header.c 82.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "dso.h"
26
#include "evlist.h"
27
#include "evsel.h"
28
#include "util/evsel_fprintf.h"
29
#include "header.h"
30
#include "memswap.h"
31
#include "trace-event.h"
32
#include "session.h"
33
#include "symbol.h"
34
#include "debug.h"
35
#include "cpumap.h"
36
#include "pmu.h"
37
#include "vdso.h"
38
#include "strbuf.h"
39
#include "build-id.h"
40
#include "data.h"
41 42
#include <api/fs/fs.h>
#include "asm/bug.h"
43
#include "tool.h"
44
#include "time-utils.h"
45
#include "units.h"
46
#include "util/util.h" // perf_exe()
J
Jiri Olsa 已提交
47
#include "cputopo.h"
48
#include "bpf-event.h"
49

50
#include <linux/ctype.h>
51
#include <internal/lib.h>
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65

66
#define PERF_MAGIC	__perf_magic2
67

68 69
const char perf_version_string[] = PERF_VERSION;

70
struct perf_file_attr {
71
	struct perf_event_attr	attr;
72 73 74
	struct perf_file_section	ids;
};

75
void perf_header__set_feat(struct perf_header *header, int feat)
76
{
77
	set_bit(feat, header->adds_features);
78 79
}

80
void perf_header__clear_feat(struct perf_header *header, int feat)
81
{
82
	clear_bit(feat, header->adds_features);
83 84
}

85
bool perf_header__has_feat(const struct perf_header *header, int feat)
86
{
87
	return test_bit(feat, header->adds_features);
88 89
}

90
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91
{
92
	ssize_t ret = writen(ff->fd, buf, size);
93

94 95
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
123 124

	return 0;
125 126
}

127 128 129 130 131 132 133 134
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

154
/* Return: 0 if succeded, -ERR if failed. */
155 156
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
157 158
{
	static const char zero_buf[NAME_ALIGN];
159
	int err = do_write(ff, bf, count);
160 161

	if (!err)
162
		err = do_write(ff, zero_buf, count_aligned - count);
163 164 165 166

	return err;
}

167 168 169
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

170
/* Return: 0 if succeded, -ERR if failed. */
171
static int do_write_string(struct feat_fd *ff, const char *str)
172 173 174 175 176
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
177
	len = PERF_ALIGN(olen, NAME_ALIGN);
178 179

	/* write len, incl. \0 */
180
	ret = do_write(ff, &len, sizeof(len));
181 182 183
	if (ret < 0)
		return ret;

184
	return write_padded(ff, str, olen, len);
185 186
}

187
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188
{
189
	ssize_t ret = readn(ff->fd, addr, size);
190 191 192 193 194 195

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

215
static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 217 218
{
	int ret;

219
	ret = __do_read(ff, addr, sizeof(*addr));
220 221 222
	if (ret)
		return ret;

223
	if (ff->ph->needs_swap)
224 225 226 227
		*addr = bswap_32(*addr);
	return 0;
}

228
static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 230 231
{
	int ret;

232
	ret = __do_read(ff, addr, sizeof(*addr));
233 234 235
	if (ret)
		return ret;

236
	if (ff->ph->needs_swap)
237 238 239 240
		*addr = bswap_64(*addr);
	return 0;
}

241
static char *do_read_string(struct feat_fd *ff)
242 243 244 245
{
	u32 len;
	char *buf;

246
	if (do_read_u32(ff, &len))
247 248 249 250 251 252
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

253
	if (!__do_read(ff, buf, len)) {
254 255 256 257 258 259 260 261 262 263 264 265
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

296
static int write_tracing_data(struct feat_fd *ff,
297
			      struct evlist *evlist)
298
{
299 300 301
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

302
	return read_tracing_data(ff->fd, &evlist->core.entries);
303 304
}

305
static int write_build_id(struct feat_fd *ff,
306
			  struct evlist *evlist __maybe_unused)
307 308 309 310
{
	struct perf_session *session;
	int err;

311
	session = container_of(ff->ph, struct perf_session, header);
312

313 314 315
	if (!perf_session__read_build_ids(session, true))
		return -1;

316 317 318
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

319
	err = perf_session__write_buildid_table(session, ff);
320 321 322 323
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
324
	perf_session__cache_build_ids(session);
325 326 327 328

	return 0;
}

329
static int write_hostname(struct feat_fd *ff,
330
			  struct evlist *evlist __maybe_unused)
331 332 333 334 335 336 337 338
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

339
	return do_write_string(ff, uts.nodename);
340 341
}

342
static int write_osrelease(struct feat_fd *ff,
343
			   struct evlist *evlist __maybe_unused)
344 345 346 347 348 349 350 351
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

352
	return do_write_string(ff, uts.release);
353 354
}

355
static int write_arch(struct feat_fd *ff,
356
		      struct evlist *evlist __maybe_unused)
357 358 359 360 361 362 363 364
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

365
	return do_write_string(ff, uts.machine);
366 367
}

368
static int write_version(struct feat_fd *ff,
369
			 struct evlist *evlist __maybe_unused)
370
{
371
	return do_write_string(ff, perf_version_string);
372 373
}

374
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 376 377 378
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
379
	const char *search = cpuinfo_proc;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

396 397
	if (ret) {
		ret = -1;
398
		goto done;
399
	}
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
415
			char *q = skip_spaces(r);
416 417 418 419 420 421
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
422
	ret = do_write_string(ff, s);
423 424 425 426 427 428
done:
	free(buf);
	fclose(file);
	return ret;
}

429
static int write_cpudesc(struct feat_fd *ff,
430
		       struct evlist *evlist __maybe_unused)
431
{
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
449
	const char *cpuinfo_procs[] = CPUINFO_PROC;
450
#undef CPUINFO_PROC
451 452 453 454
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
455
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 457 458 459 460 461 462
		if (ret >= 0)
			return ret;
	}
	return -1;
}


463
static int write_nrcpus(struct feat_fd *ff,
464
			struct evlist *evlist __maybe_unused)
465 466 467 468 469
{
	long nr;
	u32 nrc, nra;
	int ret;

470
	nrc = cpu__max_present_cpu();
471 472 473 474 475 476 477

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

478
	ret = do_write(ff, &nrc, sizeof(nrc));
479 480 481
	if (ret < 0)
		return ret;

482
	return do_write(ff, &nra, sizeof(nra));
483 484
}

485
static int write_event_desc(struct feat_fd *ff,
486
			    struct evlist *evlist)
487
{
488
	struct evsel *evsel;
489
	u32 nre, nri, sz;
490 491
	int ret;

492
	nre = evlist->core.nr_entries;
493 494 495 496

	/*
	 * write number of events
	 */
497
	ret = do_write(ff, &nre, sizeof(nre));
498 499 500 501 502 503
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
504
	sz = (u32)sizeof(evsel->core.attr);
505
	ret = do_write(ff, &sz, sizeof(sz));
506 507 508
	if (ret < 0)
		return ret;

509
	evlist__for_each_entry(evlist, evsel) {
510
		ret = do_write(ff, &evsel->core.attr, sz);
511 512 513 514 515 516 517 518 519
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
520
		nri = evsel->core.ids;
521
		ret = do_write(ff, &nri, sizeof(nri));
522 523 524 525 526 527
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
528
		ret = do_write_string(ff, perf_evsel__name(evsel));
529 530 531 532 533
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
534
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 536 537 538 539 540
		if (ret < 0)
			return ret;
	}
	return 0;
}

541
static int write_cmdline(struct feat_fd *ff,
542
			 struct evlist *evlist __maybe_unused)
543
{
544 545
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
546

547
	/* actual path to perf binary */
548
	buf = perf_exe(pbuf, MAXPATHLEN);
549 550

	/* account for binary path */
551
	n = perf_env.nr_cmdline + 1;
552

553
	ret = do_write(ff, &n, sizeof(n));
554 555 556
	if (ret < 0)
		return ret;

557
	ret = do_write_string(ff, buf);
558 559 560
	if (ret < 0)
		return ret;

561
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 564 565 566 567 568 569
		if (ret < 0)
			return ret;
	}
	return 0;
}


570
static int write_cpu_topology(struct feat_fd *ff,
571
			      struct evlist *evlist __maybe_unused)
572
{
J
Jiri Olsa 已提交
573
	struct cpu_topology *tp;
574
	u32 i;
575
	int ret, j;
576

J
Jiri Olsa 已提交
577
	tp = cpu_topology__new();
578 579 580
	if (!tp)
		return -1;

581
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 583 584 585
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
586
		ret = do_write_string(ff, tp->core_siblings[i]);
587 588 589
		if (ret < 0)
			goto done;
	}
590
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 592 593 594
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
595
		ret = do_write_string(ff, tp->thread_siblings[i]);
596 597 598
		if (ret < 0)
			break;
	}
599

600 601 602 603 604
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605
		ret = do_write(ff, &perf_env.cpu[j].core_id,
606
			       sizeof(perf_env.cpu[j].core_id));
607 608
		if (ret < 0)
			return ret;
609
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
610
			       sizeof(perf_env.cpu[j].socket_id));
611 612 613
		if (ret < 0)
			return ret;
	}
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

635
done:
J
Jiri Olsa 已提交
636
	cpu_topology__delete(tp);
637 638 639 640 641
	return ret;
}



642
static int write_total_mem(struct feat_fd *ff,
643
			   struct evlist *evlist __maybe_unused)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
663
			ret = do_write(ff, &mem, sizeof(mem));
664 665
	} else
		ret = -1;
666 667 668 669 670
	free(buf);
	fclose(fp);
	return ret;
}

671
static int write_numa_topology(struct feat_fd *ff,
672
			       struct evlist *evlist __maybe_unused)
673
{
J
Jiri Olsa 已提交
674
	struct numa_topology *tp;
675
	int ret = -1;
J
Jiri Olsa 已提交
676
	u32 i;
677

J
Jiri Olsa 已提交
678 679 680
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
681

J
Jiri Olsa 已提交
682 683 684
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
685

J
Jiri Olsa 已提交
686 687
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
688

J
Jiri Olsa 已提交
689 690 691
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
692

J
Jiri Olsa 已提交
693 694 695
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
696

J
Jiri Olsa 已提交
697 698 699
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
700

J
Jiri Olsa 已提交
701
		ret = do_write_string(ff, n->cpus);
702
		if (ret < 0)
J
Jiri Olsa 已提交
703
			goto err;
704
	}
J
Jiri Olsa 已提交
705 706 707 708 709

	ret = 0;

err:
	numa_topology__delete(tp);
710 711 712
	return ret;
}

713 714 715 716 717 718 719 720 721 722 723 724
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

725
static int write_pmu_mappings(struct feat_fd *ff,
726
			      struct evlist *evlist __maybe_unused)
727 728
{
	struct perf_pmu *pmu = NULL;
729
	u32 pmu_num = 0;
730
	int ret;
731

732 733 734 735 736 737 738 739 740 741
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

742
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 744
	if (ret < 0)
		return ret;
745 746 747 748

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
749

750
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 752 753
		if (ret < 0)
			return ret;

754
		ret = do_write_string(ff, pmu->name);
755 756
		if (ret < 0)
			return ret;
757 758 759 760 761
	}

	return 0;
}

762 763 764 765 766 767 768 769 770 771 772 773
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
774
static int write_group_desc(struct feat_fd *ff,
775
			    struct evlist *evlist)
776 777
{
	u32 nr_groups = evlist->nr_groups;
778
	struct evsel *evsel;
779 780
	int ret;

781
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 783 784
	if (ret < 0)
		return ret;

785
	evlist__for_each_entry(evlist, evsel) {
786
		if (perf_evsel__is_group_leader(evsel) &&
787
		    evsel->core.nr_members > 1) {
788 789
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
790
			u32 nr_members = evsel->core.nr_members;
791

792
			ret = do_write_string(ff, name);
793 794 795
			if (ret < 0)
				return ret;

796
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 798 799
			if (ret < 0)
				return ret;

800
			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 802 803 804 805 806 807
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

847 848
/*
 * default get_cpuid(): nothing gets recorded
849
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850
 */
851
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 853 854 855
{
	return -1;
}

856
static int write_cpuid(struct feat_fd *ff,
857
		       struct evlist *evlist __maybe_unused)
858 859 860 861 862
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
863 864
	if (ret)
		return -1;
865

866
	return do_write_string(ff, buffer);
867 868
}

869
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870
			      struct evlist *evlist __maybe_unused)
871 872 873 874
{
	return 0;
}

875
static int write_auxtrace(struct feat_fd *ff,
876
			  struct evlist *evlist __maybe_unused)
877
{
878 879 880
	struct perf_session *session;
	int err;

881 882 883
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

884
	session = container_of(ff->ph, struct perf_session, header);
885

886
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 888 889
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
890 891
}

892
static int write_clockid(struct feat_fd *ff,
893
			 struct evlist *evlist __maybe_unused)
894 895 896 897 898
{
	return do_write(ff, &ff->ph->env.clockid_res_ns,
			sizeof(ff->ph->env.clockid_res_ns));
}

899
static int write_dir_format(struct feat_fd *ff,
900
			    struct evlist *evlist __maybe_unused)
901 902 903 904 905 906 907 908 909 910 911 912 913
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

914 915
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
916
			       struct evlist *evlist __maybe_unused)
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958
			       struct evlist *evlist __maybe_unused)
959 960 961 962 963
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

964
static int write_bpf_btf(struct feat_fd *ff,
965
			 struct evlist *evlist __maybe_unused)
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1064
	cache->type = strim(cache->type);
1065 1066 1067

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1068
		zfree(&cache->type);
1069 1070 1071 1072
		return -1;
	}

	cache->size[len] = 0;
1073
	cache->size = strim(cache->size);
1074 1075 1076

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1077
		zfree(&cache->size);
1078
		zfree(&cache->type);
1079 1080 1081 1082
		return -1;
	}

	cache->map[len] = 0;
1083
	cache->map = strim(cache->map);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
{
	u32 i, cnt = 0;
	long ncpus;
	u32 nr, cpu;
	u16 level;

	ncpus = sysconf(_SC_NPROCESSORS_CONF);
	if (ncpus < 0)
		return -1;

	nr = (u32)(ncpus & UINT_MAX);

	for (cpu = 0; cpu < nr; cpu++) {
		for (level = 0; level < 10; level++) {
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);

			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
				goto out;
		}
	}
 out:
	*cntp = cnt;
	return 0;
}

1136
#define MAX_CACHE_LVL 4
1137

1138
static int write_cache(struct feat_fd *ff,
1139
		       struct evlist *evlist __maybe_unused)
1140
{
1141 1142
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1143 1144 1145
	u32 cnt = 0, i, version = 1;
	int ret;

1146
	ret = build_caches(caches, max_caches, &cnt);
1147 1148 1149 1150 1151
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1152
	ret = do_write(ff, &version, sizeof(u32));
1153 1154 1155
	if (ret < 0)
		goto out;

1156
	ret = do_write(ff, &cnt, sizeof(u32));
1157 1158 1159 1160 1161 1162 1163
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1164
			ret = do_write(ff, &c->v, sizeof(u32));	\
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1175
			ret = do_write_string(ff, (const char *) c->v);	\
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1191
static int write_stat(struct feat_fd *ff __maybe_unused,
1192
		      struct evlist *evlist __maybe_unused)
1193 1194 1195 1196
{
	return 0;
}

1197
static int write_sample_time(struct feat_fd *ff,
1198
			     struct evlist *evlist)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1281 1282
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
1299 1300
			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
			closedir(dir);
1301
			return -1;
1302
		}
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334
			      struct evlist *evlist __maybe_unused)
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1383
static int write_compressed(struct feat_fd *ff __maybe_unused,
1384
			    struct evlist *evlist __maybe_unused)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1407
static void print_hostname(struct feat_fd *ff, FILE *fp)
1408
{
1409
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410 1411
}

1412
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413
{
1414
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415 1416
}

1417
static void print_arch(struct feat_fd *ff, FILE *fp)
1418
{
1419
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420 1421
}

1422
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423
{
1424
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425 1426
}

1427
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428
{
1429 1430
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431 1432
}

1433
static void print_version(struct feat_fd *ff, FILE *fp)
1434
{
1435
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436 1437
}

1438
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439
{
1440
	int nr, i;
1441

1442
	nr = ff->ph->env.nr_cmdline;
1443 1444 1445

	fprintf(fp, "# cmdline : ");

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1464 1465 1466
	fputc('\n', fp);
}

1467
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468
{
1469 1470
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1471
	int nr, i;
1472 1473
	char *str;

1474 1475
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1476 1477

	for (i = 0; i < nr; i++) {
1478
		fprintf(fp, "# sibling sockets : %s\n", str);
1479
		str += strlen(str) + 1;
1480 1481
	}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1492 1493
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1494 1495 1496

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1497
		str += strlen(str) + 1;
1498
	}
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1522 1523
}

1524 1525 1526 1527 1528 1529
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
		ff->ph->env.clockid_res_ns * 1000);
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1557 1558 1559

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1560 1561 1562 1563 1564
	}

	up_read(&env->bpf_progs.lock);
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1587
static void free_event_desc(struct evsel *events)
1588
{
1589
	struct evsel *evsel;
1590 1591 1592 1593

	if (!events)
		return;

1594
	for (evsel = events; evsel->core.attr.size; evsel++) {
1595
		zfree(&evsel->name);
1596
		zfree(&evsel->core.id);
1597 1598 1599 1600 1601
	}

	free(events);
}

1602
static struct evsel *read_event_desc(struct feat_fd *ff)
1603
{
1604
	struct evsel *evsel, *events = NULL;
1605
	u64 *id;
1606
	void *buf = NULL;
1607 1608
	u32 nre, sz, nr, i, j;
	size_t msz;
1609 1610

	/* number of events */
1611
	if (do_read_u32(ff, &nre))
1612 1613
		goto error;

1614
	if (do_read_u32(ff, &sz))
1615 1616
		goto error;

1617
	/* buffer to hold on file attr struct */
1618 1619 1620 1621
	buf = malloc(sz);
	if (!buf)
		goto error;

1622
	/* the last event terminates with evsel->core.attr.size == 0: */
1623 1624 1625 1626
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1627
	msz = sizeof(evsel->core.attr);
1628
	if (sz < msz)
1629 1630
		msz = sz;

1631 1632
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1633

1634 1635 1636 1637
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1638
		if (__do_read(ff, buf, sz))
1639 1640
			goto error;

1641
		if (ff->ph->needs_swap)
1642 1643
			perf_event__attr_swap(buf);

1644
		memcpy(&evsel->core.attr, buf, msz);
1645

1646
		if (do_read_u32(ff, &nr))
1647 1648
			goto error;

1649
		if (ff->ph->needs_swap)
1650
			evsel->needs_swap = true;
1651

1652
		evsel->name = do_read_string(ff);
1653 1654
		if (!evsel->name)
			goto error;
1655 1656 1657 1658 1659 1660 1661

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1662
		evsel->core.ids = nr;
1663
		evsel->core.id = id;
1664 1665

		for (j = 0 ; j < nr; j++) {
1666
			if (do_read_u64(ff, id))
1667 1668 1669 1670 1671
				goto error;
			id++;
		}
	}
out:
1672
	free(buf);
1673 1674
	return events;
error:
1675
	free_event_desc(events);
1676 1677 1678 1679
	events = NULL;
	goto out;
}

1680
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681
				void *priv __maybe_unused)
1682 1683 1684 1685
{
	return fprintf(fp, ", %s = %s", name, val);
}

1686
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687
{
1688
	struct evsel *evsel, *events;
1689 1690 1691
	u32 j;
	u64 *id;

1692 1693 1694 1695 1696
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1697 1698 1699 1700 1701
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1702
	for (evsel = events; evsel->core.attr.size; evsel++) {
1703
		fprintf(fp, "# event : name = %s, ", evsel->name);
1704

1705
		if (evsel->core.ids) {
1706
			fprintf(fp, ", id = {");
1707
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708 1709 1710 1711
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1712
			fprintf(fp, " }");
1713
		}
1714

1715
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716

1717 1718
		fputc('\n', fp);
	}
1719 1720

	free_event_desc(events);
1721
	ff->events = NULL;
1722 1723
}

1724
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725
{
1726
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727 1728
}

1729
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730
{
1731 1732
	int i;
	struct numa_node *n;
1733

1734 1735
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1736 1737 1738

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1739
			n->node, n->mem_total, n->mem_free);
1740

1741 1742
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1743 1744 1745
	}
}

1746
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747
{
1748
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749 1750
}

1751
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752 1753 1754 1755
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1756
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757 1758 1759 1760
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1761
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762 1763 1764 1765
{
	fprintf(fp, "# contains stat data\n");
}

1766
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767 1768 1769 1770
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1771
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772
		fprintf(fp, "#  ");
1773
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774 1775 1776
	}
}

1777 1778 1779 1780 1781 1782 1783
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1784
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785 1786
{
	const char *delimiter = "# pmu mappings: ";
1787
	char *str, *tmp;
1788 1789 1790
	u32 pmu_num;
	u32 type;

1791
	pmu_num = ff->ph->env.nr_pmu_mappings;
1792 1793 1794 1795 1796
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1797
	str = ff->ph->env.pmu_mappings;
1798

1799
	while (pmu_num) {
1800 1801 1802 1803 1804 1805
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806

1807
		delimiter = ", ";
1808 1809
		str += strlen(str) + 1;
		pmu_num--;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1820
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821 1822
{
	struct perf_session *session;
1823
	struct evsel *evsel;
1824 1825
	u32 nr = 0;

1826
	session = container_of(ff->ph, struct perf_session, header);
1827

1828
	evlist__for_each_entry(session->evlist, evsel) {
1829
		if (perf_evsel__is_group_leader(evsel) &&
1830
		    evsel->core.nr_members > 1) {
1831 1832 1833
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
				perf_evsel__name(evsel));

1834
			nr = evsel->core.nr_members - 1;
1835 1836 1837 1838 1839 1840 1841 1842 1843
		} else if (nr) {
			fprintf(fp, ",%s", perf_evsel__name(evsel));

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

1895
static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896 1897 1898 1899 1900
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
1901
	u16 cpumode;
1902 1903 1904 1905 1906 1907 1908
	struct dso *dso;
	enum dso_kernel_type dso_type;

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

1909
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910

1911
	switch (cpumode) {
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	case PERF_RECORD_MISC_KERNEL:
		dso_type = DSO_TYPE_KERNEL;
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
		dso_type = DSO_TYPE_GUEST_KERNEL;
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
		dso_type = DSO_TYPE_USER;
		break;
	default:
		goto out;
	}

1926
	dso = machine__findnew_dso(machine, filename);
1927
	if (dso != NULL) {
1928
		char sbuild_id[SBUILD_ID_SIZE];
1929 1930 1931

		dso__set_build_id(dso, &bev->build_id);

1932 1933 1934 1935
		if (dso_type != DSO_TYPE_USER) {
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936
				dso__set_module_info(dso, &m, machine);
1937 1938 1939 1940 1941
			else
				dso->kernel = dso_type;

			free(m.name);
		}
1942 1943 1944 1945 1946

		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
				  sbuild_id);
		pr_debug("build id event received for %s: %s\n",
			 dso->long_name, sbuild_id);
1947
		dso__put(dso);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
1961
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962 1963
		char			   filename[0];
	} old_bev;
1964
	struct perf_record_header_build_id bev;
1965 1966 1967 1968 1969 1970
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

1971
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972 1973 1974 1975 1976 1977
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
1978
		if (readn(input, filename, len) != len)
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2005
	struct perf_record_header_build_id bev;
2006 2007 2008 2009 2010 2011 2012
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2013
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014 2015 2016 2017 2018 2019
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2020
		if (readn(input, filename, len) != len)
2021 2022 2023 2024 2025 2026
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2027
		 * Added a field to struct perf_record_header_build_id that broke the file
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2050 2051
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053
{\
2054
	ff->ph->env.__feat_env = do_read_string(ff); \
2055
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056 2057 2058 2059 2060 2061 2062 2063 2064
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2065
static int process_tracing_data(struct feat_fd *ff, void *data)
2066
{
2067 2068
	ssize_t ret = trace_report(ff->fd, data, false);

2069
	return ret < 0 ? -1 : 0;
2070 2071
}

2072
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073
{
2074
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075 2076 2077 2078
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2079
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080
{
2081 2082
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2083

2084
	ret = do_read_u32(ff, &nr_cpus_avail);
2085 2086
	if (ret)
		return ret;
2087

2088
	ret = do_read_u32(ff, &nr_cpus_online);
2089 2090
	if (ret)
		return ret;
2091 2092
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093 2094 2095
	return 0;
}

2096
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097
{
2098 2099
	u64 total_mem;
	int ret;
2100

2101
	ret = do_read_u64(ff, &total_mem);
2102
	if (ret)
2103
		return -1;
2104
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2105 2106 2107
	return 0;
}

2108
static struct evsel *
2109
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110
{
2111
	struct evsel *evsel;
2112

2113
	evlist__for_each_entry(evlist, evsel) {
2114 2115 2116 2117 2118 2119 2120 2121
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2122
perf_evlist__set_event_name(struct evlist *evlist,
2123
			    struct evsel *event)
2124
{
2125
	struct evsel *evsel;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2141
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142
{
2143
	struct perf_session *session;
2144
	struct evsel *evsel, *events = read_event_desc(ff);
2145 2146 2147 2148

	if (!events)
		return 0;

2149
	session = container_of(ff->ph, struct perf_session, header);
2150

2151
	if (session->data->is_pipe) {
2152 2153 2154 2155 2156
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2157
	for (evsel = events; evsel->core.attr.size; evsel++)
2158 2159
		perf_evlist__set_event_name(session->evlist, evsel);

2160
	if (!session->data->is_pipe)
2161
		free_event_desc(events);
2162 2163 2164 2165

	return 0;
}

2166
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167
{
2168 2169
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2170

2171
	if (do_read_u32(ff, &nr))
2172 2173
		return -1;

2174
	ff->ph->env.nr_cmdline = nr;
2175

2176
	cmdline = zalloc(ff->size + nr + 1);
2177 2178 2179 2180 2181 2182
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2183 2184

	for (i = 0; i < nr; i++) {
2185
		str = do_read_string(ff);
2186 2187 2188
		if (!str)
			goto error;

2189 2190 2191
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2192 2193
		free(str);
	}
2194 2195
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2196 2197 2198
	return 0;

error:
2199 2200
	free(argv);
	free(cmdline);
2201 2202 2203
	return -1;
}

2204
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205 2206 2207 2208
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2209
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2210
	u64 size = 0;
2211
	struct perf_header *ph = ff->ph;
2212
	bool do_core_id_test = true;
2213 2214 2215 2216

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2217

2218
	if (do_read_u32(ff, &nr))
2219
		goto free_cpu;
2220 2221

	ph->env.nr_sibling_cores = nr;
2222
	size += sizeof(u32);
2223 2224
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2225 2226

	for (i = 0; i < nr; i++) {
2227
		str = do_read_string(ff);
2228 2229 2230 2231
		if (!str)
			goto error;

		/* include a NULL character at the end */
2232 2233
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2234
		size += string_size(str);
2235 2236 2237 2238
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2239
	if (do_read_u32(ff, &nr))
2240 2241 2242
		return -1;

	ph->env.nr_sibling_threads = nr;
2243
	size += sizeof(u32);
2244 2245

	for (i = 0; i < nr; i++) {
2246
		str = do_read_string(ff);
2247 2248 2249 2250
		if (!str)
			goto error;

		/* include a NULL character at the end */
2251 2252
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2253
		size += string_size(str);
2254 2255 2256
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257 2258 2259 2260 2261

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2262
	if (ff->size <= size) {
2263 2264 2265 2266
		zfree(&ph->env.cpu);
		return 0;
	}

2267 2268 2269
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2270
	 * AArch64 is the same.
2271
	 */
2272 2273
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2274 2275
		do_core_id_test = false;

2276
	for (i = 0; i < (u32)cpu_nr; i++) {
2277
		if (do_read_u32(ff, &nr))
2278 2279 2280
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2281
		size += sizeof(u32);
2282

2283
		if (do_read_u32(ff, &nr))
2284 2285
			goto free_cpu;

2286
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287 2288 2289 2290 2291 2292
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2327 2328
	}

2329 2330 2331 2332
	return 0;

error:
	strbuf_release(&sb);
2333 2334
free_cpu:
	zfree(&ph->env.cpu);
2335 2336 2337
	return -1;
}

2338
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339
{
2340 2341
	struct numa_node *nodes, *n;
	u32 nr, i;
2342 2343 2344
	char *str;

	/* nr nodes */
2345
	if (do_read_u32(ff, &nr))
2346
		return -1;
2347

2348 2349 2350
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2351 2352

	for (i = 0; i < nr; i++) {
2353 2354
		n = &nodes[i];

2355
		/* node number */
2356
		if (do_read_u32(ff, &n->node))
2357 2358
			goto error;

2359
		if (do_read_u64(ff, &n->mem_total))
2360 2361
			goto error;

2362
		if (do_read_u64(ff, &n->mem_free))
2363 2364
			goto error;

2365
		str = do_read_string(ff);
2366 2367 2368
		if (!str)
			goto error;

2369
		n->map = perf_cpu_map__new(str);
2370
		if (!n->map)
2371
			goto error;
2372

2373 2374
		free(str);
	}
2375 2376
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2377 2378 2379
	return 0;

error:
2380
	free(nodes);
2381 2382 2383
	return -1;
}

2384
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385 2386 2387 2388 2389 2390
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2391
	if (do_read_u32(ff, &pmu_num))
2392 2393 2394 2395 2396 2397 2398
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2399
	ff->ph->env.nr_pmu_mappings = pmu_num;
2400 2401
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2402 2403

	while (pmu_num) {
2404
		if (do_read_u32(ff, &type))
2405 2406
			goto error;

2407
		name = do_read_string(ff);
2408 2409 2410
		if (!name)
			goto error;

2411 2412
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2413
		/* include a NULL character at the end */
2414 2415
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2416

2417
		if (!strcmp(name, "msr"))
2418
			ff->ph->env.msr_pmu_type = type;
2419

2420 2421 2422
		free(name);
		pmu_num--;
	}
2423
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424 2425 2426 2427 2428 2429 2430
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2431
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432 2433 2434 2435
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2436
	struct evsel *evsel, *leader = NULL;
2437 2438 2439 2440 2441 2442
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2443
	if (do_read_u32(ff, &nr_groups))
2444 2445
		return -1;

2446
	ff->ph->env.nr_groups = nr_groups;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2457
		desc[i].name = do_read_string(ff);
2458 2459 2460
		if (!desc[i].name)
			goto out_free;

2461
		if (do_read_u32(ff, &desc[i].leader_idx))
2462 2463
			goto out_free;

2464
		if (do_read_u32(ff, &desc[i].nr_members))
2465 2466 2467 2468 2469 2470
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2471
	session = container_of(ff->ph, struct perf_session, header);
2472 2473 2474
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2475
	evlist__for_each_entry(session->evlist, evsel) {
2476 2477 2478
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2479
			if (strcmp(desc[i].name, "{anon_group}")) {
2480
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2481 2482
				desc[i].name = NULL;
			}
2483
			evsel->core.nr_members = desc[i].nr_members;
2484 2485 2486 2487 2488 2489 2490

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2491
			nr = evsel->core.nr_members - 1;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2508
	for (i = 0; i < nr_groups; i++)
2509
		zfree(&desc[i].name);
2510 2511 2512 2513 2514
	free(desc);

	return ret;
}

2515
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516 2517 2518 2519
{
	struct perf_session *session;
	int err;

2520
	session = container_of(ff->ph, struct perf_session, header);
2521

2522
	err = auxtrace_index__process(ff->fd, ff->size, session,
2523
				      ff->ph->needs_swap);
2524 2525 2526 2527 2528
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2529
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530 2531 2532 2533
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2534
	if (do_read_u32(ff, &version))
2535 2536 2537 2538 2539
		return -1;

	if (version != 1)
		return -1;

2540
	if (do_read_u32(ff, &cnt))
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2551
			if (do_read_u32(ff, &c.v))\
2552 2553 2554 2555 2556 2557 2558 2559
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2560
		#define _R(v)					\
2561
			c.v = do_read_string(ff);		\
2562
			if (!c.v)				\
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2573 2574
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2575 2576 2577 2578 2579 2580
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2654 2655 2656 2657 2658 2659 2660 2661 2662
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
		return -1;

	return 0;
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2739
	up_write(&env->bpf_progs.lock);
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2754 2755 2756
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2757
	struct btf_node *node = NULL;
2758
	u32 count, i;
2759
	int err = -1;
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2775
			goto out;
2776
		if (do_read_u32(ff, &data_size))
2777
			goto out;
2778 2779 2780

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2781
			goto out;
2782 2783 2784 2785

		node->id = id;
		node->data_size = data_size;

2786 2787
		if (__do_read(ff, node->data, data_size))
			goto out;
2788 2789

		perf_env__insert_btf(env, node);
2790
		node = NULL;
2791 2792
	}

2793 2794
	err = 0;
out:
2795
	up_write(&env->bpf_progs.lock);
2796 2797
	free(node);
	return err;
2798 2799
}

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
2839 2840

/* feature_ops not implemented: */
2841 2842
#define print_tracing_data	NULL
#define print_build_id		NULL
2843

2844 2845 2846
#define process_branch_stack	NULL
#define process_stat		NULL

2847 2848
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849

2850
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2867
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2868 2869 2870
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
2871
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2872
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2873
	FEAT_OPR(CLOCKID,	clockid,	false),
2874
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2875 2876
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2877
	FEAT_OPR(COMPRESSED,	compressed,	false),
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
2890
	struct feat_fd ff;
2891 2892 2893 2894 2895 2896

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
2897
	if (feat >= HEADER_LAST_FEATURE) {
2898
		pr_warning("unknown feature %d\n", feat);
2899
		return 0;
2900 2901 2902 2903
	}
	if (!feat_ops[feat].print)
		return 0;

2904 2905 2906 2907 2908
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

2909
	if (!feat_ops[feat].full_only || hd->full)
2910
		feat_ops[feat].print(&ff, hd->fp);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
2922
	int fd = perf_data__fd(session->data);
2923
	struct stat st;
2924
	time_t stctime;
J
Jiri Olsa 已提交
2925
	int ret, bit;
2926

2927 2928 2929
	hd.fp = fp;
	hd.full = full;

2930 2931 2932 2933
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

2934 2935
	stctime = st.st_ctime;
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2936 2937 2938 2939 2940

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2941

2942 2943
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
2944

2945
	if (session->data->is_pipe)
2946 2947
		return 0;

J
Jiri Olsa 已提交
2948 2949 2950 2951 2952 2953 2954
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
2955 2956 2957
	return 0;
}

2958
static int do_write_feat(struct feat_fd *ff, int type,
2959
			 struct perf_file_section **p,
2960
			 struct evlist *evlist)
2961 2962 2963 2964
{
	int err;
	int ret = 0;

2965
	if (perf_header__has_feat(ff->ph, type)) {
2966 2967
		if (!feat_ops[type].write)
			return -1;
2968

2969 2970 2971
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

2972
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973

2974
		err = feat_ops[type].write(ff, evlist);
2975
		if (err < 0) {
2976
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977 2978

			/* undo anything written */
2979
			lseek(ff->fd, (*p)->offset, SEEK_SET);
2980 2981 2982

			return -1;
		}
2983
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984 2985 2986 2987 2988
		(*p)++;
	}
	return ret;
}

2989
static int perf_header__adds_write(struct perf_header *header,
2990
				   struct evlist *evlist, int fd)
2991
{
2992
	int nr_sections;
2993
	struct feat_fd ff;
2994
	struct perf_file_section *feat_sec, *p;
2995 2996
	int sec_size;
	u64 sec_start;
2997
	int feat;
2998
	int err;
2999

3000 3001 3002 3003 3004
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3005
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006
	if (!nr_sections)
3007
		return 0;
3008

3009
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010 3011
	if (feat_sec == NULL)
		return -ENOMEM;
3012 3013 3014

	sec_size = sizeof(*feat_sec) * nr_sections;

3015
	sec_start = header->feat_offset;
3016
	lseek(fd, sec_start + sec_size, SEEK_SET);
3017

3018
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019
		if (do_write_feat(&ff, feat, &p, evlist))
3020 3021
			perf_header__clear_feat(header, feat);
	}
3022

3023
	lseek(fd, sec_start, SEEK_SET);
3024 3025
	/*
	 * may write more than needed due to dropped feature, but
3026
	 * this is okay, reader will skip the missing entries
3027
	 */
3028
	err = do_write(&ff, feat_sec, sec_size);
3029 3030
	if (err < 0)
		pr_debug("failed to write feature section\n");
3031
	free(feat_sec);
3032
	return err;
3033
}
3034

3035 3036 3037
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3038
	struct feat_fd ff;
3039 3040
	int err;

3041 3042
	ff = (struct feat_fd){ .fd = fd };

3043 3044 3045 3046 3047
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3048
	err = do_write(&ff, &f_header, sizeof(f_header));
3049 3050 3051 3052 3053 3054 3055 3056
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3057
int perf_session__write_header(struct perf_session *session,
3058
			       struct evlist *evlist,
3059
			       int fd, bool at_exit)
3060 3061 3062
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3063
	struct perf_header *header = &session->header;
3064
	struct evsel *evsel;
3065
	struct feat_fd ff;
3066
	u64 attr_offset;
3067
	int err;
3068

3069
	ff = (struct feat_fd){ .fd = fd};
3070 3071
	lseek(fd, sizeof(f_header), SEEK_SET);

3072
	evlist__for_each_entry(session->evlist, evsel) {
3073
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075 3076 3077 3078
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3079 3080
	}

3081
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082

3083
	evlist__for_each_entry(evlist, evsel) {
3084
		f_attr = (struct perf_file_attr){
3085
			.attr = evsel->core.attr,
3086
			.ids  = {
3087
				.offset = evsel->id_offset,
3088
				.size   = evsel->core.ids * sizeof(u64),
3089 3090
			}
		};
3091
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3092 3093 3094 3095
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3096 3097
	}

3098 3099
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3100
	header->feat_offset = header->data_offset + header->data_size;
3101

3102
	if (at_exit) {
3103
		err = perf_header__adds_write(header, evlist, fd);
3104 3105 3106
		if (err < 0)
			return err;
	}
3107

3108 3109 3110 3111 3112
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3113
			.offset = attr_offset,
3114
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3115 3116
		},
		.data = {
3117 3118
			.offset = header->data_offset,
			.size	= header->data_size,
3119
		},
3120
		/* event_types is ignored, store zeros */
3121 3122
	};

3123
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124

3125
	lseek(fd, 0, SEEK_SET);
3126
	err = do_write(&ff, &f_header, sizeof(f_header));
3127 3128 3129 3130
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3131
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3132

3133
	return 0;
3134 3135
}

3136
static int perf_header__getbuffer64(struct perf_header *header,
3137 3138
				    int fd, void *buf, size_t size)
{
3139
	if (readn(fd, buf, size) <= 0)
3140 3141
		return -1;

3142
	if (header->needs_swap)
3143 3144 3145 3146 3147
		mem_bswap_64(buf, size);

	return 0;
}

3148
int perf_header__process_sections(struct perf_header *header, int fd,
3149
				  void *data,
3150
				  int (*process)(struct perf_file_section *section,
3151 3152
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3153
{
3154
	struct perf_file_section *feat_sec, *sec;
3155 3156
	int nr_sections;
	int sec_size;
3157 3158
	int feat;
	int err;
3159

3160
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161
	if (!nr_sections)
3162
		return 0;
3163

3164
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165
	if (!feat_sec)
3166
		return -1;
3167 3168 3169

	sec_size = sizeof(*feat_sec) * nr_sections;

3170
	lseek(fd, header->feat_offset, SEEK_SET);
3171

3172 3173
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3174
		goto out_free;
3175

3176 3177 3178 3179
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3180
	}
3181
	err = 0;
3182
out_free:
3183 3184
	free(feat_sec);
	return err;
3185
}
3186

3187 3188 3189
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3190
	[2] = PERF_ATTR_SIZE_VER2,
3191
	[3] = PERF_ATTR_SIZE_VER3,
3192
	[4] = PERF_ATTR_SIZE_VER4,
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203
{
3204 3205
	uint64_t ref_size, attr_size;
	int i;
3206

3207 3208 3209 3210 3211 3212 3213
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3225

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3250 3251 3252

			ph->needs_swap = true;
		}
3253
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254 3255
		return 0;
	}
3256 3257 3258
	return -1;
}

F
Feng Tang 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3269 3270 3271 3272 3273 3274 3275 3276
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3277
		ph->version = PERF_HEADER_VERSION_1;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3289
	ph->version = PERF_HEADER_VERSION_2;
3290

3291 3292
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3293 3294
		return 0;

3295 3296
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3297 3298 3299 3300 3301 3302 3303
		return -1;

	ph->needs_swap = true;

	return 0;
}

3304
int perf_file_header__read(struct perf_file_header *header,
3305 3306
			   struct perf_header *ph, int fd)
{
3307
	ssize_t ret;
3308

3309 3310
	lseek(fd, 0, SEEK_SET);

3311 3312
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3313 3314
		return -1;

3315 3316 3317
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3318
		return -1;
3319
	}
3320

3321
	if (ph->needs_swap) {
3322
		mem_bswap_64(header, offsetof(struct perf_file_header,
3323
			     adds_features));
3324 3325
	}

3326
	if (header->size != sizeof(*header)) {
3327
		/* Support the previous format */
3328 3329
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330 3331
		else
			return -1;
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3348 3349
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3350 3351

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352 3353 3354 3355 3356 3357 3358
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3359 3360 3361 3362 3363 3364
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3365
	}
3366

3367
	memcpy(&ph->adds_features, &header->adds_features,
3368
	       sizeof(ph->adds_features));
3369

3370 3371
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3372
	ph->feat_offset  = header->data.offset + header->data.size;
3373 3374 3375
	return 0;
}

3376
static int perf_file_section__process(struct perf_file_section *section,
3377
				      struct perf_header *ph,
3378
				      int feat, int fd, void *data)
3379
{
3380
	struct feat_fd fdd = {
3381 3382
		.fd	= fd,
		.ph	= ph,
3383 3384
		.size	= section->size,
		.offset	= section->offset,
3385 3386
	};

3387
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389
			  "%d, continuing...\n", section->offset, feat);
3390 3391 3392
		return 0;
	}

3393 3394 3395 3396 3397
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3398 3399
	if (!feat_ops[feat].process)
		return 0;
3400

3401
	return feat_ops[feat].process(&fdd, data);
3402
}
3403

3404
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3405 3406
				       struct perf_header *ph, int fd,
				       bool repipe)
3407
{
3408 3409 3410 3411
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3412
	ssize_t ret;
3413 3414 3415 3416 3417

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3418 3419
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3420
		return -1;
3421 3422 3423 3424
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3425

3426
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3427 3428
		return -1;

3429 3430 3431
	return 0;
}

3432
static int perf_header__read_pipe(struct perf_session *session)
3433
{
3434
	struct perf_header *header = &session->header;
3435 3436
	struct perf_pipe_file_header f_header;

3437
	if (perf_file_header__read_pipe(&f_header, header,
3438
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3439
					session->repipe) < 0) {
3440 3441 3442 3443 3444 3445 3446
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

	return 0;
}

3447 3448 3449 3450 3451 3452
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3453
	ssize_t ret;
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3493
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494
						struct tep_handle *pevent)
3495
{
3496
	struct tep_event *event;
3497 3498
	char bf[128];

3499 3500 3501 3502
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3503 3504 3505 3506 3507
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3508
	event = tep_find_event(pevent, evsel->core.attr.config);
3509
	if (event == NULL) {
3510
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511
		return -1;
3512
	}
3513

3514 3515 3516 3517 3518 3519
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3520

3521
	evsel->tp_format = event;
3522 3523 3524
	return 0;
}

3525
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526
						  struct tep_handle *pevent)
3527
{
3528
	struct evsel *pos;
3529

3530
	evlist__for_each_entry(evlist, pos) {
3531
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3533 3534 3535 3536 3537 3538
			return -1;
	}

	return 0;
}

3539
int perf_session__read_header(struct perf_session *session)
3540
{
3541
	struct perf_data *data = session->data;
3542
	struct perf_header *header = &session->header;
3543
	struct perf_file_header	f_header;
3544 3545 3546
	struct perf_file_attr	f_attr;
	u64			f_id;
	int nr_attrs, nr_ids, i, j;
3547
	int fd = perf_data__fd(data);
3548

3549
	session->evlist = evlist__new();
3550 3551 3552
	if (session->evlist == NULL)
		return -ENOMEM;

3553
	session->evlist->env = &header->env;
3554
	session->machines.host.env = &header->env;
3555
	if (perf_data__is_pipe(data))
3556
		return perf_header__read_pipe(session);
3557

3558
	if (perf_file_header__read(&f_header, header, fd) < 0)
3559
		return -EINVAL;
3560

3561 3562 3563 3564 3565 3566 3567 3568 3569
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3570
			   data->file.path);
3571 3572
	}

3573 3574 3575 3576 3577 3578 3579
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3580
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3581 3582 3583
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3584
		struct evsel *evsel;
3585
		off_t tmp;
3586

3587
		if (read_attr(fd, header, &f_attr) < 0)
3588
			goto out_errno;
3589

3590 3591 3592
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593
			perf_event__attr_swap(&f_attr.attr);
3594
		}
3595

3596
		tmp = lseek(fd, 0, SEEK_CUR);
3597
		evsel = evsel__new(&f_attr.attr);
3598

3599 3600
		if (evsel == NULL)
			goto out_delete_evlist;
3601 3602

		evsel->needs_swap = header->needs_swap;
3603 3604
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3605
		 * entry gets purged too at evlist__delete().
3606
		 */
3607
		evlist__add(session->evlist, evsel);
3608 3609

		nr_ids = f_attr.ids.size / sizeof(u64);
3610 3611 3612 3613 3614
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3615
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616 3617
			goto out_delete_evlist;

3618 3619 3620
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3621
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622
				goto out_errno;
3623

3624
			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625
		}
3626

3627 3628 3629
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3630
	perf_header__process_sections(header, fd, &session->tevent,
3631
				      perf_file_section__process);
3632

3633
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3634
						   session->tevent.pevent))
3635 3636
		goto out_delete_evlist;

3637
	return 0;
3638 3639
out_errno:
	return -errno;
3640 3641

out_delete_evlist:
3642
	evlist__delete(session->evlist);
3643 3644
	session->evlist = NULL;
	return -ENOMEM;
3645
}
3646

3647 3648
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3649
{
3650
	struct perf_tool *tool = session->tool;
3651
	struct feat_fd ff = { .fd = 0 };
3652
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653 3654 3655 3656 3657 3658 3659
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3660
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661 3662 3663 3664 3665 3666 3667 3668
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3669
	ff.size = event->header.size - sizeof(*fe);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3689 3690
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3691 3692 3693
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3694
	struct perf_cpu_map *map;
3695 3696
	size_t ret;

3697
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3698 3699 3700

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3701
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702 3703 3704 3705 3706 3707 3708 3709 3710
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3711
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3727

3728 3729
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3730
			     struct evlist **pevlist)
3731
{
3732
	u32 i, ids, n_ids;
3733
	struct evsel *evsel;
3734
	struct evlist *evlist = *pevlist;
3735

3736
	if (evlist == NULL) {
3737
		*pevlist = evlist = evlist__new();
3738
		if (evlist == NULL)
3739 3740 3741
			return -ENOMEM;
	}

3742
	evsel = evsel__new(&event->attr.attr);
3743
	if (evsel == NULL)
3744 3745
		return -ENOMEM;

3746
	evlist__add(evlist, evsel);
3747

3748 3749
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
3750
	n_ids = ids / sizeof(u64);
3751 3752 3753 3754 3755
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
3756
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757
		return -ENOMEM;
3758 3759

	for (i = 0; i < n_ids; i++) {
3760
		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761 3762 3763 3764
	}

	return 0;
}
3765

3766 3767
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
3768
				     struct evlist **pevlist)
3769
{
3770 3771 3772
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3773
	struct evlist *evlist;
3774
	struct evsel *evsel;
3775
	struct perf_cpu_map *map;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

3786 3787 3788
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
3789
		break;
3790 3791 3792
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
3793
	case PERF_EVENT_UPDATE__SCALE:
3794
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795
		evsel->scale = ev_scale->scale;
3796
		break;
3797
	case PERF_EVENT_UPDATE__CPUS:
3798
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799 3800 3801

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
3802
			evsel->core.own_cpus = map;
3803 3804
		else
			pr_err("failed to get event_update cpus\n");
3805 3806 3807 3808
	default:
		break;
	}

3809 3810 3811
	return 0;
}

3812 3813
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
3814
{
3815
	ssize_t size_read, padding, size = event->tracing_data.size;
3816
	int fd = perf_data__fd(session->data);
3817
	off_t offset = lseek(fd, 0, SEEK_CUR);
3818 3819 3820
	char buf[BUFSIZ];

	/* setup for reading amidst mmap */
3821
	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822 3823
	      SEEK_SET);

J
Jiri Olsa 已提交
3824
	size_read = trace_report(fd, &session->tevent,
3825
				 session->repipe);
3826
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827

3828
	if (readn(fd, buf, padding) < 0) {
3829 3830 3831
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
3832 3833
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
3834 3835 3836 3837
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
3838
	}
3839

3840 3841 3842 3843
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
3844

3845
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3846
					       session->tevent.pevent);
3847

3848 3849
	return size_read + padding;
}
3850

3851 3852
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
3853
{
3854 3855
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
3856
				 session);
3857 3858
	return 0;
}