header.c 82.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "dso.h"
26
#include "evlist.h"
27
#include "evsel.h"
28
#include "header.h"
29
#include "memswap.h"
30
#include "trace-event.h"
31
#include "session.h"
32
#include "symbol.h"
33
#include "debug.h"
34
#include "cpumap.h"
35
#include "pmu.h"
36
#include "vdso.h"
37
#include "strbuf.h"
38
#include "build-id.h"
39
#include "data.h"
40 41
#include <api/fs/fs.h>
#include "asm/bug.h"
42
#include "tool.h"
43
#include "time-utils.h"
44
#include "units.h"
45
#include "util.h" // page_size, perf_exe()
J
Jiri Olsa 已提交
46
#include "cputopo.h"
47
#include "bpf-event.h"
48

49
#include <linux/ctype.h>
50
#include <internal/lib.h>
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
64

65
#define PERF_MAGIC	__perf_magic2
66

67 68
const char perf_version_string[] = PERF_VERSION;

69
struct perf_file_attr {
70
	struct perf_event_attr	attr;
71 72 73
	struct perf_file_section	ids;
};

74
void perf_header__set_feat(struct perf_header *header, int feat)
75
{
76
	set_bit(feat, header->adds_features);
77 78
}

79
void perf_header__clear_feat(struct perf_header *header, int feat)
80
{
81
	clear_bit(feat, header->adds_features);
82 83
}

84
bool perf_header__has_feat(const struct perf_header *header, int feat)
85
{
86
	return test_bit(feat, header->adds_features);
87 88
}

89
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
90
{
91
	ssize_t ret = writen(ff->fd, buf, size);
92

93 94
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
122 123

	return 0;
124 125
}

126 127 128 129 130 131 132 133
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

153
/* Return: 0 if succeded, -ERR if failed. */
154 155
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
156 157
{
	static const char zero_buf[NAME_ALIGN];
158
	int err = do_write(ff, bf, count);
159 160

	if (!err)
161
		err = do_write(ff, zero_buf, count_aligned - count);
162 163 164 165

	return err;
}

166 167 168
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

169
/* Return: 0 if succeded, -ERR if failed. */
170
static int do_write_string(struct feat_fd *ff, const char *str)
171 172 173 174 175
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
176
	len = PERF_ALIGN(olen, NAME_ALIGN);
177 178

	/* write len, incl. \0 */
179
	ret = do_write(ff, &len, sizeof(len));
180 181 182
	if (ret < 0)
		return ret;

183
	return write_padded(ff, str, olen, len);
184 185
}

186
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
187
{
188
	ssize_t ret = readn(ff->fd, addr, size);
189 190 191 192 193 194

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

214
static int do_read_u32(struct feat_fd *ff, u32 *addr)
215 216 217
{
	int ret;

218
	ret = __do_read(ff, addr, sizeof(*addr));
219 220 221
	if (ret)
		return ret;

222
	if (ff->ph->needs_swap)
223 224 225 226
		*addr = bswap_32(*addr);
	return 0;
}

227
static int do_read_u64(struct feat_fd *ff, u64 *addr)
228 229 230
{
	int ret;

231
	ret = __do_read(ff, addr, sizeof(*addr));
232 233 234
	if (ret)
		return ret;

235
	if (ff->ph->needs_swap)
236 237 238 239
		*addr = bswap_64(*addr);
	return 0;
}

240
static char *do_read_string(struct feat_fd *ff)
241 242 243 244
{
	u32 len;
	char *buf;

245
	if (do_read_u32(ff, &len))
246 247 248 249 250 251
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

252
	if (!__do_read(ff, buf, len)) {
253 254 255 256 257 258 259 260 261 262 263 264
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

295
static int write_tracing_data(struct feat_fd *ff,
296
			      struct evlist *evlist)
297
{
298 299 300
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

301
	return read_tracing_data(ff->fd, &evlist->core.entries);
302 303
}

304
static int write_build_id(struct feat_fd *ff,
305
			  struct evlist *evlist __maybe_unused)
306 307 308 309
{
	struct perf_session *session;
	int err;

310
	session = container_of(ff->ph, struct perf_session, header);
311

312 313 314
	if (!perf_session__read_build_ids(session, true))
		return -1;

315 316 317
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

318
	err = perf_session__write_buildid_table(session, ff);
319 320 321 322
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
323
	perf_session__cache_build_ids(session);
324 325 326 327

	return 0;
}

328
static int write_hostname(struct feat_fd *ff,
329
			  struct evlist *evlist __maybe_unused)
330 331 332 333 334 335 336 337
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

338
	return do_write_string(ff, uts.nodename);
339 340
}

341
static int write_osrelease(struct feat_fd *ff,
342
			   struct evlist *evlist __maybe_unused)
343 344 345 346 347 348 349 350
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

351
	return do_write_string(ff, uts.release);
352 353
}

354
static int write_arch(struct feat_fd *ff,
355
		      struct evlist *evlist __maybe_unused)
356 357 358 359 360 361 362 363
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

364
	return do_write_string(ff, uts.machine);
365 366
}

367
static int write_version(struct feat_fd *ff,
368
			 struct evlist *evlist __maybe_unused)
369
{
370
	return do_write_string(ff, perf_version_string);
371 372
}

373
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
374 375 376 377
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
378
	const char *search = cpuinfo_proc;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

395 396
	if (ret) {
		ret = -1;
397
		goto done;
398
	}
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
414
			char *q = skip_spaces(r);
415 416 417 418 419 420
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
421
	ret = do_write_string(ff, s);
422 423 424 425 426 427
done:
	free(buf);
	fclose(file);
	return ret;
}

428
static int write_cpudesc(struct feat_fd *ff,
429
		       struct evlist *evlist __maybe_unused)
430
{
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
448
	const char *cpuinfo_procs[] = CPUINFO_PROC;
449
#undef CPUINFO_PROC
450 451 452 453
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
454
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
455 456 457 458 459 460 461
		if (ret >= 0)
			return ret;
	}
	return -1;
}


462
static int write_nrcpus(struct feat_fd *ff,
463
			struct evlist *evlist __maybe_unused)
464 465 466 467 468
{
	long nr;
	u32 nrc, nra;
	int ret;

469
	nrc = cpu__max_present_cpu();
470 471 472 473 474 475 476

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

477
	ret = do_write(ff, &nrc, sizeof(nrc));
478 479 480
	if (ret < 0)
		return ret;

481
	return do_write(ff, &nra, sizeof(nra));
482 483
}

484
static int write_event_desc(struct feat_fd *ff,
485
			    struct evlist *evlist)
486
{
487
	struct evsel *evsel;
488
	u32 nre, nri, sz;
489 490
	int ret;

491
	nre = evlist->core.nr_entries;
492 493 494 495

	/*
	 * write number of events
	 */
496
	ret = do_write(ff, &nre, sizeof(nre));
497 498 499 500 501 502
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
503
	sz = (u32)sizeof(evsel->core.attr);
504
	ret = do_write(ff, &sz, sizeof(sz));
505 506 507
	if (ret < 0)
		return ret;

508
	evlist__for_each_entry(evlist, evsel) {
509
		ret = do_write(ff, &evsel->core.attr, sz);
510 511 512 513 514 515 516 517 518
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
519
		nri = evsel->core.ids;
520
		ret = do_write(ff, &nri, sizeof(nri));
521 522 523 524 525 526
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
527
		ret = do_write_string(ff, perf_evsel__name(evsel));
528 529 530 531 532
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
533
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
534 535 536 537 538 539
		if (ret < 0)
			return ret;
	}
	return 0;
}

540
static int write_cmdline(struct feat_fd *ff,
541
			 struct evlist *evlist __maybe_unused)
542
{
543 544
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
545

546
	/* actual path to perf binary */
547
	buf = perf_exe(pbuf, MAXPATHLEN);
548 549

	/* account for binary path */
550
	n = perf_env.nr_cmdline + 1;
551

552
	ret = do_write(ff, &n, sizeof(n));
553 554 555
	if (ret < 0)
		return ret;

556
	ret = do_write_string(ff, buf);
557 558 559
	if (ret < 0)
		return ret;

560
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
561
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
562 563 564 565 566 567 568
		if (ret < 0)
			return ret;
	}
	return 0;
}


569
static int write_cpu_topology(struct feat_fd *ff,
570
			      struct evlist *evlist __maybe_unused)
571
{
J
Jiri Olsa 已提交
572
	struct cpu_topology *tp;
573
	u32 i;
574
	int ret, j;
575

J
Jiri Olsa 已提交
576
	tp = cpu_topology__new();
577 578 579
	if (!tp)
		return -1;

580
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
581 582 583 584
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
585
		ret = do_write_string(ff, tp->core_siblings[i]);
586 587 588
		if (ret < 0)
			goto done;
	}
589
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
590 591 592 593
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
594
		ret = do_write_string(ff, tp->thread_siblings[i]);
595 596 597
		if (ret < 0)
			break;
	}
598

599 600 601 602 603
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
604
		ret = do_write(ff, &perf_env.cpu[j].core_id,
605
			       sizeof(perf_env.cpu[j].core_id));
606 607
		if (ret < 0)
			return ret;
608
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
609
			       sizeof(perf_env.cpu[j].socket_id));
610 611 612
		if (ret < 0)
			return ret;
	}
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

634
done:
J
Jiri Olsa 已提交
635
	cpu_topology__delete(tp);
636 637 638 639 640
	return ret;
}



641
static int write_total_mem(struct feat_fd *ff,
642
			   struct evlist *evlist __maybe_unused)
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
662
			ret = do_write(ff, &mem, sizeof(mem));
663 664
	} else
		ret = -1;
665 666 667 668 669
	free(buf);
	fclose(fp);
	return ret;
}

670
static int write_numa_topology(struct feat_fd *ff,
671
			       struct evlist *evlist __maybe_unused)
672
{
J
Jiri Olsa 已提交
673
	struct numa_topology *tp;
674
	int ret = -1;
J
Jiri Olsa 已提交
675
	u32 i;
676

J
Jiri Olsa 已提交
677 678 679
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
680

J
Jiri Olsa 已提交
681 682 683
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
684

J
Jiri Olsa 已提交
685 686
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
687

J
Jiri Olsa 已提交
688 689 690
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
691

J
Jiri Olsa 已提交
692 693 694
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
695

J
Jiri Olsa 已提交
696 697 698
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
699

J
Jiri Olsa 已提交
700
		ret = do_write_string(ff, n->cpus);
701
		if (ret < 0)
J
Jiri Olsa 已提交
702
			goto err;
703
	}
J
Jiri Olsa 已提交
704 705 706 707 708

	ret = 0;

err:
	numa_topology__delete(tp);
709 710 711
	return ret;
}

712 713 714 715 716 717 718 719 720 721 722 723
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

724
static int write_pmu_mappings(struct feat_fd *ff,
725
			      struct evlist *evlist __maybe_unused)
726 727
{
	struct perf_pmu *pmu = NULL;
728
	u32 pmu_num = 0;
729
	int ret;
730

731 732 733 734 735 736 737 738 739 740
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

741
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
742 743
	if (ret < 0)
		return ret;
744 745 746 747

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
748

749
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
750 751 752
		if (ret < 0)
			return ret;

753
		ret = do_write_string(ff, pmu->name);
754 755
		if (ret < 0)
			return ret;
756 757 758 759 760
	}

	return 0;
}

761 762 763 764 765 766 767 768 769 770 771 772
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
773
static int write_group_desc(struct feat_fd *ff,
774
			    struct evlist *evlist)
775 776
{
	u32 nr_groups = evlist->nr_groups;
777
	struct evsel *evsel;
778 779
	int ret;

780
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
781 782 783
	if (ret < 0)
		return ret;

784
	evlist__for_each_entry(evlist, evsel) {
785
		if (perf_evsel__is_group_leader(evsel) &&
786
		    evsel->core.nr_members > 1) {
787 788
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
789
			u32 nr_members = evsel->core.nr_members;
790

791
			ret = do_write_string(ff, name);
792 793 794
			if (ret < 0)
				return ret;

795
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
796 797 798
			if (ret < 0)
				return ret;

799
			ret = do_write(ff, &nr_members, sizeof(nr_members));
800 801 802 803 804 805 806
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

846 847
/*
 * default get_cpuid(): nothing gets recorded
848
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
849
 */
850
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
851 852 853 854
{
	return -1;
}

855
static int write_cpuid(struct feat_fd *ff,
856
		       struct evlist *evlist __maybe_unused)
857 858 859 860 861
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
862 863
	if (ret)
		return -1;
864

865
	return do_write_string(ff, buffer);
866 867
}

868
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
869
			      struct evlist *evlist __maybe_unused)
870 871 872 873
{
	return 0;
}

874
static int write_auxtrace(struct feat_fd *ff,
875
			  struct evlist *evlist __maybe_unused)
876
{
877 878 879
	struct perf_session *session;
	int err;

880 881 882
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

883
	session = container_of(ff->ph, struct perf_session, header);
884

885
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
886 887 888
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
889 890
}

891
static int write_clockid(struct feat_fd *ff,
892
			 struct evlist *evlist __maybe_unused)
893 894 895 896 897
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

898
static int write_dir_format(struct feat_fd *ff,
899
			    struct evlist *evlist __maybe_unused)
900 901 902 903 904 905 906 907 908 909 910 911 912
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

913 914
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
915
			       struct evlist *evlist __maybe_unused)
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
957
			       struct evlist *evlist __maybe_unused)
958 959 960 961 962
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

963
static int write_bpf_btf(struct feat_fd *ff,
964
			 struct evlist *evlist __maybe_unused)
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1063
	cache->type = strim(cache->type);
1064 1065 1066

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1067
		zfree(&cache->type);
1068 1069 1070 1071
		return -1;
	}

	cache->size[len] = 0;
1072
	cache->size = strim(cache->size);
1073 1074 1075

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1076
		zfree(&cache->size);
1077
		zfree(&cache->type);
1078 1079 1080 1081
		return -1;
	}

	cache->map[len] = 0;
1082
	cache->map = strim(cache->map);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

1135
#define MAX_CACHE_LVL 4
1136

1137
static int write_cache(struct feat_fd *ff,
1138
		       struct evlist *evlist __maybe_unused)
1139
{
1140 1141
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1142 1143 1144
	u32 cnt = 0, i, version = 1;
	int ret;

1145
	ret = build_caches(caches, max_caches, &cnt);
1146 1147 1148 1149 1150
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1151
	ret = do_write(ff, &version, sizeof(u32));
1152 1153 1154
	if (ret < 0)
		goto out;

1155
	ret = do_write(ff, &cnt, sizeof(u32));
1156 1157 1158 1159 1160 1161 1162
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1163
			ret = do_write(ff, &c->v, sizeof(u32));	\
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1174
			ret = do_write_string(ff, (const char *) c->v);	\
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1190
static int write_stat(struct feat_fd *ff __maybe_unused,
1191
		      struct evlist *evlist __maybe_unused)
1192 1193 1194 1195
{
	return 0;
}

1196
static int write_sample_time(struct feat_fd *ff,
1197
			     struct evlist *evlist)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1280 1281
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1331
			      struct evlist *evlist __maybe_unused)
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1380
static int write_compressed(struct feat_fd *ff __maybe_unused,
1381
			    struct evlist *evlist __maybe_unused)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1404
static void print_hostname(struct feat_fd *ff, FILE *fp)
1405
{
1406
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1407 1408
}

1409
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1410
{
1411
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1412 1413
}

1414
static void print_arch(struct feat_fd *ff, FILE *fp)
1415
{
1416
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1417 1418
}

1419
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1420
{
1421
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1422 1423
}

1424
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1425
{
1426 1427
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1428 1429
}

1430
static void print_version(struct feat_fd *ff, FILE *fp)
1431
{
1432
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1433 1434
}

1435
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1436
{
1437
	int nr, i;
1438

1439
	nr = ff->ph->env.nr_cmdline;
1440 1441 1442

	fprintf(fp, "# cmdline : ");

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1461 1462 1463
	fputc('\n', fp);
}

1464
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1465
{
1466 1467
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1468
	int nr, i;
1469 1470
	char *str;

1471 1472
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1473 1474

	for (i = 0; i < nr; i++) {
1475
		fprintf(fp, "# sibling sockets : %s\n", str);
1476
		str += strlen(str) + 1;
1477 1478
	}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1489 1490
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1491 1492 1493

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1494
		str += strlen(str) + 1;
1495
	}
1496

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1519 1520
}

1521 1522 1523 1524 1525 1526
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1554 1555 1556

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1557 1558 1559 1560 1561
	}

	up_read(&env->bpf_progs.lock);
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1584
static void free_event_desc(struct evsel *events)
1585
{
1586
	struct evsel *evsel;
1587 1588 1589 1590

	if (!events)
		return;

1591
	for (evsel = events; evsel->core.attr.size; evsel++) {
1592
		zfree(&evsel->name);
1593
		zfree(&evsel->core.id);
1594 1595 1596 1597 1598
	}

	free(events);
}

1599
static struct evsel *read_event_desc(struct feat_fd *ff)
1600
{
1601
	struct evsel *evsel, *events = NULL;
1602
	u64 *id;
1603
	void *buf = NULL;
1604 1605
	u32 nre, sz, nr, i, j;
	size_t msz;
1606 1607

	/* number of events */
1608
	if (do_read_u32(ff, &nre))
1609 1610
		goto error;

1611
	if (do_read_u32(ff, &sz))
1612 1613
		goto error;

1614
	/* buffer to hold on file attr struct */
1615 1616 1617 1618
	buf = malloc(sz);
	if (!buf)
		goto error;

1619
	/* the last event terminates with evsel->core.attr.size == 0: */
1620 1621 1622 1623
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1624
	msz = sizeof(evsel->core.attr);
1625
	if (sz < msz)
1626 1627
		msz = sz;

1628 1629
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1630

1631 1632 1633 1634
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1635
		if (__do_read(ff, buf, sz))
1636 1637
			goto error;

1638
		if (ff->ph->needs_swap)
1639 1640
			perf_event__attr_swap(buf);

1641
		memcpy(&evsel->core.attr, buf, msz);
1642

1643
		if (do_read_u32(ff, &nr))
1644 1645
			goto error;

1646
		if (ff->ph->needs_swap)
1647
			evsel->needs_swap = true;
1648

1649
		evsel->name = do_read_string(ff);
1650 1651
		if (!evsel->name)
			goto error;
1652 1653 1654 1655 1656 1657 1658

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1659
		evsel->core.ids = nr;
1660
		evsel->core.id = id;
1661 1662

		for (j = 0 ; j < nr; j++) {
1663
			if (do_read_u64(ff, id))
1664 1665 1666 1667 1668
				goto error;
			id++;
		}
	}
out:
1669
	free(buf);
1670 1671
	return events;
error:
1672
	free_event_desc(events);
1673 1674 1675 1676
	events = NULL;
	goto out;
}

1677
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1678
				void *priv __maybe_unused)
1679 1680 1681 1682
{
	return fprintf(fp, ", %s = %s", name, val);
}

1683
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1684
{
1685
	struct evsel *evsel, *events;
1686 1687 1688
	u32 j;
	u64 *id;

1689 1690 1691 1692 1693
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1694 1695 1696 1697 1698
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1699
	for (evsel = events; evsel->core.attr.size; evsel++) {
1700
		fprintf(fp, "# event : name = %s, ", evsel->name);
1701

1702
		if (evsel->core.ids) {
1703
			fprintf(fp, ", id = {");
1704
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1705 1706 1707 1708
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1709
			fprintf(fp, " }");
1710
		}
1711

1712
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1713

1714 1715
		fputc('\n', fp);
	}
1716 1717

	free_event_desc(events);
1718
	ff->events = NULL;
1719 1720
}

1721
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1722
{
1723
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1724 1725
}

1726
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1727
{
1728 1729
	int i;
	struct numa_node *n;
1730

1731 1732
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1733 1734 1735

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1736
			n->node, n->mem_total, n->mem_free);
1737

1738 1739
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1740 1741 1742
	}
}

1743
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1744
{
1745
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1746 1747
}

1748
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1749 1750 1751 1752
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1753
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1754 1755 1756 1757
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1758
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1759 1760 1761 1762
{
	fprintf(fp, "# contains stat data\n");
}

1763
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1764 1765 1766 1767
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1768
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1769
		fprintf(fp, "#  ");
1770
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1771 1772 1773
	}
}

1774 1775 1776 1777 1778 1779 1780
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1781
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1782 1783
{
	const char *delimiter = "# pmu mappings: ";
1784
	char *str, *tmp;
1785 1786 1787
	u32 pmu_num;
	u32 type;

1788
	pmu_num = ff->ph->env.nr_pmu_mappings;
1789 1790 1791 1792 1793
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1794
	str = ff->ph->env.pmu_mappings;
1795

1796
	while (pmu_num) {
1797 1798 1799 1800 1801 1802
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1803

1804
		delimiter = ", ";
1805 1806
		str += strlen(str) + 1;
		pmu_num--;
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1817
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1818 1819
{
	struct perf_session *session;
1820
	struct evsel *evsel;
1821 1822
	u32 nr = 0;

1823
	session = container_of(ff->ph, struct perf_session, header);
1824

1825
	evlist__for_each_entry(session->evlist, evsel) {
1826
		if (perf_evsel__is_group_leader(evsel) &&
1827
		    evsel->core.nr_members > 1) {
1828 1829 1830
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

1831
			nr = evsel->core.nr_members - 1;
1832 1833 1834 1835 1836 1837 1838 1839 1840
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1892
static int __event_process_build_id(struct perf_record_header_build_id *bev,
1893 1894 1895 1896 1897
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1898
	u16 cpumode;
1899 1900 1901 1902 1903 1904 1905
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1906
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1907

1908
	switch (cpumode) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1923
	dso = machine__findnew_dso(machine, filename);
1924
	if (dso != NULL) {
1925
		char sbuild_id[SBUILD_ID_SIZE];
1926 1927 1928

		dso__set_build_id(dso, &bev->build_id);

1929 1930 1931 1932
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1933
				dso__set_module_info(dso, &m, machine);
1934 1935 1936 1937 1938
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1939 1940 1941 1942 1943

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1944
		dso__put(dso);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1958
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1959 1960
		char			   filename[0];
	} old_bev;
1961
	struct perf_record_header_build_id bev;
1962 1963 1964 1965 1966 1967
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1968
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1969 1970 1971 1972 1973 1974
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1975
		if (readn(input, filename, len) != len)
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2002
	struct perf_record_header_build_id bev;
2003 2004 2005 2006 2007 2008 2009
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2010
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2011 2012 2013 2014 2015 2016
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2017
		if (readn(input, filename, len) != len)
2018 2019 2020 2021 2022 2023
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2024
		 * Added a field to struct perf_record_header_build_id that broke the file
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2047 2048
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2049
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2050
{\
2051
	ff->ph->env.__feat_env = do_read_string(ff); \
2052
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2053 2054 2055 2056 2057 2058 2059 2060 2061
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2062
static int process_tracing_data(struct feat_fd *ff, void *data)
2063
{
2064 2065
	ssize_t ret = trace_report(ff->fd, data, false);

2066
	return ret < 0 ? -1 : 0;
2067 2068
}

2069
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2070
{
2071
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2072 2073 2074 2075
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2076
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2077
{
2078 2079
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2080

2081
	ret = do_read_u32(ff, &nr_cpus_avail);
2082 2083
	if (ret)
		return ret;
2084

2085
	ret = do_read_u32(ff, &nr_cpus_online);
2086 2087
	if (ret)
		return ret;
2088 2089
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2090 2091 2092
	return 0;
}

2093
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2094
{
2095 2096
	u64 total_mem;
	int ret;
2097

2098
	ret = do_read_u64(ff, &total_mem);
2099
	if (ret)
2100
		return -1;
2101
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2102 2103 2104
	return 0;
}

2105
static struct evsel *
2106
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2107
{
2108
	struct evsel *evsel;
2109

2110
	evlist__for_each_entry(evlist, evsel) {
2111 2112 2113 2114 2115 2116 2117 2118
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2119
perf_evlist__set_event_name(struct evlist *evlist,
2120
			    struct evsel *event)
2121
{
2122
	struct evsel *evsel;
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2138
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2139
{
2140
	struct perf_session *session;
2141
	struct evsel *evsel, *events = read_event_desc(ff);
2142 2143 2144 2145

	if (!events)
		return 0;

2146
	session = container_of(ff->ph, struct perf_session, header);
2147

2148
	if (session->data->is_pipe) {
2149 2150 2151 2152 2153
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2154
	for (evsel = events; evsel->core.attr.size; evsel++)
2155 2156
		perf_evlist__set_event_name(session->evlist, evsel);

2157
	if (!session->data->is_pipe)
2158
		free_event_desc(events);
2159 2160 2161 2162

	return 0;
}

2163
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2164
{
2165 2166
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2167

2168
	if (do_read_u32(ff, &nr))
2169 2170
		return -1;

2171
	ff->ph->env.nr_cmdline = nr;
2172

2173
	cmdline = zalloc(ff->size + nr + 1);
2174 2175 2176 2177 2178 2179
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2180 2181

	for (i = 0; i < nr; i++) {
2182
		str = do_read_string(ff);
2183 2184 2185
		if (!str)
			goto error;

2186 2187 2188
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2189 2190
		free(str);
	}
2191 2192
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2193 2194 2195
	return 0;

error:
2196 2197
	free(argv);
	free(cmdline);
2198 2199 2200
	return -1;
}

2201
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2202 2203 2204 2205
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2206
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2207
	u64 size = 0;
2208
	struct perf_header *ph = ff->ph;
2209
	bool do_core_id_test = true;
2210 2211 2212 2213

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2214

2215
	if (do_read_u32(ff, &nr))
2216
		goto free_cpu;
2217 2218

	ph->env.nr_sibling_cores = nr;
2219
	size += sizeof(u32);
2220 2221
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2222 2223

	for (i = 0; i < nr; i++) {
2224
		str = do_read_string(ff);
2225 2226 2227 2228
		if (!str)
			goto error;

		/* include a NULL character at the end */
2229 2230
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2231
		size += string_size(str);
2232 2233 2234 2235
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2236
	if (do_read_u32(ff, &nr))
2237 2238 2239
		return -1;

	ph->env.nr_sibling_threads = nr;
2240
	size += sizeof(u32);
2241 2242

	for (i = 0; i < nr; i++) {
2243
		str = do_read_string(ff);
2244 2245 2246 2247
		if (!str)
			goto error;

		/* include a NULL character at the end */
2248 2249
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2250
		size += string_size(str);
2251 2252 2253
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2254 2255 2256 2257 2258

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2259
	if (ff->size <= size) {
2260 2261 2262 2263
		zfree(&ph->env.cpu);
		return 0;
	}

2264 2265 2266
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2267
	 * AArch64 is the same.
2268
	 */
2269 2270
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2271 2272
		do_core_id_test = false;

2273
	for (i = 0; i < (u32)cpu_nr; i++) {
2274
		if (do_read_u32(ff, &nr))
2275 2276 2277
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2278
		size += sizeof(u32);
2279

2280
		if (do_read_u32(ff, &nr))
2281 2282
			goto free_cpu;

2283
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2284 2285 2286 2287 2288 2289
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2324 2325
	}

2326 2327 2328 2329
	return 0;

error:
	strbuf_release(&sb);
2330 2331
free_cpu:
	zfree(&ph->env.cpu);
2332 2333 2334
	return -1;
}

2335
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2336
{
2337 2338
	struct numa_node *nodes, *n;
	u32 nr, i;
2339 2340 2341
	char *str;

	/* nr nodes */
2342
	if (do_read_u32(ff, &nr))
2343
		return -1;
2344

2345 2346 2347
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2348 2349

	for (i = 0; i < nr; i++) {
2350 2351
		n = &nodes[i];

2352
		/* node number */
2353
		if (do_read_u32(ff, &n->node))
2354 2355
			goto error;

2356
		if (do_read_u64(ff, &n->mem_total))
2357 2358
			goto error;

2359
		if (do_read_u64(ff, &n->mem_free))
2360 2361
			goto error;

2362
		str = do_read_string(ff);
2363 2364 2365
		if (!str)
			goto error;

2366
		n->map = perf_cpu_map__new(str);
2367
		if (!n->map)
2368
			goto error;
2369

2370 2371
		free(str);
	}
2372 2373
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2374 2375 2376
	return 0;

error:
2377
	free(nodes);
2378 2379 2380
	return -1;
}

2381
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2382 2383 2384 2385 2386 2387
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2388
	if (do_read_u32(ff, &pmu_num))
2389 2390 2391 2392 2393 2394 2395
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2396
	ff->ph->env.nr_pmu_mappings = pmu_num;
2397 2398
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2399 2400

	while (pmu_num) {
2401
		if (do_read_u32(ff, &type))
2402 2403
			goto error;

2404
		name = do_read_string(ff);
2405 2406 2407
		if (!name)
			goto error;

2408 2409
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2410
		/* include a NULL character at the end */
2411 2412
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2413

2414
		if (!strcmp(name, "msr"))
2415
			ff->ph->env.msr_pmu_type = type;
2416

2417 2418 2419
		free(name);
		pmu_num--;
	}
2420
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2421 2422 2423 2424 2425 2426 2427
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2428
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2429 2430 2431 2432
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2433
	struct evsel *evsel, *leader = NULL;
2434 2435 2436 2437 2438 2439
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2440
	if (do_read_u32(ff, &nr_groups))
2441 2442
		return -1;

2443
	ff->ph->env.nr_groups = nr_groups;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2454
		desc[i].name = do_read_string(ff);
2455 2456 2457
		if (!desc[i].name)
			goto out_free;

2458
		if (do_read_u32(ff, &desc[i].leader_idx))
2459 2460
			goto out_free;

2461
		if (do_read_u32(ff, &desc[i].nr_members))
2462 2463 2464 2465 2466 2467
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2468
	session = container_of(ff->ph, struct perf_session, header);
2469 2470 2471
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2472
	evlist__for_each_entry(session->evlist, evsel) {
2473 2474 2475
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2476
			if (strcmp(desc[i].name, "{anon_group}")) {
2477
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2478 2479
				desc[i].name = NULL;
			}
2480
			evsel->core.nr_members = desc[i].nr_members;
2481 2482 2483 2484 2485 2486 2487

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2488
			nr = evsel->core.nr_members - 1;
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2505
	for (i = 0; i < nr_groups; i++)
2506
		zfree(&desc[i].name);
2507 2508 2509 2510 2511
	free(desc);

	return ret;
}

2512
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2513 2514 2515 2516
{
	struct perf_session *session;
	int err;

2517
	session = container_of(ff->ph, struct perf_session, header);
2518

2519
	err = auxtrace_index__process(ff->fd, ff->size, session,
2520
				      ff->ph->needs_swap);
2521 2522 2523 2524 2525
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2526
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2527 2528 2529 2530
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2531
	if (do_read_u32(ff, &version))
2532 2533 2534 2535 2536
		return -1;

	if (version != 1)
		return -1;

2537
	if (do_read_u32(ff, &cnt))
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2548
			if (do_read_u32(ff, &c.v))\
2549 2550 2551 2552 2553 2554 2555 2556
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2557
		#define _R(v)					\
2558
			c.v = do_read_string(ff);		\
2559
			if (!c.v)				\
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2570 2571
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2572 2573 2574 2575 2576 2577
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2651 2652 2653 2654 2655 2656 2657 2658 2659
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2736
	up_write(&env->bpf_progs.lock);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2751 2752 2753
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2754
	struct btf_node *node = NULL;
2755
	u32 count, i;
2756
	int err = -1;
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2772
			goto out;
2773
		if (do_read_u32(ff, &data_size))
2774
			goto out;
2775 2776 2777

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2778
			goto out;
2779 2780 2781 2782

		node->id = id;
		node->data_size = data_size;

2783 2784
		if (__do_read(ff, node->data, data_size))
			goto out;
2785 2786

		perf_env__insert_btf(env, node);
2787
		node = NULL;
2788 2789
	}

2790 2791
	err = 0;
out:
2792
	up_write(&env->bpf_progs.lock);
2793 2794
	free(node);
	return err;
2795 2796
}

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2836 2837

/* feature_ops not implemented: */
2838 2839
#define print_tracing_data	NULL
#define print_build_id		NULL
2840

2841 2842 2843
#define process_branch_stack	NULL
#define process_stat		NULL

2844 2845
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2846

2847
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2864
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2865 2866 2867
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2868
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2869
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2870
	FEAT_OPR(CLOCKID,	clockid,	false),
2871
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2872 2873
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2874
	FEAT_OPR(COMPRESSED,	compressed,	false),
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2887
	struct feat_fd ff;
2888 2889 2890 2891 2892 2893

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2894
	if (feat >= HEADER_LAST_FEATURE) {
2895
		pr_warning("unknown feature %d\n", feat);
2896
		return 0;
2897 2898 2899 2900
	}
	if (!feat_ops[feat].print)
		return 0;

2901 2902 2903 2904 2905
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2906
	if (!feat_ops[feat].full_only || hd->full)
2907
		feat_ops[feat].print(&ff, hd->fp);
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2919
	int fd = perf_data__fd(session->data);
2920
	struct stat st;
2921
	time_t stctime;
J
Jiri Olsa 已提交
2922
	int ret, bit;
2923

2924 2925 2926
	hd.fp = fp;
	hd.full = full;

2927 2928 2929 2930
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2931 2932
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2933 2934 2935 2936 2937

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2938

2939 2940
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2941

2942
	if (session->data->is_pipe)
2943 2944
		return 0;

J
Jiri Olsa 已提交
2945 2946 2947 2948 2949 2950 2951
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2952 2953 2954
	return 0;
}

2955
static int do_write_feat(struct feat_fd *ff, int type,
2956
			 struct perf_file_section **p,
2957
			 struct evlist *evlist)
2958 2959 2960 2961
{
	int err;
	int ret = 0;

2962
	if (perf_header__has_feat(ff->ph, type)) {
2963 2964
		if (!feat_ops[type].write)
			return -1;
2965

2966 2967 2968
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2969
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2970

2971
		err = feat_ops[type].write(ff, evlist);
2972
		if (err < 0) {
2973
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2974 2975

			/* undo anything written */
2976
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2977 2978 2979

			return -1;
		}
2980
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2981 2982 2983 2984 2985
		(*p)++;
	}
	return ret;
}

2986
static int perf_header__adds_write(struct perf_header *header,
2987
				   struct evlist *evlist, int fd)
2988
{
2989
	int nr_sections;
2990
	struct feat_fd ff;
2991
	struct perf_file_section *feat_sec, *p;
2992 2993
	int sec_size;
	u64 sec_start;
2994
	int feat;
2995
	int err;
2996

2997 2998 2999 3000 3001
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3002
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3003
	if (!nr_sections)
3004
		return 0;
3005

3006
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3007 3008
	if (feat_sec == NULL)
		return -ENOMEM;
3009 3010 3011

	sec_size = sizeof(*feat_sec) * nr_sections;

3012
	sec_start = header->feat_offset;
3013
	lseek(fd, sec_start + sec_size, SEEK_SET);
3014

3015
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3016
		if (do_write_feat(&ff, feat, &p, evlist))
3017 3018
			perf_header__clear_feat(header, feat);
	}
3019

3020
	lseek(fd, sec_start, SEEK_SET);
3021 3022
	/*
	 * may write more than needed due to dropped feature, but
3023
	 * this is okay, reader will skip the missing entries
3024
	 */
3025
	err = do_write(&ff, feat_sec, sec_size);
3026 3027
	if (err < 0)
		pr_debug("failed to write feature section\n");
3028
	free(feat_sec);
3029
	return err;
3030
}
3031

3032 3033 3034
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3035
	struct feat_fd ff;
3036 3037
	int err;

3038 3039
	ff = (struct feat_fd){ .fd = fd };

3040 3041 3042 3043 3044
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3045
	err = do_write(&ff, &f_header, sizeof(f_header));
3046 3047 3048 3049 3050 3051 3052 3053
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3054
int perf_session__write_header(struct perf_session *session,
3055
			       struct evlist *evlist,
3056
			       int fd, bool at_exit)
3057 3058 3059
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3060
	struct perf_header *header = &session->header;
3061
	struct evsel *evsel;
3062
	struct feat_fd ff;
3063
	u64 attr_offset;
3064
	int err;
3065

3066
	ff = (struct feat_fd){ .fd = fd};
3067 3068
	lseek(fd, sizeof(f_header), SEEK_SET);

3069
	evlist__for_each_entry(session->evlist, evsel) {
3070
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3071
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3072 3073 3074 3075
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3076 3077
	}

3078
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3079

3080
	evlist__for_each_entry(evlist, evsel) {
3081
		f_attr = (struct perf_file_attr){
3082
			.attr = evsel->core.attr,
3083
			.ids  = {
3084
				.offset = evsel->id_offset,
3085
				.size   = evsel->core.ids * sizeof(u64),
3086 3087
			}
		};
3088
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3089 3090 3091 3092
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3093 3094
	}

3095 3096
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3097
	header->feat_offset = header->data_offset + header->data_size;
3098

3099
	if (at_exit) {
3100
		err = perf_header__adds_write(header, evlist, fd);
3101 3102 3103
		if (err < 0)
			return err;
	}
3104

3105 3106 3107 3108 3109
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3110
			.offset = attr_offset,
3111
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3112 3113
		},
		.data = {
3114 3115
			.offset = header->data_offset,
			.size	= header->data_size,
3116
		},
3117
		/* event_types is ignored, store zeros */
3118 3119
	};

3120
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3121

3122
	lseek(fd, 0, SEEK_SET);
3123
	err = do_write(&ff, &f_header, sizeof(f_header));
3124 3125 3126 3127
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3128
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3129

3130
	return 0;
3131 3132
}

3133
static int perf_header__getbuffer64(struct perf_header *header,
3134 3135
				    int fd, void *buf, size_t size)
{
3136
	if (readn(fd, buf, size) <= 0)
3137 3138
		return -1;

3139
	if (header->needs_swap)
3140 3141 3142 3143 3144
		mem_bswap_64(buf, size);

	return 0;
}

3145
int perf_header__process_sections(struct perf_header *header, int fd,
3146
				  void *data,
3147
				  int (*process)(struct perf_file_section *section,
3148 3149
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3150
{
3151
	struct perf_file_section *feat_sec, *sec;
3152 3153
	int nr_sections;
	int sec_size;
3154 3155
	int feat;
	int err;
3156

3157
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3158
	if (!nr_sections)
3159
		return 0;
3160

3161
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3162
	if (!feat_sec)
3163
		return -1;
3164 3165 3166

	sec_size = sizeof(*feat_sec) * nr_sections;

3167
	lseek(fd, header->feat_offset, SEEK_SET);
3168

3169 3170
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3171
		goto out_free;
3172

3173 3174 3175 3176
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3177
	}
3178
	err = 0;
3179
out_free:
3180 3181
	free(feat_sec);
	return err;
3182
}
3183

3184 3185 3186
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3187
	[2] = PERF_ATTR_SIZE_VER2,
3188
	[3] = PERF_ATTR_SIZE_VER3,
3189
	[4] = PERF_ATTR_SIZE_VER4,
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3200
{
3201 3202
	uint64_t ref_size, attr_size;
	int i;
3203

3204 3205 3206 3207 3208 3209 3210
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3222

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3247 3248 3249

			ph->needs_swap = true;
		}
3250
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3251 3252
		return 0;
	}
3253 3254 3255
	return -1;
}

F
Feng Tang 已提交
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3266 3267 3268 3269 3270 3271 3272 3273
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3274
		ph->version = PERF_HEADER_VERSION_1;
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3286
	ph->version = PERF_HEADER_VERSION_2;
3287

3288 3289
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3290 3291
		return 0;

3292 3293
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3294 3295 3296 3297 3298 3299 3300
		return -1;

	ph->needs_swap = true;

	return 0;
}

3301
int perf_file_header__read(struct perf_file_header *header,
3302 3303
			   struct perf_header *ph, int fd)
{
3304
	ssize_t ret;
3305

3306 3307
	lseek(fd, 0, SEEK_SET);

3308 3309
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3310 3311
		return -1;

3312 3313 3314
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3315
		return -1;
3316
	}
3317

3318
	if (ph->needs_swap) {
3319
		mem_bswap_64(header, offsetof(struct perf_file_header,
3320
			     adds_features));
3321 3322
	}

3323
	if (header->size != sizeof(*header)) {
3324
		/* Support the previous format */
3325 3326
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3327 3328
		else
			return -1;
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3345 3346
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3347 3348

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3349 3350 3351 3352 3353 3354 3355
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3356 3357 3358 3359 3360 3361
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3362
	}
3363

3364
	memcpy(&ph->adds_features, &header->adds_features,
3365
	       sizeof(ph->adds_features));
3366

3367 3368
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3369
	ph->feat_offset  = header->data.offset + header->data.size;
3370 3371 3372
	return 0;
}

3373
static int perf_file_section__process(struct perf_file_section *section,
3374
				      struct perf_header *ph,
3375
				      int feat, int fd, void *data)
3376
{
3377
	struct feat_fd fdd = {
3378 3379
		.fd	= fd,
		.ph	= ph,
3380 3381
		.size	= section->size,
		.offset	= section->offset,
3382 3383
	};

3384
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3385
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3386
			  "%d, continuing...\n", section->offset, feat);
3387 3388 3389
		return 0;
	}

3390 3391 3392 3393 3394
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3395 3396
	if (!feat_ops[feat].process)
		return 0;
3397

3398
	return feat_ops[feat].process(&fdd, data);
3399
}
3400

3401
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3402 3403
				       struct perf_header *ph, int fd,
				       bool repipe)
3404
{
3405 3406 3407 3408
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3409
	ssize_t ret;
3410 3411 3412 3413 3414

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3415 3416
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3417
		return -1;
3418 3419 3420 3421
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3422

3423
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3424 3425
		return -1;

3426 3427 3428
	return 0;
}

3429
static int perf_header__read_pipe(struct perf_session *session)
3430
{
3431
	struct perf_header *header = &session->header;
3432 3433
	struct perf_pipe_file_header f_header;

3434
	if (perf_file_header__read_pipe(&f_header, header,
3435
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3436
					session->repipe) < 0) {
3437 3438 3439 3440 3441 3442 3443
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3444 3445 3446 3447 3448 3449
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3450
	ssize_t ret;
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3464

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3490
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3491
						struct tep_handle *pevent)
3492
{
3493
	struct tep_event *event;
3494 3495
	char bf[128];

3496 3497 3498 3499
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3500 3501 3502 3503 3504
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3505
	event = tep_find_event(pevent, evsel->core.attr.config);
3506
	if (event == NULL) {
3507
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3508
		return -1;
3509
	}
3510

3511 3512 3513 3514 3515 3516
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3517

3518
	evsel->tp_format = event;
3519 3520 3521
	return 0;
}

3522
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3523
						  struct tep_handle *pevent)
3524
{
3525
	struct evsel *pos;
3526

3527
	evlist__for_each_entry(evlist, pos) {
3528
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3529
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3530 3531 3532 3533 3534 3535
			return -1;
	}

	return 0;
}

3536
int perf_session__read_header(struct perf_session *session)
3537
{
3538
	struct perf_data *data = session->data;
3539
	struct perf_header *header = &session->header;
3540
	struct perf_file_header	f_header;
3541 3542 3543
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3544
	int fd = perf_data__fd(data);
3545

3546
	session->evlist = evlist__new();
3547 3548 3549
	if (session->evlist == NULL)
		return -ENOMEM;

3550
	session->evlist->env = &header->env;
3551
	session->machines.host.env = &header->env;
3552
	if (perf_data__is_pipe(data))
3553
		return perf_header__read_pipe(session);
3554

3555
	if (perf_file_header__read(&f_header, header, fd) < 0)
3556
		return -EINVAL;
3557

3558 3559 3560 3561 3562 3563 3564 3565 3566
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3567
			   data->file.path);
3568 3569
	}

3570 3571 3572 3573 3574 3575 3576
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3577
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3578 3579 3580
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3581
		struct evsel *evsel;
3582
		off_t tmp;
3583

3584
		if (read_attr(fd, header, &f_attr) < 0)
3585
			goto out_errno;
3586

3587 3588 3589
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3590
			perf_event__attr_swap(&f_attr.attr);
3591
		}
3592

3593
		tmp = lseek(fd, 0, SEEK_CUR);
3594
		evsel = evsel__new(&f_attr.attr);
3595

3596 3597
		if (evsel == NULL)
			goto out_delete_evlist;
3598 3599

		evsel->needs_swap = header->needs_swap;
3600 3601
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3602
		 * entry gets purged too at evlist__delete().
3603
		 */
3604
		evlist__add(session->evlist, evsel);
3605 3606

		nr_ids = f_attr.ids.size / sizeof(u64);
3607 3608 3609 3610 3611
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3612
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3613 3614
			goto out_delete_evlist;

3615 3616 3617
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3618
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3619
				goto out_errno;
3620

3621
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3622
		}
3623

3624 3625 3626
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3627
	perf_header__process_sections(header, fd, &session->tevent,
3628
				      perf_file_section__process);
3629

3630
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3631
						   session->tevent.pevent))
3632 3633
		goto out_delete_evlist;

3634
	return 0;
3635 3636
out_errno:
	return -errno;
3637 3638

out_delete_evlist:
3639
	evlist__delete(session->evlist);
3640 3641
	session->evlist = NULL;
	return -ENOMEM;
3642
}
3643

3644 3645
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3646
{
3647
	struct perf_tool *tool = session->tool;
3648
	struct feat_fd ff = { .fd = 0 };
3649
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3650 3651 3652 3653 3654 3655 3656
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3657
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3658 3659 3660 3661 3662 3663 3664 3665
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3666
	ff.size = event->header.size - sizeof(*fe);
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3686 3687
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3688 3689 3690
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3691
	struct perf_cpu_map *map;
3692 3693
	size_t ret;

3694
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3695 3696 3697

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3698
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3699 3700 3701 3702 3703 3704 3705 3706 3707
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3708
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3724

3725 3726
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3727
			     struct evlist **pevlist)
3728
{
3729
	u32 i, ids, n_ids;
3730
	struct evsel *evsel;
3731
	struct evlist *evlist = *pevlist;
3732

3733
	if (evlist == NULL) {
3734
		*pevlist = evlist = evlist__new();
3735
		if (evlist == NULL)
3736 3737 3738
			return -ENOMEM;
	}

3739
	evsel = evsel__new(&event->attr.attr);
3740
	if (evsel == NULL)
3741 3742
		return -ENOMEM;

3743
	evlist__add(evlist, evsel);
3744

3745 3746
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
3747
	n_ids = ids / sizeof(u64);
3748 3749 3750 3751 3752
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
3753
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3754
		return -ENOMEM;
3755 3756

	for (i = 0; i < n_ids; i++) {
3757
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3758 3759 3760 3761
	}

	return 0;
}
3762

3763 3764
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
3765
				     struct evlist **pevlist)
3766
{
3767 3768 3769
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3770
	struct evlist *evlist;
3771
	struct evsel *evsel;
3772
	struct perf_cpu_map *map;
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

3783 3784 3785
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
3786
		break;
3787 3788 3789
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
3790
	case PERF_EVENT_UPDATE__SCALE:
3791
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3792
		evsel->scale = ev_scale->scale;
3793
		break;
3794
	case PERF_EVENT_UPDATE__CPUS:
3795
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3796 3797 3798

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
3799
			evsel->core.own_cpus = map;
3800 3801
		else
			pr_err("failed to get event_update cpus\n");
3802 3803 3804 3805
	default:
		break;
	}

3806 3807 3808
	return 0;
}

3809 3810
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
3811
{
3812
	ssize_t size_read, padding, size = event->tracing_data.size;
3813
	int fd = perf_data__fd(session->data);
3814
	off_t offset = lseek(fd, 0, SEEK_CUR);
3815 3816 3817
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
3818
	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3819 3820
	      SEEK_SET);

J
Jiri Olsa 已提交
3821
	size_read = trace_report(fd, &session->tevent,
3822
				 session->repipe);
3823
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3824

3825
	if (readn(fd, buf, padding) < 0) {
3826 3827 3828
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
3829 3830
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
3831 3832 3833 3834
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
3835
	}
3836

3837 3838 3839 3840
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
3841

3842
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3843
					       session->tevent.pevent);
3844

3845 3846
	return size_read + padding;
}
3847

3848 3849
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
3850
{
3851 3852
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
3853
				 session);
3854 3855
	return 0;
}