header.c 88.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "dso.h"
26
#include "evlist.h"
27
#include "evsel.h"
28
#include "util/evsel_fprintf.h"
29
#include "header.h"
30
#include "memswap.h"
31
#include "trace-event.h"
32
#include "session.h"
33
#include "symbol.h"
34
#include "debug.h"
35
#include "cpumap.h"
36
#include "pmu.h"
37
#include "vdso.h"
38
#include "strbuf.h"
39
#include "build-id.h"
40
#include "data.h"
41 42
#include <api/fs/fs.h>
#include "asm/bug.h"
43
#include "tool.h"
44
#include "time-utils.h"
45
#include "units.h"
46
#include "util/util.h" // perf_exe()
J
Jiri Olsa 已提交
47
#include "cputopo.h"
48
#include "bpf-event.h"
49
#include "clockid.h"
50

51
#include <linux/ctype.h>
52
#include <internal/lib.h>
53

54 55 56 57 58 59 60 61 62 63 64 65
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66

67
#define PERF_MAGIC	__perf_magic2
68

69 70
const char perf_version_string[] = PERF_VERSION;

71
struct perf_file_attr {
72
	struct perf_event_attr	attr;
73 74 75
	struct perf_file_section	ids;
};

76
void perf_header__set_feat(struct perf_header *header, int feat)
77
{
78
	set_bit(feat, header->adds_features);
79 80
}

81
void perf_header__clear_feat(struct perf_header *header, int feat)
82
{
83
	clear_bit(feat, header->adds_features);
84 85
}

86
bool perf_header__has_feat(const struct perf_header *header, int feat)
87
{
88
	return test_bit(feat, header->adds_features);
89 90
}

91
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92
{
93
	ssize_t ret = writen(ff->fd, buf, size);
94

95 96
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
124 125

	return 0;
126 127
}

128 129 130 131 132 133 134 135
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

155
/* Return: 0 if succeded, -ERR if failed. */
156 157
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
158 159
{
	static const char zero_buf[NAME_ALIGN];
160
	int err = do_write(ff, bf, count);
161 162

	if (!err)
163
		err = do_write(ff, zero_buf, count_aligned - count);
164 165 166 167

	return err;
}

168 169 170
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

171
/* Return: 0 if succeded, -ERR if failed. */
172
static int do_write_string(struct feat_fd *ff, const char *str)
173 174 175 176 177
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
178
	len = PERF_ALIGN(olen, NAME_ALIGN);
179 180

	/* write len, incl. \0 */
181
	ret = do_write(ff, &len, sizeof(len));
182 183 184
	if (ret < 0)
		return ret;

185
	return write_padded(ff, str, olen, len);
186 187
}

188
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189
{
190
	ssize_t ret = readn(ff->fd, addr, size);
191 192 193 194 195 196

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

216
static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 218 219
{
	int ret;

220
	ret = __do_read(ff, addr, sizeof(*addr));
221 222 223
	if (ret)
		return ret;

224
	if (ff->ph->needs_swap)
225 226 227 228
		*addr = bswap_32(*addr);
	return 0;
}

229
static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 231 232
{
	int ret;

233
	ret = __do_read(ff, addr, sizeof(*addr));
234 235 236
	if (ret)
		return ret;

237
	if (ff->ph->needs_swap)
238 239 240 241
		*addr = bswap_64(*addr);
	return 0;
}

242
static char *do_read_string(struct feat_fd *ff)
243 244 245 246
{
	u32 len;
	char *buf;

247
	if (do_read_u32(ff, &len))
248 249 250 251 252 253
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

254
	if (!__do_read(ff, buf, len)) {
255 256 257 258 259 260 261 262 263 264 265 266
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

297
static int write_tracing_data(struct feat_fd *ff,
298
			      struct evlist *evlist)
299
{
300 301 302
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

303
	return read_tracing_data(ff->fd, &evlist->core.entries);
304 305
}

306
static int write_build_id(struct feat_fd *ff,
307
			  struct evlist *evlist __maybe_unused)
308 309 310 311
{
	struct perf_session *session;
	int err;

312
	session = container_of(ff->ph, struct perf_session, header);
313

314 315 316
	if (!perf_session__read_build_ids(session, true))
		return -1;

317 318 319
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

320
	err = perf_session__write_buildid_table(session, ff);
321 322 323 324
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
325
	perf_session__cache_build_ids(session);
326 327 328 329

	return 0;
}

330
static int write_hostname(struct feat_fd *ff,
331
			  struct evlist *evlist __maybe_unused)
332 333 334 335 336 337 338 339
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

340
	return do_write_string(ff, uts.nodename);
341 342
}

343
static int write_osrelease(struct feat_fd *ff,
344
			   struct evlist *evlist __maybe_unused)
345 346 347 348 349 350 351 352
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

353
	return do_write_string(ff, uts.release);
354 355
}

356
static int write_arch(struct feat_fd *ff,
357
		      struct evlist *evlist __maybe_unused)
358 359 360 361 362 363 364 365
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

366
	return do_write_string(ff, uts.machine);
367 368
}

369
static int write_version(struct feat_fd *ff,
370
			 struct evlist *evlist __maybe_unused)
371
{
372
	return do_write_string(ff, perf_version_string);
373 374
}

375
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 377 378 379
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
380
	const char *search = cpuinfo_proc;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

397 398
	if (ret) {
		ret = -1;
399
		goto done;
400
	}
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
416
			char *q = skip_spaces(r);
417 418 419 420 421 422
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
423
	ret = do_write_string(ff, s);
424 425 426 427 428 429
done:
	free(buf);
	fclose(file);
	return ret;
}

430
static int write_cpudesc(struct feat_fd *ff,
431
		       struct evlist *evlist __maybe_unused)
432
{
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
450
	const char *cpuinfo_procs[] = CPUINFO_PROC;
451
#undef CPUINFO_PROC
452 453 454 455
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
456
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457 458 459 460 461 462 463
		if (ret >= 0)
			return ret;
	}
	return -1;
}


464
static int write_nrcpus(struct feat_fd *ff,
465
			struct evlist *evlist __maybe_unused)
466 467 468 469 470
{
	long nr;
	u32 nrc, nra;
	int ret;

471
	nrc = cpu__max_present_cpu();
472 473 474 475 476 477 478

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

479
	ret = do_write(ff, &nrc, sizeof(nrc));
480 481 482
	if (ret < 0)
		return ret;

483
	return do_write(ff, &nra, sizeof(nra));
484 485
}

486
static int write_event_desc(struct feat_fd *ff,
487
			    struct evlist *evlist)
488
{
489
	struct evsel *evsel;
490
	u32 nre, nri, sz;
491 492
	int ret;

493
	nre = evlist->core.nr_entries;
494 495 496 497

	/*
	 * write number of events
	 */
498
	ret = do_write(ff, &nre, sizeof(nre));
499 500 501 502 503 504
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
505
	sz = (u32)sizeof(evsel->core.attr);
506
	ret = do_write(ff, &sz, sizeof(sz));
507 508 509
	if (ret < 0)
		return ret;

510
	evlist__for_each_entry(evlist, evsel) {
511
		ret = do_write(ff, &evsel->core.attr, sz);
512 513 514 515 516 517 518 519 520
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
521
		nri = evsel->core.ids;
522
		ret = do_write(ff, &nri, sizeof(nri));
523 524 525 526 527 528
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
529
		ret = do_write_string(ff, evsel__name(evsel));
530 531 532 533 534
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
535
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536 537 538 539 540 541
		if (ret < 0)
			return ret;
	}
	return 0;
}

542
static int write_cmdline(struct feat_fd *ff,
543
			 struct evlist *evlist __maybe_unused)
544
{
545 546
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
547

548
	/* actual path to perf binary */
549
	buf = perf_exe(pbuf, MAXPATHLEN);
550 551

	/* account for binary path */
552
	n = perf_env.nr_cmdline + 1;
553

554
	ret = do_write(ff, &n, sizeof(n));
555 556 557
	if (ret < 0)
		return ret;

558
	ret = do_write_string(ff, buf);
559 560 561
	if (ret < 0)
		return ret;

562
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564 565 566 567 568 569 570
		if (ret < 0)
			return ret;
	}
	return 0;
}


571
static int write_cpu_topology(struct feat_fd *ff,
572
			      struct evlist *evlist __maybe_unused)
573
{
J
Jiri Olsa 已提交
574
	struct cpu_topology *tp;
575
	u32 i;
576
	int ret, j;
577

J
Jiri Olsa 已提交
578
	tp = cpu_topology__new();
579 580 581
	if (!tp)
		return -1;

582
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583 584 585 586
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
587
		ret = do_write_string(ff, tp->core_siblings[i]);
588 589 590
		if (ret < 0)
			goto done;
	}
591
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592 593 594 595
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
596
		ret = do_write_string(ff, tp->thread_siblings[i]);
597 598 599
		if (ret < 0)
			break;
	}
600

601 602 603 604 605
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606
		ret = do_write(ff, &perf_env.cpu[j].core_id,
607
			       sizeof(perf_env.cpu[j].core_id));
608 609
		if (ret < 0)
			return ret;
610
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
611
			       sizeof(perf_env.cpu[j].socket_id));
612 613 614
		if (ret < 0)
			return ret;
	}
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

636
done:
J
Jiri Olsa 已提交
637
	cpu_topology__delete(tp);
638 639 640 641 642
	return ret;
}



643
static int write_total_mem(struct feat_fd *ff,
644
			   struct evlist *evlist __maybe_unused)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
664
			ret = do_write(ff, &mem, sizeof(mem));
665 666
	} else
		ret = -1;
667 668 669 670 671
	free(buf);
	fclose(fp);
	return ret;
}

672
static int write_numa_topology(struct feat_fd *ff,
673
			       struct evlist *evlist __maybe_unused)
674
{
J
Jiri Olsa 已提交
675
	struct numa_topology *tp;
676
	int ret = -1;
J
Jiri Olsa 已提交
677
	u32 i;
678

J
Jiri Olsa 已提交
679 680 681
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
682

J
Jiri Olsa 已提交
683 684 685
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
686

J
Jiri Olsa 已提交
687 688
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
689

J
Jiri Olsa 已提交
690 691 692
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
693

J
Jiri Olsa 已提交
694 695 696
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
697

J
Jiri Olsa 已提交
698 699 700
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
701

J
Jiri Olsa 已提交
702
		ret = do_write_string(ff, n->cpus);
703
		if (ret < 0)
J
Jiri Olsa 已提交
704
			goto err;
705
	}
J
Jiri Olsa 已提交
706 707 708 709 710

	ret = 0;

err:
	numa_topology__delete(tp);
711 712 713
	return ret;
}

714 715 716 717 718 719 720 721 722 723 724 725
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

726
static int write_pmu_mappings(struct feat_fd *ff,
727
			      struct evlist *evlist __maybe_unused)
728 729
{
	struct perf_pmu *pmu = NULL;
730
	u32 pmu_num = 0;
731
	int ret;
732

733 734 735 736 737 738 739 740 741 742
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

743
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744 745
	if (ret < 0)
		return ret;
746 747 748 749

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
750

751
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752 753 754
		if (ret < 0)
			return ret;

755
		ret = do_write_string(ff, pmu->name);
756 757
		if (ret < 0)
			return ret;
758 759 760 761 762
	}

	return 0;
}

763 764 765 766 767 768 769 770 771 772 773 774
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
775
static int write_group_desc(struct feat_fd *ff,
776
			    struct evlist *evlist)
777 778
{
	u32 nr_groups = evlist->nr_groups;
779
	struct evsel *evsel;
780 781
	int ret;

782
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783 784 785
	if (ret < 0)
		return ret;

786
	evlist__for_each_entry(evlist, evsel) {
787
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788 789
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
790
			u32 nr_members = evsel->core.nr_members;
791

792
			ret = do_write_string(ff, name);
793 794 795
			if (ret < 0)
				return ret;

796
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 798 799
			if (ret < 0)
				return ret;

800
			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 802 803 804 805 806 807
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

847 848
/*
 * default get_cpuid(): nothing gets recorded
849
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850
 */
851
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852
{
853
	return ENOSYS; /* Not implemented */
854 855
}

856
static int write_cpuid(struct feat_fd *ff,
857
		       struct evlist *evlist __maybe_unused)
858 859 860 861 862
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
863 864
	if (ret)
		return -1;
865

866
	return do_write_string(ff, buffer);
867 868
}

869
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870
			      struct evlist *evlist __maybe_unused)
871 872 873 874
{
	return 0;
}

875
static int write_auxtrace(struct feat_fd *ff,
876
			  struct evlist *evlist __maybe_unused)
877
{
878 879 880
	struct perf_session *session;
	int err;

881 882 883
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

884
	session = container_of(ff->ph, struct perf_session, header);
885

886
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 888 889
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
890 891
}

892
static int write_clockid(struct feat_fd *ff,
893
			 struct evlist *evlist __maybe_unused)
894
{
895 896
	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
			sizeof(ff->ph->env.clock.clockid_res_ns));
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static int write_clock_data(struct feat_fd *ff,
			    struct evlist *evlist __maybe_unused)
{
	u64 *data64;
	u32 data32;
	int ret;

	/* version */
	data32 = 1;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* clockid */
	data32 = ff->ph->env.clock.clockid;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* TOD ref time */
	data64 = &ff->ph->env.clock.tod_ns;

	ret = do_write(ff, data64, sizeof(*data64));
	if (ret < 0)
		return ret;

	/* clockid ref time */
	data64 = &ff->ph->env.clock.clockid_ns;

	return do_write(ff, data64, sizeof(*data64));
}

933
static int write_dir_format(struct feat_fd *ff,
934
			    struct evlist *evlist __maybe_unused)
935 936 937 938 939 940 941 942 943 944 945 946 947
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

948 949
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
950
			       struct evlist *evlist __maybe_unused)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992
			       struct evlist *evlist __maybe_unused)
993 994 995 996 997
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

998
static int write_bpf_btf(struct feat_fd *ff,
999
			 struct evlist *evlist __maybe_unused)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1098
	cache->type = strim(cache->type);
1099 1100 1101

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1102
		zfree(&cache->type);
1103 1104 1105 1106
		return -1;
	}

	cache->size[len] = 0;
1107
	cache->size = strim(cache->size);
1108 1109 1110

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1111
		zfree(&cache->size);
1112
		zfree(&cache->type);
1113 1114 1115 1116
		return -1;
	}

	cache->map[len] = 0;
1117
	cache->map = strim(cache->map);
1118 1119 1120 1121 1122 1123 1124 1125
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

1126 1127 1128
#define MAX_CACHE_LVL 4

static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129 1130 1131 1132 1133
{
	u32 i, cnt = 0;
	u32 nr, cpu;
	u16 level;

1134
	nr = cpu__max_cpu();
1135 1136

	for (cpu = 0; cpu < nr; cpu++) {
1137
		for (level = 0; level < MAX_CACHE_LVL; level++) {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);
		}
	}
	*cntp = cnt;
	return 0;
}

1163
static int write_cache(struct feat_fd *ff,
1164
		       struct evlist *evlist __maybe_unused)
1165
{
1166 1167
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1168 1169 1170
	u32 cnt = 0, i, version = 1;
	int ret;

1171
	ret = build_caches(caches, &cnt);
1172 1173 1174 1175 1176
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1177
	ret = do_write(ff, &version, sizeof(u32));
1178 1179 1180
	if (ret < 0)
		goto out;

1181
	ret = do_write(ff, &cnt, sizeof(u32));
1182 1183 1184 1185 1186 1187 1188
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1189
			ret = do_write(ff, &c->v, sizeof(u32));	\
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1200
			ret = do_write_string(ff, (const char *) c->v);	\
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1216
static int write_stat(struct feat_fd *ff __maybe_unused,
1217
		      struct evlist *evlist __maybe_unused)
1218 1219 1220 1221
{
	return 0;
}

1222
static int write_sample_time(struct feat_fd *ff,
1223
			     struct evlist *evlist)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1306 1307
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
1324 1325
			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
			closedir(dir);
1326
			return -1;
1327
		}
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359
			      struct evlist *evlist __maybe_unused)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1408
static int write_compressed(struct feat_fd *ff __maybe_unused,
1409
			    struct evlist *evlist __maybe_unused)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int write_cpu_pmu_caps(struct feat_fd *ff,
			      struct evlist *evlist __maybe_unused)
{
	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
	struct perf_pmu_caps *caps = NULL;
	int nr_caps;
	int ret;

	if (!cpu_pmu)
		return -ENOENT;

	nr_caps = perf_pmu__caps_parse(cpu_pmu);
	if (nr_caps < 0)
		return nr_caps;

	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
	if (ret < 0)
		return ret;

	list_for_each_entry(caps, &cpu_pmu->caps, list) {
		ret = do_write_string(ff, caps->name);
		if (ret < 0)
			return ret;

		ret = do_write_string(ff, caps->value);
		if (ret < 0)
			return ret;
	}

	return ret;
}

1464
static void print_hostname(struct feat_fd *ff, FILE *fp)
1465
{
1466
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467 1468
}

1469
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470
{
1471
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472 1473
}

1474
static void print_arch(struct feat_fd *ff, FILE *fp)
1475
{
1476
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477 1478
}

1479
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480
{
1481
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482 1483
}

1484
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485
{
1486 1487
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488 1489
}

1490
static void print_version(struct feat_fd *ff, FILE *fp)
1491
{
1492
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493 1494
}

1495
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496
{
1497
	int nr, i;
1498

1499
	nr = ff->ph->env.nr_cmdline;
1500 1501 1502

	fprintf(fp, "# cmdline : ");

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1521 1522 1523
	fputc('\n', fp);
}

1524
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525
{
1526 1527
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1528
	int nr, i;
1529 1530
	char *str;

1531 1532
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1533 1534

	for (i = 0; i < nr; i++) {
1535
		fprintf(fp, "# sibling sockets : %s\n", str);
1536
		str += strlen(str) + 1;
1537 1538
	}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1549 1550
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1551 1552 1553

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1554
		str += strlen(str) + 1;
1555
	}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1579 1580
}

1581 1582 1583
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584
		ff->ph->env.clock.clockid_res_ns * 1000);
1585 1586
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void print_clock_data(struct feat_fd *ff, FILE *fp)
{
	struct timespec clockid_ns;
	char tstr[64], date[64];
	struct timeval tod_ns;
	clockid_t clockid;
	struct tm ltime;
	u64 ref;

	if (!ff->ph->env.clock.enabled) {
		fprintf(fp, "# reference time disabled\n");
		return;
	}

	/* Compute TOD time. */
	ref = ff->ph->env.clock.tod_ns;
	tod_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
	tod_ns.tv_usec = ref / NSEC_PER_USEC;

	/* Compute clockid time. */
	ref = ff->ph->env.clock.clockid_ns;
	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
	clockid_ns.tv_nsec = ref;

	clockid = ff->ph->env.clock.clockid;

	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
		snprintf(tstr, sizeof(tstr), "<error>");
	else {
		strftime(date, sizeof(date), "%F %T", &ltime);
		scnprintf(tstr, sizeof(tstr), "%s.%06d",
			  date, (int) tod_ns.tv_usec);
	}

	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
		    clockid_name(clockid));
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1657 1658 1659

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1660 1661 1662 1663 1664
	}

	up_read(&env->bpf_progs.lock);
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1687
static void free_event_desc(struct evsel *events)
1688
{
1689
	struct evsel *evsel;
1690 1691 1692 1693

	if (!events)
		return;

1694
	for (evsel = events; evsel->core.attr.size; evsel++) {
1695
		zfree(&evsel->name);
1696
		zfree(&evsel->core.id);
1697 1698 1699 1700 1701
	}

	free(events);
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static bool perf_attr_check(struct perf_event_attr *attr)
{
	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
		pr_warning("Reserved bits are set unexpectedly. "
			   "Please update perf tool.\n");
		return false;
	}

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
		pr_warning("Unknown sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->sample_type);
		return false;
	}

	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
		pr_warning("Unknown read format (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->read_format);
		return false;
	}

	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
		pr_warning("Unknown branch sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->branch_sample_type);

		return false;
	}

	return true;
}

1736
static struct evsel *read_event_desc(struct feat_fd *ff)
1737
{
1738
	struct evsel *evsel, *events = NULL;
1739
	u64 *id;
1740
	void *buf = NULL;
1741 1742
	u32 nre, sz, nr, i, j;
	size_t msz;
1743 1744

	/* number of events */
1745
	if (do_read_u32(ff, &nre))
1746 1747
		goto error;

1748
	if (do_read_u32(ff, &sz))
1749 1750
		goto error;

1751
	/* buffer to hold on file attr struct */
1752 1753 1754 1755
	buf = malloc(sz);
	if (!buf)
		goto error;

1756
	/* the last event terminates with evsel->core.attr.size == 0: */
1757 1758 1759 1760
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1761
	msz = sizeof(evsel->core.attr);
1762
	if (sz < msz)
1763 1764
		msz = sz;

1765 1766
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1767

1768 1769 1770 1771
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1772
		if (__do_read(ff, buf, sz))
1773 1774
			goto error;

1775
		if (ff->ph->needs_swap)
1776 1777
			perf_event__attr_swap(buf);

1778
		memcpy(&evsel->core.attr, buf, msz);
1779

1780 1781 1782
		if (!perf_attr_check(&evsel->core.attr))
			goto error;

1783
		if (do_read_u32(ff, &nr))
1784 1785
			goto error;

1786
		if (ff->ph->needs_swap)
1787
			evsel->needs_swap = true;
1788

1789
		evsel->name = do_read_string(ff);
1790 1791
		if (!evsel->name)
			goto error;
1792 1793 1794 1795 1796 1797 1798

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1799
		evsel->core.ids = nr;
1800
		evsel->core.id = id;
1801 1802

		for (j = 0 ; j < nr; j++) {
1803
			if (do_read_u64(ff, id))
1804 1805 1806 1807 1808
				goto error;
			id++;
		}
	}
out:
1809
	free(buf);
1810 1811
	return events;
error:
1812
	free_event_desc(events);
1813 1814 1815 1816
	events = NULL;
	goto out;
}

1817
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818
				void *priv __maybe_unused)
1819 1820 1821 1822
{
	return fprintf(fp, ", %s = %s", name, val);
}

1823
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824
{
1825
	struct evsel *evsel, *events;
1826 1827 1828
	u32 j;
	u64 *id;

1829 1830 1831 1832 1833
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1834 1835 1836 1837 1838
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1839
	for (evsel = events; evsel->core.attr.size; evsel++) {
1840
		fprintf(fp, "# event : name = %s, ", evsel->name);
1841

1842
		if (evsel->core.ids) {
1843
			fprintf(fp, ", id = {");
1844
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 1846 1847 1848
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1849
			fprintf(fp, " }");
1850
		}
1851

1852
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853

1854 1855
		fputc('\n', fp);
	}
1856 1857

	free_event_desc(events);
1858
	ff->events = NULL;
1859 1860
}

1861
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862
{
1863
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864 1865
}

1866
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867
{
1868 1869
	int i;
	struct numa_node *n;
1870

1871 1872
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1873 1874 1875

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1876
			n->node, n->mem_total, n->mem_free);
1877

1878 1879
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1880 1881 1882
	}
}

1883
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884
{
1885
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886 1887
}

1888
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889 1890 1891 1892
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1893
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894 1895 1896 1897
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1898
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899 1900 1901 1902
{
	fprintf(fp, "# contains stat data\n");
}

1903
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904 1905 1906 1907
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1908
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909
		fprintf(fp, "#  ");
1910
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911 1912 1913
	}
}

1914 1915 1916 1917 1918 1919 1920
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
{
	const char *delimiter = "# cpu pmu capabilities: ";
	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
	char *str;

	if (!nr_caps) {
		fprintf(fp, "# cpu pmu capabilities: not available\n");
		return;
	}

	str = ff->ph->env.cpu_pmu_caps;
	while (nr_caps--) {
		fprintf(fp, "%s%s", delimiter, str);
		delimiter = ", ";
		str += strlen(str) + 1;
	}

	fprintf(fp, "\n");
}

1942
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943 1944
{
	const char *delimiter = "# pmu mappings: ";
1945
	char *str, *tmp;
1946 1947 1948
	u32 pmu_num;
	u32 type;

1949
	pmu_num = ff->ph->env.nr_pmu_mappings;
1950 1951 1952 1953 1954
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1955
	str = ff->ph->env.pmu_mappings;
1956

1957
	while (pmu_num) {
1958 1959 1960 1961 1962 1963
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964

1965
		delimiter = ", ";
1966 1967
		str += strlen(str) + 1;
		pmu_num--;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1978
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979 1980
{
	struct perf_session *session;
1981
	struct evsel *evsel;
1982 1983
	u32 nr = 0;

1984
	session = container_of(ff->ph, struct perf_session, header);
1985

1986
	evlist__for_each_entry(session->evlist, evsel) {
1987
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989

1990
			nr = evsel->core.nr_members - 1;
1991
		} else if (nr) {
1992
			fprintf(fp, ",%s", evsel__name(evsel));
1993 1994 1995 1996 1997 1998 1999

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

2051
static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052 2053 2054 2055 2056
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
2057
	u16 cpumode;
2058
	struct dso *dso;
2059
	enum dso_space_type dso_space;
2060 2061 2062 2063 2064

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

2065
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066

2067
	switch (cpumode) {
2068
	case PERF_RECORD_MISC_KERNEL:
2069
		dso_space = DSO_SPACE__KERNEL;
2070 2071
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
2072
		dso_space = DSO_SPACE__KERNEL_GUEST;
2073 2074 2075
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
2076
		dso_space = DSO_SPACE__USER;
2077 2078 2079 2080 2081
		break;
	default:
		goto out;
	}

2082
	dso = machine__findnew_dso(machine, filename);
2083
	if (dso != NULL) {
2084
		char sbuild_id[SBUILD_ID_SIZE];
2085 2086 2087

		dso__set_build_id(dso, &bev->build_id);

2088
		if (dso_space != DSO_SPACE__USER) {
2089 2090 2091
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2092
				dso__set_module_info(dso, &m, machine);
2093

2094
			dso->kernel = dso_space;
2095 2096
			free(m.name);
		}
2097

2098
		build_id__sprintf(&dso->bid, sbuild_id);
2099 2100
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
2101
		dso__put(dso);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
2115
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2116 2117
		char			   filename[0];
	} old_bev;
2118
	struct perf_record_header_build_id bev;
2119 2120 2121 2122 2123 2124
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

2125
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2126 2127 2128 2129 2130 2131
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
2132
		if (readn(input, filename, len) != len)
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2159
	struct perf_record_header_build_id bev;
2160 2161 2162 2163 2164 2165 2166
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2167
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2168 2169 2170 2171 2172 2173
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2174
		if (readn(input, filename, len) != len)
2175 2176 2177 2178 2179 2180
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2181
		 * Added a field to struct perf_record_header_build_id that broke the file
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2204 2205
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2206
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2207
{\
2208
	ff->ph->env.__feat_env = do_read_string(ff); \
2209
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2210 2211 2212 2213 2214 2215 2216 2217 2218
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2219
static int process_tracing_data(struct feat_fd *ff, void *data)
2220
{
2221 2222
	ssize_t ret = trace_report(ff->fd, data, false);

2223
	return ret < 0 ? -1 : 0;
2224 2225
}

2226
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2227
{
2228
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2229 2230 2231 2232
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2233
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2234
{
2235 2236
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2237

2238
	ret = do_read_u32(ff, &nr_cpus_avail);
2239 2240
	if (ret)
		return ret;
2241

2242
	ret = do_read_u32(ff, &nr_cpus_online);
2243 2244
	if (ret)
		return ret;
2245 2246
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2247 2248 2249
	return 0;
}

2250
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2251
{
2252 2253
	u64 total_mem;
	int ret;
2254

2255
	ret = do_read_u64(ff, &total_mem);
2256
	if (ret)
2257
		return -1;
2258
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2259 2260 2261
	return 0;
}

2262
static struct evsel *
2263
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2264
{
2265
	struct evsel *evsel;
2266

2267
	evlist__for_each_entry(evlist, evsel) {
2268 2269 2270 2271 2272 2273 2274 2275
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2276
perf_evlist__set_event_name(struct evlist *evlist,
2277
			    struct evsel *event)
2278
{
2279
	struct evsel *evsel;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2295
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2296
{
2297
	struct perf_session *session;
2298
	struct evsel *evsel, *events = read_event_desc(ff);
2299 2300 2301 2302

	if (!events)
		return 0;

2303
	session = container_of(ff->ph, struct perf_session, header);
2304

2305
	if (session->data->is_pipe) {
2306 2307 2308 2309 2310
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2311
	for (evsel = events; evsel->core.attr.size; evsel++)
2312 2313
		perf_evlist__set_event_name(session->evlist, evsel);

2314
	if (!session->data->is_pipe)
2315
		free_event_desc(events);
2316 2317 2318 2319

	return 0;
}

2320
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2321
{
2322 2323
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2324

2325
	if (do_read_u32(ff, &nr))
2326 2327
		return -1;

2328
	ff->ph->env.nr_cmdline = nr;
2329

2330
	cmdline = zalloc(ff->size + nr + 1);
2331 2332 2333 2334 2335 2336
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2337 2338

	for (i = 0; i < nr; i++) {
2339
		str = do_read_string(ff);
2340 2341 2342
		if (!str)
			goto error;

2343 2344 2345
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2346 2347
		free(str);
	}
2348 2349
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2350 2351 2352
	return 0;

error:
2353 2354
	free(argv);
	free(cmdline);
2355 2356 2357
	return -1;
}

2358
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2359 2360 2361 2362
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2363
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2364
	u64 size = 0;
2365
	struct perf_header *ph = ff->ph;
2366
	bool do_core_id_test = true;
2367 2368 2369 2370

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2371

2372
	if (do_read_u32(ff, &nr))
2373
		goto free_cpu;
2374 2375

	ph->env.nr_sibling_cores = nr;
2376
	size += sizeof(u32);
2377 2378
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2379 2380

	for (i = 0; i < nr; i++) {
2381
		str = do_read_string(ff);
2382 2383 2384 2385
		if (!str)
			goto error;

		/* include a NULL character at the end */
2386 2387
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2388
		size += string_size(str);
2389 2390 2391 2392
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2393
	if (do_read_u32(ff, &nr))
2394 2395 2396
		return -1;

	ph->env.nr_sibling_threads = nr;
2397
	size += sizeof(u32);
2398 2399

	for (i = 0; i < nr; i++) {
2400
		str = do_read_string(ff);
2401 2402 2403 2404
		if (!str)
			goto error;

		/* include a NULL character at the end */
2405 2406
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2407
		size += string_size(str);
2408 2409 2410
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2411 2412 2413 2414 2415

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2416
	if (ff->size <= size) {
2417 2418 2419 2420
		zfree(&ph->env.cpu);
		return 0;
	}

2421 2422 2423
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2424
	 * AArch64 is the same.
2425
	 */
2426 2427
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2428 2429
		do_core_id_test = false;

2430
	for (i = 0; i < (u32)cpu_nr; i++) {
2431
		if (do_read_u32(ff, &nr))
2432 2433 2434
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2435
		size += sizeof(u32);
2436

2437
		if (do_read_u32(ff, &nr))
2438 2439
			goto free_cpu;

2440
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2441 2442 2443 2444 2445 2446
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2481 2482
	}

2483 2484 2485 2486
	return 0;

error:
	strbuf_release(&sb);
2487 2488
free_cpu:
	zfree(&ph->env.cpu);
2489 2490 2491
	return -1;
}

2492
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2493
{
2494 2495
	struct numa_node *nodes, *n;
	u32 nr, i;
2496 2497 2498
	char *str;

	/* nr nodes */
2499
	if (do_read_u32(ff, &nr))
2500
		return -1;
2501

2502 2503 2504
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2505 2506

	for (i = 0; i < nr; i++) {
2507 2508
		n = &nodes[i];

2509
		/* node number */
2510
		if (do_read_u32(ff, &n->node))
2511 2512
			goto error;

2513
		if (do_read_u64(ff, &n->mem_total))
2514 2515
			goto error;

2516
		if (do_read_u64(ff, &n->mem_free))
2517 2518
			goto error;

2519
		str = do_read_string(ff);
2520 2521 2522
		if (!str)
			goto error;

2523
		n->map = perf_cpu_map__new(str);
2524
		if (!n->map)
2525
			goto error;
2526

2527 2528
		free(str);
	}
2529 2530
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2531 2532 2533
	return 0;

error:
2534
	free(nodes);
2535 2536 2537
	return -1;
}

2538
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2539 2540 2541 2542 2543 2544
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2545
	if (do_read_u32(ff, &pmu_num))
2546 2547 2548 2549 2550 2551 2552
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2553
	ff->ph->env.nr_pmu_mappings = pmu_num;
2554 2555
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2556 2557

	while (pmu_num) {
2558
		if (do_read_u32(ff, &type))
2559 2560
			goto error;

2561
		name = do_read_string(ff);
2562 2563 2564
		if (!name)
			goto error;

2565 2566
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2567
		/* include a NULL character at the end */
2568 2569
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2570

2571
		if (!strcmp(name, "msr"))
2572
			ff->ph->env.msr_pmu_type = type;
2573

2574 2575 2576
		free(name);
		pmu_num--;
	}
2577
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2578 2579 2580 2581 2582 2583 2584
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2585
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2586 2587 2588 2589
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2590
	struct evsel *evsel, *leader = NULL;
2591 2592 2593 2594 2595 2596
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2597
	if (do_read_u32(ff, &nr_groups))
2598 2599
		return -1;

2600
	ff->ph->env.nr_groups = nr_groups;
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2611
		desc[i].name = do_read_string(ff);
2612 2613 2614
		if (!desc[i].name)
			goto out_free;

2615
		if (do_read_u32(ff, &desc[i].leader_idx))
2616 2617
			goto out_free;

2618
		if (do_read_u32(ff, &desc[i].nr_members))
2619 2620 2621 2622 2623 2624
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2625
	session = container_of(ff->ph, struct perf_session, header);
2626 2627 2628
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2629
	evlist__for_each_entry(session->evlist, evsel) {
2630 2631 2632
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2633
			if (strcmp(desc[i].name, "{anon_group}")) {
2634
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2635 2636
				desc[i].name = NULL;
			}
2637
			evsel->core.nr_members = desc[i].nr_members;
2638 2639 2640 2641 2642 2643 2644

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2645
			nr = evsel->core.nr_members - 1;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2662
	for (i = 0; i < nr_groups; i++)
2663
		zfree(&desc[i].name);
2664 2665 2666 2667 2668
	free(desc);

	return ret;
}

2669
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2670 2671 2672 2673
{
	struct perf_session *session;
	int err;

2674
	session = container_of(ff->ph, struct perf_session, header);
2675

2676
	err = auxtrace_index__process(ff->fd, ff->size, session,
2677
				      ff->ph->needs_swap);
2678 2679 2680 2681 2682
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2683
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2684 2685 2686 2687
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2688
	if (do_read_u32(ff, &version))
2689 2690 2691 2692 2693
		return -1;

	if (version != 1)
		return -1;

2694
	if (do_read_u32(ff, &cnt))
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2705
			if (do_read_u32(ff, &c.v))\
2706 2707 2708 2709 2710 2711 2712 2713
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2714
		#define _R(v)					\
2715
			c.v = do_read_string(ff);		\
2716
			if (!c.v)				\
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2727 2728
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2729 2730 2731 2732 2733 2734
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2808 2809 2810
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
2811
	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2812 2813 2814 2815 2816
		return -1;

	return 0;
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
static int process_clock_data(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	u32 data32;
	u64 data64;

	/* version */
	if (do_read_u32(ff, &data32))
		return -1;

	if (data32 != 1)
		return -1;

	/* clockid */
	if (do_read_u32(ff, &data32))
		return -1;

	ff->ph->env.clock.clockid = data32;

	/* TOD ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.tod_ns = data64;

	/* clockid ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.clockid_ns = data64;
	ff->ph->env.clock.enabled = true;
	return 0;
}

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2927
	up_write(&env->bpf_progs.lock);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2942 2943 2944
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2945
	struct btf_node *node = NULL;
2946
	u32 count, i;
2947
	int err = -1;
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2963
			goto out;
2964
		if (do_read_u32(ff, &data_size))
2965
			goto out;
2966 2967 2968

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2969
			goto out;
2970 2971 2972 2973

		node->id = id;
		node->data_size = data_size;

2974 2975
		if (__do_read(ff, node->data, data_size))
			goto out;
2976 2977

		perf_env__insert_btf(env, node);
2978
		node = NULL;
2979 2980
	}

2981 2982
	err = 0;
out:
2983
	up_write(&env->bpf_progs.lock);
2984 2985
	free(node);
	return err;
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int process_cpu_pmu_caps(struct feat_fd *ff,
				void *data __maybe_unused)
{
	char *name, *value;
	struct strbuf sb;
	u32 nr_caps;

	if (do_read_u32(ff, &nr_caps))
		return -1;

	if (!nr_caps) {
		pr_debug("cpu pmu capabilities not available\n");
		return 0;
	}

	ff->ph->env.nr_cpu_pmu_caps = nr_caps;

	if (strbuf_init(&sb, 128) < 0)
		return -1;

	while (nr_caps--) {
		name = do_read_string(ff);
		if (!name)
			goto error;

		value = do_read_string(ff);
		if (!value)
			goto free_name;

		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
			goto free_value;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, "", 1) < 0)
			goto free_value;

		if (!strcmp(name, "branches"))
			ff->ph->env.max_branches = atoi(value);

		free(value);
		free(name);
	}
	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
	return 0;

free_value:
	free(value);
free_name:
	free(name);
error:
	strbuf_release(&sb);
	return -1;
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
3081 3082

/* feature_ops not implemented: */
3083 3084
#define print_tracing_data	NULL
#define print_build_id		NULL
3085

3086 3087 3088
#define process_branch_stack	NULL
#define process_stat		NULL

3089 3090
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3091

3092
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3109
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3110 3111 3112
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
3113
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3114
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3115
	FEAT_OPR(CLOCKID,	clockid,	false),
3116
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3117 3118
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3119
	FEAT_OPR(COMPRESSED,	compressed,	false),
3120
	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3121
	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
3134
	struct feat_fd ff;
3135 3136 3137 3138 3139 3140

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
3141
	if (feat >= HEADER_LAST_FEATURE) {
3142
		pr_warning("unknown feature %d\n", feat);
3143
		return 0;
3144 3145 3146 3147
	}
	if (!feat_ops[feat].print)
		return 0;

3148 3149 3150 3151 3152
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

3153
	if (!feat_ops[feat].full_only || hd->full)
3154
		feat_ops[feat].print(&ff, hd->fp);
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
3166
	int fd = perf_data__fd(session->data);
3167
	struct stat st;
3168
	time_t stctime;
J
Jiri Olsa 已提交
3169
	int ret, bit;
3170

3171 3172 3173
	hd.fp = fp;
	hd.full = full;

3174 3175 3176 3177
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

3178
	stctime = st.st_mtime;
3179
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3180 3181 3182 3183 3184

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3185

3186 3187
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
3188

3189
	if (session->data->is_pipe)
3190 3191
		return 0;

J
Jiri Olsa 已提交
3192 3193 3194 3195 3196 3197 3198
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
3199 3200 3201
	return 0;
}

3202
static int do_write_feat(struct feat_fd *ff, int type,
3203
			 struct perf_file_section **p,
3204
			 struct evlist *evlist)
3205 3206 3207 3208
{
	int err;
	int ret = 0;

3209
	if (perf_header__has_feat(ff->ph, type)) {
3210 3211
		if (!feat_ops[type].write)
			return -1;
3212

3213 3214 3215
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

3216
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3217

3218
		err = feat_ops[type].write(ff, evlist);
3219
		if (err < 0) {
3220
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3221 3222

			/* undo anything written */
3223
			lseek(ff->fd, (*p)->offset, SEEK_SET);
3224 3225 3226

			return -1;
		}
3227
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3228 3229 3230 3231 3232
		(*p)++;
	}
	return ret;
}

3233
static int perf_header__adds_write(struct perf_header *header,
3234
				   struct evlist *evlist, int fd)
3235
{
3236
	int nr_sections;
3237
	struct feat_fd ff;
3238
	struct perf_file_section *feat_sec, *p;
3239 3240
	int sec_size;
	u64 sec_start;
3241
	int feat;
3242
	int err;
3243

3244 3245 3246 3247 3248
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3249
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3250
	if (!nr_sections)
3251
		return 0;
3252

3253
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3254 3255
	if (feat_sec == NULL)
		return -ENOMEM;
3256 3257 3258

	sec_size = sizeof(*feat_sec) * nr_sections;

3259
	sec_start = header->feat_offset;
3260
	lseek(fd, sec_start + sec_size, SEEK_SET);
3261

3262
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3263
		if (do_write_feat(&ff, feat, &p, evlist))
3264 3265
			perf_header__clear_feat(header, feat);
	}
3266

3267
	lseek(fd, sec_start, SEEK_SET);
3268 3269
	/*
	 * may write more than needed due to dropped feature, but
3270
	 * this is okay, reader will skip the missing entries
3271
	 */
3272
	err = do_write(&ff, feat_sec, sec_size);
3273 3274
	if (err < 0)
		pr_debug("failed to write feature section\n");
3275
	free(feat_sec);
3276
	return err;
3277
}
3278

3279 3280 3281
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3282
	struct feat_fd ff;
3283 3284
	int err;

3285 3286
	ff = (struct feat_fd){ .fd = fd };

3287 3288 3289 3290 3291
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3292
	err = do_write(&ff, &f_header, sizeof(f_header));
3293 3294 3295 3296 3297 3298 3299 3300
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3301
int perf_session__write_header(struct perf_session *session,
3302
			       struct evlist *evlist,
3303
			       int fd, bool at_exit)
3304 3305 3306
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3307
	struct perf_header *header = &session->header;
3308
	struct evsel *evsel;
3309
	struct feat_fd ff;
3310
	u64 attr_offset;
3311
	int err;
3312

3313
	ff = (struct feat_fd){ .fd = fd};
3314 3315
	lseek(fd, sizeof(f_header), SEEK_SET);

3316
	evlist__for_each_entry(session->evlist, evsel) {
3317
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3318
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3319 3320 3321 3322
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3323 3324
	}

3325
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3326

3327
	evlist__for_each_entry(evlist, evsel) {
3328
		f_attr = (struct perf_file_attr){
3329
			.attr = evsel->core.attr,
3330
			.ids  = {
3331
				.offset = evsel->id_offset,
3332
				.size   = evsel->core.ids * sizeof(u64),
3333 3334
			}
		};
3335
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3336 3337 3338 3339
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3340 3341
	}

3342 3343
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3344
	header->feat_offset = header->data_offset + header->data_size;
3345

3346
	if (at_exit) {
3347
		err = perf_header__adds_write(header, evlist, fd);
3348 3349 3350
		if (err < 0)
			return err;
	}
3351

3352 3353 3354 3355 3356
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3357
			.offset = attr_offset,
3358
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3359 3360
		},
		.data = {
3361 3362
			.offset = header->data_offset,
			.size	= header->data_size,
3363
		},
3364
		/* event_types is ignored, store zeros */
3365 3366
	};

3367
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3368

3369
	lseek(fd, 0, SEEK_SET);
3370
	err = do_write(&ff, &f_header, sizeof(f_header));
3371 3372 3373 3374
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3375
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3376

3377
	return 0;
3378 3379
}

3380
static int perf_header__getbuffer64(struct perf_header *header,
3381 3382
				    int fd, void *buf, size_t size)
{
3383
	if (readn(fd, buf, size) <= 0)
3384 3385
		return -1;

3386
	if (header->needs_swap)
3387 3388 3389 3390 3391
		mem_bswap_64(buf, size);

	return 0;
}

3392
int perf_header__process_sections(struct perf_header *header, int fd,
3393
				  void *data,
3394
				  int (*process)(struct perf_file_section *section,
3395 3396
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3397
{
3398
	struct perf_file_section *feat_sec, *sec;
3399 3400
	int nr_sections;
	int sec_size;
3401 3402
	int feat;
	int err;
3403

3404
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3405
	if (!nr_sections)
3406
		return 0;
3407

3408
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3409
	if (!feat_sec)
3410
		return -1;
3411 3412 3413

	sec_size = sizeof(*feat_sec) * nr_sections;

3414
	lseek(fd, header->feat_offset, SEEK_SET);
3415

3416 3417
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3418
		goto out_free;
3419

3420 3421 3422 3423
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3424
	}
3425
	err = 0;
3426
out_free:
3427 3428
	free(feat_sec);
	return err;
3429
}
3430

3431 3432 3433
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3434
	[2] = PERF_ATTR_SIZE_VER2,
3435
	[3] = PERF_ATTR_SIZE_VER3,
3436
	[4] = PERF_ATTR_SIZE_VER4,
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3447
{
3448 3449
	uint64_t ref_size, attr_size;
	int i;
3450

3451 3452 3453 3454 3455 3456 3457
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3494 3495 3496

			ph->needs_swap = true;
		}
3497
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3498 3499
		return 0;
	}
3500 3501 3502
	return -1;
}

F
Feng Tang 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3513 3514 3515 3516 3517 3518 3519 3520
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3521
		ph->version = PERF_HEADER_VERSION_1;
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3533
	ph->version = PERF_HEADER_VERSION_2;
3534

3535 3536
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3537 3538
		return 0;

3539 3540
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3541 3542 3543 3544 3545 3546 3547
		return -1;

	ph->needs_swap = true;

	return 0;
}

3548
int perf_file_header__read(struct perf_file_header *header,
3549 3550
			   struct perf_header *ph, int fd)
{
3551
	ssize_t ret;
3552

3553 3554
	lseek(fd, 0, SEEK_SET);

3555 3556
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3557 3558
		return -1;

3559 3560 3561
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3562
		return -1;
3563
	}
3564

3565
	if (ph->needs_swap) {
3566
		mem_bswap_64(header, offsetof(struct perf_file_header,
3567
			     adds_features));
3568 3569
	}

3570
	if (header->size != sizeof(*header)) {
3571
		/* Support the previous format */
3572 3573
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3574 3575
		else
			return -1;
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3592 3593
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3594 3595

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3596 3597 3598 3599 3600 3601 3602
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3603 3604 3605 3606 3607 3608
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3609
	}
3610

3611
	memcpy(&ph->adds_features, &header->adds_features,
3612
	       sizeof(ph->adds_features));
3613

3614 3615
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3616
	ph->feat_offset  = header->data.offset + header->data.size;
3617 3618 3619
	return 0;
}

3620
static int perf_file_section__process(struct perf_file_section *section,
3621
				      struct perf_header *ph,
3622
				      int feat, int fd, void *data)
3623
{
3624
	struct feat_fd fdd = {
3625 3626
		.fd	= fd,
		.ph	= ph,
3627 3628
		.size	= section->size,
		.offset	= section->offset,
3629 3630
	};

3631
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3632
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3633
			  "%d, continuing...\n", section->offset, feat);
3634 3635 3636
		return 0;
	}

3637 3638 3639 3640 3641
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3642 3643
	if (!feat_ops[feat].process)
		return 0;
3644

3645
	return feat_ops[feat].process(&fdd, data);
3646
}
3647

3648
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3649 3650
				       struct perf_header *ph, int fd,
				       bool repipe)
3651
{
3652 3653 3654 3655
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3656
	ssize_t ret;
3657 3658 3659 3660 3661

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3662 3663
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3664
		return -1;
3665 3666 3667 3668
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3669

3670
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3671 3672
		return -1;

3673 3674 3675
	return 0;
}

3676
static int perf_header__read_pipe(struct perf_session *session)
3677
{
3678
	struct perf_header *header = &session->header;
3679 3680
	struct perf_pipe_file_header f_header;

3681
	if (perf_file_header__read_pipe(&f_header, header,
3682
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3683
					session->repipe) < 0) {
3684 3685 3686 3687
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

3688
	return f_header.size == sizeof(f_header) ? 0 : -1;
3689 3690
}

3691 3692 3693 3694 3695 3696
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3697
	ssize_t ret;
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3711

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3737
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3738
						struct tep_handle *pevent)
3739
{
3740
	struct tep_event *event;
3741 3742
	char bf[128];

3743 3744 3745 3746
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3747 3748 3749 3750 3751
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3752
	event = tep_find_event(pevent, evsel->core.attr.config);
3753
	if (event == NULL) {
3754
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3755
		return -1;
3756
	}
3757

3758 3759 3760 3761 3762 3763
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3764

3765
	evsel->tp_format = event;
3766 3767 3768
	return 0;
}

3769
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3770
						  struct tep_handle *pevent)
3771
{
3772
	struct evsel *pos;
3773

3774
	evlist__for_each_entry(evlist, pos) {
3775
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3776
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3777 3778 3779 3780 3781 3782
			return -1;
	}

	return 0;
}

3783
int perf_session__read_header(struct perf_session *session)
3784
{
3785
	struct perf_data *data = session->data;
3786
	struct perf_header *header = &session->header;
3787
	struct perf_file_header	f_header;
3788 3789
	struct perf_file_attr	f_attr;
	u64			f_id;
3790
	int nr_attrs, nr_ids, i, j, err;
3791
	int fd = perf_data__fd(data);
3792

3793
	session->evlist = evlist__new();
3794 3795 3796
	if (session->evlist == NULL)
		return -ENOMEM;

3797
	session->evlist->env = &header->env;
3798
	session->machines.host.env = &header->env;
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808

	/*
	 * We can read 'pipe' data event from regular file,
	 * check for the pipe header regardless of source.
	 */
	err = perf_header__read_pipe(session);
	if (!err || (err && perf_data__is_pipe(data))) {
		data->is_pipe = true;
		return err;
	}
3809

3810
	if (perf_file_header__read(&f_header, header, fd) < 0)
3811
		return -EINVAL;
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3822
			   data->file.path);
3823 3824
	}

3825 3826 3827 3828 3829 3830 3831
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3832
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3833 3834 3835
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3836
		struct evsel *evsel;
3837
		off_t tmp;
3838

3839
		if (read_attr(fd, header, &f_attr) < 0)
3840
			goto out_errno;
3841

3842 3843 3844
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3845
			perf_event__attr_swap(&f_attr.attr);
3846
		}
3847

3848
		tmp = lseek(fd, 0, SEEK_CUR);
3849
		evsel = evsel__new(&f_attr.attr);
3850

3851 3852
		if (evsel == NULL)
			goto out_delete_evlist;
3853 3854

		evsel->needs_swap = header->needs_swap;
3855 3856
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3857
		 * entry gets purged too at evlist__delete().
3858
		 */
3859
		evlist__add(session->evlist, evsel);
3860 3861

		nr_ids = f_attr.ids.size / sizeof(u64);
3862 3863 3864 3865 3866
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3867
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3868 3869
			goto out_delete_evlist;

3870 3871 3872
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3873
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3874
				goto out_errno;
3875

3876
			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3877
		}
3878

3879 3880 3881
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3882
	perf_header__process_sections(header, fd, &session->tevent,
3883
				      perf_file_section__process);
3884

3885
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3886
						   session->tevent.pevent))
3887 3888
		goto out_delete_evlist;

3889
	return 0;
3890 3891
out_errno:
	return -errno;
3892 3893

out_delete_evlist:
3894
	evlist__delete(session->evlist);
3895 3896
	session->evlist = NULL;
	return -ENOMEM;
3897
}
3898

3899 3900
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3901
{
3902
	struct perf_tool *tool = session->tool;
3903
	struct feat_fd ff = { .fd = 0 };
3904
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3905 3906 3907 3908 3909 3910 3911
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3912
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3913 3914 3915 3916 3917 3918 3919 3920
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3921
	ff.size = event->header.size - sizeof(*fe);
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3941 3942
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3943 3944 3945
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3946
	struct perf_cpu_map *map;
3947 3948
	size_t ret;

3949
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3950 3951 3952

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3953
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3954 3955 3956 3957 3958 3959 3960 3961 3962
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3963
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3979

3980 3981
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3982
			     struct evlist **pevlist)
3983
{
3984
	u32 i, ids, n_ids;
3985
	struct evsel *evsel;
3986
	struct evlist *evlist = *pevlist;
3987

3988
	if (evlist == NULL) {
3989
		*pevlist = evlist = evlist__new();
3990
		if (evlist == NULL)
3991 3992 3993
			return -ENOMEM;
	}

3994
	evsel = evsel__new(&event->attr.attr);
3995
	if (evsel == NULL)
3996 3997
		return -ENOMEM;

3998
	evlist__add(evlist, evsel);
3999

4000 4001
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4002
	n_ids = ids / sizeof(u64);
4003 4004 4005 4006 4007
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
4008
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4009
		return -ENOMEM;
4010 4011

	for (i = 0; i < n_ids; i++) {
4012
		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4013 4014 4015 4016
	}

	return 0;
}
4017

4018 4019
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4020
				     struct evlist **pevlist)
4021
{
4022 4023 4024
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
4025
	struct evlist *evlist;
4026
	struct evsel *evsel;
4027
	struct perf_cpu_map *map;
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

4038 4039 4040
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4041
		break;
4042 4043 4044
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4045
	case PERF_EVENT_UPDATE__SCALE:
4046
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4047
		evsel->scale = ev_scale->scale;
4048
		break;
4049
	case PERF_EVENT_UPDATE__CPUS:
4050
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4051 4052 4053

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
4054
			evsel->core.own_cpus = map;
4055 4056
		else
			pr_err("failed to get event_update cpus\n");
4057 4058 4059 4060
	default:
		break;
	}

4061 4062 4063
	return 0;
}

4064 4065
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4066
{
4067
	ssize_t size_read, padding, size = event->tracing_data.size;
4068
	int fd = perf_data__fd(session->data);
4069 4070
	char buf[BUFSIZ];

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	/*
	 * The pipe fd is already in proper place and in any case
	 * we can't move it, and we'd screw the case where we read
	 * 'pipe' data from regular file. The trace_report reads
	 * data from 'fd' so we need to set it directly behind the
	 * event, where the tracing data starts.
	 */
	if (!perf_data__is_pipe(session->data)) {
		off_t offset = lseek(fd, 0, SEEK_CUR);

		/* setup for reading amidst mmap */
		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
		      SEEK_SET);
	}
4085

J
Jiri Olsa 已提交
4086
	size_read = trace_report(fd, &session->tevent,
4087
				 session->repipe);
4088
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4089

4090
	if (readn(fd, buf, padding) < 0) {
4091 4092 4093
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4094 4095
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4096 4097 4098 4099
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4100
	}
4101

4102 4103 4104 4105
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4106

4107
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4108
					       session->tevent.pevent);
4109

4110 4111
	return size_read + padding;
}
4112

4113 4114
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4115
{
4116 4117
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4118
				 session);
4119 4120
	return 0;
}