4127 4128
	padding = aligned_size - size;
	ev.tracing_data.header.size = sizeof(ev.tracing_data);
	ev.tracing_data.size = aligned_size;

4129
	process(tool, &ev, NULL, NULL);
4130

J
Jiri Olsa 已提交
4131 4132 4133 4134 4135 4136
	/*
	 * The put function will copy all the tracing data
	 * stored in temp file to the pipe.
	 */
	tracing_data_put(tdata);

4137 4138
	ff = (struct feat_fd){ .fd = fd };
	if (write_padded(&ff, NULL, 0, padding))
4139
		return -1;
4140 4141 4142 4143

	return aligned_size;
}

4144 4145
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4146
{
4147
	ssize_t size_read, padding, size = event->tracing_data.size;
4148
	int fd = perf_data__fd(session->data);
4149
	off_t offset = lseek(fd, 0, SEEK_CUR);
4150 4151 4152
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
4153
	lseek(fd, offset + sizeof(struct tracing_data_event),
4154 4155
	      SEEK_SET);

J
Jiri Olsa 已提交
4156
	size_read = trace_report(fd, &session->tevent,
4157
				 session->repipe);
4158
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4159

4160
	if (readn(fd, buf, padding) < 0) {
4161 4162 4163
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4164 4165
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4166 4167 4168 4169
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4170
	}
4171

4172 4173 4174 4175
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4176

4177
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4178
					       session->tevent.pevent);
4179

4180 4181
	return size_read + padding;
}
4182

4183
int perf_event__synthesize_build_id(struct perf_tool *tool,
4184
				    struct dso *pos, u16 misc,
4185
				    perf_event__handler_t process,
4186
				    struct machine *machine)
4187
{
4188
	union perf_event ev;
4189 4190 4191 4192 4193 4194 4195 4196 4197
	size_t len;
	int err = 0;

	if (!pos->hit)
		return err;

	memset(&ev, 0, sizeof(ev));

	len = pos->long_name_len + 1;
4198
	len = PERF_ALIGN(len, NAME_ALIGN);
4199 4200 4201
	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
	ev.build_id.header.misc = misc;
4202
	ev.build_id.pid = machine->pid;
4203 4204 4205
	ev.build_id.header.size = sizeof(ev.build_id) + len;
	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);

4206
	err = process(tool, &ev, NULL, machine);
4207 4208 4209 4210

	return err;
}

4211 4212
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4213
{
4214 4215
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4216
				 session);
4217 4218
	return 0;
}