intel_lrc.c 73.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
	return rq->priotree.priority;
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
}

189
/**
190 191 192
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
193
 * @engine: Engine the descriptor will be used with
194
 *
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203 204 205 206
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207
 */
208
static void
209
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
210
				   struct intel_engine_cs *engine)
211
{
212
	struct intel_context *ce = &ctx->engine[engine->id];
213
	u64 desc;
214

215
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
216

217
	desc = ctx->desc_template;				/* bits  0-11 */
218
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
219
								/* bits 12-31 */
220
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
221

222
	ce->lrc_desc = desc;
223 224
}

225 226 227 228
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
229
{
230
	struct intel_engine_execlists * const execlists = &engine->execlists;
231 232 233 234
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

235
	if (unlikely(execlists->no_priolist))
236 237 238 239 240
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
241
	parent = &execlists->queue.rb_node;
242 243
	while (*parent) {
		rb = *parent;
244
		p = to_priolist(rb);
245 246 247 248 249 250
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
251
			return p;
252 253 254 255
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
256
		p = &execlists->default_priolist;
257 258 259 260 261 262 263 264 265 266 267 268 269 270
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
271
			execlists->no_priolist = true;
272 273 274 275 276
			goto find_priolist;
		}
	}

	p->priority = prio;
277
	INIT_LIST_HEAD(&p->requests);
278
	rb_link_node(&p->node, rb, parent);
279
	rb_insert_color(&p->node, &execlists->queue);
280 281

	if (first)
282
		execlists->first = &p->node;
283

284
	return p;
285 286
}

287
static void unwind_wa_tail(struct i915_request *rq)
288 289 290 291 292
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

293
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
294
{
295
	struct i915_request *rq, *rn;
296 297
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
298 299 300 301 302 303

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
304
		if (i915_request_completed(rq))
305 306
			return;

307
		__i915_request_unsubmit(rq);
308 309
		unwind_wa_tail(rq);

310 311 312 313
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
			p = lookup_priolist(engine, &rq->priotree, last_prio);
314 315 316
		}

		list_add(&rq->priotree.link, &p->requests);
317 318 319
	}
}

320
void
321 322 323 324 325 326 327 328 329 330
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

331
static inline void
332
execlists_context_status_change(struct i915_request *rq, unsigned long status)
333
{
334 335 336 337 338 339
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
340

341 342
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
343 344
}

345
static inline void
346
execlists_context_schedule_in(struct i915_request *rq)
347 348
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
349
	intel_engine_context_in(rq->engine);
350 351 352
}

static inline void
353
execlists_context_schedule_out(struct i915_request *rq)
354
{
355
	intel_engine_context_out(rq->engine);
356 357 358
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

359 360 361 362 363 364 365 366 367
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

368
static u64 execlists_update_context(struct i915_request *rq)
369
{
370
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
371 372
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
373
	u32 *reg_state = ce->lrc_reg_state;
374

375
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
376

377 378 379 380 381
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
382
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
383
		execlists_update_context_pdps(ppgtt, reg_state);
384 385

	return ce->lrc_desc;
386 387
}

C
Chris Wilson 已提交
388 389 390 391 392 393
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

394
static void execlists_submit_ports(struct intel_engine_cs *engine)
395
{
396
	struct execlist_port *port = engine->execlists.port;
397
	unsigned int n;
398

399
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
400
		struct i915_request *rq;
401 402 403 404 405 406 407
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
408
				execlists_context_schedule_in(rq);
409 410 411
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
412

413
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
414
				  engine->name, n,
415
				  port[n].context_id, count,
416 417
				  rq->global_seqno,
				  rq_prio(rq));
418 419 420 421
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
422

423
		elsp_write(desc, engine->execlists.elsp);
424
	}
425
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
426 427
}

428
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
429
{
430
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
431
		i915_gem_context_force_single_submission(ctx));
432
}
433

434 435 436 437 438
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
439

440 441
	if (ctx_single_port_submission(prev))
		return false;
442

443
	return true;
444 445
}

446
static void port_assign(struct execlist_port *port, struct i915_request *rq)
447 448 449 450
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
451
		i915_request_put(port_request(port));
452

453
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
454 455
}

C
Chris Wilson 已提交
456 457 458 459 460 461
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

462 463
	GEM_BUG_ON(engine->execlists.preempt_complete_status !=
		   upper_32_bits(ce->lrc_desc));
464 465 466 467 468 469
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

470 471 472 473
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
474
	GEM_TRACE("%s\n", engine->name);
C
Chris Wilson 已提交
475
	for (n = execlists_num_ports(&engine->execlists); --n; )
476
		elsp_write(0, engine->execlists.elsp);
C
Chris Wilson 已提交
477

478
	elsp_write(ce->lrc_desc, engine->execlists.elsp);
479
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
480
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
481 482
}

483
static void execlists_dequeue(struct intel_engine_cs *engine)
484
{
485 486
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
487 488
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
489
	struct i915_request *last = port_request(port);
490
	struct rb_node *rb;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
512
	 */
513

514
	spin_lock_irq(&engine->timeline->lock);
515 516
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
517 518 519 520 521 522 523 524

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
525
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
526 527 528
		if (port_count(&port[0]) > 1)
			goto unlock;

529 530 531 532 533 534 535 536 537 538
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

539
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
540 541 542
			inject_preempt_context(engine);
			goto unlock;
		}
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
577 578
	}

579 580
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
581
		struct i915_request *rq, *rn;
582 583 584 585 586 587 588 589 590 591 592 593

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
594
			 */
595 596 597 598 599 600
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
601
				if (port == last_port) {
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
626 627

				GEM_BUG_ON(port_isset(port));
628
			}
629

630
			INIT_LIST_HEAD(&rq->priotree.link);
631 632
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
633 634
			last = rq;
			submit = true;
635
		}
636

637
		rb = rb_next(rb);
638
		rb_erase(&p->node, &execlists->queue);
639 640
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
641
			kmem_cache_free(engine->i915->priorities, p);
642
	}
643
done:
644
	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
645
	execlists->first = rb;
646
	if (submit)
647
		port_assign(port, last);
648 649 650 651

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
652
unlock:
653
	spin_unlock_irq(&engine->timeline->lock);
654

655 656
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
657
		execlists_submit_ports(engine);
658
	}
659 660 661

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
662 663
}

664
void
665
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
666
{
667
	struct execlist_port *port = execlists->port;
668
	unsigned int num_ports = execlists_num_ports(execlists);
669

670
	while (num_ports-- && port_isset(port)) {
671
		struct i915_request *rq = port_request(port);
672

673
		GEM_BUG_ON(!execlists->active);
674
		intel_engine_context_out(rq->engine);
675
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
676
		i915_request_put(rq);
677

678 679 680
		memset(port, 0, sizeof(*port));
		port++;
	}
681 682
}

683 684
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
685
	struct intel_engine_execlists * const execlists = &engine->execlists;
686
	struct i915_request *rq, *rn;
687 688 689 690 691 692
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
693
	execlists_cancel_port_requests(execlists);
694 695 696 697

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
698
		if (!i915_request_completed(rq))
699 700 701 702
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
703
	rb = execlists->first;
704
	while (rb) {
705
		struct i915_priolist *p = to_priolist(rb);
706 707 708 709 710

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
711
			__i915_request_submit(rq);
712 713 714
		}

		rb = rb_next(rb);
715
		rb_erase(&p->node, &execlists->queue);
716 717 718 719 720 721 722
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

723
	execlists->queue_priority = INT_MIN;
724 725
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
726
	GEM_BUG_ON(port_isset(execlists->port));
727 728 729 730 731 732 733 734 735 736 737 738

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

739
/*
740 741 742
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
743
static void execlists_submission_tasklet(unsigned long data)
744
{
745 746
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
747
	struct execlist_port * const port = execlists->port;
748
	struct drm_i915_private *dev_priv = engine->i915;
749
	bool fw = false;
750

751 752 753 754 755 756 757 758 759
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

760 761 762 763 764
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
765 766 767
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
768
		unsigned int head, tail;
769

770
		if (unlikely(execlists->csb_use_mmio)) {
771 772
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
773
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
774 775
		}

776 777 778 779 780 781 782 783 784 785 786
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
787
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
788 789 790 791 792 793
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

794 795 796
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
797
			execlists->csb_head = head;
798 799 800 801 802
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

803
			head = execlists->csb_head;
804 805
			tail = READ_ONCE(buf[write_idx]);
		}
806
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
807
			  engine->name,
808 809
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
810

811
		while (head != tail) {
812
			struct i915_request *rq;
813
			unsigned int status;
814
			unsigned int count;
815 816 817

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

836
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
837
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
838
				  engine->name, head,
839 840
				  status, buf[2*head + 1],
				  execlists->active);
841 842 843 844 845 846 847 848 849

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

850 851 852
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

853 854 855
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

856
			if (status & GEN8_CTX_STATUS_COMPLETE &&
857
			    buf[2*head + 1] == execlists->preempt_complete_status) {
858 859
				GEM_TRACE("%s preempt-idle\n", engine->name);

860 861
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
862

863 864 865 866
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
867 868 869 870
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
871 872
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
873 874
				continue;

875 876 877
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

878
			rq = port_unpack(port, &count);
879
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
880
				  engine->name,
881
				  port->context_id, count,
882 883
				  rq ? rq->global_seqno : 0,
				  rq ? rq_prio(rq) : 0);
884 885 886 887

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

888 889
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
890
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
891 892
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
893
				GEM_BUG_ON(!i915_request_completed(rq));
894
				execlists_context_schedule_out(rq);
895 896
				trace_i915_request_out(rq);
				i915_request_put(rq);
897

898 899 900
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

901
				execlists_port_complete(execlists, port);
902 903
			} else {
				port_set(port, port_pack(rq, count));
904
			}
905

906 907
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
908
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
909 910 911
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
912
		}
913

914 915
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
916 917 918
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
919 920
	}

921
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
922
		execlists_dequeue(engine);
923

924 925
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
926 927
}

928 929 930
static void queue_request(struct intel_engine_cs *engine,
			  struct i915_priotree *pt,
			  int prio)
931
{
932 933
	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
}
934

935 936 937 938
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
	if (prio > engine->execlists.queue_priority) {
		engine->execlists.queue_priority = prio;
939
		tasklet_hi_schedule(&engine->execlists.tasklet);
940
	}
941 942
}

943
static void execlists_submit_request(struct i915_request *request)
944
{
945
	struct intel_engine_cs *engine = request->engine;
946
	unsigned long flags;
947

948 949
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
950

951 952
	queue_request(engine, &request->priotree, rq_prio(request));
	submit_queue(engine, rq_prio(request));
953

954
	GEM_BUG_ON(!engine->execlists.first);
955 956
	GEM_BUG_ON(list_empty(&request->priotree.link));

957
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
958 959
}

960
static struct i915_request *pt_to_request(struct i915_priotree *pt)
961
{
962
	return container_of(pt, struct i915_request, priotree);
963 964
}

965 966 967
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
968
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
969 970

	GEM_BUG_ON(!locked);
971 972

	if (engine != locked) {
973 974
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
975 976 977 978 979
	}

	return engine;
}

980
static void execlists_schedule(struct i915_request *request, int prio)
981
{
982
	struct intel_engine_cs *engine;
983 984 985 986
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

987 988
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

989
	if (i915_request_completed(request))
990 991
		return;

992 993 994
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

995 996
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
997 998 999 1000

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1001 1002
	/*
	 * Recursively bump all dependent priorities to match the new request.
1003 1004 1005 1006 1007
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
1008
	 *	queue_request(pt);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1019
	list_for_each_entry(dep, &dfs, dfs_link) {
1020 1021
		struct i915_priotree *pt = dep->signaler;

1022 1023
		/*
		 * Within an engine, there can be no cycle, but we may
1024 1025 1026 1027 1028
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1029 1030
			GEM_BUG_ON(p == dep); /* no cycles! */

1031
			if (i915_priotree_signaled(p->signaler))
1032 1033
				continue;

1034
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1035 1036
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1037
		}
1038 1039
	}

1040 1041
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1042 1043 1044 1045
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1046
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1047 1048 1049 1050 1051 1052 1053
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1054 1055 1056
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1069 1070
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
1071
			queue_request(engine, pt, prio);
1072
		}
1073
		submit_queue(engine, prio);
1074 1075
	}

1076
	spin_unlock_irq(&engine->timeline->lock);
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1102 1103 1104
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1105
{
1106
	struct intel_context *ce = &ctx->engine[engine->id];
1107
	void *vaddr;
1108
	int ret;
1109

1110
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1111

1112 1113
	if (likely(ce->pin_count++))
		goto out;
1114
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1115

1116 1117 1118
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1119
	GEM_BUG_ON(!ce->state);
1120

1121
	ret = __context_pin(ctx, ce->state);
1122
	if (ret)
1123
		goto err;
1124

1125
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1126 1127
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1128
		goto unpin_vma;
1129 1130
	}

1131
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1132
	if (ret)
1133
		goto unpin_map;
1134

1135
	intel_lr_context_descriptor_update(ctx, engine);
1136

1137 1138
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1139
		i915_ggtt_offset(ce->ring->vma);
1140

1141
	ce->state->obj->pin_global++;
1142
	i915_gem_context_get(ctx);
1143 1144
out:
	return ce->ring;
1145

1146
unpin_map:
1147 1148 1149
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1150
err:
1151
	ce->pin_count = 0;
1152
	return ERR_PTR(ret);
1153 1154
}

1155 1156
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1157
{
1158
	struct intel_context *ce = &ctx->engine[engine->id];
1159

1160
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1161
	GEM_BUG_ON(ce->pin_count == 0);
1162

1163
	if (--ce->pin_count)
1164
		return;
1165

1166
	intel_ring_unpin(ce->ring);
1167

1168
	ce->state->obj->pin_global--;
1169 1170
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1171

1172
	i915_gem_context_put(ctx);
1173 1174
}

1175
static int execlists_request_alloc(struct i915_request *request)
1176 1177 1178
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1179
	int ret;
1180

1181 1182
	GEM_BUG_ON(!ce->pin_count);

1183 1184 1185 1186 1187 1188
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1189 1190 1191
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1220 1221
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1222
{
1223 1224 1225 1226 1227 1228 1229 1230 1231
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1232 1233 1234 1235
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1236 1237 1238 1239 1240 1241 1242

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1243 1244
}

1245 1246 1247 1248 1249 1250
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1251
 *
1252 1253
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1254
 *
1255 1256 1257 1258
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1259
 */
1260
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1261
{
1262
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1263
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1264

1265
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1266 1267
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1268

1269 1270
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1271 1272 1273 1274 1275 1276 1277
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1278

C
Chris Wilson 已提交
1279 1280
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1281
	/* Pad to end of cacheline */
1282 1283
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1284 1285 1286 1287 1288 1289 1290

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1291
	return batch;
1292 1293
}

1294
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1295
{
C
Chris Wilson 已提交
1296 1297
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1298
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1299
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1300

1301
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1302 1303 1304 1305 1306
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1307

1308 1309
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1310
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1311 1312 1313 1314 1315 1316 1317
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1318
	}
1319

1320
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1335 1336 1337 1338 1339 1340
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1341 1342
	}

C
Chris Wilson 已提交
1343 1344
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1345
	/* Pad to end of cacheline */
1346 1347
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1348

1349
	return batch;
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1386 1387 1388
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1389
{
1390 1391 1392
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1393

1394
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1395 1396
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1397

1398
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1399 1400 1401
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1402 1403
	}

1404 1405 1406 1407 1408
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1409
	return 0;
1410 1411 1412 1413

err:
	i915_gem_object_put(obj);
	return err;
1414 1415
}

1416
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1417
{
1418
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1419 1420
}

1421 1422
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1423
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1424
{
1425
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1426 1427 1428
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1429
	struct page *page;
1430 1431
	void *batch, *batch_ptr;
	unsigned int i;
1432
	int ret;
1433

1434
	if (GEM_WARN_ON(engine->id != RCS))
1435
		return -EINVAL;
1436

1437
	switch (INTEL_GEN(engine->i915)) {
1438
	case 10:
1439 1440 1441
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1442 1443
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1444
		wa_bb_fn[1] = NULL;
1445 1446 1447
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1448
		wa_bb_fn[1] = NULL;
1449 1450 1451
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1452
		return 0;
1453
	}
1454

1455
	ret = lrc_setup_wa_ctx(engine);
1456 1457 1458 1459 1460
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1461
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1462
	batch = batch_ptr = kmap_atomic(page);
1463

1464 1465 1466 1467 1468 1469 1470
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1471 1472
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1473 1474 1475
			ret = -EINVAL;
			break;
		}
1476 1477
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1478
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1479 1480
	}

1481 1482
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1483 1484
	kunmap_atomic(batch);
	if (ret)
1485
		lrc_destroy_wa_ctx(engine);
1486 1487 1488 1489

	return ret;
}

1490 1491 1492 1493 1494 1495 1496 1497
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1498
static void enable_execlists(struct intel_engine_cs *engine)
1499
{
1500
	struct drm_i915_private *dev_priv = engine->i915;
1501 1502

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1519 1520 1521
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1522 1523 1524

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1525 1526 1527 1528
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1529
	struct intel_engine_execlists * const execlists = &engine->execlists;
1530 1531 1532 1533 1534
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1535

1536
	intel_engine_reset_breadcrumbs(engine);
1537
	intel_engine_init_hangcheck(engine);
1538

1539
	enable_execlists(engine);
1540

1541
	/* After a GPU reset, we may have requests to replay */
1542
	if (execlists->first)
1543
		tasklet_schedule(&execlists->tasklet);
1544

1545
	return 0;
1546 1547
}

1548
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1549
{
1550
	struct drm_i915_private *dev_priv = engine->i915;
1551 1552
	int ret;

1553
	ret = gen8_init_common_ring(engine);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1567
	return init_workarounds_ring(engine);
1568 1569
}

1570
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1571 1572 1573
{
	int ret;

1574
	ret = gen8_init_common_ring(engine);
1575 1576 1577
	if (ret)
		return ret;

1578
	return init_workarounds_ring(engine);
1579 1580
}

1581 1582 1583
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1584
	int i;
1585

1586 1587
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1588 1589 1590 1591 1592 1593 1594
	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
1595 1596 1597 1598 1599 1600 1601 1602
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
			   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
		   (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));

1603 1604 1605
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1606
static void reset_common_ring(struct intel_engine_cs *engine,
1607
			      struct i915_request *request)
1608
{
1609
	struct intel_engine_execlists * const execlists = &engine->execlists;
1610
	struct intel_context *ce;
1611
	unsigned long flags;
1612

1613 1614
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1615 1616 1617

	reset_irq(engine);

1618 1619
	spin_lock_irqsave(&engine->timeline->lock, flags);

1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1629
	execlists_cancel_port_requests(execlists);
1630

1631
	/* Push back any incomplete requests for replay after the reset. */
1632
	__unwind_incomplete_requests(engine);
1633

1634
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1635

1636 1637 1638
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1649
	if (!request || request->fence.error != -EIO)
1650
		return;
1651

1652 1653 1654 1655 1656 1657 1658
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1659
	ce = &request->ctx->engine[engine->id];
1660 1661 1662
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1663
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1664 1665
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1666
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1667

1668 1669 1670
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1671
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1672
	unwind_wa_tail(request);
1673 1674
}

1675
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1676
{
1677 1678
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1679
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1680 1681
	u32 *cs;
	int i;
1682

1683
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1684 1685
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1686

1687
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1688
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1689 1690
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1691 1692 1693 1694
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1695 1696
	}

1697
	*cs++ = MI_NOOP;
1698
	intel_ring_advance(rq, cs);
1699 1700 1701 1702

	return 0;
}

1703
static int gen8_emit_bb_start(struct i915_request *rq,
1704
			      u64 offset, u32 len,
1705
			      const unsigned int flags)
1706
{
1707
	u32 *cs;
1708 1709
	int ret;

1710 1711 1712 1713
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1714 1715
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1716 1717 1718 1719 1720
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1721 1722
		if (ret)
			return ret;
1723

1724
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1725 1726
	}

1727
	cs = intel_ring_begin(rq, 4);
1728 1729
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1730

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1748 1749
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1750
	/* FIXME(BDW): Address space and security selectors. */
1751 1752 1753
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1754 1755
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1756
	intel_ring_advance(rq, cs);
1757 1758 1759 1760

	return 0;
}

1761
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1762
{
1763
	struct drm_i915_private *dev_priv = engine->i915;
1764 1765 1766
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1767 1768
}

1769
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1770
{
1771
	struct drm_i915_private *dev_priv = engine->i915;
1772
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1773 1774
}

1775
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1776
{
1777
	u32 cmd, *cs;
1778

1779 1780 1781
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1782 1783 1784

	cmd = MI_FLUSH_DW + 1;

1785 1786 1787 1788 1789 1790 1791
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1792
	if (mode & EMIT_INVALIDATE) {
1793
		cmd |= MI_INVALIDATE_TLB;
1794
		if (request->engine->id == VCS)
1795
			cmd |= MI_INVALIDATE_BSD;
1796 1797
	}

1798 1799 1800 1801 1802
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1803 1804 1805 1806

	return 0;
}

1807
static int gen8_emit_flush_render(struct i915_request *request,
1808
				  u32 mode)
1809
{
1810
	struct intel_engine_cs *engine = request->engine;
1811 1812
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1813
	bool vf_flush_wa = false, dc_flush_wa = false;
1814
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1815
	int len;
1816 1817 1818

	flags |= PIPE_CONTROL_CS_STALL;

1819
	if (mode & EMIT_FLUSH) {
1820 1821
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1822
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1823
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1824 1825
	}

1826
	if (mode & EMIT_INVALIDATE) {
1827 1828 1829 1830 1831 1832 1833 1834 1835
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1836 1837 1838 1839
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1840
		if (IS_GEN9(request->i915))
1841
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1842 1843 1844 1845

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1846
	}
1847

M
Mika Kuoppala 已提交
1848 1849 1850 1851 1852 1853 1854 1855
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1856 1857 1858
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1859

1860 1861
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1862

1863 1864 1865
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1866

1867
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1868

1869 1870
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1871

1872
	intel_ring_advance(request, cs);
1873 1874 1875 1876

	return 0;
}

1877 1878 1879 1880 1881
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1882
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1883
{
C
Chris Wilson 已提交
1884 1885
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1886 1887
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1888
}
1889

1890
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
1891
{
1892 1893
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1894

1895 1896
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1897 1898 1899
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1900
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1901

1902
	gen8_emit_wa_tail(request, cs);
1903
}
1904 1905
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1906
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
1907
{
1908 1909 1910
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1911 1912
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1913 1914 1915
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1916
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1917

1918
	gen8_emit_wa_tail(request, cs);
1919
}
1920
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1921

1922
static int gen8_init_rcs_context(struct i915_request *rq)
1923 1924 1925
{
	int ret;

1926
	ret = intel_ring_workarounds_emit(rq);
1927 1928 1929
	if (ret)
		return ret;

1930
	ret = intel_rcs_context_init_mocs(rq);
1931 1932 1933 1934 1935 1936 1937
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1938
	return i915_gem_render_state_emit(rq);
1939 1940
}

1941 1942
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1943
 * @engine: Engine Command Streamer.
1944
 */
1945
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1946
{
1947
	struct drm_i915_private *dev_priv;
1948

1949 1950 1951 1952
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1953 1954 1955
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1956

1957
	dev_priv = engine->i915;
1958

1959 1960
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1961
	}
1962

1963 1964
	if (engine->cleanup)
		engine->cleanup(engine);
1965

1966
	intel_engine_cleanup_common(engine);
1967

1968
	lrc_destroy_wa_ctx(engine);
1969

1970
	engine->i915 = NULL;
1971 1972
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1973 1974
}

1975
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1976
{
1977
	engine->submit_request = execlists_submit_request;
1978
	engine->cancel_requests = execlists_cancel_requests;
1979
	engine->schedule = execlists_schedule;
1980
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1981 1982 1983

	engine->park = NULL;
	engine->unpark = NULL;
1984 1985

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1986 1987 1988 1989

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
1990
	if (engine->i915->preempt_context)
1991
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
1992 1993
}

1994
static void
1995
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1996 1997
{
	/* Default vfuncs which can be overriden by each engine. */
1998
	engine->init_hw = gen8_init_common_ring;
1999
	engine->reset_hw = reset_common_ring;
2000 2001 2002 2003

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2004 2005
	engine->request_alloc = execlists_request_alloc;

2006
	engine->emit_flush = gen8_emit_flush;
2007
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2008
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2009 2010

	engine->set_default_submission = execlists_set_default_submission;
2011

2012 2013
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
2014
	engine->emit_bb_start = gen8_emit_bb_start;
2015 2016
}

2017
static inline void
2018
logical_ring_default_irqs(struct intel_engine_cs *engine)
2019
{
2020
	unsigned shift = engine->irq_shift;
2021 2022
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2023 2024
}

2025 2026 2027 2028 2029 2030
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2031 2032
	intel_engine_setup_common(engine);

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2048
	engine->execlists.fw_domains = fw_domains;
2049

2050 2051
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2052 2053 2054 2055 2056

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2057
static int logical_ring_init(struct intel_engine_cs *engine)
2058 2059 2060
{
	int ret;

2061
	ret = intel_engine_init_common(engine);
2062 2063 2064
	if (ret)
		goto error;

2065 2066 2067
	engine->execlists.elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));

2068 2069 2070 2071 2072
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2073 2074 2075 2076 2077 2078 2079
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2080
int logical_render_ring_init(struct intel_engine_cs *engine)
2081 2082 2083 2084
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2085 2086
	logical_ring_setup(engine);

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2097 2098
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2099

2100
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2115
	return logical_ring_init(engine);
2116 2117
}

2118
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2119 2120 2121 2122
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2123 2124
}

2125
static u32
2126
make_rpcs(struct drm_i915_private *dev_priv)
2127 2128 2129 2130 2131 2132 2133
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2134
	if (INTEL_GEN(dev_priv) < 9)
2135 2136 2137 2138 2139 2140 2141 2142
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2143
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2144
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2145
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2146 2147 2148 2149
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2150
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2151
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2152
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2153 2154 2155 2156
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2157 2158
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2159
			GEN8_RPCS_EU_MIN_SHIFT;
2160
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2161 2162 2163 2164 2165 2166 2167
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2168
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2169 2170 2171
{
	u32 indirect_ctx_offset;

2172
	switch (INTEL_GEN(engine->i915)) {
2173
	default:
2174
		MISSING_CASE(INTEL_GEN(engine->i915));
2175
		/* fall through */
2176 2177 2178 2179
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2193
static void execlists_init_reg_state(u32 *regs,
2194 2195 2196
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2197
{
2198 2199
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2214 2215
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2231 2232
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2233 2234 2235
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2236
		if (wa_ctx->indirect_ctx.size) {
2237
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2238

2239
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2240 2241
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2242

2243
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2244
				intel_lr_indirect_ctx_offset(engine) << 6;
2245 2246 2247 2248 2249
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2250

2251
			regs[CTX_BB_PER_CTX_PTR + 1] =
2252
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2253
		}
2254
	}
2255 2256 2257 2258

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2259
	/* PDP values well be assigned later if needed */
2260 2261 2262 2263 2264 2265 2266 2267
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2268

2269
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2270 2271 2272 2273
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2274
		ASSIGN_CTX_PML4(ppgtt, regs);
2275 2276
	}

2277 2278 2279 2280
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2281 2282

		i915_oa_init_reg_state(engine, ctx, regs);
2283
	}
2284 2285 2286 2287 2288 2289 2290 2291 2292
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2293
	u32 *regs;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2308
	ctx_obj->mm.dirty = true;
2309

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2328 2329
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2330 2331 2332 2333 2334
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2335
	if (ctx == ctx->i915->preempt_context)
2336 2337 2338
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2339

2340
	i915_gem_object_unpin_map(ctx_obj);
2341 2342 2343 2344

	return 0;
}

2345
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2346
					    struct intel_engine_cs *engine)
2347
{
2348
	struct drm_i915_gem_object *ctx_obj;
2349
	struct intel_context *ce = &ctx->engine[engine->id];
2350
	struct i915_vma *vma;
2351
	uint32_t context_size;
2352
	struct intel_ring *ring;
2353 2354
	int ret;

2355 2356
	if (ce->state)
		return 0;
2357

2358
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2359

2360 2361 2362 2363 2364
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2365

2366
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2367
	if (IS_ERR(ctx_obj)) {
2368
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2369
		return PTR_ERR(ctx_obj);
2370 2371
	}

2372
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2373 2374 2375 2376 2377
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2378
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2379 2380
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2381
		goto error_deref_obj;
2382 2383
	}

2384
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2385 2386
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2387
		goto error_ring_free;
2388 2389
	}

2390
	ce->ring = ring;
2391
	ce->state = vma;
2392 2393

	return 0;
2394

2395
error_ring_free:
2396
	intel_ring_free(ring);
2397
error_deref_obj:
2398
	i915_gem_object_put(ctx_obj);
2399
	return ret;
2400
}
2401

2402
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2403
{
2404
	struct intel_engine_cs *engine;
2405
	struct i915_gem_context *ctx;
2406
	enum intel_engine_id id;
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2418
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2419
		for_each_engine(engine, dev_priv, id) {
2420 2421
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2422

2423 2424
			if (!ce->state)
				continue;
2425

2426 2427 2428 2429
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2430

2431 2432 2433
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2434

C
Chris Wilson 已提交
2435
			ce->state->obj->mm.dirty = true;
2436
			i915_gem_object_unpin_map(ce->state->obj);
2437

2438
			intel_ring_reset(ce->ring, 0);
2439
		}
2440 2441
	}
}