header.c 88.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#include <bpf/libbpf.h>
23
#include <perf/cpumap.h>
24

25
#include "dso.h"
26
#include "evlist.h"
27
#include "evsel.h"
28
#include "util/evsel_fprintf.h"
29
#include "header.h"
30
#include "memswap.h"
31
#include "trace-event.h"
32
#include "session.h"
33
#include "symbol.h"
34
#include "debug.h"
35
#include "cpumap.h"
36
#include "pmu.h"
37
#include "vdso.h"
38
#include "strbuf.h"
39
#include "build-id.h"
40
#include "data.h"
41 42
#include <api/fs/fs.h>
#include "asm/bug.h"
43
#include "tool.h"
44
#include "time-utils.h"
45
#include "units.h"
46
#include "util/util.h" // perf_exe()
J
Jiri Olsa 已提交
47
#include "cputopo.h"
48
#include "bpf-event.h"
49
#include "clockid.h"
50

51
#include <linux/ctype.h>
52
#include <internal/lib.h>
53

54 55 56 57 58 59 60 61 62 63 64 65
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66

67
#define PERF_MAGIC	__perf_magic2
68

69 70
const char perf_version_string[] = PERF_VERSION;

71
struct perf_file_attr {
72
	struct perf_event_attr	attr;
73 74 75
	struct perf_file_section	ids;
};

76
void perf_header__set_feat(struct perf_header *header, int feat)
77
{
78
	set_bit(feat, header->adds_features);
79 80
}

81
void perf_header__clear_feat(struct perf_header *header, int feat)
82
{
83
	clear_bit(feat, header->adds_features);
84 85
}

86
bool perf_header__has_feat(const struct perf_header *header, int feat)
87
{
88
	return test_bit(feat, header->adds_features);
89 90
}

91
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92
{
93
	ssize_t ret = writen(ff->fd, buf, size);
94

95 96
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
124 125

	return 0;
126 127
}

128 129 130 131 132 133 134 135
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

155
/* Return: 0 if succeded, -ERR if failed. */
156 157
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
158 159
{
	static const char zero_buf[NAME_ALIGN];
160
	int err = do_write(ff, bf, count);
161 162

	if (!err)
163
		err = do_write(ff, zero_buf, count_aligned - count);
164 165 166 167

	return err;
}

168 169 170
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

171
/* Return: 0 if succeded, -ERR if failed. */
172
static int do_write_string(struct feat_fd *ff, const char *str)
173 174 175 176 177
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
178
	len = PERF_ALIGN(olen, NAME_ALIGN);
179 180

	/* write len, incl. \0 */
181
	ret = do_write(ff, &len, sizeof(len));
182 183 184
	if (ret < 0)
		return ret;

185
	return write_padded(ff, str, olen, len);
186 187
}

188
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189
{
190
	ssize_t ret = readn(ff->fd, addr, size);
191 192 193 194 195 196

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

216
static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 218 219
{
	int ret;

220
	ret = __do_read(ff, addr, sizeof(*addr));
221 222 223
	if (ret)
		return ret;

224
	if (ff->ph->needs_swap)
225 226 227 228
		*addr = bswap_32(*addr);
	return 0;
}

229
static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 231 232
{
	int ret;

233
	ret = __do_read(ff, addr, sizeof(*addr));
234 235 236
	if (ret)
		return ret;

237
	if (ff->ph->needs_swap)
238 239 240 241
		*addr = bswap_64(*addr);
	return 0;
}

242
static char *do_read_string(struct feat_fd *ff)
243 244 245 246
{
	u32 len;
	char *buf;

247
	if (do_read_u32(ff, &len))
248 249 250 251 252 253
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

254
	if (!__do_read(ff, buf, len)) {
255 256 257 258 259 260 261 262 263 264 265 266
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

297
static int write_tracing_data(struct feat_fd *ff,
298
			      struct evlist *evlist)
299
{
300 301 302
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

303
	return read_tracing_data(ff->fd, &evlist->core.entries);
304 305
}

306
static int write_build_id(struct feat_fd *ff,
307
			  struct evlist *evlist __maybe_unused)
308 309 310 311
{
	struct perf_session *session;
	int err;

312
	session = container_of(ff->ph, struct perf_session, header);
313

314 315 316
	if (!perf_session__read_build_ids(session, true))
		return -1;

317 318 319
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

320
	err = perf_session__write_buildid_table(session, ff);
321 322 323 324
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
325
	perf_session__cache_build_ids(session);
326 327 328 329

	return 0;
}

330
static int write_hostname(struct feat_fd *ff,
331
			  struct evlist *evlist __maybe_unused)
332 333 334 335 336 337 338 339
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

340
	return do_write_string(ff, uts.nodename);
341 342
}

343
static int write_osrelease(struct feat_fd *ff,
344
			   struct evlist *evlist __maybe_unused)
345 346 347 348 349 350 351 352
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

353
	return do_write_string(ff, uts.release);
354 355
}

356
static int write_arch(struct feat_fd *ff,
357
		      struct evlist *evlist __maybe_unused)
358 359 360 361 362 363 364 365
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

366
	return do_write_string(ff, uts.machine);
367 368
}

369
static int write_version(struct feat_fd *ff,
370
			 struct evlist *evlist __maybe_unused)
371
{
372
	return do_write_string(ff, perf_version_string);
373 374
}

375
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 377 378 379
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
380
	const char *search = cpuinfo_proc;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

397 398
	if (ret) {
		ret = -1;
399
		goto done;
400
	}
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
416
			char *q = skip_spaces(r);
417 418 419 420 421 422
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
423
	ret = do_write_string(ff, s);
424 425 426 427 428 429
done:
	free(buf);
	fclose(file);
	return ret;
}

430
static int write_cpudesc(struct feat_fd *ff,
431
		       struct evlist *evlist __maybe_unused)
432
{
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
450
	const char *cpuinfo_procs[] = CPUINFO_PROC;
451
#undef CPUINFO_PROC
452 453 454 455
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
456
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457 458 459 460 461 462 463
		if (ret >= 0)
			return ret;
	}
	return -1;
}


464
static int write_nrcpus(struct feat_fd *ff,
465
			struct evlist *evlist __maybe_unused)
466 467 468 469 470
{
	long nr;
	u32 nrc, nra;
	int ret;

471
	nrc = cpu__max_present_cpu();
472 473 474 475 476 477 478

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

479
	ret = do_write(ff, &nrc, sizeof(nrc));
480 481 482
	if (ret < 0)
		return ret;

483
	return do_write(ff, &nra, sizeof(nra));
484 485
}

486
static int write_event_desc(struct feat_fd *ff,
487
			    struct evlist *evlist)
488
{
489
	struct evsel *evsel;
490
	u32 nre, nri, sz;
491 492
	int ret;

493
	nre = evlist->core.nr_entries;
494 495 496 497

	/*
	 * write number of events
	 */
498
	ret = do_write(ff, &nre, sizeof(nre));
499 500 501 502 503 504
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
505
	sz = (u32)sizeof(evsel->core.attr);
506
	ret = do_write(ff, &sz, sizeof(sz));
507 508 509
	if (ret < 0)
		return ret;

510
	evlist__for_each_entry(evlist, evsel) {
511
		ret = do_write(ff, &evsel->core.attr, sz);
512 513 514 515 516 517 518 519 520
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
521
		nri = evsel->core.ids;
522
		ret = do_write(ff, &nri, sizeof(nri));
523 524 525 526 527 528
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
529
		ret = do_write_string(ff, evsel__name(evsel));
530 531 532 533 534
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
535
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536 537 538 539 540 541
		if (ret < 0)
			return ret;
	}
	return 0;
}

542
static int write_cmdline(struct feat_fd *ff,
543
			 struct evlist *evlist __maybe_unused)
544
{
545 546
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
547

548
	/* actual path to perf binary */
549
	buf = perf_exe(pbuf, MAXPATHLEN);
550 551

	/* account for binary path */
552
	n = perf_env.nr_cmdline + 1;
553

554
	ret = do_write(ff, &n, sizeof(n));
555 556 557
	if (ret < 0)
		return ret;

558
	ret = do_write_string(ff, buf);
559 560 561
	if (ret < 0)
		return ret;

562
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564 565 566 567 568 569 570
		if (ret < 0)
			return ret;
	}
	return 0;
}


571
static int write_cpu_topology(struct feat_fd *ff,
572
			      struct evlist *evlist __maybe_unused)
573
{
J
Jiri Olsa 已提交
574
	struct cpu_topology *tp;
575
	u32 i;
576
	int ret, j;
577

J
Jiri Olsa 已提交
578
	tp = cpu_topology__new();
579 580 581
	if (!tp)
		return -1;

582
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583 584 585 586
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
587
		ret = do_write_string(ff, tp->core_siblings[i]);
588 589 590
		if (ret < 0)
			goto done;
	}
591
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592 593 594 595
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
596
		ret = do_write_string(ff, tp->thread_siblings[i]);
597 598 599
		if (ret < 0)
			break;
	}
600

601 602 603 604 605
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606
		ret = do_write(ff, &perf_env.cpu[j].core_id,
607
			       sizeof(perf_env.cpu[j].core_id));
608 609
		if (ret < 0)
			return ret;
610
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
611
			       sizeof(perf_env.cpu[j].socket_id));
612 613 614
		if (ret < 0)
			return ret;
	}
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

636
done:
J
Jiri Olsa 已提交
637
	cpu_topology__delete(tp);
638 639 640 641 642
	return ret;
}



643
static int write_total_mem(struct feat_fd *ff,
644
			   struct evlist *evlist __maybe_unused)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
664
			ret = do_write(ff, &mem, sizeof(mem));
665 666
	} else
		ret = -1;
667 668 669 670 671
	free(buf);
	fclose(fp);
	return ret;
}

672
static int write_numa_topology(struct feat_fd *ff,
673
			       struct evlist *evlist __maybe_unused)
674
{
J
Jiri Olsa 已提交
675
	struct numa_topology *tp;
676
	int ret = -1;
J
Jiri Olsa 已提交
677
	u32 i;
678

J
Jiri Olsa 已提交
679 680 681
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
682

J
Jiri Olsa 已提交
683 684 685
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
686

J
Jiri Olsa 已提交
687 688
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
689

J
Jiri Olsa 已提交
690 691 692
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
693

J
Jiri Olsa 已提交
694 695 696
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
697

J
Jiri Olsa 已提交
698 699 700
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
701

J
Jiri Olsa 已提交
702
		ret = do_write_string(ff, n->cpus);
703
		if (ret < 0)
J
Jiri Olsa 已提交
704
			goto err;
705
	}
J
Jiri Olsa 已提交
706 707 708 709 710

	ret = 0;

err:
	numa_topology__delete(tp);
711 712 713
	return ret;
}

714 715 716 717 718 719 720 721 722 723 724 725
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

726
static int write_pmu_mappings(struct feat_fd *ff,
727
			      struct evlist *evlist __maybe_unused)
728 729
{
	struct perf_pmu *pmu = NULL;
730
	u32 pmu_num = 0;
731
	int ret;
732

733 734 735 736 737 738 739 740 741 742
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

743
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744 745
	if (ret < 0)
		return ret;
746 747 748 749

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
750

751
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752 753 754
		if (ret < 0)
			return ret;

755
		ret = do_write_string(ff, pmu->name);
756 757
		if (ret < 0)
			return ret;
758 759 760 761 762
	}

	return 0;
}

763 764 765 766 767 768 769 770 771 772 773 774
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
775
static int write_group_desc(struct feat_fd *ff,
776
			    struct evlist *evlist)
777 778
{
	u32 nr_groups = evlist->nr_groups;
779
	struct evsel *evsel;
780 781
	int ret;

782
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783 784 785
	if (ret < 0)
		return ret;

786
	evlist__for_each_entry(evlist, evsel) {
787
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788 789
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
790
			u32 nr_members = evsel->core.nr_members;
791

792
			ret = do_write_string(ff, name);
793 794 795
			if (ret < 0)
				return ret;

796
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 798 799
			if (ret < 0)
				return ret;

800
			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 802 803 804 805 806 807
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

847 848
/*
 * default get_cpuid(): nothing gets recorded
849
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850
 */
851
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852
{
853
	return ENOSYS; /* Not implemented */
854 855
}

856
static int write_cpuid(struct feat_fd *ff,
857
		       struct evlist *evlist __maybe_unused)
858 859 860 861 862
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
863 864
	if (ret)
		return -1;
865

866
	return do_write_string(ff, buffer);
867 868
}

869
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870
			      struct evlist *evlist __maybe_unused)
871 872 873 874
{
	return 0;
}

875
static int write_auxtrace(struct feat_fd *ff,
876
			  struct evlist *evlist __maybe_unused)
877
{
878 879 880
	struct perf_session *session;
	int err;

881 882 883
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

884
	session = container_of(ff->ph, struct perf_session, header);
885

886
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 888 889
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
890 891
}

892
static int write_clockid(struct feat_fd *ff,
893
			 struct evlist *evlist __maybe_unused)
894
{
895 896
	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
			sizeof(ff->ph->env.clock.clockid_res_ns));
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static int write_clock_data(struct feat_fd *ff,
			    struct evlist *evlist __maybe_unused)
{
	u64 *data64;
	u32 data32;
	int ret;

	/* version */
	data32 = 1;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* clockid */
	data32 = ff->ph->env.clock.clockid;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* TOD ref time */
	data64 = &ff->ph->env.clock.tod_ns;

	ret = do_write(ff, data64, sizeof(*data64));
	if (ret < 0)
		return ret;

	/* clockid ref time */
	data64 = &ff->ph->env.clock.clockid_ns;

	return do_write(ff, data64, sizeof(*data64));
}

933
static int write_dir_format(struct feat_fd *ff,
934
			    struct evlist *evlist __maybe_unused)
935 936 937 938 939 940 941 942 943 944 945 946 947
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

948 949
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
950
			       struct evlist *evlist __maybe_unused)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
#else // HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992
			       struct evlist *evlist __maybe_unused)
993 994 995 996 997
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

998
static int write_bpf_btf(struct feat_fd *ff,
999
			 struct evlist *evlist __maybe_unused)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1098
	cache->type = strim(cache->type);
1099 1100 1101

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1102
		zfree(&cache->type);
1103 1104 1105 1106
		return -1;
	}

	cache->size[len] = 0;
1107
	cache->size = strim(cache->size);
1108 1109 1110

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1111
		zfree(&cache->size);
1112
		zfree(&cache->type);
1113 1114 1115 1116
		return -1;
	}

	cache->map[len] = 0;
1117
	cache->map = strim(cache->map);
1118 1119 1120 1121 1122 1123 1124 1125
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

1126 1127 1128
#define MAX_CACHE_LVL 4

static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129 1130 1131 1132 1133
{
	u32 i, cnt = 0;
	u32 nr, cpu;
	u16 level;

1134
	nr = cpu__max_cpu();
1135 1136

	for (cpu = 0; cpu < nr; cpu++) {
1137
		for (level = 0; level < MAX_CACHE_LVL; level++) {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);
		}
	}
	*cntp = cnt;
	return 0;
}

1163
static int write_cache(struct feat_fd *ff,
1164
		       struct evlist *evlist __maybe_unused)
1165
{
1166 1167
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1168 1169 1170
	u32 cnt = 0, i, version = 1;
	int ret;

1171
	ret = build_caches(caches, &cnt);
1172 1173 1174 1175 1176
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1177
	ret = do_write(ff, &version, sizeof(u32));
1178 1179 1180
	if (ret < 0)
		goto out;

1181
	ret = do_write(ff, &cnt, sizeof(u32));
1182 1183 1184 1185 1186 1187 1188
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1189
			ret = do_write(ff, &c->v, sizeof(u32));	\
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1200
			ret = do_write_string(ff, (const char *) c->v);	\
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1216
static int write_stat(struct feat_fd *ff __maybe_unused,
1217
		      struct evlist *evlist __maybe_unused)
1218 1219 1220 1221
{
	return 0;
}

1222
static int write_sample_time(struct feat_fd *ff,
1223
			     struct evlist *evlist)
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1306 1307
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
1324 1325
			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
			closedir(dir);
1326
			return -1;
1327
		}
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359
			      struct evlist *evlist __maybe_unused)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1408
static int write_compressed(struct feat_fd *ff __maybe_unused,
1409
			    struct evlist *evlist __maybe_unused)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int write_cpu_pmu_caps(struct feat_fd *ff,
			      struct evlist *evlist __maybe_unused)
{
	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
	struct perf_pmu_caps *caps = NULL;
	int nr_caps;
	int ret;

	if (!cpu_pmu)
		return -ENOENT;

	nr_caps = perf_pmu__caps_parse(cpu_pmu);
	if (nr_caps < 0)
		return nr_caps;

	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
	if (ret < 0)
		return ret;

	list_for_each_entry(caps, &cpu_pmu->caps, list) {
		ret = do_write_string(ff, caps->name);
		if (ret < 0)
			return ret;

		ret = do_write_string(ff, caps->value);
		if (ret < 0)
			return ret;
	}

	return ret;
}

1464
static void print_hostname(struct feat_fd *ff, FILE *fp)
1465
{
1466
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467 1468
}

1469
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470
{
1471
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472 1473
}

1474
static void print_arch(struct feat_fd *ff, FILE *fp)
1475
{
1476
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477 1478
}

1479
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480
{
1481
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482 1483
}

1484
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485
{
1486 1487
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488 1489
}

1490
static void print_version(struct feat_fd *ff, FILE *fp)
1491
{
1492
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493 1494
}

1495
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496
{
1497
	int nr, i;
1498

1499
	nr = ff->ph->env.nr_cmdline;
1500 1501 1502

	fprintf(fp, "# cmdline : ");

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1521 1522 1523
	fputc('\n', fp);
}

1524
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525
{
1526 1527
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1528
	int nr, i;
1529 1530
	char *str;

1531 1532
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1533 1534

	for (i = 0; i < nr; i++) {
1535
		fprintf(fp, "# sibling sockets : %s\n", str);
1536
		str += strlen(str) + 1;
1537 1538
	}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1549 1550
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1551 1552 1553

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1554
		str += strlen(str) + 1;
1555
	}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1579 1580
}

1581 1582 1583
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584
		ff->ph->env.clock.clockid_res_ns * 1000);
1585 1586
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void print_clock_data(struct feat_fd *ff, FILE *fp)
{
	struct timespec clockid_ns;
	char tstr[64], date[64];
	struct timeval tod_ns;
	clockid_t clockid;
	struct tm ltime;
	u64 ref;

	if (!ff->ph->env.clock.enabled) {
		fprintf(fp, "# reference time disabled\n");
		return;
	}

	/* Compute TOD time. */
	ref = ff->ph->env.clock.tod_ns;
	tod_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
	tod_ns.tv_usec = ref / NSEC_PER_USEC;

	/* Compute clockid time. */
	ref = ff->ph->env.clock.clockid_ns;
	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
	clockid_ns.tv_nsec = ref;

	clockid = ff->ph->env.clock.clockid;

	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
		snprintf(tstr, sizeof(tstr), "<error>");
	else {
		strftime(date, sizeof(date), "%F %T", &ltime);
		scnprintf(tstr, sizeof(tstr), "%s.%06d",
			  date, (int) tod_ns.tv_usec);
	}

	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
		    clockid_name(clockid));
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1657 1658 1659

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1660 1661 1662 1663 1664
	}

	up_read(&env->bpf_progs.lock);
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}

1687
static void free_event_desc(struct evsel *events)
1688
{
1689
	struct evsel *evsel;
1690 1691 1692 1693

	if (!events)
		return;

1694
	for (evsel = events; evsel->core.attr.size; evsel++) {
1695
		zfree(&evsel->name);
1696
		zfree(&evsel->core.id);
1697 1698 1699 1700 1701
	}

	free(events);
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static bool perf_attr_check(struct perf_event_attr *attr)
{
	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
		pr_warning("Reserved bits are set unexpectedly. "
			   "Please update perf tool.\n");
		return false;
	}

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
		pr_warning("Unknown sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->sample_type);
		return false;
	}

	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
		pr_warning("Unknown read format (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->read_format);
		return false;
	}

	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
		pr_warning("Unknown branch sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->branch_sample_type);

		return false;
	}

	return true;
}

1736
static struct evsel *read_event_desc(struct feat_fd *ff)
1737
{
1738
	struct evsel *evsel, *events = NULL;
1739
	u64 *id;
1740
	void *buf = NULL;
1741 1742
	u32 nre, sz, nr, i, j;
	size_t msz;
1743 1744

	/* number of events */
1745
	if (do_read_u32(ff, &nre))
1746 1747
		goto error;

1748
	if (do_read_u32(ff, &sz))
1749 1750
		goto error;

1751
	/* buffer to hold on file attr struct */
1752 1753 1754 1755
	buf = malloc(sz);
	if (!buf)
		goto error;

1756
	/* the last event terminates with evsel->core.attr.size == 0: */
1757 1758 1759 1760
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1761
	msz = sizeof(evsel->core.attr);
1762
	if (sz < msz)
1763 1764
		msz = sz;

1765 1766
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1767

1768 1769 1770 1771
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1772
		if (__do_read(ff, buf, sz))
1773 1774
			goto error;

1775
		if (ff->ph->needs_swap)
1776 1777
			perf_event__attr_swap(buf);

1778
		memcpy(&evsel->core.attr, buf, msz);
1779

1780 1781 1782
		if (!perf_attr_check(&evsel->core.attr))
			goto error;

1783
		if (do_read_u32(ff, &nr))
1784 1785
			goto error;

1786
		if (ff->ph->needs_swap)
1787
			evsel->needs_swap = true;
1788

1789
		evsel->name = do_read_string(ff);
1790 1791
		if (!evsel->name)
			goto error;
1792 1793 1794 1795 1796 1797 1798

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1799
		evsel->core.ids = nr;
1800
		evsel->core.id = id;
1801 1802

		for (j = 0 ; j < nr; j++) {
1803
			if (do_read_u64(ff, id))
1804 1805 1806 1807 1808
				goto error;
			id++;
		}
	}
out:
1809
	free(buf);
1810 1811
	return events;
error:
1812
	free_event_desc(events);
1813 1814 1815 1816
	events = NULL;
	goto out;
}

1817
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818
				void *priv __maybe_unused)
1819 1820 1821 1822
{
	return fprintf(fp, ", %s = %s", name, val);
}

1823
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824
{
1825
	struct evsel *evsel, *events;
1826 1827 1828
	u32 j;
	u64 *id;

1829 1830 1831 1832 1833
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1834 1835 1836 1837 1838
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1839
	for (evsel = events; evsel->core.attr.size; evsel++) {
1840
		fprintf(fp, "# event : name = %s, ", evsel->name);
1841

1842
		if (evsel->core.ids) {
1843
			fprintf(fp, ", id = {");
1844
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845 1846 1847 1848
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1849
			fprintf(fp, " }");
1850
		}
1851

1852
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853

1854 1855
		fputc('\n', fp);
	}
1856 1857

	free_event_desc(events);
1858
	ff->events = NULL;
1859 1860
}

1861
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862
{
1863
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864 1865
}

1866
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867
{
1868 1869
	int i;
	struct numa_node *n;
1870

1871 1872
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1873 1874 1875

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1876
			n->node, n->mem_total, n->mem_free);
1877

1878 1879
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1880 1881 1882
	}
}

1883
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884
{
1885
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886 1887
}

1888
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889 1890 1891 1892
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1893
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894 1895 1896 1897
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1898
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899 1900 1901 1902
{
	fprintf(fp, "# contains stat data\n");
}

1903
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904 1905 1906 1907
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1908
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909
		fprintf(fp, "#  ");
1910
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911 1912 1913
	}
}

1914 1915 1916 1917 1918 1919 1920
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
{
	const char *delimiter = "# cpu pmu capabilities: ";
	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
	char *str;

	if (!nr_caps) {
		fprintf(fp, "# cpu pmu capabilities: not available\n");
		return;
	}

	str = ff->ph->env.cpu_pmu_caps;
	while (nr_caps--) {
		fprintf(fp, "%s%s", delimiter, str);
		delimiter = ", ";
		str += strlen(str) + 1;
	}

	fprintf(fp, "\n");
}

1942
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943 1944
{
	const char *delimiter = "# pmu mappings: ";
1945
	char *str, *tmp;
1946 1947 1948
	u32 pmu_num;
	u32 type;

1949
	pmu_num = ff->ph->env.nr_pmu_mappings;
1950 1951 1952 1953 1954
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1955
	str = ff->ph->env.pmu_mappings;
1956

1957
	while (pmu_num) {
1958 1959 1960 1961 1962 1963
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964

1965
		delimiter = ", ";
1966 1967
		str += strlen(str) + 1;
		pmu_num--;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1978
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979 1980
{
	struct perf_session *session;
1981
	struct evsel *evsel;
1982 1983
	u32 nr = 0;

1984
	session = container_of(ff->ph, struct perf_session, header);
1985

1986
	evlist__for_each_entry(session->evlist, evsel) {
1987
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989

1990
			nr = evsel->core.nr_members - 1;
1991
		} else if (nr) {
1992
			fprintf(fp, ",%s", evsel__name(evsel));
1993 1994 1995 1996 1997 1998 1999

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

2051
static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052 2053 2054 2055 2056
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
2057
	u16 cpumode;
2058
	struct dso *dso;
2059
	enum dso_space_type dso_space;
2060 2061 2062 2063 2064

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

2065
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066

2067
	switch (cpumode) {
2068
	case PERF_RECORD_MISC_KERNEL:
2069
		dso_space = DSO_SPACE__KERNEL;
2070 2071
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
2072
		dso_space = DSO_SPACE__KERNEL_GUEST;
2073 2074 2075
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
2076
		dso_space = DSO_SPACE__USER;
2077 2078 2079 2080 2081
		break;
	default:
		goto out;
	}

2082
	dso = machine__findnew_dso(machine, filename);
2083
	if (dso != NULL) {
2084
		char sbuild_id[SBUILD_ID_SIZE];
2085
		struct build_id bid;
2086
		size_t size = BUILD_ID_SIZE;
2087

2088 2089 2090 2091
		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
			size = bev->size;

		build_id__init(&bid, bev->data, size);
2092
		dso__set_build_id(dso, &bid);
2093

2094
		if (dso_space != DSO_SPACE__USER) {
2095 2096 2097
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2098
				dso__set_module_info(dso, &m, machine);
2099

2100
			dso->kernel = dso_space;
2101 2102
			free(m.name);
		}
2103

2104
		build_id__sprintf(&dso->bid, sbuild_id);
2105 2106
		pr_debug("build id event received for %s: %s [%zu]\n",
			 dso->long_name, sbuild_id, size);
2107
		dso__put(dso);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
2121
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2122 2123
		char			   filename[0];
	} old_bev;
2124
	struct perf_record_header_build_id bev;
2125 2126 2127 2128 2129 2130
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

2131
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2132 2133 2134 2135 2136 2137
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
2138
		if (readn(input, filename, len) != len)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2165
	struct perf_record_header_build_id bev;
2166 2167 2168 2169 2170 2171 2172
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2173
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2174 2175 2176 2177 2178 2179
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2180
		if (readn(input, filename, len) != len)
2181 2182 2183 2184 2185 2186
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2187
		 * Added a field to struct perf_record_header_build_id that broke the file
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2210 2211
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2212
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2213
{\
2214
	ff->ph->env.__feat_env = do_read_string(ff); \
2215
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2216 2217 2218 2219 2220 2221 2222 2223 2224
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2225
static int process_tracing_data(struct feat_fd *ff, void *data)
2226
{
2227 2228
	ssize_t ret = trace_report(ff->fd, data, false);

2229
	return ret < 0 ? -1 : 0;
2230 2231
}

2232
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2233
{
2234
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2235 2236 2237 2238
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2239
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2240
{
2241 2242
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2243

2244
	ret = do_read_u32(ff, &nr_cpus_avail);
2245 2246
	if (ret)
		return ret;
2247

2248
	ret = do_read_u32(ff, &nr_cpus_online);
2249 2250
	if (ret)
		return ret;
2251 2252
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2253 2254 2255
	return 0;
}

2256
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2257
{
2258 2259
	u64 total_mem;
	int ret;
2260

2261
	ret = do_read_u64(ff, &total_mem);
2262
	if (ret)
2263
		return -1;
2264
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2265 2266 2267
	return 0;
}

2268
static struct evsel *
2269
perf_evlist__find_by_index(struct evlist *evlist, int idx)
2270
{
2271
	struct evsel *evsel;
2272

2273
	evlist__for_each_entry(evlist, evsel) {
2274 2275 2276 2277 2278 2279 2280 2281
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

static void
2282
perf_evlist__set_event_name(struct evlist *evlist,
2283
			    struct evsel *event)
2284
{
2285
	struct evsel *evsel;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

	if (!event->name)
		return;

	evsel = perf_evlist__find_by_index(evlist, event->idx);
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2301
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2302
{
2303
	struct perf_session *session;
2304
	struct evsel *evsel, *events = read_event_desc(ff);
2305 2306 2307 2308

	if (!events)
		return 0;

2309
	session = container_of(ff->ph, struct perf_session, header);
2310

2311
	if (session->data->is_pipe) {
2312 2313 2314 2315 2316
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2317
	for (evsel = events; evsel->core.attr.size; evsel++)
2318 2319
		perf_evlist__set_event_name(session->evlist, evsel);

2320
	if (!session->data->is_pipe)
2321
		free_event_desc(events);
2322 2323 2324 2325

	return 0;
}

2326
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2327
{
2328 2329
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2330

2331
	if (do_read_u32(ff, &nr))
2332 2333
		return -1;

2334
	ff->ph->env.nr_cmdline = nr;
2335

2336
	cmdline = zalloc(ff->size + nr + 1);
2337 2338 2339 2340 2341 2342
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2343 2344

	for (i = 0; i < nr; i++) {
2345
		str = do_read_string(ff);
2346 2347 2348
		if (!str)
			goto error;

2349 2350 2351
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2352 2353
		free(str);
	}
2354 2355
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2356 2357 2358
	return 0;

error:
2359 2360
	free(argv);
	free(cmdline);
2361 2362 2363
	return -1;
}

2364
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2365 2366 2367 2368
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2369
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2370
	u64 size = 0;
2371
	struct perf_header *ph = ff->ph;
2372
	bool do_core_id_test = true;
2373 2374 2375 2376

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2377

2378
	if (do_read_u32(ff, &nr))
2379
		goto free_cpu;
2380 2381

	ph->env.nr_sibling_cores = nr;
2382
	size += sizeof(u32);
2383 2384
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2385 2386

	for (i = 0; i < nr; i++) {
2387
		str = do_read_string(ff);
2388 2389 2390 2391
		if (!str)
			goto error;

		/* include a NULL character at the end */
2392 2393
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2394
		size += string_size(str);
2395 2396 2397 2398
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2399
	if (do_read_u32(ff, &nr))
2400 2401 2402
		return -1;

	ph->env.nr_sibling_threads = nr;
2403
	size += sizeof(u32);
2404 2405

	for (i = 0; i < nr; i++) {
2406
		str = do_read_string(ff);
2407 2408 2409 2410
		if (!str)
			goto error;

		/* include a NULL character at the end */
2411 2412
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2413
		size += string_size(str);
2414 2415 2416
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2417 2418 2419 2420 2421

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2422
	if (ff->size <= size) {
2423 2424 2425 2426
		zfree(&ph->env.cpu);
		return 0;
	}

2427 2428 2429
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2430
	 * AArch64 is the same.
2431
	 */
2432 2433
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2434 2435
		do_core_id_test = false;

2436
	for (i = 0; i < (u32)cpu_nr; i++) {
2437
		if (do_read_u32(ff, &nr))
2438 2439 2440
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2441
		size += sizeof(u32);
2442

2443
		if (do_read_u32(ff, &nr))
2444 2445
			goto free_cpu;

2446
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2447 2448 2449 2450 2451 2452
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2487 2488
	}

2489 2490 2491 2492
	return 0;

error:
	strbuf_release(&sb);
2493 2494
free_cpu:
	zfree(&ph->env.cpu);
2495 2496 2497
	return -1;
}

2498
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2499
{
2500 2501
	struct numa_node *nodes, *n;
	u32 nr, i;
2502 2503 2504
	char *str;

	/* nr nodes */
2505
	if (do_read_u32(ff, &nr))
2506
		return -1;
2507

2508 2509 2510
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2511 2512

	for (i = 0; i < nr; i++) {
2513 2514
		n = &nodes[i];

2515
		/* node number */
2516
		if (do_read_u32(ff, &n->node))
2517 2518
			goto error;

2519
		if (do_read_u64(ff, &n->mem_total))
2520 2521
			goto error;

2522
		if (do_read_u64(ff, &n->mem_free))
2523 2524
			goto error;

2525
		str = do_read_string(ff);
2526 2527 2528
		if (!str)
			goto error;

2529
		n->map = perf_cpu_map__new(str);
2530
		if (!n->map)
2531
			goto error;
2532

2533 2534
		free(str);
	}
2535 2536
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2537 2538 2539
	return 0;

error:
2540
	free(nodes);
2541 2542 2543
	return -1;
}

2544
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2545 2546 2547 2548 2549 2550
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2551
	if (do_read_u32(ff, &pmu_num))
2552 2553 2554 2555 2556 2557 2558
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2559
	ff->ph->env.nr_pmu_mappings = pmu_num;
2560 2561
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2562 2563

	while (pmu_num) {
2564
		if (do_read_u32(ff, &type))
2565 2566
			goto error;

2567
		name = do_read_string(ff);
2568 2569 2570
		if (!name)
			goto error;

2571 2572
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2573
		/* include a NULL character at the end */
2574 2575
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2576

2577
		if (!strcmp(name, "msr"))
2578
			ff->ph->env.msr_pmu_type = type;
2579

2580 2581 2582
		free(name);
		pmu_num--;
	}
2583
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2584 2585 2586 2587 2588 2589 2590
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2591
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2592 2593 2594 2595
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2596
	struct evsel *evsel, *leader = NULL;
2597 2598 2599 2600 2601 2602
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2603
	if (do_read_u32(ff, &nr_groups))
2604 2605
		return -1;

2606
	ff->ph->env.nr_groups = nr_groups;
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2617
		desc[i].name = do_read_string(ff);
2618 2619 2620
		if (!desc[i].name)
			goto out_free;

2621
		if (do_read_u32(ff, &desc[i].leader_idx))
2622 2623
			goto out_free;

2624
		if (do_read_u32(ff, &desc[i].nr_members))
2625 2626 2627 2628 2629 2630
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2631
	session = container_of(ff->ph, struct perf_session, header);
2632 2633 2634
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2635
	evlist__for_each_entry(session->evlist, evsel) {
2636 2637 2638
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2639
			if (strcmp(desc[i].name, "{anon_group}")) {
2640
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2641 2642
				desc[i].name = NULL;
			}
2643
			evsel->core.nr_members = desc[i].nr_members;
2644 2645 2646 2647 2648 2649 2650

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2651
			nr = evsel->core.nr_members - 1;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2668
	for (i = 0; i < nr_groups; i++)
2669
		zfree(&desc[i].name);
2670 2671 2672 2673 2674
	free(desc);

	return ret;
}

2675
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2676 2677 2678 2679
{
	struct perf_session *session;
	int err;

2680
	session = container_of(ff->ph, struct perf_session, header);
2681

2682
	err = auxtrace_index__process(ff->fd, ff->size, session,
2683
				      ff->ph->needs_swap);
2684 2685 2686 2687 2688
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2689
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2690 2691 2692 2693
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2694
	if (do_read_u32(ff, &version))
2695 2696 2697 2698 2699
		return -1;

	if (version != 1)
		return -1;

2700
	if (do_read_u32(ff, &cnt))
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2711
			if (do_read_u32(ff, &c.v))\
2712 2713 2714 2715 2716 2717 2718 2719
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2720
		#define _R(v)					\
2721
			c.v = do_read_string(ff);		\
2722
			if (!c.v)				\
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2733 2734
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2735 2736 2737 2738 2739 2740
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2814 2815 2816
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
2817
	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2818 2819 2820 2821 2822
		return -1;

	return 0;
}

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
static int process_clock_data(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	u32 data32;
	u64 data64;

	/* version */
	if (do_read_u32(ff, &data32))
		return -1;

	if (data32 != 1)
		return -1;

	/* clockid */
	if (do_read_u32(ff, &data32))
		return -1;

	ff->ph->env.clock.clockid = data32;

	/* TOD ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.tod_ns = data64;

	/* clockid ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.clockid_ns = data64;
	ff->ph->env.clock.enabled = true;
	return 0;
}

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2933
	up_write(&env->bpf_progs.lock);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}
#else // HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
{
	return 0;
}
#endif // HAVE_LIBBPF_SUPPORT

2948 2949 2950
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2951
	struct btf_node *node = NULL;
2952
	u32 count, i;
2953
	int err = -1;
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2969
			goto out;
2970
		if (do_read_u32(ff, &data_size))
2971
			goto out;
2972 2973 2974

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2975
			goto out;
2976 2977 2978 2979

		node->id = id;
		node->data_size = data_size;

2980 2981
		if (__do_read(ff, node->data, data_size))
			goto out;
2982 2983

		perf_env__insert_btf(env, node);
2984
		node = NULL;
2985 2986
	}

2987 2988
	err = 0;
out:
2989
	up_write(&env->bpf_progs.lock);
2990 2991
	free(node);
	return err;
2992 2993
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
static int process_cpu_pmu_caps(struct feat_fd *ff,
				void *data __maybe_unused)
{
	char *name, *value;
	struct strbuf sb;
	u32 nr_caps;

	if (do_read_u32(ff, &nr_caps))
		return -1;

	if (!nr_caps) {
		pr_debug("cpu pmu capabilities not available\n");
		return 0;
	}

	ff->ph->env.nr_cpu_pmu_caps = nr_caps;

	if (strbuf_init(&sb, 128) < 0)
		return -1;

	while (nr_caps--) {
		name = do_read_string(ff);
		if (!name)
			goto error;

		value = do_read_string(ff);
		if (!value)
			goto free_name;

		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
			goto free_value;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, "", 1) < 0)
			goto free_value;

		if (!strcmp(name, "branches"))
			ff->ph->env.max_branches = atoi(value);

		free(value);
		free(name);
	}
	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
	return 0;

free_value:
	free(value);
free_name:
	free(name);
error:
	strbuf_release(&sb);
	return -1;
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
3087 3088

/* feature_ops not implemented: */
3089 3090
#define print_tracing_data	NULL
#define print_build_id		NULL
3091

3092 3093 3094
#define process_branch_stack	NULL
#define process_stat		NULL

3095 3096
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3097

3098
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3115
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3116 3117 3118
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
3119
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3120
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3121
	FEAT_OPR(CLOCKID,	clockid,	false),
3122
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3123 3124
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3125
	FEAT_OPR(COMPRESSED,	compressed,	false),
3126
	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3127
	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
3140
	struct feat_fd ff;
3141 3142 3143 3144 3145 3146

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
3147
	if (feat >= HEADER_LAST_FEATURE) {
3148
		pr_warning("unknown feature %d\n", feat);
3149
		return 0;
3150 3151 3152 3153
	}
	if (!feat_ops[feat].print)
		return 0;

3154 3155 3156 3157 3158
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

3159
	if (!feat_ops[feat].full_only || hd->full)
3160
		feat_ops[feat].print(&ff, hd->fp);
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
3172
	int fd = perf_data__fd(session->data);
3173
	struct stat st;
3174
	time_t stctime;
J
Jiri Olsa 已提交
3175
	int ret, bit;
3176

3177 3178 3179
	hd.fp = fp;
	hd.full = full;

3180 3181 3182 3183
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

3184
	stctime = st.st_mtime;
3185
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3186 3187 3188 3189 3190

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3191

3192 3193
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
3194

3195
	if (session->data->is_pipe)
3196 3197
		return 0;

J
Jiri Olsa 已提交
3198 3199 3200 3201 3202 3203 3204
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
3205 3206 3207
	return 0;
}

3208
static int do_write_feat(struct feat_fd *ff, int type,
3209
			 struct perf_file_section **p,
3210
			 struct evlist *evlist)
3211 3212 3213 3214
{
	int err;
	int ret = 0;

3215
	if (perf_header__has_feat(ff->ph, type)) {
3216 3217
		if (!feat_ops[type].write)
			return -1;
3218

3219 3220 3221
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

3222
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3223

3224
		err = feat_ops[type].write(ff, evlist);
3225
		if (err < 0) {
3226
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3227 3228

			/* undo anything written */
3229
			lseek(ff->fd, (*p)->offset, SEEK_SET);
3230 3231 3232

			return -1;
		}
3233
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3234 3235 3236 3237 3238
		(*p)++;
	}
	return ret;
}

3239
static int perf_header__adds_write(struct perf_header *header,
3240
				   struct evlist *evlist, int fd)
3241
{
3242
	int nr_sections;
3243
	struct feat_fd ff;
3244
	struct perf_file_section *feat_sec, *p;
3245 3246
	int sec_size;
	u64 sec_start;
3247
	int feat;
3248
	int err;
3249

3250 3251 3252 3253 3254
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3255
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3256
	if (!nr_sections)
3257
		return 0;
3258

3259
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3260 3261
	if (feat_sec == NULL)
		return -ENOMEM;
3262 3263 3264

	sec_size = sizeof(*feat_sec) * nr_sections;

3265
	sec_start = header->feat_offset;
3266
	lseek(fd, sec_start + sec_size, SEEK_SET);
3267

3268
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3269
		if (do_write_feat(&ff, feat, &p, evlist))
3270 3271
			perf_header__clear_feat(header, feat);
	}
3272

3273
	lseek(fd, sec_start, SEEK_SET);
3274 3275
	/*
	 * may write more than needed due to dropped feature, but
3276
	 * this is okay, reader will skip the missing entries
3277
	 */
3278
	err = do_write(&ff, feat_sec, sec_size);
3279 3280
	if (err < 0)
		pr_debug("failed to write feature section\n");
3281
	free(feat_sec);
3282
	return err;
3283
}
3284

3285 3286 3287
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3288
	struct feat_fd ff;
3289 3290
	int err;

3291 3292
	ff = (struct feat_fd){ .fd = fd };

3293 3294 3295 3296 3297
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3298
	err = do_write(&ff, &f_header, sizeof(f_header));
3299 3300 3301 3302 3303 3304 3305 3306
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3307
int perf_session__write_header(struct perf_session *session,
3308
			       struct evlist *evlist,
3309
			       int fd, bool at_exit)
3310 3311 3312
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3313
	struct perf_header *header = &session->header;
3314
	struct evsel *evsel;
3315
	struct feat_fd ff;
3316
	u64 attr_offset;
3317
	int err;
3318

3319
	ff = (struct feat_fd){ .fd = fd};
3320 3321
	lseek(fd, sizeof(f_header), SEEK_SET);

3322
	evlist__for_each_entry(session->evlist, evsel) {
3323
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3324
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3325 3326 3327 3328
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3329 3330
	}

3331
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3332

3333
	evlist__for_each_entry(evlist, evsel) {
3334
		f_attr = (struct perf_file_attr){
3335
			.attr = evsel->core.attr,
3336
			.ids  = {
3337
				.offset = evsel->id_offset,
3338
				.size   = evsel->core.ids * sizeof(u64),
3339 3340
			}
		};
3341
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3342 3343 3344 3345
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3346 3347
	}

3348 3349
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3350
	header->feat_offset = header->data_offset + header->data_size;
3351

3352
	if (at_exit) {
3353
		err = perf_header__adds_write(header, evlist, fd);
3354 3355 3356
		if (err < 0)
			return err;
	}
3357

3358 3359 3360 3361 3362
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3363
			.offset = attr_offset,
3364
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3365 3366
		},
		.data = {
3367 3368
			.offset = header->data_offset,
			.size	= header->data_size,
3369
		},
3370
		/* event_types is ignored, store zeros */
3371 3372
	};

3373
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3374

3375
	lseek(fd, 0, SEEK_SET);
3376
	err = do_write(&ff, &f_header, sizeof(f_header));
3377 3378 3379 3380
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3381
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3382

3383
	return 0;
3384 3385
}

3386
static int perf_header__getbuffer64(struct perf_header *header,
3387 3388
				    int fd, void *buf, size_t size)
{
3389
	if (readn(fd, buf, size) <= 0)
3390 3391
		return -1;

3392
	if (header->needs_swap)
3393 3394 3395 3396 3397
		mem_bswap_64(buf, size);

	return 0;
}

3398
int perf_header__process_sections(struct perf_header *header, int fd,
3399
				  void *data,
3400
				  int (*process)(struct perf_file_section *section,
3401 3402
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3403
{
3404
	struct perf_file_section *feat_sec, *sec;
3405 3406
	int nr_sections;
	int sec_size;
3407 3408
	int feat;
	int err;
3409

3410
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3411
	if (!nr_sections)
3412
		return 0;
3413

3414
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3415
	if (!feat_sec)
3416
		return -1;
3417 3418 3419

	sec_size = sizeof(*feat_sec) * nr_sections;

3420
	lseek(fd, header->feat_offset, SEEK_SET);
3421

3422 3423
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3424
		goto out_free;
3425

3426 3427 3428 3429
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3430
	}
3431
	err = 0;
3432
out_free:
3433 3434
	free(feat_sec);
	return err;
3435
}
3436

3437 3438 3439
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3440
	[2] = PERF_ATTR_SIZE_VER2,
3441
	[3] = PERF_ATTR_SIZE_VER3,
3442
	[4] = PERF_ATTR_SIZE_VER4,
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3453
{
3454 3455
	uint64_t ref_size, attr_size;
	int i;
3456

3457 3458 3459 3460 3461 3462 3463
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3464

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3500 3501 3502

			ph->needs_swap = true;
		}
3503
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3504 3505
		return 0;
	}
3506 3507 3508
	return -1;
}

F
Feng Tang 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3519 3520 3521 3522 3523 3524 3525 3526
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3527
		ph->version = PERF_HEADER_VERSION_1;
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3539
	ph->version = PERF_HEADER_VERSION_2;
3540

3541 3542
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3543 3544
		return 0;

3545 3546
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3547 3548 3549 3550 3551 3552 3553
		return -1;

	ph->needs_swap = true;

	return 0;
}

3554
int perf_file_header__read(struct perf_file_header *header,
3555 3556
			   struct perf_header *ph, int fd)
{
3557
	ssize_t ret;
3558

3559 3560
	lseek(fd, 0, SEEK_SET);

3561 3562
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3563 3564
		return -1;

3565 3566 3567
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3568
		return -1;
3569
	}
3570

3571
	if (ph->needs_swap) {
3572
		mem_bswap_64(header, offsetof(struct perf_file_header,
3573
			     adds_features));
3574 3575
	}

3576
	if (header->size != sizeof(*header)) {
3577
		/* Support the previous format */
3578 3579
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3580 3581
		else
			return -1;
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3598 3599
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3600 3601

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3602 3603 3604 3605 3606 3607 3608
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3609 3610 3611 3612 3613 3614
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3615
	}
3616

3617
	memcpy(&ph->adds_features, &header->adds_features,
3618
	       sizeof(ph->adds_features));
3619

3620 3621
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3622
	ph->feat_offset  = header->data.offset + header->data.size;
3623 3624 3625
	return 0;
}

3626
static int perf_file_section__process(struct perf_file_section *section,
3627
				      struct perf_header *ph,
3628
				      int feat, int fd, void *data)
3629
{
3630
	struct feat_fd fdd = {
3631 3632
		.fd	= fd,
		.ph	= ph,
3633 3634
		.size	= section->size,
		.offset	= section->offset,
3635 3636
	};

3637
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3638
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3639
			  "%d, continuing...\n", section->offset, feat);
3640 3641 3642
		return 0;
	}

3643 3644 3645 3646 3647
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3648 3649
	if (!feat_ops[feat].process)
		return 0;
3650

3651
	return feat_ops[feat].process(&fdd, data);
3652
}
3653

3654
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
T
Tom Zanussi 已提交
3655 3656
				       struct perf_header *ph, int fd,
				       bool repipe)
3657
{
3658 3659 3660 3661
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3662
	ssize_t ret;
3663 3664 3665 3666 3667

	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
		return -1;

3668 3669
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3670
		return -1;
3671 3672 3673 3674
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3675

3676
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3677 3678
		return -1;

3679 3680 3681
	return 0;
}

3682
static int perf_header__read_pipe(struct perf_session *session)
3683
{
3684
	struct perf_header *header = &session->header;
3685 3686
	struct perf_pipe_file_header f_header;

3687
	if (perf_file_header__read_pipe(&f_header, header,
3688
					perf_data__fd(session->data),
T
Tom Zanussi 已提交
3689
					session->repipe) < 0) {
3690 3691 3692 3693
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

3694
	return f_header.size == sizeof(f_header) ? 0 : -1;
3695 3696
}

3697 3698 3699 3700 3701 3702
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3703
	ssize_t ret;
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3717

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3743
static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3744
						struct tep_handle *pevent)
3745
{
3746
	struct tep_event *event;
3747 3748
	char bf[128];

3749 3750 3751 3752
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3753 3754 3755 3756 3757
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3758
	event = tep_find_event(pevent, evsel->core.attr.config);
3759
	if (event == NULL) {
3760
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3761
		return -1;
3762
	}
3763

3764 3765 3766 3767 3768 3769
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3770

3771
	evsel->tp_format = event;
3772 3773 3774
	return 0;
}

3775
static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3776
						  struct tep_handle *pevent)
3777
{
3778
	struct evsel *pos;
3779

3780
	evlist__for_each_entry(evlist, pos) {
3781
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3782
		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3783 3784 3785 3786 3787 3788
			return -1;
	}

	return 0;
}

3789
int perf_session__read_header(struct perf_session *session)
3790
{
3791
	struct perf_data *data = session->data;
3792
	struct perf_header *header = &session->header;
3793
	struct perf_file_header	f_header;
3794 3795
	struct perf_file_attr	f_attr;
	u64			f_id;
3796
	int nr_attrs, nr_ids, i, j, err;
3797
	int fd = perf_data__fd(data);
3798

3799
	session->evlist = evlist__new();
3800 3801 3802
	if (session->evlist == NULL)
		return -ENOMEM;

3803
	session->evlist->env = &header->env;
3804
	session->machines.host.env = &header->env;
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814

	/*
	 * We can read 'pipe' data event from regular file,
	 * check for the pipe header regardless of source.
	 */
	err = perf_header__read_pipe(session);
	if (!err || (err && perf_data__is_pipe(data))) {
		data->is_pipe = true;
		return err;
	}
3815

3816
	if (perf_file_header__read(&f_header, header, fd) < 0)
3817
		return -EINVAL;
3818

3819 3820 3821 3822 3823 3824 3825 3826 3827
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3828
			   data->file.path);
3829 3830
	}

3831 3832 3833 3834 3835 3836 3837
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3838
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3839 3840 3841
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3842
		struct evsel *evsel;
3843
		off_t tmp;
3844

3845
		if (read_attr(fd, header, &f_attr) < 0)
3846
			goto out_errno;
3847

3848 3849 3850
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3851
			perf_event__attr_swap(&f_attr.attr);
3852
		}
3853

3854
		tmp = lseek(fd, 0, SEEK_CUR);
3855
		evsel = evsel__new(&f_attr.attr);
3856

3857 3858
		if (evsel == NULL)
			goto out_delete_evlist;
3859 3860

		evsel->needs_swap = header->needs_swap;
3861 3862
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3863
		 * entry gets purged too at evlist__delete().
3864
		 */
3865
		evlist__add(session->evlist, evsel);
3866 3867

		nr_ids = f_attr.ids.size / sizeof(u64);
3868 3869 3870 3871 3872
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3873
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3874 3875
			goto out_delete_evlist;

3876 3877 3878
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3879
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3880
				goto out_errno;
3881

3882
			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3883
		}
3884

3885 3886 3887
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3888
	perf_header__process_sections(header, fd, &session->tevent,
3889
				      perf_file_section__process);
3890

3891
	if (perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
3892
						   session->tevent.pevent))
3893 3894
		goto out_delete_evlist;

3895
	return 0;
3896 3897
out_errno:
	return -errno;
3898 3899

out_delete_evlist:
3900
	evlist__delete(session->evlist);
3901 3902
	session->evlist = NULL;
	return -ENOMEM;
3903
}
3904

3905 3906
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3907
{
3908
	struct perf_tool *tool = session->tool;
3909
	struct feat_fd ff = { .fd = 0 };
3910
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3911 3912 3913 3914 3915 3916 3917
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3918
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3919 3920 3921 3922 3923 3924 3925 3926
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3927
	ff.size = event->header.size - sizeof(*fe);
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3947 3948
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3949 3950 3951
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3952
	struct perf_cpu_map *map;
3953 3954
	size_t ret;

3955
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3956 3957 3958

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3959
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3960 3961 3962 3963 3964 3965 3966 3967 3968
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3969
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3985

3986 3987
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3988
			     struct evlist **pevlist)
3989
{
3990
	u32 i, ids, n_ids;
3991
	struct evsel *evsel;
3992
	struct evlist *evlist = *pevlist;
3993

3994
	if (evlist == NULL) {
3995
		*pevlist = evlist = evlist__new();
3996
		if (evlist == NULL)
3997 3998 3999
			return -ENOMEM;
	}

4000
	evsel = evsel__new(&event->attr.attr);
4001
	if (evsel == NULL)
4002 4003
		return -ENOMEM;

4004
	evlist__add(evlist, evsel);
4005

4006 4007
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
4008
	n_ids = ids / sizeof(u64);
4009 4010 4011 4012 4013
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
4014
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4015
		return -ENOMEM;
4016 4017

	for (i = 0; i < n_ids; i++) {
4018
		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4019 4020 4021 4022
	}

	return 0;
}
4023

4024 4025
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4026
				     struct evlist **pevlist)
4027
{
4028 4029 4030
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
4031
	struct evlist *evlist;
4032
	struct evsel *evsel;
4033
	struct perf_cpu_map *map;
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

	evsel = perf_evlist__id2evsel(evlist, ev->id);
	if (evsel == NULL)
		return -EINVAL;

4044 4045 4046
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4047
		break;
4048 4049 4050
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4051
	case PERF_EVENT_UPDATE__SCALE:
4052
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4053
		evsel->scale = ev_scale->scale;
4054
		break;
4055
	case PERF_EVENT_UPDATE__CPUS:
4056
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4057 4058 4059

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
4060
			evsel->core.own_cpus = map;
4061 4062
		else
			pr_err("failed to get event_update cpus\n");
4063 4064 4065 4066
	default:
		break;
	}

4067 4068 4069
	return 0;
}

4070 4071
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4072
{
4073
	ssize_t size_read, padding, size = event->tracing_data.size;
4074
	int fd = perf_data__fd(session->data);
4075 4076
	char buf[BUFSIZ];

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	/*
	 * The pipe fd is already in proper place and in any case
	 * we can't move it, and we'd screw the case where we read
	 * 'pipe' data from regular file. The trace_report reads
	 * data from 'fd' so we need to set it directly behind the
	 * event, where the tracing data starts.
	 */
	if (!perf_data__is_pipe(session->data)) {
		off_t offset = lseek(fd, 0, SEEK_CUR);

		/* setup for reading amidst mmap */
		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
		      SEEK_SET);
	}
4091

J
Jiri Olsa 已提交
4092
	size_read = trace_report(fd, &session->tevent,
4093
				 session->repipe);
4094
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4095

4096
	if (readn(fd, buf, padding) < 0) {
4097 4098 4099
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4100 4101
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4102 4103 4104 4105
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4106
	}
4107

4108 4109 4110 4111
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4112

4113
	perf_evlist__prepare_tracepoint_events(session->evlist,
J
Jiri Olsa 已提交
4114
					       session->tevent.pevent);
4115

4116 4117
	return size_read + padding;
}
4118

4119 4120
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4121
{
4122 4123
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4124
				 session);
4125 4126
	return 0;
}