header.c 82.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "dso.h"
26
#include "evlist.h"
27
#include "evsel.h"
28
#include "util/evsel_fprintf.h"
29
#include "header.h"
30
#include "memswap.h"
31
#include "trace-event.h"
32
#include "session.h"
33
#include "symbol.h"
34
#include "debug.h"
35
#include "cpumap.h"
36
#include "pmu.h"
37
#include "vdso.h"
38
#include "strbuf.h"
39
#include "build-id.h"
40
#include "data.h"
41 42
#include <api/fs/fs.h>
#include "asm/bug.h"
43
#include "tool.h"
44
#include "time-utils.h"
45
#include "units.h"
46
#include "util/util.h" // perf_exe()
J
Jiri Olsa 已提交
47
#include "cputopo.h"
48
#include "bpf-event.h"
49

50
#include <linux/ctype.h>
51
#include <internal/lib.h>
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65

66
#define PERF_MAGIC	__perf_magic2
67

68 69
const char perf_version_string[] = PERF_VERSION;

70
struct perf_file_attr {
71
	struct perf_event_attr	attr;
72 73 74
	struct perf_file_section	ids;
};

75
void perf_header__set_feat(struct perf_header *header, int feat)
76
{
77
	set_bit(feat, header->adds_features);
78 79
}

80
void perf_header__clear_feat(struct perf_header *header, int feat)
81
{
82
	clear_bit(feat, header->adds_features);
83 84
}

85
bool perf_header__has_feat(const struct perf_header *header, int feat)
86
{
87
	return test_bit(feat, header->adds_features);
88 89
}

90
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91
{
92
	ssize_t ret = writen(ff->fd, buf, size);
93

94 95
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
123 124

	return 0;
125 126
}

127 128 129 130 131 132 133 134
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

154
/* Return: 0 if succeded, -ERR if failed. */
155 156
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
157 158
{
	static const char zero_buf[NAME_ALIGN];
159
	int err = do_write(ff, bf, count);
160 161

	if (!err)
162
		err = do_write(ff, zero_buf, count_aligned - count);
163 164 165 166

	return err;
}

167 168 169
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

170
/* Return: 0 if succeded, -ERR if failed. */
171
static int do_write_string(struct feat_fd *ff, const char *str)
172 173 174 175 176
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
177
	len = PERF_ALIGN(olen, NAME_ALIGN);
178 179

	/* write len, incl. \0 */
180
	ret = do_write(ff, &len, sizeof(len));
181 182 183
	if (ret < 0)
		return ret;

184
	return write_padded(ff, str, olen, len);
185 186
}

187
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188
{
189
	ssize_t ret = readn(ff->fd, addr, size);
190 191 192 193 194 195

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

215
static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 217 218
{
	int ret;

219
	ret = __do_read(ff, addr, sizeof(*addr));
220 221 222
	if (ret)
		return ret;

223
	if (ff->ph->needs_swap)
224 225 226 227
		*addr = bswap_32(*addr);
	return 0;
}

228
static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 230 231
{
	int ret;

232
	ret = __do_read(ff, addr, sizeof(*addr));
233 234 235
	if (ret)
		return ret;

236
	if (ff->ph->needs_swap)
237 238 239 240
		*addr = bswap_64(*addr);
	return 0;
}

241
static char *do_read_string(struct feat_fd *ff)
242 243 244 245
{
	u32 len;
	char *buf;

246
	if (do_read_u32(ff, &len))
247 248 249 250 251 252
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

253
	if (!__do_read(ff, buf, len)) {
254 255 256 257 258 259 260 261 262 263 264 265
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

296
static int write_tracing_data(struct feat_fd *ff,
297
			      struct evlist *evlist)
298
{
299 300 301
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

302
	return read_tracing_data(ff->fd, &evlist->core.entries);
303 304
}

305
static int write_build_id(struct feat_fd *ff,
306
			  struct evlist *evlist __maybe_unused)
307 308 309 310
{
	struct perf_session *session;
	int err;

311
	session = container_of(ff->ph, struct perf_session, header);
312

313 314 315
	if (!perf_session__read_build_ids(session, true))
		return -1;

316 317 318
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

319
	err = perf_session__write_buildid_table(session, ff);
320 321 322 323
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
324
	perf_session__cache_build_ids(session);
325 326 327 328

	return 0;
}

329
static int write_hostname(struct feat_fd *ff,
330
			  struct evlist *evlist __maybe_unused)
331 332 333 334 335 336 337 338
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

339
	return do_write_string(ff, uts.nodename);
340 341
}

342
static int write_osrelease(struct feat_fd *ff,
343
			   struct evlist *evlist __maybe_unused)
344 345 346 347 348 349 350 351
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

352
	return do_write_string(ff, uts.release);
353 354
}

355
static int write_arch(struct feat_fd *ff,
356
		      struct evlist *evlist __maybe_unused)
357 358 359 360 361 362 363 364
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

365
	return do_write_string(ff, uts.machine);
366 367
}

368
static int write_version(struct feat_fd *ff,
369
			 struct evlist *evlist __maybe_unused)
370
{
371
	return do_write_string(ff, perf_version_string);
372 373
}

374
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 376 377 378
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
379
	const char *search = cpuinfo_proc;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

396 397
	if (ret) {
		ret = -1;
398
		goto done;
399
	}
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
415
			char *q = skip_spaces(r);
416 417 418 419 420 421
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
422
	ret = do_write_string(ff, s);
423 424 425 426 427 428
done:
	free(buf);
	fclose(file);
	return ret;
}

429
static int write_cpudesc(struct feat_fd *ff,
430
		       struct evlist *evlist __maybe_unused)
431
{
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
449
	const char *cpuinfo_procs[] = CPUINFO_PROC;
450
#undef CPUINFO_PROC
451 452 453 454
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
455
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 457 458 459 460 461 462
		if (ret >= 0)
			return ret;
	}
	return -1;
}


463
static int write_nrcpus(struct feat_fd *ff,
464
			struct evlist *evlist __maybe_unused)
465 466 467 468 469
{
	long nr;
	u32 nrc, nra;
	int ret;

470
	nrc = cpu__max_present_cpu();
471 472 473 474 475 476 477

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

478
	ret = do_write(ff, &nrc, sizeof(nrc));
479 480 481
	if (ret < 0)
		return ret;

482
	return do_write(ff, &nra, sizeof(nra));
483 484
}

485
static int write_event_desc(struct feat_fd *ff,
486
			    struct evlist *evlist)
487
{
488
	struct evsel *evsel;
489
	u32 nre, nri, sz;
490 491
	int ret;

492
	nre = evlist->core.nr_entries;
493 494 495 496

	/*
	 * write number of events
	 */
497
	ret = do_write(ff, &nre, sizeof(nre));
498 499 500 501 502 503
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
504
	sz = (u32)sizeof(evsel->core.attr);
505
	ret = do_write(ff, &sz, sizeof(sz));
506 507 508
	if (ret < 0)
		return ret;

509
	evlist__for_each_entry(evlist, evsel) {
510
		ret = do_write(ff, &evsel->core.attr, sz);
511 512 513 514 515 516 517 518 519
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
520
		nri = evsel->core.ids;
521
		ret = do_write(ff, &nri, sizeof(nri));
522 523 524 525 526 527
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
528
		ret = do_write_string(ff, perf_evsel__name(evsel));
529 530 531 532 533
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
534
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 536 537 538 539 540
		if (ret < 0)
			return ret;
	}
	return 0;
}

541
static int write_cmdline(struct feat_fd *ff,
542
			 struct evlist *evlist __maybe_unused)
543
{
544 545
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
546

547
	/* actual path to perf binary */
548
	buf = perf_exe(pbuf, MAXPATHLEN);
549 550

	/* account for binary path */
551
	n = perf_env.nr_cmdline + 1;
552

553
	ret = do_write(ff, &n, sizeof(n));
554 555 556
	if (ret < 0)
		return ret;

557
	ret = do_write_string(ff, buf);
558 559 560
	if (ret < 0)
		return ret;

561
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 564 565 566 567 568 569
		if (ret < 0)
			return ret;
	}
	return 0;
}


570
static int write_cpu_topology(struct feat_fd *ff,
571
			      struct evlist *evlist __maybe_unused)
572
{
J
Jiri Olsa 已提交
573
	struct cpu_topology *tp;
574
	u32 i;
575
	int ret, j;
576

J
Jiri Olsa 已提交
577
	tp = cpu_topology__new();
578 579 580
	if (!tp)
		return -1;

581
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 583 584 585
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
586
		ret = do_write_string(ff, tp->core_siblings[i]);
587 588 589
		if (ret < 0)
			goto done;
	}
590
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 592 593 594
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
595
		ret = do_write_string(ff, tp->thread_siblings[i]);
596 597 598
		if (ret < 0)
			break;
	}
599

600 601 602 603 604
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605
		ret = do_write(ff, &perf_env.cpu[j].core_id,
606
			       sizeof(perf_env.cpu[j].core_id));
607 608
		if (ret < 0)
			return ret;
609
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
610
			       sizeof(perf_env.cpu[j].socket_id));
611 612 613
		if (ret < 0)
			return ret;
	}
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

635
done:
J
Jiri Olsa 已提交
636
	cpu_topology__delete(tp);
637 638 639 640 641
	return ret;
}



642
static int write_total_mem(struct feat_fd *ff,
643
			   struct evlist *evlist __maybe_unused)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
663
			ret = do_write(ff, &mem, sizeof(mem));
664 665
	} else
		ret = -1;
666 667 668 669 670
	free(buf);
	fclose(fp);
	return ret;
}

671
static int write_numa_topology(struct feat_fd *ff,
672
			       struct evlist *evlist __maybe_unused)
673
{
J
Jiri Olsa 已提交
674
	struct numa_topology *tp;
675
	int ret = -1;
J
Jiri Olsa 已提交
676
	u32 i;
677

J
Jiri Olsa 已提交
678 679 680
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
681

J
Jiri Olsa 已提交
682 683 684
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
685

J
Jiri Olsa 已提交
686 687
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
688

J
Jiri Olsa 已提交
689 690 691
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
692

J
Jiri Olsa 已提交
693 694 695
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
696

J
Jiri Olsa 已提交
697 698 699
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
700

J
Jiri Olsa 已提交
701
		ret = do_write_string(ff, n->cpus);
702
		if (ret < 0)
J
Jiri Olsa 已提交
703
			goto err;
704
	}
J
Jiri Olsa 已提交
705 706 707 708 709

	ret = 0;

err:
	numa_topology__delete(tp);
710 711 712
	return ret;
}

713 714 715 716 717 718 719 720 721 722 723 724
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

725
static int write_pmu_mappings(struct feat_fd *ff,
726
			      struct evlist *evlist __maybe_unused)
727 728
{
	struct perf_pmu *pmu = NULL;
729
	u32 pmu_num = 0;
730
	int ret;
731

732 733 734 735 736 737 738 739 740 741
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

742
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 744
	if (ret < 0)
		return ret;
745 746 747 748

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
749

750
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 752 753
		if (ret < 0)
			return ret;

754
		ret = do_write_string(ff, pmu->name);
755 756
		if (ret < 0)
			return ret;
757 758 759 760 761
	}

	return 0;
}

762 763 764 765 766 767 768 769 770 771 772 773
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
774
static int write_group_desc(struct feat_fd *ff,
775
			    struct evlist *evlist)
776 777
{
	u32 nr_groups = evlist->nr_groups;
778
	struct evsel *evsel;
779 780
	int ret;

781
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 783 784
	if (ret < 0)
		return ret;

785
	evlist__for_each_entry(evlist, evsel) {
786
		if (perf_evsel__is_group_leader(evsel) &&
787
		    evsel->core.nr_members > 1) {
788 789
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
790
			u32 nr_members = evsel->core.nr_members;
791

792
			ret = do_write_string(ff, name);
793 794 795
			if (ret < 0)
				return ret;

796
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 798 799
			if (ret < 0)
				return ret;

800
			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 802 803 804 805 806 807
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

847 848
/*
 * default get_cpuid(): nothing gets recorded
849
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850
 */
851
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 853 854 855
{
	return -1;
}

856
static int write_cpuid(struct feat_fd *ff,
857
		       struct evlist *evlist __maybe_unused)
858 859 860 861 862
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
863 864
	if (ret)
		return -1;
865

866
	return do_write_string(ff, buffer);
867 868
}

869
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870
			      struct evlist *evlist __maybe_unused)
871 872 873 874
{
	return 0;
}

875
static int write_auxtrace(struct feat_fd *ff,
876
			  struct evlist *evlist __maybe_unused)
877
{
878 879 880
	struct perf_session *session;
	int err;

881 882 883
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

884
	session = container_of(ff->ph, struct perf_session, header);
885

886
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 888 889
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
890 891
}

892
static int write_clockid(struct feat_fd *ff,
893
			 struct evlist *evlist __maybe_unused)
894 895 896 897 898
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

899
static int write_dir_format(struct feat_fd *ff,
900
			    struct evlist *evlist __maybe_unused)
901 902 903 904 905 906 907 908 909 910 911 912 913
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

914 915
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
916
			       struct evlist *evlist __maybe_unused)
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958
			       struct evlist *evlist __maybe_unused)
959 960 961 962 963
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

964
static int write_bpf_btf(struct feat_fd *ff,
965
			 struct evlist *evlist __maybe_unused)
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1064
	cache->type = strim(cache->type);
1065 1066 1067

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1068
		zfree(&cache->type);
1069 1070 1071 1072
		return -1;
	}

	cache->size[len] = 0;
1073
	cache->size = strim(cache->size);
1074 1075 1076

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1077
		zfree(&cache->size);
1078
		zfree(&cache->type);
1079 1080 1081 1082
		return -1;
	}

	cache->map[len] = 0;
1083
	cache->map = strim(cache->map);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

1136
#define MAX_CACHE_LVL 4
1137

1138
static int write_cache(struct feat_fd *ff,
1139
		       struct evlist *evlist __maybe_unused)
1140
{
1141 1142
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1143 1144 1145
	u32 cnt = 0, i, version = 1;
	int ret;

1146
	ret = build_caches(caches, max_caches, &cnt);
1147 1148 1149 1150 1151
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1152
	ret = do_write(ff, &version, sizeof(u32));
1153 1154 1155
	if (ret < 0)
		goto out;

1156
	ret = do_write(ff, &cnt, sizeof(u32));
1157 1158 1159 1160 1161 1162 1163
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1164
			ret = do_write(ff, &c->v, sizeof(u32));	\
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1175
			ret = do_write_string(ff, (const char *) c->v);	\
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1191
static int write_stat(struct feat_fd *ff __maybe_unused,
1192
		      struct evlist *evlist __maybe_unused)
1193 1194 1195 1196
{
	return 0;
}

1197
static int write_sample_time(struct feat_fd *ff,
1198
			     struct evlist *evlist)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1281 1282
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
			return -1;

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1332
			      struct evlist *evlist __maybe_unused)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1381
static int write_compressed(struct feat_fd *ff __maybe_unused,
1382
			    struct evlist *evlist __maybe_unused)
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1405
static void print_hostname(struct feat_fd *ff, FILE *fp)
1406
{
1407
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1408 1409
}

1410
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1411
{
1412
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1413 1414
}

1415
static void print_arch(struct feat_fd *ff, FILE *fp)
1416
{
1417
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1418 1419
}

1420
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1421
{
1422
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1423 1424
}

1425
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1426
{
1427 1428
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1429 1430
}

1431
static void print_version(struct feat_fd *ff, FILE *fp)
1432
{
1433
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1434 1435
}

1436
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1437
{
1438
	int nr, i;
1439

1440
	nr = ff->ph->env.nr_cmdline;
1441 1442 1443

	fprintf(fp, "# cmdline : ");

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1462 1463 1464
	fputc('\n', fp);
}

1465
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1466
{
1467 1468
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1469
	int nr, i;
1470 1471
	char *str;

1472 1473
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1474 1475

	for (i = 0; i < nr; i++) {
1476
		fprintf(fp, "# sibling sockets : %s\n", str);
1477
		str += strlen(str) + 1;
1478 1479
	}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1490 1491
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1492 1493 1494

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1495
		str += strlen(str) + 1;
1496
	}
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1520 1521
}

1522 1523 1524 1525 1526 1527
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1555 1556 1557

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1558 1559 1560 1561 1562
	}

	up_read(&env->bpf_progs.lock);
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1585
static void free_event_desc(struct evsel *events)
1586
{
1587
	struct evsel *evsel;
1588 1589 1590 1591

	if (!events)
		return;

1592
	for (evsel = events; evsel->core.attr.size; evsel++) {
1593
		zfree(&evsel->name);
1594
		zfree(&evsel->core.id);
1595 1596 1597 1598 1599
	}

	free(events);
}

1600
static struct evsel *read_event_desc(struct feat_fd *ff)
1601
{
1602
	struct evsel *evsel, *events = NULL;
1603
	u64 *id;
1604
	void *buf = NULL;
1605 1606
	u32 nre, sz, nr, i, j;
	size_t msz;
1607 1608

	/* number of events */
1609
	if (do_read_u32(ff, &nre))
1610 1611
		goto error;

1612
	if (do_read_u32(ff, &sz))
1613 1614
		goto error;

1615
	/* buffer to hold on file attr struct */
1616 1617 1618 1619
	buf = malloc(sz);
	if (!buf)
		goto error;

1620
	/* the last event terminates with evsel->core.attr.size == 0: */
1621 1622 1623 1624
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1625
	msz = sizeof(evsel->core.attr);
1626
	if (sz < msz)
1627 1628
		msz = sz;

1629 1630
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1631

1632 1633 1634 1635
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1636
		if (__do_read(ff, buf, sz))
1637 1638
			goto error;

1639
		if (ff->ph->needs_swap)
1640 1641
			perf_event__attr_swap(buf);

1642
		memcpy(&evsel->core.attr, buf, msz);
1643

1644
		if (do_read_u32(ff, &nr))
1645 1646
			goto error;

1647
		if (ff->ph->needs_swap)
1648
			evsel->needs_swap = true;
1649

1650
		evsel->name = do_read_string(ff);
1651 1652
		if (!evsel->name)
			goto error;
1653 1654 1655 1656 1657 1658 1659

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1660
		evsel->core.ids = nr;
1661
		evsel->core.id = id;
1662 1663

		for (j = 0 ; j < nr; j++) {
1664
			if (do_read_u64(ff, id))
1665 1666 1667 1668 1669
				goto error;
			id++;
		}
	}
out:
1670
	free(buf);
1671 1672
	return events;
error:
1673
	free_event_desc(events);
1674 1675 1676 1677
	events = NULL;
	goto out;
}

1678
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1679
				void *priv __maybe_unused)
1680 1681 1682 1683
{
	return fprintf(fp, ", %s = %s", name, val);
}

1684
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1685
{
1686
	struct evsel *evsel, *events;
1687 1688 1689
	u32 j;
	u64 *id;

1690 1691 1692 1693 1694
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1695 1696 1697 1698 1699
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1700
	for (evsel = events; evsel->core.attr.size; evsel++) {
1701
		fprintf(fp, "# event : name = %s, ", evsel->name);
1702

1703
		if (evsel->core.ids) {
1704
			fprintf(fp, ", id = {");
1705
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1706 1707 1708 1709
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1710
			fprintf(fp, " }");
1711
		}
1712

1713
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1714

1715 1716
		fputc('\n', fp);
	}
1717 1718

	free_event_desc(events);
1719
	ff->events = NULL;
1720 1721
}

1722
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1723
{
1724
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1725 1726
}

1727
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1728
{
1729 1730
	int i;
	struct numa_node *n;
1731

1732 1733
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1734 1735 1736

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1737
			n->node, n->mem_total, n->mem_free);
1738

1739 1740
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1741 1742 1743
	}
}

1744
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1745
{
1746
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1747 1748
}

1749
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1750 1751 1752 1753
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1754
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1755 1756 1757 1758
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1759
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1760 1761 1762 1763
{
	fprintf(fp, "# contains stat data\n");
}

1764
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1765 1766 1767 1768
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1769
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1770
		fprintf(fp, "#  ");
1771
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1772 1773 1774
	}
}

1775 1776 1777 1778 1779 1780 1781
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1782
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1783 1784
{
	const char *delimiter = "# pmu mappings: ";
1785
	char *str, *tmp;
1786 1787 1788
	u32 pmu_num;
	u32 type;

1789
	pmu_num = ff->ph->env.nr_pmu_mappings;
1790 1791 1792 1793 1794
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1795
	str = ff->ph->env.pmu_mappings;
1796

1797
	while (pmu_num) {
1798 1799 1800 1801 1802 1803
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1804

1805
		delimiter = ", ";
1806 1807
		str += strlen(str) + 1;
		pmu_num--;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1818
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1819 1820
{
	struct perf_session *session;
1821
	struct evsel *evsel;
1822 1823
	u32 nr = 0;

1824
	session = container_of(ff->ph, struct perf_session, header);
1825

1826
	evlist__for_each_entry(session->evlist, evsel) {
1827
		if (perf_evsel__is_group_leader(evsel) &&
1828
		    evsel->core.nr_members > 1) {
1829 1830 1831
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

1832
			nr = evsel->core.nr_members - 1;
1833 1834 1835 1836 1837 1838 1839 1840 1841
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1893
static int __event_process_build_id(struct perf_record_header_build_id *bev,
1894 1895 1896 1897 1898
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1899
	u16 cpumode;
1900 1901 1902 1903 1904 1905 1906
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1907
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1908

1909
	switch (cpumode) {
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1924
	dso = machine__findnew_dso(machine, filename);
1925
	if (dso != NULL) {
1926
		char sbuild_id[SBUILD_ID_SIZE];
1927 1928 1929

		dso__set_build_id(dso, &bev->build_id);

1930 1931 1932 1933
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1934
				dso__set_module_info(dso, &m, machine);
1935 1936 1937 1938 1939
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1940 1941 1942 1943 1944

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1945
		dso__put(dso);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1959
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1960 1961
		char			   filename[0];
	} old_bev;
1962
	struct perf_record_header_build_id bev;
1963 1964 1965 1966 1967 1968
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1969
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1970 1971 1972 1973 1974 1975
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1976
		if (readn(input, filename, len) != len)
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2003
	struct perf_record_header_build_id bev;
2004 2005 2006 2007 2008 2009 2010
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2011
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2012 2013 2014 2015 2016 2017
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2018
		if (readn(input, filename, len) != len)
2019 2020 2021 2022 2023 2024
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2025
		 * Added a field to struct perf_record_header_build_id that broke the file
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2048 2049
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2050
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2051
{\
2052
	ff->ph->env.__feat_env = do_read_string(ff); \
2053
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2054 2055 2056 2057 2058 2059 2060 2061 2062
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2063
static int process_tracing_data(struct feat_fd *ff, void *data)
2064
{
2065 2066
	ssize_t ret = trace_report(ff->fd, data, false);

2067
	return ret < 0 ? -1 : 0;
2068 2069
}

2070
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2071
{
2072
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2073 2074 2075 2076
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2077
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2078
{
2079 2080
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2081

2082
	ret = do_read_u32(ff, &nr_cpus_avail);
2083 2084
	if (ret)
		return ret;
2085

2086
	ret = do_read_u32(ff, &nr_cpus_online);
2087 2088
	if (ret)
		return ret;
2089 2090
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2091 2092 2093
	return 0;
}

2094
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2095
{
2096 2097
	u64 total_mem;
	int ret;
2098

2099
	ret = do_read_u64(ff, &total_mem);
2100
	if (ret)
2101
		return -1;
2102
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2103 2104 2105
	return 0;
}

2106
static struct evsel *
2107
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2108
{
2109
	struct evsel *evsel;
2110

2111
	evlist__for_each_entry(evlist, evsel) {
2112 2113 2114 2115 2116 2117 2118 2119
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2120
perf_evlist__set_event_name(struct evlist *evlist,
2121
			    struct evsel *event)
2122
{
2123
	struct evsel *evsel;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2139
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2140
{
2141
	struct perf_session *session;
2142
	struct evsel *evsel, *events = read_event_desc(ff);
2143 2144 2145 2146

	if (!events)
		return 0;

2147
	session = container_of(ff->ph, struct perf_session, header);
2148

2149
	if (session->data->is_pipe) {
2150 2151 2152 2153 2154
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2155
	for (evsel = events; evsel->core.attr.size; evsel++)
2156 2157
		perf_evlist__set_event_name(session->evlist, evsel);

2158
	if (!session->data->is_pipe)
2159
		free_event_desc(events);
2160 2161 2162 2163

	return 0;
}

2164
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2165
{
2166 2167
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2168

2169
	if (do_read_u32(ff, &nr))
2170 2171
		return -1;

2172
	ff->ph->env.nr_cmdline = nr;
2173

2174
	cmdline = zalloc(ff->size + nr + 1);
2175 2176 2177 2178 2179 2180
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2181 2182

	for (i = 0; i < nr; i++) {
2183
		str = do_read_string(ff);
2184 2185 2186
		if (!str)
			goto error;

2187 2188 2189
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2190 2191
		free(str);
	}
2192 2193
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2194 2195 2196
	return 0;

error:
2197 2198
	free(argv);
	free(cmdline);
2199 2200 2201
	return -1;
}

2202
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2203 2204 2205 2206
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2207
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2208
	u64 size = 0;
2209
	struct perf_header *ph = ff->ph;
2210
	bool do_core_id_test = true;
2211 2212 2213 2214

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2215

2216
	if (do_read_u32(ff, &nr))
2217
		goto free_cpu;
2218 2219

	ph->env.nr_sibling_cores = nr;
2220
	size += sizeof(u32);
2221 2222
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2223 2224

	for (i = 0; i < nr; i++) {
2225
		str = do_read_string(ff);
2226 2227 2228 2229
		if (!str)
			goto error;

		/* include a NULL character at the end */
2230 2231
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2232
		size += string_size(str);
2233 2234 2235 2236
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2237
	if (do_read_u32(ff, &nr))
2238 2239 2240
		return -1;

	ph->env.nr_sibling_threads = nr;
2241
	size += sizeof(u32);
2242 2243

	for (i = 0; i < nr; i++) {
2244
		str = do_read_string(ff);
2245 2246 2247 2248
		if (!str)
			goto error;

		/* include a NULL character at the end */
2249 2250
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2251
		size += string_size(str);
2252 2253 2254
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2255 2256 2257 2258 2259

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2260
	if (ff->size <= size) {
2261 2262 2263 2264
		zfree(&ph->env.cpu);
		return 0;
	}

2265 2266 2267
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2268
	 * AArch64 is the same.
2269
	 */
2270 2271
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2272 2273
		do_core_id_test = false;

2274
	for (i = 0; i < (u32)cpu_nr; i++) {
2275
		if (do_read_u32(ff, &nr))
2276 2277 2278
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2279
		size += sizeof(u32);
2280

2281
		if (do_read_u32(ff, &nr))
2282 2283
			goto free_cpu;

2284
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2285 2286 2287 2288 2289 2290
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2325 2326
	}

2327 2328 2329 2330
	return 0;

error:
	strbuf_release(&sb);
2331 2332
free_cpu:
	zfree(&ph->env.cpu);
2333 2334 2335
	return -1;
}

2336
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2337
{
2338 2339
	struct numa_node *nodes, *n;
	u32 nr, i;
2340 2341 2342
	char *str;

	/* nr nodes */
2343
	if (do_read_u32(ff, &nr))
2344
		return -1;
2345

2346 2347 2348
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2349 2350

	for (i = 0; i < nr; i++) {
2351 2352
		n = &nodes[i];

2353
		/* node number */
2354
		if (do_read_u32(ff, &n->node))
2355 2356
			goto error;

2357
		if (do_read_u64(ff, &n->mem_total))
2358 2359
			goto error;

2360
		if (do_read_u64(ff, &n->mem_free))
2361 2362
			goto error;

2363
		str = do_read_string(ff);
2364 2365 2366
		if (!str)
			goto error;

2367
		n->map = perf_cpu_map__new(str);
2368
		if (!n->map)
2369
			goto error;
2370

2371 2372
		free(str);
	}
2373 2374
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2375 2376 2377
	return 0;

error:
2378
	free(nodes);
2379 2380 2381
	return -1;
}

2382
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2383 2384 2385 2386 2387 2388
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2389
	if (do_read_u32(ff, &pmu_num))
2390 2391 2392 2393 2394 2395 2396
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2397
	ff->ph->env.nr_pmu_mappings = pmu_num;
2398 2399
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2400 2401

	while (pmu_num) {
2402
		if (do_read_u32(ff, &type))
2403 2404
			goto error;

2405
		name = do_read_string(ff);
2406 2407 2408
		if (!name)
			goto error;

2409 2410
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2411
		/* include a NULL character at the end */
2412 2413
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2414

2415
		if (!strcmp(name, "msr"))
2416
			ff->ph->env.msr_pmu_type = type;
2417

2418 2419 2420
		free(name);
		pmu_num--;
	}
2421
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2422 2423 2424 2425 2426 2427 2428
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2429
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2430 2431 2432 2433
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2434
	struct evsel *evsel, *leader = NULL;
2435 2436 2437 2438 2439 2440
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2441
	if (do_read_u32(ff, &nr_groups))
2442 2443
		return -1;

2444
	ff->ph->env.nr_groups = nr_groups;
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2455
		desc[i].name = do_read_string(ff);
2456 2457 2458
		if (!desc[i].name)
			goto out_free;

2459
		if (do_read_u32(ff, &desc[i].leader_idx))
2460 2461
			goto out_free;

2462
		if (do_read_u32(ff, &desc[i].nr_members))
2463 2464 2465 2466 2467 2468
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2469
	session = container_of(ff->ph, struct perf_session, header);
2470 2471 2472
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2473
	evlist__for_each_entry(session->evlist, evsel) {
2474 2475 2476
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2477
			if (strcmp(desc[i].name, "{anon_group}")) {
2478
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2479 2480
				desc[i].name = NULL;
			}
2481
			evsel->core.nr_members = desc[i].nr_members;
2482 2483 2484 2485 2486 2487 2488

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2489
			nr = evsel->core.nr_members - 1;
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2506
	for (i = 0; i < nr_groups; i++)
2507
		zfree(&desc[i].name);
2508 2509 2510 2511 2512
	free(desc);

	return ret;
}

2513
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2514 2515 2516 2517
{
	struct perf_session *session;
	int err;

2518
	session = container_of(ff->ph, struct perf_session, header);
2519

2520
	err = auxtrace_index__process(ff->fd, ff->size, session,
2521
				      ff->ph->needs_swap);
2522 2523 2524 2525 2526
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2527
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2528 2529 2530 2531
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2532
	if (do_read_u32(ff, &version))
2533 2534 2535 2536 2537
		return -1;

	if (version != 1)
		return -1;

2538
	if (do_read_u32(ff, &cnt))
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2549
			if (do_read_u32(ff, &c.v))\
2550 2551 2552 2553 2554 2555 2556 2557
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2558
		#define _R(v)					\
2559
			c.v = do_read_string(ff);		\
2560
			if (!c.v)				\
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2571 2572
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2573 2574 2575 2576 2577 2578
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2652 2653 2654 2655 2656 2657 2658 2659 2660
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2737
	up_write(&env->bpf_progs.lock);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2752 2753 2754
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2755
	struct btf_node *node = NULL;
2756
	u32 count, i;
2757
	int err = -1;
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2773
			goto out;
2774
		if (do_read_u32(ff, &data_size))
2775
			goto out;
2776 2777 2778

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2779
			goto out;
2780 2781 2782 2783

		node->id = id;
		node->data_size = data_size;

2784 2785
		if (__do_read(ff, node->data, data_size))
			goto out;
2786 2787

		perf_env__insert_btf(env, node);
2788
		node = NULL;
2789 2790
	}

2791 2792
	err = 0;
out:
2793
	up_write(&env->bpf_progs.lock);
2794 2795
	free(node);
	return err;
2796 2797
}

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2837 2838

/* feature_ops not implemented: */
2839 2840
#define print_tracing_data	NULL
#define print_build_id		NULL
2841

2842 2843 2844
#define process_branch_stack	NULL
#define process_stat		NULL

2845 2846
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2847

2848
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2865
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2866 2867 2868
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2869
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2870
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2871
	FEAT_OPR(CLOCKID,	clockid,	false),
2872
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2873 2874
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2875
	FEAT_OPR(COMPRESSED,	compressed,	false),
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2888
	struct feat_fd ff;
2889 2890 2891 2892 2893 2894

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2895
	if (feat >= HEADER_LAST_FEATURE) {
2896
		pr_warning("unknown feature %d\n", feat);
2897
		return 0;
2898 2899 2900 2901
	}
	if (!feat_ops[feat].print)
		return 0;

2902 2903 2904 2905 2906
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2907
	if (!feat_ops[feat].full_only || hd->full)
2908
		feat_ops[feat].print(&ff, hd->fp);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2920
	int fd = perf_data__fd(session->data);
2921
	struct stat st;
2922
	time_t stctime;
J
Jiri Olsa 已提交
2923
	int ret, bit;
2924

2925 2926 2927
	hd.fp = fp;
	hd.full = full;

2928 2929 2930 2931
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2932 2933
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2934 2935 2936 2937 2938

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2939

2940 2941
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2942

2943
	if (session->data->is_pipe)
2944 2945
		return 0;

J
Jiri Olsa 已提交
2946 2947 2948 2949 2950 2951 2952
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2953 2954 2955
	return 0;
}

2956
static int do_write_feat(struct feat_fd *ff, int type,
2957
			 struct perf_file_section **p,
2958
			 struct evlist *evlist)
2959 2960 2961 2962
{
	int err;
	int ret = 0;

2963
	if (perf_header__has_feat(ff->ph, type)) {
2964 2965
		if (!feat_ops[type].write)
			return -1;
2966

2967 2968 2969
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2970
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2971

2972
		err = feat_ops[type].write(ff, evlist);
2973
		if (err < 0) {
2974
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2975 2976

			/* undo anything written */
2977
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2978 2979 2980

			return -1;
		}
2981
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2982 2983 2984 2985 2986
		(*p)++;
	}
	return ret;
}

2987
static int perf_header__adds_write(struct perf_header *header,
2988
				   struct evlist *evlist, int fd)
2989
{
2990
	int nr_sections;
2991
	struct feat_fd ff;
2992
	struct perf_file_section *feat_sec, *p;
2993 2994
	int sec_size;
	u64 sec_start;
2995
	int feat;
2996
	int err;
2997

2998 2999 3000 3001 3002
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3003
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3004
	if (!nr_sections)
3005
		return 0;
3006

3007
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3008 3009
	if (feat_sec == NULL)
		return -ENOMEM;
3010 3011 3012

	sec_size = sizeof(*feat_sec) * nr_sections;

3013
	sec_start = header->feat_offset;
3014
	lseek(fd, sec_start + sec_size, SEEK_SET);
3015

3016
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3017
		if (do_write_feat(&ff, feat, &p, evlist))
3018 3019
			perf_header__clear_feat(header, feat);
	}
3020

3021
	lseek(fd, sec_start, SEEK_SET);
3022 3023
	/*
	 * may write more than needed due to dropped feature, but
3024
	 * this is okay, reader will skip the missing entries
3025
	 */
3026
	err = do_write(&ff, feat_sec, sec_size);
3027 3028
	if (err < 0)
		pr_debug("failed to write feature section\n");
3029
	free(feat_sec);
3030
	return err;
3031
}
3032

3033 3034 3035
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3036
	struct feat_fd ff;
3037 3038
	int err;

3039 3040
	ff = (struct feat_fd){ .fd = fd };

3041 3042 3043 3044 3045
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3046
	err = do_write(&ff, &f_header, sizeof(f_header));
3047 3048 3049 3050 3051 3052 3053 3054
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3055
int perf_session__write_header(struct perf_session *session,
3056
			       struct evlist *evlist,
3057
			       int fd, bool at_exit)
3058 3059 3060
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3061
	struct perf_header *header = &session->header;
3062
	struct evsel *evsel;
3063
	struct feat_fd ff;
3064
	u64 attr_offset;
3065
	int err;
3066

3067
	ff = (struct feat_fd){ .fd = fd};
3068 3069
	lseek(fd, sizeof(f_header), SEEK_SET);

3070
	evlist__for_each_entry(session->evlist, evsel) {
3071
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3072
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3073 3074 3075 3076
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3077 3078
	}

3079
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3080

3081
	evlist__for_each_entry(evlist, evsel) {
3082
		f_attr = (struct perf_file_attr){
3083
			.attr = evsel->core.attr,
3084
			.ids  = {
3085
				.offset = evsel->id_offset,
3086
				.size   = evsel->core.ids * sizeof(u64),
3087 3088
			}
		};
3089
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3090 3091 3092 3093
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3094 3095
	}

3096 3097
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3098
	header->feat_offset = header->data_offset + header->data_size;
3099

3100
	if (at_exit) {
3101
		err = perf_header__adds_write(header, evlist, fd);
3102 3103 3104
		if (err < 0)
			return err;
	}
3105

3106 3107 3108 3109 3110
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3111
			.offset = attr_offset,
3112
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3113 3114
		},
		.data = {
3115 3116
			.offset = header->data_offset,
			.size	= header->data_size,
3117
		},
3118
		/* event_types is ignored, store zeros */
3119 3120
	};

3121
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3122

3123
	lseek(fd, 0, SEEK_SET);
3124
	err = do_write(&ff, &f_header, sizeof(f_header));
3125 3126 3127 3128
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3129
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3130

3131
	return 0;
3132 3133
}

3134
static int perf_header__getbuffer64(struct perf_header *header,
3135 3136
				    int fd, void *buf, size_t size)
{
3137
	if (readn(fd, buf, size) <= 0)
3138 3139
		return -1;

3140
	if (header->needs_swap)
3141 3142 3143 3144 3145
		mem_bswap_64(buf, size);

	return 0;
}

3146
int perf_header__process_sections(struct perf_header *header, int fd,
3147
				  void *data,
3148
				  int (*process)(struct perf_file_section *section,
3149 3150
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3151
{
3152
	struct perf_file_section *feat_sec, *sec;
3153 3154
	int nr_sections;
	int sec_size;
3155 3156
	int feat;
	int err;
3157

3158
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3159
	if (!nr_sections)
3160
		return 0;
3161

3162
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3163
	if (!feat_sec)
3164
		return -1;
3165 3166 3167

	sec_size = sizeof(*feat_sec) * nr_sections;

3168
	lseek(fd, header->feat_offset, SEEK_SET);
3169

3170 3171
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3172
		goto out_free;
3173

3174 3175 3176 3177
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3178
	}
3179
	err = 0;
3180
out_free:
3181 3182
	free(feat_sec);
	return err;
3183
}
3184

3185 3186 3187
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3188
	[2] = PERF_ATTR_SIZE_VER2,
3189
	[3] = PERF_ATTR_SIZE_VER3,
3190
	[4] = PERF_ATTR_SIZE_VER4,
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3201
{
3202 3203
	uint64_t ref_size, attr_size;
	int i;
3204

3205 3206 3207 3208 3209 3210 3211
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3248 3249 3250

			ph->needs_swap = true;
		}
3251
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3252 3253
		return 0;
	}
3254 3255 3256
	return -1;
}

F
Feng Tang 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3267 3268 3269 3270 3271 3272 3273 3274
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3275
		ph->version = PERF_HEADER_VERSION_1;
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3287
	ph->version = PERF_HEADER_VERSION_2;
3288

3289 3290
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3291 3292
		return 0;

3293 3294
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3295 3296 3297 3298 3299 3300 3301
		return -1;

	ph->needs_swap = true;

	return 0;
}

3302
int perf_file_header__read(struct perf_file_header *header,
3303 3304
			   struct perf_header *ph, int fd)
{
3305
	ssize_t ret;
3306

3307 3308
	lseek(fd, 0, SEEK_SET);

3309 3310
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3311 3312
		return -1;

3313 3314 3315
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3316
		return -1;
3317
	}
3318

3319
	if (ph->needs_swap) {
3320
		mem_bswap_64(header, offsetof(struct perf_file_header,
3321
			     adds_features));
3322 3323
	}

3324
	if (header->size != sizeof(*header)) {
3325
		/* Support the previous format */
3326 3327
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3328 3329
		else
			return -1;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3346 3347
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3348 3349

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3350 3351 3352 3353 3354 3355 3356
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3357 3358 3359 3360 3361 3362
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3363
	}
3364

3365
	memcpy(&ph->adds_features, &header->adds_features,
3366
	       sizeof(ph->adds_features));
3367

3368 3369
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3370
	ph->feat_offset  = header->data.offset + header->data.size;
3371 3372 3373
	return 0;
}

3374
static int perf_file_section__process(struct perf_file_section *section,
3375
				      struct perf_header *ph,
3376
				      int feat, int fd, void *data)
3377
{
3378
	struct feat_fd fdd = {
3379 3380
		.fd	= fd,
		.ph	= ph,
3381 3382
		.size	= section->size,
		.offset	= section->offset,
3383 3384
	};

3385
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3386
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3387
			  "%d, continuing...\n", section->offset, feat);
3388 3389 3390
		return 0;
	}

3391 3392 3393 3394 3395
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3396 3397
	if (!feat_ops[feat].process)
		return 0;
3398

3399
	return feat_ops[feat].process(&fdd, data);
3400
}
3401

3402
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3403 3404
				       struct perf_header *ph, int fd,
				       bool repipe)
3405
{
3406 3407 3408 3409
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3410
	ssize_t ret;
3411 3412 3413 3414 3415

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3416 3417
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3418
		return -1;
3419 3420 3421 3422
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3423

3424
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3425 3426
		return -1;

3427 3428 3429
	return 0;
}

3430
static int perf_header__read_pipe(struct perf_session *session)
3431
{
3432
	struct perf_header *header = &session->header;
3433 3434
	struct perf_pipe_file_header f_header;

3435
	if (perf_file_header__read_pipe(&f_header, header,
3436
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3437
					session->repipe) < 0) {
3438 3439 3440 3441 3442 3443 3444
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3445 3446 3447 3448 3449 3450
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3451
	ssize_t ret;
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3465

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3491
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3492
						struct tep_handle *pevent)
3493
{
3494
	struct tep_event *event;
3495 3496
	char bf[128];

3497 3498 3499 3500
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3501 3502 3503 3504 3505
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3506
	event = tep_find_event(pevent, evsel->core.attr.config);
3507
	if (event == NULL) {
3508
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3509
		return -1;
3510
	}
3511

3512 3513 3514 3515 3516 3517
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3518

3519
	evsel->tp_format = event;
3520 3521 3522
	return 0;
}

3523
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3524
						  struct tep_handle *pevent)
3525
{
3526
	struct evsel *pos;
3527

3528
	evlist__for_each_entry(evlist, pos) {
3529
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3530
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3531 3532 3533 3534 3535 3536
			return -1;
	}

	return 0;
}

3537
int perf_session__read_header(struct perf_session *session)
3538
{
3539
	struct perf_data *data = session->data;
3540
	struct perf_header *header = &session->header;
3541
	struct perf_file_header	f_header;
3542 3543 3544
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3545
	int fd = perf_data__fd(data);
3546

3547
	session->evlist = evlist__new();
3548 3549 3550
	if (session->evlist == NULL)
		return -ENOMEM;

3551
	session->evlist->env = &header->env;
3552
	session->machines.host.env = &header->env;
3553
	if (perf_data__is_pipe(data))
3554
		return perf_header__read_pipe(session);
3555

3556
	if (perf_file_header__read(&f_header, header, fd) < 0)
3557
		return -EINVAL;
3558

3559 3560 3561 3562 3563 3564 3565 3566 3567
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3568
			   data->file.path);
3569 3570
	}

3571 3572 3573 3574 3575 3576 3577
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3578
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3579 3580 3581
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3582
		struct evsel *evsel;
3583
		off_t tmp;
3584

3585
		if (read_attr(fd, header, &f_attr) < 0)
3586
			goto out_errno;
3587

3588 3589 3590
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3591
			perf_event__attr_swap(&f_attr.attr);
3592
		}
3593

3594
		tmp = lseek(fd, 0, SEEK_CUR);
3595
		evsel = evsel__new(&f_attr.attr);
3596

3597 3598
		if (evsel == NULL)
			goto out_delete_evlist;
3599 3600

		evsel->needs_swap = header->needs_swap;
3601 3602
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3603
		 * entry gets purged too at evlist__delete().
3604
		 */
3605
		evlist__add(session->evlist, evsel);
3606 3607

		nr_ids = f_attr.ids.size / sizeof(u64);
3608 3609 3610 3611 3612
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3613
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3614 3615
			goto out_delete_evlist;

3616 3617 3618
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3619
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3620
				goto out_errno;
3621

3622
			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3623
		}
3624

3625 3626 3627
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3628
	perf_header__process_sections(header, fd, &session->tevent,
3629
				      perf_file_section__process);
3630

3631
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3632
						   session->tevent.pevent))
3633 3634
		goto out_delete_evlist;

3635
	return 0;
3636 3637
out_errno:
	return -errno;
3638 3639

out_delete_evlist:
3640
	evlist__delete(session->evlist);
3641 3642
	session->evlist = NULL;
	return -ENOMEM;
3643
}
3644

3645 3646
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3647
{
3648
	struct perf_tool *tool = session->tool;
3649
	struct feat_fd ff = { .fd = 0 };
3650
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3651 3652 3653 3654 3655 3656 3657
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3658
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3659 3660 3661 3662 3663 3664 3665 3666
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3667
	ff.size = event->header.size - sizeof(*fe);
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3687 3688
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3689 3690 3691
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3692
	struct perf_cpu_map *map;
3693 3694
	size_t ret;

3695
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3696 3697 3698

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3699
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3700 3701 3702 3703 3704 3705 3706 3707 3708
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3709
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3725

3726 3727
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3728
			     struct evlist **pevlist)
3729
{
3730
	u32 i, ids, n_ids;
3731
	struct evsel *evsel;
3732
	struct evlist *evlist = *pevlist;
3733

3734
	if (evlist == NULL) {
3735
		*pevlist = evlist = evlist__new();
3736
		if (evlist == NULL)
3737 3738 3739
			return -ENOMEM;
	}

3740
	evsel = evsel__new(&event->attr.attr);
3741
	if (evsel == NULL)
3742 3743
		return -ENOMEM;

3744
	evlist__add(evlist, evsel);
3745

3746 3747
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
3748
	n_ids = ids / sizeof(u64);
3749 3750 3751 3752 3753
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
3754
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3755
		return -ENOMEM;
3756 3757

	for (i = 0; i < n_ids; i++) {
3758
		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3759 3760 3761 3762
	}

	return 0;
}
3763

3764 3765
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
3766
				     struct evlist **pevlist)
3767
{
3768 3769 3770
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3771
	struct evlist *evlist;
3772
	struct evsel *evsel;
3773
	struct perf_cpu_map *map;
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

3784 3785 3786
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
3787
		break;
3788 3789 3790
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
3791
	case PERF_EVENT_UPDATE__SCALE:
3792
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3793
		evsel->scale = ev_scale->scale;
3794
		break;
3795
	case PERF_EVENT_UPDATE__CPUS:
3796
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3797 3798 3799

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
3800
			evsel->core.own_cpus = map;
3801 3802
		else
			pr_err("failed to get event_update cpus\n");
3803 3804 3805 3806
	default:
		break;
	}

3807 3808 3809
	return 0;
}

3810 3811
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
3812
{
3813
	ssize_t size_read, padding, size = event->tracing_data.size;
3814
	int fd = perf_data__fd(session->data);
3815
	off_t offset = lseek(fd, 0, SEEK_CUR);
3816 3817 3818
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
3819
	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3820 3821
	      SEEK_SET);

J
Jiri Olsa 已提交
3822
	size_read = trace_report(fd, &session->tevent,
3823
				 session->repipe);
3824
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3825

3826
	if (readn(fd, buf, padding) < 0) {
3827 3828 3829
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
3830 3831
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
3832 3833 3834 3835
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
3836
	}
3837

3838 3839 3840 3841
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
3842

3843
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3844
					       session->tevent.pevent);
3845

3846 3847
	return size_read + padding;
}
3848

3849 3850
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
3851
{
3852 3853
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
3854
				 session);
3855 3856
	return 0;
}