header.c 82.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "util.h"
5
#include "string2.h"
6
#include <sys/param.h>
7
#include <sys/types.h>
8
#include <byteswap.h>
9 10 11
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
12
#include <linux/compiler.h>
13
#include <linux/list.h>
14
#include <linux/kernel.h>
15
#include <linux/bitops.h>
16
#include <linux/stringify.h>
17
#include <sys/stat.h>
18
#include <sys/utsname.h>
19
#include <linux/time64.h>
20
#include <dirent.h>
21

22
#include "evlist.h"
23
#include "evsel.h"
24
#include "header.h"
25
#include "memswap.h"
26 27
#include "../perf.h"
#include "trace-event.h"
28
#include "session.h"
29
#include "symbol.h"
30
#include "debug.h"
31
#include "cpumap.h"
32
#include "pmu.h"
33
#include "vdso.h"
34
#include "strbuf.h"
35
#include "build-id.h"
36
#include "data.h"
37 38
#include <api/fs/fs.h>
#include "asm/bug.h"
39
#include "tool.h"
40
#include "time-utils.h"
41
#include "units.h"
J
Jiri Olsa 已提交
42
#include "cputopo.h"
43

44 45
#include "sane_ctype.h"

46 47 48 49 50 51 52 53 54 55 56 57
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
58

59
#define PERF_MAGIC	__perf_magic2
60

61 62
const char perf_version_string[] = PERF_VERSION;

63
struct perf_file_attr {
64
	struct perf_event_attr	attr;
65 66 67
	struct perf_file_section	ids;
};

68 69 70
struct feat_fd {
	struct perf_header	*ph;
	int			fd;
71
	void			*buf;	/* Either buf != NULL or fd >= 0 */
72 73
	ssize_t			offset;
	size_t			size;
74
	struct perf_evsel	*events;
75 76
};

77
void perf_header__set_feat(struct perf_header *header, int feat)
78
{
79
	set_bit(feat, header->adds_features);
80 81
}

82
void perf_header__clear_feat(struct perf_header *header, int feat)
83
{
84
	clear_bit(feat, header->adds_features);
85 86
}

87
bool perf_header__has_feat(const struct perf_header *header, int feat)
88
{
89
	return test_bit(feat, header->adds_features);
90 91
}

92
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
93
{
94
	ssize_t ret = writen(ff->fd, buf, size);
95

96 97
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
125 126

	return 0;
127 128
}

129 130 131 132 133 134 135 136
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

156
/* Return: 0 if succeded, -ERR if failed. */
157 158
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
159 160
{
	static const char zero_buf[NAME_ALIGN];
161
	int err = do_write(ff, bf, count);
162 163

	if (!err)
164
		err = do_write(ff, zero_buf, count_aligned - count);
165 166 167 168

	return err;
}

169 170 171
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

172
/* Return: 0 if succeded, -ERR if failed. */
173
static int do_write_string(struct feat_fd *ff, const char *str)
174 175 176 177 178
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
179
	len = PERF_ALIGN(olen, NAME_ALIGN);
180 181

	/* write len, incl. \0 */
182
	ret = do_write(ff, &len, sizeof(len));
183 184 185
	if (ret < 0)
		return ret;

186
	return write_padded(ff, str, olen, len);
187 188
}

189
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
190
{
191
	ssize_t ret = readn(ff->fd, addr, size);
192 193 194 195 196 197

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

217
static int do_read_u32(struct feat_fd *ff, u32 *addr)
218 219 220
{
	int ret;

221
	ret = __do_read(ff, addr, sizeof(*addr));
222 223 224
	if (ret)
		return ret;

225
	if (ff->ph->needs_swap)
226 227 228 229
		*addr = bswap_32(*addr);
	return 0;
}

230
static int do_read_u64(struct feat_fd *ff, u64 *addr)
231 232 233
{
	int ret;

234
	ret = __do_read(ff, addr, sizeof(*addr));
235 236 237
	if (ret)
		return ret;

238
	if (ff->ph->needs_swap)
239 240 241 242
		*addr = bswap_64(*addr);
	return 0;
}

243
static char *do_read_string(struct feat_fd *ff)
244 245 246 247
{
	u32 len;
	char *buf;

248
	if (do_read_u32(ff, &len))
249 250 251 252 253 254
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

255
	if (!__do_read(ff, buf, len)) {
256 257 258 259 260 261 262 263 264 265 266 267
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

298 299
static int write_tracing_data(struct feat_fd *ff,
			      struct perf_evlist *evlist)
300
{
301 302 303
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

304
	return read_tracing_data(ff->fd, &evlist->entries);
305 306
}

307
static int write_build_id(struct feat_fd *ff,
308
			  struct perf_evlist *evlist __maybe_unused)
309 310 311 312
{
	struct perf_session *session;
	int err;

313
	session = container_of(ff->ph, struct perf_session, header);
314

315 316 317
	if (!perf_session__read_build_ids(session, true))
		return -1;

318 319 320
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

321
	err = perf_session__write_buildid_table(session, ff);
322 323 324 325
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
326
	perf_session__cache_build_ids(session);
327 328 329 330

	return 0;
}

331
static int write_hostname(struct feat_fd *ff,
332
			  struct perf_evlist *evlist __maybe_unused)
333 334 335 336 337 338 339 340
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

341
	return do_write_string(ff, uts.nodename);
342 343
}

344
static int write_osrelease(struct feat_fd *ff,
345
			   struct perf_evlist *evlist __maybe_unused)
346 347 348 349 350 351 352 353
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

354
	return do_write_string(ff, uts.release);
355 356
}

357
static int write_arch(struct feat_fd *ff,
358
		      struct perf_evlist *evlist __maybe_unused)
359 360 361 362 363 364 365 366
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

367
	return do_write_string(ff, uts.machine);
368 369
}

370
static int write_version(struct feat_fd *ff,
371
			 struct perf_evlist *evlist __maybe_unused)
372
{
373
	return do_write_string(ff, perf_version_string);
374 375
}

376
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
377 378 379 380
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
381
	const char *search = cpuinfo_proc;
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

398 399
	if (ret) {
		ret = -1;
400
		goto done;
401
	}
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
			char *q = r;
			*p = ' ';
			while (*q && isspace(*q))
				q++;
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
426
	ret = do_write_string(ff, s);
427 428 429 430 431 432
done:
	free(buf);
	fclose(file);
	return ret;
}

433
static int write_cpudesc(struct feat_fd *ff,
434 435 436 437 438 439 440
		       struct perf_evlist *evlist __maybe_unused)
{
	const char *cpuinfo_procs[] = CPUINFO_PROC;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
441
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
442 443 444 445 446 447 448
		if (ret >= 0)
			return ret;
	}
	return -1;
}


449
static int write_nrcpus(struct feat_fd *ff,
450
			struct perf_evlist *evlist __maybe_unused)
451 452 453 454 455
{
	long nr;
	u32 nrc, nra;
	int ret;

456
	nrc = cpu__max_present_cpu();
457 458 459 460 461 462 463

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

464
	ret = do_write(ff, &nrc, sizeof(nrc));
465 466 467
	if (ret < 0)
		return ret;

468
	return do_write(ff, &nra, sizeof(nra));
469 470
}

471
static int write_event_desc(struct feat_fd *ff,
472 473
			    struct perf_evlist *evlist)
{
474
	struct perf_evsel *evsel;
475
	u32 nre, nri, sz;
476 477
	int ret;

478
	nre = evlist->nr_entries;
479 480 481 482

	/*
	 * write number of events
	 */
483
	ret = do_write(ff, &nre, sizeof(nre));
484 485 486 487 488 489
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
490
	sz = (u32)sizeof(evsel->attr);
491
	ret = do_write(ff, &sz, sizeof(sz));
492 493 494
	if (ret < 0)
		return ret;

495
	evlist__for_each_entry(evlist, evsel) {
496
		ret = do_write(ff, &evsel->attr, sz);
497 498 499 500 501 502 503 504 505
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
506
		nri = evsel->ids;
507
		ret = do_write(ff, &nri, sizeof(nri));
508 509 510 511 512 513
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
514
		ret = do_write_string(ff, perf_evsel__name(evsel));
515 516 517 518 519
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
520
		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
521 522 523 524 525 526
		if (ret < 0)
			return ret;
	}
	return 0;
}

527
static int write_cmdline(struct feat_fd *ff,
528
			 struct perf_evlist *evlist __maybe_unused)
529 530
{
	char buf[MAXPATHLEN];
531 532
	u32 n;
	int i, ret;
533

534 535
	/* actual path to perf binary */
	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
536 537 538 539 540 541 542
	if (ret <= 0)
		return -1;

	/* readlink() does not add null termination */
	buf[ret] = '\0';

	/* account for binary path */
543
	n = perf_env.nr_cmdline + 1;
544

545
	ret = do_write(ff, &n, sizeof(n));
546 547 548
	if (ret < 0)
		return ret;

549
	ret = do_write_string(ff, buf);
550 551 552
	if (ret < 0)
		return ret;

553
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
554
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
555 556 557 558 559 560 561
		if (ret < 0)
			return ret;
	}
	return 0;
}


562 563
static int write_cpu_topology(struct feat_fd *ff,
			      struct perf_evlist *evlist __maybe_unused)
564
{
J
Jiri Olsa 已提交
565
	struct cpu_topology *tp;
566
	u32 i;
567
	int ret, j;
568

J
Jiri Olsa 已提交
569
	tp = cpu_topology__new();
570 571 572
	if (!tp)
		return -1;

573
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
574 575 576 577
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
578
		ret = do_write_string(ff, tp->core_siblings[i]);
579 580 581
		if (ret < 0)
			goto done;
	}
582
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
583 584 585 586
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
587
		ret = do_write_string(ff, tp->thread_siblings[i]);
588 589 590
		if (ret < 0)
			break;
	}
591

592 593 594 595 596
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
597
		ret = do_write(ff, &perf_env.cpu[j].core_id,
598
			       sizeof(perf_env.cpu[j].core_id));
599 600
		if (ret < 0)
			return ret;
601
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
602
			       sizeof(perf_env.cpu[j].socket_id));
603 604 605
		if (ret < 0)
			return ret;
	}
606
done:
J
Jiri Olsa 已提交
607
	cpu_topology__delete(tp);
608 609 610 611 612
	return ret;
}



613 614
static int write_total_mem(struct feat_fd *ff,
			   struct perf_evlist *evlist __maybe_unused)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
634
			ret = do_write(ff, &mem, sizeof(mem));
635 636
	} else
		ret = -1;
637 638 639 640 641
	free(buf);
	fclose(fp);
	return ret;
}

642
static int write_topo_node(struct feat_fd *ff, int node)
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
{
	char str[MAXPATHLEN];
	char field[32];
	char *buf = NULL, *p;
	size_t len = 0;
	FILE *fp;
	u64 mem_total, mem_free, mem;
	int ret = -1;

	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
	fp = fopen(str, "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		/* skip over invalid lines */
		if (!strchr(buf, ':'))
			continue;
661
		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
662 663 664 665 666 667 668 669
			goto done;
		if (!strcmp(field, "MemTotal:"))
			mem_total = mem;
		if (!strcmp(field, "MemFree:"))
			mem_free = mem;
	}

	fclose(fp);
670
	fp = NULL;
671

672
	ret = do_write(ff, &mem_total, sizeof(u64));
673 674 675
	if (ret)
		goto done;

676
	ret = do_write(ff, &mem_free, sizeof(u64));
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	if (ret)
		goto done;

	ret = -1;
	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);

	fp = fopen(str, "r");
	if (!fp)
		goto done;

	if (getline(&buf, &len, fp) <= 0)
		goto done;

	p = strchr(buf, '\n');
	if (p)
		*p = '\0';

694
	ret = do_write_string(ff, buf);
695 696
done:
	free(buf);
697 698
	if (fp)
		fclose(fp);
699 700 701
	return ret;
}

702 703
static int write_numa_topology(struct feat_fd *ff,
			       struct perf_evlist *evlist __maybe_unused)
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
	char *buf = NULL;
	size_t len = 0;
	FILE *fp;
	struct cpu_map *node_map = NULL;
	char *c;
	u32 nr, i, j;
	int ret = -1;

	fp = fopen("/sys/devices/system/node/online", "r");
	if (!fp)
		return -1;

	if (getline(&buf, &len, fp) <= 0)
		goto done;

	c = strchr(buf, '\n');
	if (c)
		*c = '\0';

	node_map = cpu_map__new(buf);
	if (!node_map)
		goto done;

	nr = (u32)node_map->nr;

730
	ret = do_write(ff, &nr, sizeof(nr));
731 732 733 734 735
	if (ret < 0)
		goto done;

	for (i = 0; i < nr; i++) {
		j = (u32)node_map->map[i];
736
		ret = do_write(ff, &j, sizeof(j));
737 738 739
		if (ret < 0)
			break;

740
		ret = write_topo_node(ff, j);
741 742 743 744 745 746
		if (ret < 0)
			break;
	}
done:
	free(buf);
	fclose(fp);
747
	cpu_map__put(node_map);
748 749 750
	return ret;
}

751 752 753 754 755 756 757 758 759 760 761 762
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

763
static int write_pmu_mappings(struct feat_fd *ff,
764
			      struct perf_evlist *evlist __maybe_unused)
765 766
{
	struct perf_pmu *pmu = NULL;
767
	u32 pmu_num = 0;
768
	int ret;
769

770 771 772 773 774 775 776 777 778 779
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

780
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
781 782
	if (ret < 0)
		return ret;
783 784 785 786

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
787

788
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
789 790 791
		if (ret < 0)
			return ret;

792
		ret = do_write_string(ff, pmu->name);
793 794
		if (ret < 0)
			return ret;
795 796 797 798 799
	}

	return 0;
}

800 801 802 803 804 805 806 807 808 809 810 811
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
812
static int write_group_desc(struct feat_fd *ff,
813 814 815 816 817 818
			    struct perf_evlist *evlist)
{
	u32 nr_groups = evlist->nr_groups;
	struct perf_evsel *evsel;
	int ret;

819
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
820 821 822
	if (ret < 0)
		return ret;

823
	evlist__for_each_entry(evlist, evsel) {
824 825 826 827 828 829
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
			u32 nr_members = evsel->nr_members;

830
			ret = do_write_string(ff, name);
831 832 833
			if (ret < 0)
				return ret;

834
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
835 836 837
			if (ret < 0)
				return ret;

838
			ret = do_write(ff, &nr_members, sizeof(nr_members));
839 840 841 842 843 844 845
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

885 886
/*
 * default get_cpuid(): nothing gets recorded
887
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
888
 */
889
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
890 891 892 893
{
	return -1;
}

894
static int write_cpuid(struct feat_fd *ff,
895
		       struct perf_evlist *evlist __maybe_unused)
896 897 898 899 900
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
901 902
	if (ret)
		return -1;
903

904
	return do_write_string(ff, buffer);
905 906
}

907 908
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
			      struct perf_evlist *evlist __maybe_unused)
909 910 911 912
{
	return 0;
}

913
static int write_auxtrace(struct feat_fd *ff,
914 915
			  struct perf_evlist *evlist __maybe_unused)
{
916 917 918
	struct perf_session *session;
	int err;

919 920 921
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

922
	session = container_of(ff->ph, struct perf_session, header);
923

924
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
925 926 927
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
928 929
}

930 931 932 933 934 935 936
static int write_clockid(struct feat_fd *ff,
			 struct perf_evlist *evlist __maybe_unused)
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
	cache->type = rtrim(cache->type);

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
		free(cache->type);
		return -1;
	}

	cache->size[len] = 0;
	cache->size = rtrim(cache->size);

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
		free(cache->map);
		free(cache->type);
		return -1;
	}

	cache->map[len] = 0;
	cache->map = rtrim(cache->map);
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

#define MAX_CACHES 2000

1078 1079
static int write_cache(struct feat_fd *ff,
		       struct perf_evlist *evlist __maybe_unused)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
{
	struct cpu_cache_level caches[MAX_CACHES];
	u32 cnt = 0, i, version = 1;
	int ret;

	ret = build_caches(caches, MAX_CACHES, &cnt);
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1091
	ret = do_write(ff, &version, sizeof(u32));
1092 1093 1094
	if (ret < 0)
		goto out;

1095
	ret = do_write(ff, &cnt, sizeof(u32));
1096 1097 1098 1099 1100 1101 1102
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1103
			ret = do_write(ff, &c->v, sizeof(u32));	\
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1114
			ret = do_write_string(ff, (const char *) c->v);	\
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1130
static int write_stat(struct feat_fd *ff __maybe_unused,
1131 1132 1133 1134 1135
		      struct perf_evlist *evlist __maybe_unused)
{
	return 0;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static int write_sample_time(struct feat_fd *ff,
			     struct perf_evlist *evlist)
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1220 1221
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
			      struct perf_evlist *evlist __maybe_unused)
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1320
static void print_hostname(struct feat_fd *ff, FILE *fp)
1321
{
1322
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1323 1324
}

1325
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1326
{
1327
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1328 1329
}

1330
static void print_arch(struct feat_fd *ff, FILE *fp)
1331
{
1332
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1333 1334
}

1335
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1336
{
1337
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1338 1339
}

1340
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1341
{
1342 1343
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1344 1345
}

1346
static void print_version(struct feat_fd *ff, FILE *fp)
1347
{
1348
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1349 1350
}

1351
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1352
{
1353
	int nr, i;
1354

1355
	nr = ff->ph->env.nr_cmdline;
1356 1357 1358

	fprintf(fp, "# cmdline : ");

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1377 1378 1379
	fputc('\n', fp);
}

1380
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1381
{
1382 1383
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1384
	int nr, i;
1385 1386
	char *str;

1387 1388
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1389 1390 1391

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling cores   : %s\n", str);
1392
		str += strlen(str) + 1;
1393 1394
	}

1395 1396
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1397 1398 1399

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1400
		str += strlen(str) + 1;
1401
	}
1402 1403 1404 1405 1406 1407 1408

	if (ph->env.cpu != NULL) {
		for (i = 0; i < cpu_nr; i++)
			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
	} else
		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1409 1410
}

1411 1412 1413 1414 1415 1416
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1417
static void free_event_desc(struct perf_evsel *events)
1418
{
1419 1420 1421 1422 1423 1424
	struct perf_evsel *evsel;

	if (!events)
		return;

	for (evsel = events; evsel->attr.size; evsel++) {
1425 1426
		zfree(&evsel->name);
		zfree(&evsel->id);
1427 1428 1429 1430 1431
	}

	free(events);
}

1432
static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1433 1434 1435
{
	struct perf_evsel *evsel, *events = NULL;
	u64 *id;
1436
	void *buf = NULL;
1437 1438
	u32 nre, sz, nr, i, j;
	size_t msz;
1439 1440

	/* number of events */
1441
	if (do_read_u32(ff, &nre))
1442 1443
		goto error;

1444
	if (do_read_u32(ff, &sz))
1445 1446
		goto error;

1447
	/* buffer to hold on file attr struct */
1448 1449 1450 1451
	buf = malloc(sz);
	if (!buf)
		goto error;

1452 1453 1454 1455 1456 1457
	/* the last event terminates with evsel->attr.size == 0: */
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

	msz = sizeof(evsel->attr);
1458
	if (sz < msz)
1459 1460
		msz = sz;

1461 1462
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1463

1464 1465 1466 1467
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1468
		if (__do_read(ff, buf, sz))
1469 1470
			goto error;

1471
		if (ff->ph->needs_swap)
1472 1473
			perf_event__attr_swap(buf);

1474
		memcpy(&evsel->attr, buf, msz);
1475

1476
		if (do_read_u32(ff, &nr))
1477 1478
			goto error;

1479
		if (ff->ph->needs_swap)
1480
			evsel->needs_swap = true;
1481

1482
		evsel->name = do_read_string(ff);
1483 1484
		if (!evsel->name)
			goto error;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
		evsel->ids = nr;
		evsel->id = id;

		for (j = 0 ; j < nr; j++) {
1496
			if (do_read_u64(ff, id))
1497 1498 1499 1500 1501
				goto error;
			id++;
		}
	}
out:
1502
	free(buf);
1503 1504
	return events;
error:
1505
	free_event_desc(events);
1506 1507 1508 1509
	events = NULL;
	goto out;
}

1510
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1511
				void *priv __maybe_unused)
1512 1513 1514 1515
{
	return fprintf(fp, ", %s = %s", name, val);
}

1516
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1517
{
1518
	struct perf_evsel *evsel, *events;
1519 1520 1521
	u32 j;
	u64 *id;

1522 1523 1524 1525 1526
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1527 1528 1529 1530 1531 1532 1533
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

	for (evsel = events; evsel->attr.size; evsel++) {
		fprintf(fp, "# event : name = %s, ", evsel->name);
1534

1535
		if (evsel->ids) {
1536
			fprintf(fp, ", id = {");
1537 1538 1539 1540 1541
			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1542
			fprintf(fp, " }");
1543
		}
1544

1545
		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1546

1547 1548
		fputc('\n', fp);
	}
1549 1550

	free_event_desc(events);
1551
	ff->events = NULL;
1552 1553
}

1554
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1555
{
1556
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1557 1558
}

1559
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1560
{
1561 1562
	int i;
	struct numa_node *n;
1563

1564 1565
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1566 1567 1568

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1569
			n->node, n->mem_total, n->mem_free);
1570

1571 1572
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1573 1574 1575
	}
}

1576
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1577
{
1578
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1579 1580
}

1581
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1582 1583 1584 1585
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1586
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1587 1588 1589 1590
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1591
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1592 1593 1594 1595
{
	fprintf(fp, "# contains stat data\n");
}

1596
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1597 1598 1599 1600
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1601
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1602
		fprintf(fp, "#  ");
1603
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1604 1605 1606
	}
}

1607
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1608 1609
{
	const char *delimiter = "# pmu mappings: ";
1610
	char *str, *tmp;
1611 1612 1613
	u32 pmu_num;
	u32 type;

1614
	pmu_num = ff->ph->env.nr_pmu_mappings;
1615 1616 1617 1618 1619
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1620
	str = ff->ph->env.pmu_mappings;
1621

1622
	while (pmu_num) {
1623 1624 1625 1626 1627 1628
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1629

1630
		delimiter = ", ";
1631 1632
		str += strlen(str) + 1;
		pmu_num--;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1643
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1644 1645 1646 1647 1648
{
	struct perf_session *session;
	struct perf_evsel *evsel;
	u32 nr = 0;

1649
	session = container_of(ff->ph, struct perf_session, header);
1650

1651
	evlist__for_each_entry(session->evlist, evsel) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		if (perf_evsel__is_group_leader(evsel) &&
		    evsel->nr_members > 1) {
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

			nr = evsel->nr_members - 1;
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1718 1719 1720 1721 1722 1723
static int __event_process_build_id(struct build_id_event *bev,
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1724
	u16 cpumode;
1725 1726 1727 1728 1729 1730 1731
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1732
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1733

1734
	switch (cpumode) {
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1749
	dso = machine__findnew_dso(machine, filename);
1750
	if (dso != NULL) {
1751
		char sbuild_id[SBUILD_ID_SIZE];
1752 1753 1754

		dso__set_build_id(dso, &bev->build_id);

1755 1756 1757 1758
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1759
				dso__set_module_info(dso, &m, machine);
1760 1761 1762 1763 1764
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1765 1766 1767 1768 1769

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1770
		dso__put(dso);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1784
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1785 1786 1787 1788 1789 1790 1791 1792 1793
		char			   filename[0];
	} old_bev;
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1794
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1795 1796 1797 1798 1799 1800
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1801
		if (readn(input, filename, len) != len)
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct build_id_event bev;
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

1836
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1837 1838 1839 1840 1841 1842
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
1843
		if (readn(input, filename, len) != len)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
		 * Added a field to struct build_id_event that broke the file
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

1873 1874
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1875
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1876
{\
1877
	ff->ph->env.__feat_env = do_read_string(ff); \
1878
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1879 1880 1881 1882 1883 1884 1885 1886 1887
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

1888
static int process_tracing_data(struct feat_fd *ff, void *data)
1889
{
1890 1891
	ssize_t ret = trace_report(ff->fd, data, false);

1892
	return ret < 0 ? -1 : 0;
1893 1894
}

1895
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1896
{
1897
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1898 1899 1900 1901
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

1902
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1903
{
1904 1905
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
1906

1907
	ret = do_read_u32(ff, &nr_cpus_avail);
1908 1909
	if (ret)
		return ret;
1910

1911
	ret = do_read_u32(ff, &nr_cpus_online);
1912 1913
	if (ret)
		return ret;
1914 1915
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
1916 1917 1918
	return 0;
}

1919
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
1920
{
1921 1922
	u64 total_mem;
	int ret;
1923

1924
	ret = do_read_u64(ff, &total_mem);
1925
	if (ret)
1926
		return -1;
1927
	ff->ph->env.total_mem = (unsigned long long)total_mem;
1928 1929 1930
	return 0;
}

1931 1932 1933 1934 1935
static struct perf_evsel *
perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
{
	struct perf_evsel *evsel;

1936
	evlist__for_each_entry(evlist, evsel) {
1937 1938 1939 1940 1941 1942 1943 1944
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
1945 1946
perf_evlist__set_event_name(struct perf_evlist *evlist,
			    struct perf_evsel *event)
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
{
	struct perf_evsel *evsel;

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
1964
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
1965
{
1966
	struct perf_session *session;
1967
	struct perf_evsel *evsel, *events = read_event_desc(ff);
1968 1969 1970 1971

	if (!events)
		return 0;

1972
	session = container_of(ff->ph, struct perf_session, header);
1973

1974
	if (session->data->is_pipe) {
1975 1976 1977 1978 1979
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

1980 1981 1982
	for (evsel = events; evsel->attr.size; evsel++)
		perf_evlist__set_event_name(session->evlist, evsel);

1983
	if (!session->data->is_pipe)
1984
		free_event_desc(events);
1985 1986 1987 1988

	return 0;
}

1989
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
1990
{
1991 1992
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
1993

1994
	if (do_read_u32(ff, &nr))
1995 1996
		return -1;

1997
	ff->ph->env.nr_cmdline = nr;
1998

1999
	cmdline = zalloc(ff->size + nr + 1);
2000 2001 2002 2003 2004 2005
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2006 2007

	for (i = 0; i < nr; i++) {
2008
		str = do_read_string(ff);
2009 2010 2011
		if (!str)
			goto error;

2012 2013 2014
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2015 2016
		free(str);
	}
2017 2018
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2019 2020 2021
	return 0;

error:
2022 2023
	free(argv);
	free(cmdline);
2024 2025 2026
	return -1;
}

2027
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2028 2029 2030 2031
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2032
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2033
	u64 size = 0;
2034
	struct perf_header *ph = ff->ph;
2035
	bool do_core_id_test = true;
2036 2037 2038 2039

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2040

2041
	if (do_read_u32(ff, &nr))
2042
		goto free_cpu;
2043 2044

	ph->env.nr_sibling_cores = nr;
2045
	size += sizeof(u32);
2046 2047
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2048 2049

	for (i = 0; i < nr; i++) {
2050
		str = do_read_string(ff);
2051 2052 2053 2054
		if (!str)
			goto error;

		/* include a NULL character at the end */
2055 2056
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2057
		size += string_size(str);
2058 2059 2060 2061
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2062
	if (do_read_u32(ff, &nr))
2063 2064 2065
		return -1;

	ph->env.nr_sibling_threads = nr;
2066
	size += sizeof(u32);
2067 2068

	for (i = 0; i < nr; i++) {
2069
		str = do_read_string(ff);
2070 2071 2072 2073
		if (!str)
			goto error;

		/* include a NULL character at the end */
2074 2075
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2076
		size += string_size(str);
2077 2078 2079
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2080 2081 2082 2083 2084

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2085
	if (ff->size <= size) {
2086 2087 2088 2089
		zfree(&ph->env.cpu);
		return 0;
	}

2090 2091 2092 2093 2094 2095 2096
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
	 */
	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
		do_core_id_test = false;

2097
	for (i = 0; i < (u32)cpu_nr; i++) {
2098
		if (do_read_u32(ff, &nr))
2099 2100 2101 2102
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;

2103
		if (do_read_u32(ff, &nr))
2104 2105
			goto free_cpu;

2106
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2107 2108 2109 2110 2111 2112 2113 2114
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
	}

2115 2116 2117 2118
	return 0;

error:
	strbuf_release(&sb);
2119 2120
free_cpu:
	zfree(&ph->env.cpu);
2121 2122 2123
	return -1;
}

2124
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2125
{
2126 2127
	struct numa_node *nodes, *n;
	u32 nr, i;
2128 2129 2130
	char *str;

	/* nr nodes */
2131
	if (do_read_u32(ff, &nr))
2132
		return -1;
2133

2134 2135 2136
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2137 2138

	for (i = 0; i < nr; i++) {
2139 2140
		n = &nodes[i];

2141
		/* node number */
2142
		if (do_read_u32(ff, &n->node))
2143 2144
			goto error;

2145
		if (do_read_u64(ff, &n->mem_total))
2146 2147
			goto error;

2148
		if (do_read_u64(ff, &n->mem_free))
2149 2150
			goto error;

2151
		str = do_read_string(ff);
2152 2153 2154
		if (!str)
			goto error;

2155 2156
		n->map = cpu_map__new(str);
		if (!n->map)
2157
			goto error;
2158

2159 2160
		free(str);
	}
2161 2162
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2163 2164 2165
	return 0;

error:
2166
	free(nodes);
2167 2168 2169
	return -1;
}

2170
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2171 2172 2173 2174 2175 2176
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2177
	if (do_read_u32(ff, &pmu_num))
2178 2179 2180 2181 2182 2183 2184
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2185
	ff->ph->env.nr_pmu_mappings = pmu_num;
2186 2187
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2188 2189

	while (pmu_num) {
2190
		if (do_read_u32(ff, &type))
2191 2192
			goto error;

2193
		name = do_read_string(ff);
2194 2195 2196
		if (!name)
			goto error;

2197 2198
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2199
		/* include a NULL character at the end */
2200 2201
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2202

2203
		if (!strcmp(name, "msr"))
2204
			ff->ph->env.msr_pmu_type = type;
2205

2206 2207 2208
		free(name);
		pmu_num--;
	}
2209
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2210 2211 2212 2213 2214 2215 2216
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2217
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
	struct perf_evsel *evsel, *leader = NULL;
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2229
	if (do_read_u32(ff, &nr_groups))
2230 2231
		return -1;

2232
	ff->ph->env.nr_groups = nr_groups;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2243
		desc[i].name = do_read_string(ff);
2244 2245 2246
		if (!desc[i].name)
			goto out_free;

2247
		if (do_read_u32(ff, &desc[i].leader_idx))
2248 2249
			goto out_free;

2250
		if (do_read_u32(ff, &desc[i].nr_members))
2251 2252 2253 2254 2255 2256
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2257
	session = container_of(ff->ph, struct perf_session, header);
2258 2259 2260
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2261
	evlist__for_each_entry(session->evlist, evsel) {
2262 2263 2264
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2265
			if (strcmp(desc[i].name, "{anon_group}")) {
2266
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2267 2268
				desc[i].name = NULL;
			}
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
			evsel->nr_members = desc[i].nr_members;

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
			nr = evsel->nr_members - 1;
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2294
	for (i = 0; i < nr_groups; i++)
2295
		zfree(&desc[i].name);
2296 2297 2298 2299 2300
	free(desc);

	return ret;
}

2301
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2302 2303 2304 2305
{
	struct perf_session *session;
	int err;

2306
	session = container_of(ff->ph, struct perf_session, header);
2307

2308
	err = auxtrace_index__process(ff->fd, ff->size, session,
2309
				      ff->ph->needs_swap);
2310 2311 2312 2313 2314
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2315
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2316 2317 2318 2319
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2320
	if (do_read_u32(ff, &version))
2321 2322 2323 2324 2325
		return -1;

	if (version != 1)
		return -1;

2326
	if (do_read_u32(ff, &cnt))
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2337
			if (do_read_u32(ff, &c.v))\
2338 2339 2340 2341 2342 2343 2344 2345
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2346
		#define _R(v)					\
2347
			c.v = do_read_string(ff);		\
2348
			if (!c.v)				\
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2359 2360
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2361 2362 2363 2364 2365 2366
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2440 2441 2442 2443 2444 2445 2446 2447 2448
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2449
struct feature_ops {
2450
	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2451
	void (*print)(struct feat_fd *ff, FILE *fp);
2452
	int (*process)(struct feat_fd *ff, void *data);
2453 2454
	const char *name;
	bool full_only;
2455
	bool synthesize;
2456 2457
};

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2476 2477

/* feature_ops not implemented: */
2478 2479
#define print_tracing_data	NULL
#define print_build_id		NULL
2480

2481 2482 2483 2484
#define process_branch_stack	NULL
#define process_stat		NULL


2485
static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2502
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2503 2504 2505
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2506
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2507
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2508
	FEAT_OPR(CLOCKID,       clockid,        false)
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2521
	struct feat_fd ff;
2522 2523 2524 2525 2526 2527

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2528
	if (feat >= HEADER_LAST_FEATURE) {
2529
		pr_warning("unknown feature %d\n", feat);
2530
		return 0;
2531 2532 2533 2534
	}
	if (!feat_ops[feat].print)
		return 0;

2535 2536 2537 2538 2539
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2540
	if (!feat_ops[feat].full_only || hd->full)
2541
		feat_ops[feat].print(&ff, hd->fp);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2553
	int fd = perf_data__fd(session->data);
2554
	struct stat st;
2555
	time_t stctime;
J
Jiri Olsa 已提交
2556
	int ret, bit;
2557

2558 2559 2560
	hd.fp = fp;
	hd.full = full;

2561 2562 2563 2564
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2565 2566
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2567 2568 2569 2570 2571

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2572

2573 2574
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2575

2576
	if (session->data->is_pipe)
2577 2578
		return 0;

J
Jiri Olsa 已提交
2579 2580 2581 2582 2583 2584 2585
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2586 2587 2588
	return 0;
}

2589
static int do_write_feat(struct feat_fd *ff, int type,
2590 2591 2592 2593 2594 2595
			 struct perf_file_section **p,
			 struct perf_evlist *evlist)
{
	int err;
	int ret = 0;

2596
	if (perf_header__has_feat(ff->ph, type)) {
2597 2598
		if (!feat_ops[type].write)
			return -1;
2599

2600 2601 2602
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2603
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2604

2605
		err = feat_ops[type].write(ff, evlist);
2606
		if (err < 0) {
2607
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2608 2609

			/* undo anything written */
2610
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2611 2612 2613

			return -1;
		}
2614
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2615 2616 2617 2618 2619
		(*p)++;
	}
	return ret;
}

2620
static int perf_header__adds_write(struct perf_header *header,
2621
				   struct perf_evlist *evlist, int fd)
2622
{
2623
	int nr_sections;
2624
	struct feat_fd ff;
2625
	struct perf_file_section *feat_sec, *p;
2626 2627
	int sec_size;
	u64 sec_start;
2628
	int feat;
2629
	int err;
2630

2631 2632 2633 2634 2635
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

2636
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2637
	if (!nr_sections)
2638
		return 0;
2639

2640
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2641 2642
	if (feat_sec == NULL)
		return -ENOMEM;
2643 2644 2645

	sec_size = sizeof(*feat_sec) * nr_sections;

2646
	sec_start = header->feat_offset;
2647
	lseek(fd, sec_start + sec_size, SEEK_SET);
2648

2649
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2650
		if (do_write_feat(&ff, feat, &p, evlist))
2651 2652
			perf_header__clear_feat(header, feat);
	}
2653

2654
	lseek(fd, sec_start, SEEK_SET);
2655 2656
	/*
	 * may write more than needed due to dropped feature, but
2657
	 * this is okay, reader will skip the missing entries
2658
	 */
2659
	err = do_write(&ff, feat_sec, sec_size);
2660 2661
	if (err < 0)
		pr_debug("failed to write feature section\n");
2662
	free(feat_sec);
2663
	return err;
2664
}
2665

2666 2667 2668
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
2669
	struct feat_fd ff;
2670 2671
	int err;

2672 2673
	ff = (struct feat_fd){ .fd = fd };

2674 2675 2676 2677 2678
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

2679
	err = do_write(&ff, &f_header, sizeof(f_header));
2680 2681 2682 2683 2684 2685 2686 2687
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

2688 2689 2690
int perf_session__write_header(struct perf_session *session,
			       struct perf_evlist *evlist,
			       int fd, bool at_exit)
2691 2692 2693
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
2694
	struct perf_header *header = &session->header;
2695
	struct perf_evsel *evsel;
2696
	struct feat_fd ff;
2697
	u64 attr_offset;
2698
	int err;
2699

2700
	ff = (struct feat_fd){ .fd = fd};
2701 2702
	lseek(fd, sizeof(f_header), SEEK_SET);

2703
	evlist__for_each_entry(session->evlist, evsel) {
2704
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2705
		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2706 2707 2708 2709
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
2710 2711
	}

2712
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2713

2714
	evlist__for_each_entry(evlist, evsel) {
2715
		f_attr = (struct perf_file_attr){
2716
			.attr = evsel->attr,
2717
			.ids  = {
2718 2719
				.offset = evsel->id_offset,
				.size   = evsel->ids * sizeof(u64),
2720 2721
			}
		};
2722
		err = do_write(&ff, &f_attr, sizeof(f_attr));
2723 2724 2725 2726
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
2727 2728
	}

2729 2730
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
2731
	header->feat_offset = header->data_offset + header->data_size;
2732

2733
	if (at_exit) {
2734
		err = perf_header__adds_write(header, evlist, fd);
2735 2736 2737
		if (err < 0)
			return err;
	}
2738

2739 2740 2741 2742 2743
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
2744
			.offset = attr_offset,
2745
			.size   = evlist->nr_entries * sizeof(f_attr),
2746 2747
		},
		.data = {
2748 2749
			.offset = header->data_offset,
			.size	= header->data_size,
2750
		},
2751
		/* event_types is ignored, store zeros */
2752 2753
	};

2754
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2755

2756
	lseek(fd, 0, SEEK_SET);
2757
	err = do_write(&ff, &f_header, sizeof(f_header));
2758 2759 2760 2761
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
2762
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2763

2764
	return 0;
2765 2766
}

2767
static int perf_header__getbuffer64(struct perf_header *header,
2768 2769
				    int fd, void *buf, size_t size)
{
2770
	if (readn(fd, buf, size) <= 0)
2771 2772
		return -1;

2773
	if (header->needs_swap)
2774 2775 2776 2777 2778
		mem_bswap_64(buf, size);

	return 0;
}

2779
int perf_header__process_sections(struct perf_header *header, int fd,
2780
				  void *data,
2781
				  int (*process)(struct perf_file_section *section,
2782 2783
						 struct perf_header *ph,
						 int feat, int fd, void *data))
2784
{
2785
	struct perf_file_section *feat_sec, *sec;
2786 2787
	int nr_sections;
	int sec_size;
2788 2789
	int feat;
	int err;
2790

2791
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2792
	if (!nr_sections)
2793
		return 0;
2794

2795
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2796
	if (!feat_sec)
2797
		return -1;
2798 2799 2800

	sec_size = sizeof(*feat_sec) * nr_sections;

2801
	lseek(fd, header->feat_offset, SEEK_SET);
2802

2803 2804
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
2805
		goto out_free;
2806

2807 2808 2809 2810
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
2811
	}
2812
	err = 0;
2813
out_free:
2814 2815
	free(feat_sec);
	return err;
2816
}
2817

2818 2819 2820
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
2821
	[2] = PERF_ATTR_SIZE_VER2,
2822
	[3] = PERF_ATTR_SIZE_VER3,
2823
	[4] = PERF_ATTR_SIZE_VER4,
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2834
{
2835 2836
	uint64_t ref_size, attr_size;
	int i;
2837

2838 2839 2840 2841 2842 2843 2844
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
2881 2882 2883

			ph->needs_swap = true;
		}
2884
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2885 2886
		return 0;
	}
2887 2888 2889
	return -1;
}

F
Feng Tang 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

2900 2901 2902 2903 2904 2905 2906 2907
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
2908
		ph->version = PERF_HEADER_VERSION_1;
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
2920
	ph->version = PERF_HEADER_VERSION_2;
2921

2922 2923
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
2924 2925
		return 0;

2926 2927
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
2928 2929 2930 2931 2932 2933 2934
		return -1;

	ph->needs_swap = true;

	return 0;
}

2935
int perf_file_header__read(struct perf_file_header *header,
2936 2937
			   struct perf_header *ph, int fd)
{
2938
	ssize_t ret;
2939

2940 2941
	lseek(fd, 0, SEEK_SET);

2942 2943
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
2944 2945
		return -1;

2946 2947 2948
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
2949
		return -1;
2950
	}
2951

2952
	if (ph->needs_swap) {
2953
		mem_bswap_64(header, offsetof(struct perf_file_header,
2954
			     adds_features));
2955 2956
	}

2957
	if (header->size != sizeof(*header)) {
2958
		/* Support the previous format */
2959 2960
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
2961 2962
		else
			return -1;
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
2979 2980
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
2981 2982

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
2983 2984 2985 2986 2987 2988 2989
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
2990 2991 2992 2993 2994 2995
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
2996
	}
2997

2998
	memcpy(&ph->adds_features, &header->adds_features,
2999
	       sizeof(ph->adds_features));
3000

3001 3002
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3003
	ph->feat_offset  = header->data.offset + header->data.size;
3004 3005 3006
	return 0;
}

3007
static int perf_file_section__process(struct perf_file_section *section,
3008
				      struct perf_header *ph,
3009
				      int feat, int fd, void *data)
3010
{
3011
	struct feat_fd fdd = {
3012 3013
		.fd	= fd,
		.ph	= ph,
3014 3015
		.size	= section->size,
		.offset	= section->offset,
3016 3017
	};

3018
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3019
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3020
			  "%d, continuing...\n", section->offset, feat);
3021 3022 3023
		return 0;
	}

3024 3025 3026 3027 3028
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3029 3030
	if (!feat_ops[feat].process)
		return 0;
3031

3032
	return feat_ops[feat].process(&fdd, data);
3033
}
3034

3035
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3036 3037
				       struct perf_header *ph, int fd,
				       bool repipe)
3038
{
3039 3040 3041 3042
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3043
	ssize_t ret;
3044 3045 3046 3047 3048

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3049 3050
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3051
		return -1;
3052 3053 3054 3055
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3056

3057
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3058 3059
		return -1;

3060 3061 3062
	return 0;
}

3063
static int perf_header__read_pipe(struct perf_session *session)
3064
{
3065
	struct perf_header *header = &session->header;
3066 3067
	struct perf_pipe_file_header f_header;

3068
	if (perf_file_header__read_pipe(&f_header, header,
3069
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3070
					session->repipe) < 0) {
3071 3072 3073 3074 3075 3076 3077
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3078 3079 3080 3081 3082 3083
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3084
	ssize_t ret;
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3124
static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3125
						struct tep_handle *pevent)
3126
{
3127
	struct tep_event *event;
3128 3129
	char bf[128];

3130 3131 3132 3133
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3134 3135 3136 3137 3138
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3139
	event = tep_find_event(pevent, evsel->attr.config);
3140 3141
	if (event == NULL) {
		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3142
		return -1;
3143
	}
3144

3145 3146 3147 3148 3149 3150
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3151

3152
	evsel->tp_format = event;
3153 3154 3155
	return 0;
}

3156
static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3157
						  struct tep_handle *pevent)
3158 3159 3160
{
	struct perf_evsel *pos;

3161
	evlist__for_each_entry(evlist, pos) {
3162 3163
		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3164 3165 3166 3167 3168 3169
			return -1;
	}

	return 0;
}

3170
int perf_session__read_header(struct perf_session *session)
3171
{
3172
	struct perf_data *data = session->data;
3173
	struct perf_header *header = &session->header;
3174
	struct perf_file_header	f_header;
3175 3176 3177
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3178
	int fd = perf_data__fd(data);
3179

3180
	session->evlist = perf_evlist__new();
3181 3182 3183
	if (session->evlist == NULL)
		return -ENOMEM;

3184
	session->evlist->env = &header->env;
3185
	session->machines.host.env = &header->env;
3186
	if (perf_data__is_pipe(data))
3187
		return perf_header__read_pipe(session);
3188

3189
	if (perf_file_header__read(&f_header, header, fd) < 0)
3190
		return -EINVAL;
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3201
			   data->file.path);
3202 3203
	}

3204
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3205 3206 3207
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3208
		struct perf_evsel *evsel;
3209
		off_t tmp;
3210

3211
		if (read_attr(fd, header, &f_attr) < 0)
3212
			goto out_errno;
3213

3214 3215 3216
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3217
			perf_event__attr_swap(&f_attr.attr);
3218
		}
3219

3220
		tmp = lseek(fd, 0, SEEK_CUR);
3221
		evsel = perf_evsel__new(&f_attr.attr);
3222

3223 3224
		if (evsel == NULL)
			goto out_delete_evlist;
3225 3226

		evsel->needs_swap = header->needs_swap;
3227 3228 3229 3230 3231
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
		 * entry gets purged too at perf_evlist__delete().
		 */
		perf_evlist__add(session->evlist, evsel);
3232 3233

		nr_ids = f_attr.ids.size / sizeof(u64);
3234 3235 3236 3237 3238 3239 3240 3241
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
			goto out_delete_evlist;

3242 3243 3244
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3245
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3246
				goto out_errno;
3247

3248
			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3249
		}
3250

3251 3252 3253
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3254
	perf_header__process_sections(header, fd, &session->tevent,
3255
				      perf_file_section__process);
3256

3257
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3258
						   session->tevent.pevent))
3259 3260
		goto out_delete_evlist;

3261
	return 0;
3262 3263
out_errno:
	return -errno;
3264 3265 3266 3267 3268

out_delete_evlist:
	perf_evlist__delete(session->evlist);
	session->evlist = NULL;
	return -ENOMEM;
3269
}
3270

3271
int perf_event__synthesize_attr(struct perf_tool *tool,
3272
				struct perf_event_attr *attr, u32 ids, u64 *id,
3273
				perf_event__handler_t process)
3274
{
3275
	union perf_event *ev;
3276 3277 3278 3279
	size_t size;
	int err;

	size = sizeof(struct perf_event_attr);
3280
	size = PERF_ALIGN(size, sizeof(u64));
3281 3282 3283 3284 3285
	size += sizeof(struct perf_event_header);
	size += ids * sizeof(u64);

	ev = malloc(size);

3286 3287 3288
	if (ev == NULL)
		return -ENOMEM;

3289 3290 3291 3292
	ev->attr.attr = *attr;
	memcpy(ev->attr.id, id, ids * sizeof(u64));

	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3293
	ev->attr.header.size = (u16)size;
3294

3295 3296 3297 3298
	if (ev->attr.header.size == size)
		err = process(tool, ev, NULL, NULL);
	else
		err = -E2BIG;
3299 3300 3301 3302 3303 3304

	free(ev);

	return err;
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
int perf_event__synthesize_features(struct perf_tool *tool,
				    struct perf_session *session,
				    struct perf_evlist *evlist,
				    perf_event__handler_t process)
{
	struct perf_header *header = &session->header;
	struct feat_fd ff;
	struct feature_event *fe;
	size_t sz, sz_hdr;
	int feat, ret;

	sz_hdr = sizeof(fe->header);
	sz = sizeof(union perf_event);
	/* get a nice alignment */
	sz = PERF_ALIGN(sz, page_size);

	memset(&ff, 0, sizeof(ff));

	ff.buf = malloc(sz);
	if (!ff.buf)
		return -ENOMEM;

	ff.size = sz - sz_hdr;

	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
		if (!feat_ops[feat].synthesize) {
			pr_debug("No record header feature for header :%d\n", feat);
			continue;
		}

		ff.offset = sizeof(*fe);

		ret = feat_ops[feat].write(&ff, evlist);
		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
			pr_debug("Error writing feature\n");
			continue;
		}
		/* ff.buf may have changed due to realloc in do_write() */
		fe = ff.buf;
		memset(fe, 0, sizeof(*fe));

		fe->feat_id = feat;
		fe->header.type = PERF_RECORD_HEADER_FEATURE;
		fe->header.size = ff.offset;

		ret = process(tool, ff.buf, NULL, NULL);
		if (ret) {
			free(ff.buf);
			return ret;
		}
	}
3356 3357 3358 3359 3360 3361 3362 3363 3364

	/* Send HEADER_LAST_FEATURE mark. */
	fe = ff.buf;
	fe->feat_id     = HEADER_LAST_FEATURE;
	fe->header.type = PERF_RECORD_HEADER_FEATURE;
	fe->header.size = sizeof(*fe);

	ret = process(tool, ff.buf, NULL, NULL);

3365
	free(ff.buf);
3366
	return ret;
3367 3368
}

3369 3370
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3371
{
3372
	struct perf_tool *tool = session->tool;
3373 3374 3375 3376 3377 3378 3379 3380 3381
	struct feat_fd ff = { .fd = 0 };
	struct feature_event *fe = (struct feature_event *)event;
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3382
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
	ff.size = event->header.size - sizeof(event->header);
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
static struct event_update_event *
event_update_event__new(size_t size, u64 type, u64 id)
{
	struct event_update_event *ev;

	size += sizeof(*ev);
	size  = PERF_ALIGN(size, sizeof(u64));

	ev = zalloc(size);
	if (ev) {
		ev->header.type = PERF_RECORD_EVENT_UPDATE;
		ev->header.size = (u16)size;
		ev->type = type;
		ev->id = id;
	}
	return ev;
}

int
perf_event__synthesize_event_update_unit(struct perf_tool *tool,
					 struct perf_evsel *evsel,
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t size = strlen(evsel->unit);
	int err;

	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3442
	strlcpy(ev->data, evsel->unit, size + 1);
3443 3444 3445 3446 3447
	err = process(tool, (union perf_event *)ev, NULL, NULL);
	free(ev);
	return err;
}

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
int
perf_event__synthesize_event_update_scale(struct perf_tool *tool,
					  struct perf_evsel *evsel,
					  perf_event__handler_t process)
{
	struct event_update_event *ev;
	struct event_update_event_scale *ev_data;
	int err;

	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

	ev_data = (struct event_update_event_scale *) ev->data;
	ev_data->scale = evsel->scale;
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
int
perf_event__synthesize_event_update_name(struct perf_tool *tool,
					 struct perf_evsel *evsel,
					 perf_event__handler_t process)
{
	struct event_update_event *ev;
	size_t len = strlen(evsel->name);
	int err;

	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
	if (ev == NULL)
		return -ENOMEM;

3481
	strlcpy(ev->data, evsel->name, len + 1);
3482 3483 3484 3485
	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
int
perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
					struct perf_evsel *evsel,
					perf_event__handler_t process)
{
	size_t size = sizeof(struct event_update_event);
	struct event_update_event *ev;
	int max, err;
	u16 type;

	if (!evsel->own_cpus)
		return 0;

	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
	if (!ev)
		return -ENOMEM;

	ev->header.type = PERF_RECORD_EVENT_UPDATE;
	ev->header.size = (u16)size;
	ev->type = PERF_EVENT_UPDATE__CPUS;
	ev->id   = evsel->id[0];

	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
				 evsel->own_cpus,
				 type, max);

	err = process(tool, (union perf_event*) ev, NULL, NULL);
	free(ev);
	return err;
}

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
	struct event_update_event *ev = &event->event_update;
	struct event_update_event_scale *ev_scale;
	struct event_update_event_cpus *ev_cpus;
	struct cpu_map *map;
	size_t ret;

	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3556

3557
int perf_event__synthesize_attrs(struct perf_tool *tool,
3558 3559
				 struct perf_evlist *evlist,
				 perf_event__handler_t process)
3560
{
3561
	struct perf_evsel *evsel;
3562
	int err = 0;
3563

3564
	evlist__for_each_entry(evlist, evsel) {
3565 3566
		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
						  evsel->id, process);
3567 3568 3569 3570 3571 3572 3573 3574 3575
		if (err) {
			pr_debug("failed to create perf header attribute\n");
			return err;
		}
	}

	return err;
}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
static bool has_unit(struct perf_evsel *counter)
{
	return counter->unit && *counter->unit;
}

static bool has_scale(struct perf_evsel *counter)
{
	return counter->scale != 1;
}

int perf_event__synthesize_extra_attr(struct perf_tool *tool,
				      struct perf_evlist *evsel_list,
				      perf_event__handler_t process,
				      bool is_pipe)
{
	struct perf_evsel *counter;
	int err;

	/*
	 * Synthesize other events stuff not carried within
	 * attr event - unit, scale, name
	 */
	evlist__for_each_entry(evsel_list, counter) {
		if (!counter->supported)
			continue;

		/*
		 * Synthesize unit and scale only if it's defined.
		 */
		if (has_unit(counter)) {
			err = perf_event__synthesize_event_update_unit(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel unit.\n");
				return err;
			}
		}

		if (has_scale(counter)) {
			err = perf_event__synthesize_event_update_scale(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel counter.\n");
				return err;
			}
		}

		if (counter->own_cpus) {
			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel cpus.\n");
				return err;
			}
		}

		/*
		 * Name is needed only for pipe output,
		 * perf.data carries event names.
		 */
		if (is_pipe) {
			err = perf_event__synthesize_event_update_name(tool, counter, process);
			if (err < 0) {
				pr_err("Couldn't synthesize evsel name.\n");
				return err;
			}
		}
	}
	return 0;
}

3644 3645
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3646
			     struct perf_evlist **pevlist)
3647
{
3648
	u32 i, ids, n_ids;
3649
	struct perf_evsel *evsel;
3650
	struct perf_evlist *evlist = *pevlist;
3651

3652
	if (evlist == NULL) {
3653
		*pevlist = evlist = perf_evlist__new();
3654
		if (evlist == NULL)
3655 3656 3657
			return -ENOMEM;
	}

3658
	evsel = perf_evsel__new(&event->attr.attr);
3659
	if (evsel == NULL)
3660 3661
		return -ENOMEM;

3662
	perf_evlist__add(evlist, evsel);
3663

3664 3665
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
3666
	n_ids = ids / sizeof(u64);
3667 3668 3669 3670 3671 3672 3673
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
	if (perf_evsel__alloc_id(evsel, 1, n_ids))
		return -ENOMEM;
3674 3675

	for (i = 0; i < n_ids; i++) {
3676
		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3677 3678 3679 3680
	}

	return 0;
}
3681

3682 3683 3684 3685 3686
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
				     struct perf_evlist **pevlist)
{
	struct event_update_event *ev = &event->event_update;
3687
	struct event_update_event_scale *ev_scale;
3688
	struct event_update_event_cpus *ev_cpus;
3689 3690
	struct perf_evlist *evlist;
	struct perf_evsel *evsel;
3691
	struct cpu_map *map;
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

3702 3703 3704
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
3705
		break;
3706 3707 3708
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
3709 3710 3711
	case PERF_EVENT_UPDATE__SCALE:
		ev_scale = (struct event_update_event_scale *) ev->data;
		evsel->scale = ev_scale->scale;
3712
		break;
3713 3714 3715 3716 3717 3718 3719 3720
	case PERF_EVENT_UPDATE__CPUS:
		ev_cpus = (struct event_update_event_cpus *) ev->data;

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			evsel->own_cpus = map;
		else
			pr_err("failed to get event_update cpus\n");
3721 3722 3723 3724
	default:
		break;
	}

3725 3726 3727
	return 0;
}

3728
int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3729
					struct perf_evlist *evlist,
3730
					perf_event__handler_t process)
3731
{
3732
	union perf_event ev;
J
Jiri Olsa 已提交
3733
	struct tracing_data *tdata;
3734
	ssize_t size = 0, aligned_size = 0, padding;
3735
	struct feat_fd ff;
3736
	int err __maybe_unused = 0;
3737

J
Jiri Olsa 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	/*
	 * We are going to store the size of the data followed
	 * by the data contents. Since the fd descriptor is a pipe,
	 * we cannot seek back to store the size of the data once
	 * we know it. Instead we:
	 *
	 * - write the tracing data to the temp file
	 * - get/write the data size to pipe
	 * - write the tracing data from the temp file
	 *   to the pipe
	 */
	tdata = tracing_data_get(&evlist->entries, fd, true);
	if (!tdata)
		return -1;

3753 3754 3755
	memset(&ev, 0, sizeof(ev));

	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
J
Jiri Olsa 已提交
3756
	size = tdata->size;
3757
	aligned_size = PERF_ALIGN(size, sizeof(u64));
3758 3759 3760 3761
	padding = aligned_size - size;
	ev.tracing_data.header.size = sizeof(ev.tracing_data);
	ev.tracing_data.size = aligned_size;

3762
	process(tool, &ev, NULL, NULL);
3763

J
Jiri Olsa 已提交
3764 3765 3766 3767 3768 3769
	/*
	 * The put function will copy all the tracing data
	 * stored in temp file to the pipe.
	 */
	tracing_data_put(tdata);

3770 3771
	ff = (struct feat_fd){ .fd = fd };
	if (write_padded(&ff, NULL, 0, padding))
3772
		return -1;
3773 3774 3775 3776

	return aligned_size;
}

3777 3778
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
3779
{
3780
	ssize_t size_read, padding, size = event->tracing_data.size;
3781
	int fd = perf_data__fd(session->data);
3782
	off_t offset = lseek(fd, 0, SEEK_CUR);
3783 3784 3785
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
3786
	lseek(fd, offset + sizeof(struct tracing_data_event),
3787 3788
	      SEEK_SET);

J
Jiri Olsa 已提交
3789
	size_read = trace_report(fd, &session->tevent,
3790
				 session->repipe);
3791
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3792

3793
	if (readn(fd, buf, padding) < 0) {
3794 3795 3796
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
3797 3798
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
3799 3800 3801 3802
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
3803
	}
3804

3805 3806 3807 3808
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
3809

3810
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3811
					       session->tevent.pevent);
3812

3813 3814
	return size_read + padding;
}
3815

3816
int perf_event__synthesize_build_id(struct perf_tool *tool,
3817
				    struct dso *pos, u16 misc,
3818
				    perf_event__handler_t process,
3819
				    struct machine *machine)
3820
{
3821
	union perf_event ev;
3822 3823 3824 3825 3826 3827 3828 3829 3830
	size_t len;
	int err = 0;

	if (!pos->hit)
		return err;

	memset(&ev, 0, sizeof(ev));

	len = pos->long_name_len + 1;
3831
	len = PERF_ALIGN(len, NAME_ALIGN);
3832 3833 3834
	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
	ev.build_id.header.misc = misc;
3835
	ev.build_id.pid = machine->pid;
3836 3837 3838
	ev.build_id.header.size = sizeof(ev.build_id) + len;
	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);

3839
	err = process(tool, &ev, NULL, machine);
3840 3841 3842 3843

	return err;
}

3844 3845
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
3846
{
3847 3848
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
3849
				 session);
3850 3851
	return 0;
}