intel_pstate.c 71.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27
#include <linux/pm_qos.h>
28 29 30 31 32
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
33
#include <asm/cpufeature.h>
34
#include <asm/intel-family.h>
35

36
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37

38
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
40

41 42
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
43
#include <acpi/cppc_acpi.h>
44 45
#endif

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

52 53
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 55
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56

57 58 59 60 61
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

62
static inline int32_t div_fp(s64 x, s64 y)
63
{
64
	return div64_s64((int64_t)x << FRAC_BITS, y);
65 66
}

67 68 69 70 71 72 73 74 75 76 77
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

78 79 80 81 82
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

83 84 85 86 87 88 89 90 91 92
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

93 94 95 96 97
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

98 99
/**
 * struct sample -	Store performance sample
100
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101 102
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
103
 *			P state. This can be different than core_avg_perf
104 105 106 107 108 109 110 111 112 113 114 115
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
116
struct sample {
117
	int32_t core_avg_perf;
118
	int32_t busy_scaled;
119 120
	u64 aperf;
	u64 mperf;
121
	u64 tsc;
122
	u64 time;
123 124
};

125 126 127 128 129 130 131 132 133 134 135
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
136 137
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138 139 140
 *
 * Stores the per cpu model P state limits and current P state.
 */
141 142 143 144
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
145
	int	max_pstate_physical;
146
	int	scaling;
147
	int	turbo_pstate;
148 149
	unsigned int max_freq;
	unsigned int turbo_freq;
150 151
};

152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
165
struct vid_data {
166 167 168
	int min;
	int max;
	int turbo;
169 170 171
	int32_t ratio;
};

172 173 174
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
175
 * @turbo_disabled:	Whether or not turbo P-states are available at all,
176 177 178
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
179
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180 181 182 183 184 185 186 187
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
188
	bool turbo_disabled_mf;
189 190
	int max_perf_pct;
	int min_perf_pct;
191 192
};

193 194 195
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
196
 * @policy:		CPUFreq policy value
197
 * @update_util:	CPUFreq utility callback information
198
 * @update_util_set:	CPUFreq utility callback is set
199 200
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
201 202 203
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
204 205 206
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
207 208 209 210 211 212
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
213 214
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215 216
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217 218 219
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
220
 * @epp_policy:		Last saved policy used to set EPP/EPB
221 222 223 224
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
225 226
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227 228
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
229
 * @hwp_boost_min:	Last HWP boosted min performance
230 231 232
 *
 * This structure stores per CPU instance data for all CPUs.
 */
233 234 235
struct cpudata {
	int cpu;

236
	unsigned int policy;
237
	struct update_util_data update_util;
238
	bool   update_util_set;
239 240

	struct pstate_data pstate;
241
	struct vid_data vid;
242

243
	u64	last_update;
244
	u64	last_sample_time;
245
	u64	aperf_mperf_shift;
246 247
	u64	prev_aperf;
	u64	prev_mperf;
248
	u64	prev_tsc;
249
	u64	prev_cummulative_iowait;
250
	struct sample sample;
251 252
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
253 254 255 256
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
257
	unsigned int iowait_boost;
258
	s16 epp_powersave;
259
	s16 epp_policy;
260 261
	s16 epp_default;
	s16 epp_saved;
262 263
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
264 265
	u64 last_io_update;
	unsigned int sched_flags;
266
	u32 hwp_boost_min;
267 268 269
};

static struct cpudata **all_cpu_data;
270 271 272 273 274 275 276 277 278 279 280 281 282 283

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
284 285
struct pstate_funcs {
	int (*get_max)(void);
286
	int (*get_max_physical)(void);
287 288
	int (*get_min)(void);
	int (*get_turbo)(void);
289
	int (*get_scaling)(void);
290
	int (*get_aperf_mperf_shift)(void);
291
	u64 (*get_val)(struct cpudata*, int pstate);
292
	void (*get_vid)(struct cpudata *);
293 294
};

295
static struct pstate_funcs pstate_funcs __read_mostly;
296

297
static int hwp_active __read_mostly;
298
static int hwp_mode_bdw __read_mostly;
299
static bool per_cpu_limits __read_mostly;
300
static bool hwp_boost __read_mostly;
301

302
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303

304 305 306
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
307

308
static struct global_params global;
309

310
static DEFINE_MUTEX(intel_pstate_driver_lock);
311 312
static DEFINE_MUTEX(intel_pstate_limits_lock);

313
#ifdef CONFIG_ACPI
314

315
static bool intel_pstate_acpi_pm_profile_server(void)
316 317 318 319 320
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

321 322 323 324 325 326 327 328
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

329 330 331
	return acpi_ppc;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
377 378 379 380 381 382 383 384 385 386

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

387 388 389 390
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
391 392
}

393
#else /* CONFIG_ACPI_CPPC_LIB */
394 395 396
static void intel_pstate_set_itmt_prio(int cpu)
{
}
397
#endif /* CONFIG_ACPI_CPPC_LIB */
398

399 400 401 402 403 404
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

405 406
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
407
		return;
408
	}
409

410
	if (!intel_pstate_get_ppc_enable_status())
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
453
	 * correct max turbo frequency based on the turbo state.
454 455
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
456
	if (!global.turbo_disabled)
457 458 459
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
460
	pr_debug("_PPC limits will be enforced\n");
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
479
#else /* CONFIG_ACPI */
480
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 482 483
{
}

484
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 486
{
}
487 488 489 490 491

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
492 493 494 495 496 497 498 499
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
500

501 502 503 504 505 506 507
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508
	global.turbo_disabled =
509 510 511 512
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

513 514 515
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
516
	int turbo_pstate = cpu->pstate.turbo_pstate;
517

518
	return turbo_pstate ?
519
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 521
}

522 523 524 525 526
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

527
	if (!boot_cpu_has(X86_FEATURE_EPB))
528 529 530 531 532 533 534 535 536 537 538 539 540
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

541
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 543 544 545 546 547 548 549 550 551
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
552
		epp = (hwp_req_data >> 24) & 0xff;
553
	} else {
554 555
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
556
	}
557 558 559 560

	return epp;
}

561
static int intel_pstate_set_epb(int cpu, s16 pref)
562 563
{
	u64 epb;
564
	int ret;
565

566
	if (!boot_cpu_has(X86_FEATURE_EPB))
567
		return -ENXIO;
568

569 570 571
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
572 573 574

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575 576

	return 0;
577 578
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
598 599 600 601 602 603
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
604

605
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
606 607 608 609
{
	s16 epp;
	int index = -EINVAL;

610
	*raw_epp = 0;
611 612 613 614
	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

615
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
616 617
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
618
		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
619
			return 2;
620
		if (epp == HWP_EPP_BALANCE_POWERSAVE)
621
			return 3;
622
		if (epp == HWP_EPP_POWERSAVE)
623
			return 4;
624 625
		*raw_epp = epp;
		return 0;
626
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
644 645
					      int pref_index, bool use_raw,
					      u32 raw_epp)
646 647 648 649 650 651 652 653 654
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

655
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
656 657 658 659 660 661 662 663
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

664 665 666 667 668 669 670 671 672 673
		if (use_raw) {
			if (raw_epp > 255) {
				ret = -EINVAL;
				goto return_pref;
			}
			value |= (u64)raw_epp << 24;
			ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
			goto return_pref;
		}

674
		if (epp == -EINVAL)
675
			epp = epp_values[pref_index - 1];
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
711 712
	bool raw = false;
	u32 epp;
713
	int ret;
714 715 716 717 718

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

719
	ret = match_string(energy_perf_strings, -1, str_preference);
720 721 722 723 724 725 726 727 728 729 730 731 732
	if (ret < 0) {
		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
			return ret;

		ret = kstrtouint(buf, 10, &epp);
		if (ret)
			return ret;

		raw = true;
	}

	ret = intel_pstate_set_energy_pref_index(cpu_data, ret, raw, epp);
	if (ret)
733
		return ret;
734

735
	return count;
736 737 738 739 740 741
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
742
	int preference, raw_epp;
743

744
	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
745 746 747
	if (preference < 0)
		return preference;

748 749 750 751
	if (raw_epp)
		return  sprintf(buf, "%d\n", raw_epp);
	else
		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
752 753 754 755
}

cpufreq_freq_attr_rw(energy_performance_preference);

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

775 776 777
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
778
	&base_frequency,
779 780 781
	NULL,
};

782 783
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
784
{
785
	u64 cap;
786

787
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
788
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
789
	if (global.no_turbo)
790
		*current_max = HWP_GUARANTEED_PERF(cap);
791
	else
792 793 794 795 796 797 798 799 800 801 802 803 804 805
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
806

807 808
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
809

810
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
811

812 813
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
814

815 816
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
817

818 819
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
820

821
	cpu_data->epp_policy = cpu_data->policy;
822

823 824 825 826 827
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
828

829 830 831 832 833 834
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
835

836 837 838 839 840
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
841

842 843 844 845 846 847 848 849 850 851
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
852

853 854
		epp = cpu_data->epp_powersave;
	}
855
update_epp:
856
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
857 858 859 860
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
861
	}
862
skip_epp:
863
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
864
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
865
}
D
Dirk Brandewie 已提交
866

867 868 869 870 871 872 873 874 875 876 877 878 879
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

880
	/* Set EPP to min */
881
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
882 883 884 885 886
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

887 888 889 890 891 892 893 894 895 896 897 898
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
#define POWER_CTL_EE_ENABLE	1
#define POWER_CTL_EE_DISABLE	2

static int power_ctl_ee_state;

static void set_power_ctl_ee_state(bool input)
{
	u64 power_ctl;

	mutex_lock(&intel_pstate_driver_lock);
	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	if (input) {
		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
	} else {
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
	}
	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
	mutex_unlock(&intel_pstate_driver_lock);
}

921 922
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

923 924
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
925 926 927 928 929 930 931

	/* Only restore if the system default is changed */
	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
		set_power_ctl_ee_state(true);
	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
		set_power_ctl_ee_state(false);

932 933 934
	if (!hwp_active)
		return 0;

935 936
	mutex_lock(&intel_pstate_limits_lock);

937 938 939
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

940
	all_cpu_data[policy->cpu]->epp_policy = 0;
941
	intel_pstate_hwp_set(policy->cpu);
942 943 944

	mutex_unlock(&intel_pstate_limits_lock);

945
	return 0;
946 947
}

948
static void intel_pstate_update_policies(void)
949
{
950 951 952 953
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
954 955
}

956 957 958 959 960 961 962 963 964 965 966 967
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

968
	refresh_frequency_limits(policy);
969 970 971 972

	cpufreq_cpu_release(policy);
}

973 974 975 976 977 978 979 980 981
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
982 983
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
984
		arch_set_max_freq_ratio(global.turbo_disabled);
985 986
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
987 988 989 990 991 992 993
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

994 995 996
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
997
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
998
	{								\
999
		return sprintf(buf, "%u\n", global.object);		\
1000 1001
	}

1002 1003 1004 1005
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
1006
			   struct kobj_attribute *attr, char *buf)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

1017
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1030
static ssize_t show_turbo_pct(struct kobject *kobj,
1031
				struct kobj_attribute *attr, char *buf)
1032 1033 1034 1035 1036
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1037 1038
	mutex_lock(&intel_pstate_driver_lock);

1039
	if (!intel_pstate_driver) {
1040 1041 1042 1043
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1044 1045 1046 1047
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1048
	turbo_fp = div_fp(no_turbo, total);
1049
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1050 1051 1052

	mutex_unlock(&intel_pstate_driver_lock);

1053 1054 1055
	return sprintf(buf, "%u\n", turbo_pct);
}

1056
static ssize_t show_num_pstates(struct kobject *kobj,
1057
				struct kobj_attribute *attr, char *buf)
1058 1059 1060 1061
{
	struct cpudata *cpu;
	int total;

1062 1063
	mutex_lock(&intel_pstate_driver_lock);

1064
	if (!intel_pstate_driver) {
1065 1066 1067 1068
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1069 1070
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1071 1072 1073

	mutex_unlock(&intel_pstate_driver_lock);

1074 1075 1076
	return sprintf(buf, "%u\n", total);
}

1077
static ssize_t show_no_turbo(struct kobject *kobj,
1078
			     struct kobj_attribute *attr, char *buf)
1079 1080 1081
{
	ssize_t ret;

1082 1083
	mutex_lock(&intel_pstate_driver_lock);

1084
	if (!intel_pstate_driver) {
1085 1086 1087 1088
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1089
	update_turbo_state();
1090 1091
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1092
	else
1093
		ret = sprintf(buf, "%u\n", global.no_turbo);
1094

1095 1096
	mutex_unlock(&intel_pstate_driver_lock);

1097 1098 1099
	return ret;
}

1100
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1101
			      const char *buf, size_t count)
1102 1103 1104
{
	unsigned int input;
	int ret;
1105

1106 1107 1108
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1109

1110 1111
	mutex_lock(&intel_pstate_driver_lock);

1112
	if (!intel_pstate_driver) {
1113 1114 1115 1116
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1117 1118
	mutex_lock(&intel_pstate_limits_lock);

1119
	update_turbo_state();
1120
	if (global.turbo_disabled) {
1121
		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1122
		mutex_unlock(&intel_pstate_limits_lock);
1123
		mutex_unlock(&intel_pstate_driver_lock);
1124
		return -EPERM;
1125
	}
D
Dirk Brandewie 已提交
1126

1127
	global.no_turbo = clamp_t(int, input, 0, 1);
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1138 1139
	mutex_unlock(&intel_pstate_limits_lock);

1140 1141
	intel_pstate_update_policies();

1142 1143
	mutex_unlock(&intel_pstate_driver_lock);

1144 1145 1146
	return count;
}

1147 1148
static struct cpufreq_driver intel_pstate;

1149
static void update_qos_request(enum freq_qos_req_type type)
1150 1151
{
	int max_state, turbo_max, freq, i, perf_pct;
1152
	struct freq_qos_request *req;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	struct cpufreq_policy *policy;

	for_each_possible_cpu(i) {
		struct cpudata *cpu = all_cpu_data[i];

		policy = cpufreq_cpu_get(i);
		if (!policy)
			continue;

		req = policy->driver_data;
		cpufreq_cpu_put(policy);

		if (!req)
			continue;

		if (hwp_active)
			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
		else
			turbo_max = cpu->pstate.turbo_pstate;

1173
		if (type == FREQ_QOS_MIN) {
1174 1175 1176 1177 1178 1179 1180 1181 1182
			perf_pct = global.min_perf_pct;
		} else {
			req++;
			perf_pct = global.max_perf_pct;
		}

		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
		freq *= cpu->pstate.scaling;

1183
		if (freq_qos_update_request(req, freq) < 0)
1184 1185 1186 1187
			pr_warn("Failed to update freq constraint: CPU%d\n", i);
	}
}

1188
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1189
				  const char *buf, size_t count)
1190 1191 1192
{
	unsigned int input;
	int ret;
1193

1194 1195 1196 1197
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1198 1199
	mutex_lock(&intel_pstate_driver_lock);

1200
	if (!intel_pstate_driver) {
1201 1202 1203 1204
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1205 1206
	mutex_lock(&intel_pstate_limits_lock);

1207
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1208

1209 1210
	mutex_unlock(&intel_pstate_limits_lock);

1211 1212 1213
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1214
		update_qos_request(FREQ_QOS_MAX);
1215

1216 1217
	mutex_unlock(&intel_pstate_driver_lock);

1218 1219 1220
	return count;
}

1221
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1222
				  const char *buf, size_t count)
1223 1224 1225
{
	unsigned int input;
	int ret;
1226

1227 1228 1229
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1230

1231 1232
	mutex_lock(&intel_pstate_driver_lock);

1233
	if (!intel_pstate_driver) {
1234 1235 1236 1237
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1238 1239
	mutex_lock(&intel_pstate_limits_lock);

1240 1241
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1242

1243 1244
	mutex_unlock(&intel_pstate_limits_lock);

1245 1246 1247
	if (intel_pstate_driver == &intel_pstate)
		intel_pstate_update_policies();
	else
1248
		update_qos_request(FREQ_QOS_MIN);
1249

1250 1251
	mutex_unlock(&intel_pstate_driver_lock);

1252 1253 1254
	return count;
}

1255
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1256
				struct kobj_attribute *attr, char *buf)
1257 1258 1259 1260
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1261 1262
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
				      char *buf)
{
	u64 power_ctl;
	int enable;

	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
	return sprintf(buf, "%d\n", !enable);
}

static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
				       const char *buf, size_t count)
{
	bool input;
	int ret;

	ret = kstrtobool(buf, &input);
	if (ret)
		return ret;

	set_power_ctl_ee_state(input);

	return count;
}

1306 1307 1308
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1309
define_one_global_rw(status);
1310 1311 1312
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1313
define_one_global_ro(turbo_pct);
1314
define_one_global_ro(num_pstates);
1315
define_one_global_rw(hwp_dynamic_boost);
1316
define_one_global_rw(energy_efficiency);
1317 1318

static struct attribute *intel_pstate_attributes[] = {
1319
	&status.attr,
1320
	&no_turbo.attr,
1321
	&turbo_pct.attr,
1322
	&num_pstates.attr,
1323 1324 1325
	NULL
};

1326
static const struct attribute_group intel_pstate_attr_group = {
1327 1328 1329
	.attrs = intel_pstate_attributes,
};

1330 1331
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];

1332
static void __init intel_pstate_sysfs_expose_params(void)
1333
{
1334
	struct kobject *intel_pstate_kobject;
1335 1336 1337 1338
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1339 1340 1341
	if (WARN_ON(!intel_pstate_kobject))
		return;

1342
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1359 1360 1361 1362 1363
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1364 1365 1366 1367 1368

	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
		WARN_ON(rc);
	}
1369 1370
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1371

1372
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1373
{
1374
	/* First disable HWP notification interrupt as we don't process them */
1375
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1376
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1377

1378
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1379
	cpudata->epp_policy = 0;
1380 1381
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1382 1383
}

1384
static int atom_get_min_pstate(void)
1385 1386
{
	u64 value;
1387

1388
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1389
	return (value >> 8) & 0x7F;
1390 1391
}

1392
static int atom_get_max_pstate(void)
1393 1394
{
	u64 value;
1395

1396
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1397
	return (value >> 16) & 0x7F;
1398
}
1399

1400
static int atom_get_turbo_pstate(void)
1401 1402
{
	u64 value;
1403

1404
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1405
	return value & 0x7F;
1406 1407
}

1408
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1409 1410 1411 1412 1413
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1414
	val = (u64)pstate << 8;
1415
	if (global.no_turbo && !global.turbo_disabled)
1416 1417 1418 1419 1420 1421 1422
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1423
	vid = ceiling_fp(vid_fp);
1424

1425 1426 1427
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1428
	return val | vid;
1429 1430
}

1431
static int silvermont_get_scaling(void)
1432 1433 1434
{
	u64 value;
	int i;
1435 1436 1437
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1438 1439

	rdmsrl(MSR_FSB_FREQ, value);
1440 1441
	i = value & 0x7;
	WARN_ON(i > 4);
1442

1443 1444
	return silvermont_freq_table[i];
}
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1460 1461
}

1462
static void atom_get_vid(struct cpudata *cpudata)
1463 1464 1465
{
	u64 value;

1466
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1467 1468
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1469 1470 1471 1472
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1473

1474
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1475
	cpudata->vid.turbo = value & 0x7f;
1476 1477
}

1478
static int core_get_min_pstate(void)
1479 1480
{
	u64 value;
1481

1482
	rdmsrl(MSR_PLATFORM_INFO, value);
1483 1484 1485
	return (value >> 40) & 0xFF;
}

1486
static int core_get_max_pstate_physical(void)
1487 1488
{
	u64 value;
1489

1490
	rdmsrl(MSR_PLATFORM_INFO, value);
1491 1492 1493
	return (value >> 8) & 0xFF;
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1527
static int core_get_max_pstate(void)
1528
{
1529 1530 1531
	u64 tar;
	u64 plat_info;
	int max_pstate;
1532
	int tdp_ratio;
1533 1534 1535 1536 1537
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1538 1539 1540 1541 1542 1543 1544 1545 1546
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1547 1548
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1549 1550
		int tar_levels;

1551
		/* Do some sanity checking for safety */
1552 1553 1554 1555
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1556 1557
		}
	}
1558

1559
	return max_pstate;
1560 1561
}

1562
static int core_get_turbo_pstate(void)
1563 1564 1565
{
	u64 value;
	int nont, ret;
1566

1567
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1568
	nont = core_get_max_pstate();
1569
	ret = (value) & 255;
1570 1571 1572 1573 1574
	if (ret <= nont)
		ret = nont;
	return ret;
}

1575 1576 1577 1578 1579
static inline int core_get_scaling(void)
{
	return 100000;
}

1580
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1581 1582 1583
{
	u64 val;

1584
	val = (u64)pstate << 8;
1585
	if (global.no_turbo && !global.turbo_disabled)
1586 1587
		val |= (u64)1 << 32;

1588
	return val;
1589 1590
}

1591 1592 1593 1594 1595
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1596 1597 1598 1599 1600
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1601
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1602 1603 1604 1605 1606 1607 1608
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1609
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1610
{
1611 1612
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1613 1614 1615 1616 1617 1618 1619
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1620 1621
}

1622 1623 1624 1625 1626 1627 1628
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1629
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1630 1631

	update_turbo_state();
1632
	intel_pstate_set_pstate(cpu, pstate);
1633 1634
}

1635 1636
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1637 1638
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1639
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1640
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1641
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1642
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1643 1644 1645 1646 1647 1648 1649 1650 1651

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1652

1653 1654 1655
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1656 1657
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1658 1659

	intel_pstate_set_min_pstate(cpu);
1660 1661
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1761 1762 1763
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1764 1765 1766 1767 1768 1769
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1770 1771
}

1772
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1773
{
1774
	struct sample *sample = &cpu->sample;
1775

1776
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1777 1778
}

1779
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1780 1781
{
	u64 aperf, mperf;
1782
	unsigned long flags;
1783
	u64 tsc;
1784

1785
	local_irq_save(flags);
1786 1787
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1788
	tsc = rdtsc();
1789
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1790
		local_irq_restore(flags);
1791
		return false;
1792
	}
1793
	local_irq_restore(flags);
1794

1795
	cpu->last_sample_time = cpu->sample.time;
1796
	cpu->sample.time = time;
1797 1798
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1799
	cpu->sample.tsc =  tsc;
1800 1801
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1802
	cpu->sample.tsc -= cpu->prev_tsc;
1803

1804 1805
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1806
	cpu->prev_tsc = tsc;
1807 1808 1809 1810 1811 1812 1813
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1814 1815 1816 1817 1818
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1819 1820
}

1821 1822
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1823
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1824 1825
}

1826 1827
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1828 1829
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1830 1831
}

1832
static inline int32_t get_target_pstate(struct cpudata *cpu)
1833 1834
{
	struct sample *sample = &cpu->sample;
1835
	int32_t busy_frac;
1836
	int target, avg_pstate;
1837

1838 1839
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1840

1841 1842
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1843

1844
	sample->busy_scaled = busy_frac * 100;
1845

1846
	target = global.no_turbo || global.turbo_disabled ?
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1865 1866
}

1867
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1868
{
1869 1870
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1871

1872
	return clamp_t(int, pstate, min_pstate, max_pstate);
1873 1874 1875 1876
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1877 1878 1879
	if (pstate == cpu->pstate.current_pstate)
		return;

1880
	cpu->pstate.current_pstate = pstate;
1881 1882 1883
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1884
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1885
{
1886
	int from = cpu->pstate.current_pstate;
1887
	struct sample *sample;
1888
	int target_pstate;
1889

1890 1891
	update_turbo_state();

1892
	target_pstate = get_target_pstate(cpu);
1893 1894
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1895
	intel_pstate_update_pstate(cpu, target_pstate);
1896 1897

	sample = &cpu->sample;
1898
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1899
		fp_toint(sample->busy_scaled),
1900 1901 1902 1903 1904
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1905 1906
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1907 1908
}

1909
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1910
				     unsigned int flags)
1911
{
1912
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1913 1914
	u64 delta_ns;

1915 1916 1917 1918
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1919
	delta_ns = time - cpu->last_update;
1920
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1921 1922 1923
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1924
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1925 1926 1927 1928 1929 1930
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1931 1932 1933 1934
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1935 1936
		else
			cpu->iowait_boost >>= 1;
1937
	}
1938
	cpu->last_update = time;
1939
	delta_ns = time - cpu->sample.time;
1940
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1941
		return;
1942

1943 1944
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1945
}
1946

1947 1948 1949 1950 1951 1952 1953
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1954 1955
};

1956 1957 1958 1959 1960 1961 1962 1963
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1964 1965
};

1966 1967 1968 1969 1970 1971 1972 1973
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1974 1975
};

1976 1977 1978 1979 1980
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1981
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1982 1983
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1984 1985
};

1986 1987 1988
#define X86_MATCH(model, policy)					 \
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
					   X86_FEATURE_APERFMPERF, &policy)
1989 1990

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	X86_MATCH(SANDYBRIDGE,		core_funcs),
	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
	X86_MATCH(IVYBRIDGE,		core_funcs),
	X86_MATCH(HASWELL,		core_funcs),
	X86_MATCH(BROADWELL,		core_funcs),
	X86_MATCH(IVYBRIDGE_X,		core_funcs),
	X86_MATCH(HASWELL_X,		core_funcs),
	X86_MATCH(HASWELL_L,		core_funcs),
	X86_MATCH(HASWELL_G,		core_funcs),
	X86_MATCH(BROADWELL_G,		core_funcs),
	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
	X86_MATCH(SKYLAKE_L,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
2012 2013 2014 2015
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

2016
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2017 2018 2019
	X86_MATCH(BROADWELL_D,		core_funcs),
	X86_MATCH(BROADWELL_X,		core_funcs),
	X86_MATCH(SKYLAKE_X,		core_funcs),
D
Dirk Brandewie 已提交
2020 2021 2022
	{}
};

2023
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2024
	X86_MATCH(KABYLAKE,		core_funcs),
2025 2026 2027
	{}
};

2028
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2029 2030
	X86_MATCH(SKYLAKE_X,		core_funcs),
	X86_MATCH(SKYLAKE,		core_funcs),
2031 2032 2033
	{}
};

2034 2035 2036 2037
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

2038 2039 2040
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
2041
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2042 2043 2044 2045 2046
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

2047 2048 2049
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
2050
	}
2051 2052 2053 2054

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
2055

2056
	if (hwp_active) {
2057 2058
		const struct x86_cpu_id *id;

2059
		intel_pstate_hwp_enable(cpu);
2060 2061

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2062
		if (id && intel_pstate_acpi_pm_profile_server())
2063
			hwp_boost = true;
2064
	}
2065

2066
	intel_pstate_get_cpu_pstates(cpu);
2067

J
Joe Perches 已提交
2068
	pr_debug("controlling: cpu %d\n", cpunum);
2069 2070 2071 2072

	return 0;
}

2073
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2074
{
2075 2076
	struct cpudata *cpu = all_cpu_data[cpu_num];

2077
	if (hwp_active && !hwp_boost)
2078 2079
		return;

2080 2081 2082
	if (cpu->update_util_set)
		return;

2083 2084
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2085
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2086 2087 2088
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
2089
	cpu->update_util_set = true;
2090 2091 2092 2093
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2094 2095 2096 2097 2098
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2099
	cpufreq_remove_update_util_hook(cpu);
2100
	cpu_data->update_util_set = false;
2101
	synchronize_rcu();
2102 2103
}

2104 2105 2106 2107 2108 2109
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2110 2111 2112
static void intel_pstate_update_perf_limits(struct cpudata *cpu,
					    unsigned int policy_min,
					    unsigned int policy_max)
2113
{
2114
	int max_freq = intel_pstate_get_max_freq(cpu);
2115
	int32_t max_policy_perf, min_policy_perf;
2116
	int max_state, turbo_max;
2117

2118 2119 2120 2121 2122 2123 2124 2125
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2126 2127
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128 2129 2130
		turbo_max = cpu->pstate.turbo_pstate;
	}

2131 2132
	max_policy_perf = max_state * policy_max / max_freq;
	if (policy_max == policy_min) {
2133
		min_policy_perf = max_policy_perf;
2134
	} else {
2135
		min_policy_perf = max_state * policy_min / max_freq;
2136 2137
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2138
	}
2139

2140
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2141
		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2142

2143
	/* Normalize user input to [min_perf, max_perf] */
2144
	if (per_cpu_limits) {
2145 2146
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2147 2148 2149 2150
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2151 2152
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2153
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2154

2155
		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2156
			 global_min, global_max);
2157

2158 2159 2160 2161
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2162

2163 2164 2165
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2166

2167
	}
2168
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2169 2170
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2171 2172
}

2173 2174
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2175 2176
	struct cpudata *cpu;

2177 2178 2179
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2180 2181 2182
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2183
	cpu = all_cpu_data[policy->cpu];
2184 2185
	cpu->policy = policy->policy;

2186 2187
	mutex_lock(&intel_pstate_limits_lock);

2188
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2189

2190
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2191 2192 2193 2194 2195 2196
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2197 2198
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2199 2200
	}

2201 2202 2203 2204 2205 2206 2207 2208
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2209
		intel_pstate_hwp_set(policy->cpu);
2210
	}
D
Dirk Brandewie 已提交
2211

2212 2213
	mutex_unlock(&intel_pstate_limits_lock);

2214 2215 2216
	return 0;
}

2217 2218
static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2219
{
2220 2221
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2222 2223 2224 2225 2226 2227 2228
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2229 2230
static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
					   struct cpufreq_policy_data *policy)
2231
{
2232
	update_turbo_state();
2233 2234
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2235

2236
	intel_pstate_adjust_policy_max(cpu, policy);
2237 2238 2239 2240 2241
}

static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
{
	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2242

2243 2244 2245
	return 0;
}

2246 2247 2248 2249 2250
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2251
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2252
{
2253
	pr_debug("CPU %d exiting\n", policy->cpu);
2254

2255
	intel_pstate_clear_update_util_hook(policy->cpu);
2256
	if (hwp_active) {
2257
		intel_pstate_hwp_save_state(policy);
2258 2259
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2260
		intel_cpufreq_stop_cpu(policy);
2261
	}
2262
}
2263

2264 2265 2266
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2267

2268
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2269

2270
	return 0;
2271 2272
}

2273
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2274 2275
{
	struct cpudata *cpu;
2276
	int rc;
2277 2278 2279 2280 2281 2282 2283

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2284 2285
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2286

2287 2288
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2289 2290

	/* cpuinfo and default policy values */
2291
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2292
	update_turbo_state();
2293
	global.turbo_disabled_mf = global.turbo_disabled;
2294
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2295 2296 2297
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2298 2299 2300 2301 2302 2303 2304 2305 2306
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2307
	intel_pstate_init_acpi_perf_limits(policy);
2308

2309 2310
	policy->fast_switch_possible = true;

2311 2312 2313
	return 0;
}

2314
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2315
{
2316 2317 2318 2319 2320
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2321 2322 2323 2324 2325
	/*
	 * Set the policy to powersave to provide a valid fallback value in case
	 * the default cpufreq governor is neither powersave nor performance.
	 */
	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2326 2327 2328 2329

	return 0;
}

2330
static struct cpufreq_driver intel_pstate = {
2331 2332 2333
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2334
	.suspend	= intel_pstate_hwp_save_state,
2335
	.resume		= intel_pstate_resume,
2336
	.init		= intel_pstate_cpu_init,
2337
	.exit		= intel_pstate_cpu_exit,
2338
	.stop_cpu	= intel_pstate_stop_cpu,
2339
	.update_limits	= intel_pstate_update_limits,
2340 2341 2342
	.name		= "intel_pstate",
};

2343
static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2344 2345 2346
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

2347
	intel_pstate_verify_cpu_policy(cpu, policy);
2348
	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2349

2350 2351 2352
	return 0;
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2391 2392 2393 2394 2395 2396
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2397
	int target_pstate, old_pstate;
2398

2399 2400
	update_turbo_state();

2401
	freqs.old = policy->cur;
2402
	freqs.new = target_freq;
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2417
	old_pstate = cpu->pstate.current_pstate;
2418 2419 2420 2421 2422
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2423
	freqs.new = target_pstate * cpu->pstate.scaling;
2424
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2425 2426 2427 2428 2429 2430 2431 2432 2433
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2434
	int target_pstate, old_pstate;
2435

2436 2437
	update_turbo_state();

2438
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2439
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2440
	old_pstate = cpu->pstate.current_pstate;
2441
	intel_pstate_update_pstate(cpu, target_pstate);
2442
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2443
	return target_pstate * cpu->pstate.scaling;
2444 2445 2446 2447
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
2448
	int max_state, turbo_max, min_freq, max_freq, ret;
2449
	struct freq_qos_request *req;
2450 2451 2452 2453 2454 2455
	struct cpudata *cpu;
	struct device *dev;

	dev = get_cpu_device(policy->cpu);
	if (!dev)
		return -ENODEV;
2456

2457
	ret = __intel_pstate_cpu_init(policy);
2458 2459 2460 2461
	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2462
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2463 2464 2465
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
	if (!req) {
		ret = -ENOMEM;
		goto pstate_exit;
	}

	cpu = all_cpu_data[policy->cpu];

	if (hwp_active)
		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
	else
		turbo_max = cpu->pstate.turbo_pstate;

	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
	min_freq *= cpu->pstate.scaling;
	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
	max_freq *= cpu->pstate.scaling;

2484 2485
	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
				   min_freq);
2486 2487 2488 2489 2490
	if (ret < 0) {
		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
		goto free_req;
	}

2491 2492
	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
				   max_freq);
2493 2494 2495 2496 2497 2498 2499
	if (ret < 0) {
		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
		goto remove_min_req;
	}

	policy->driver_data = req;

2500
	return 0;
2501 2502

remove_min_req:
2503
	freq_qos_remove_request(req);
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
free_req:
	kfree(req);
pstate_exit:
	intel_pstate_exit_perf_limits(policy);

	return ret;
}

static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
2514
	struct freq_qos_request *req;
2515 2516 2517

	req = policy->driver_data;

2518 2519
	freq_qos_remove_request(req + 1);
	freq_qos_remove_request(req);
2520 2521 2522
	kfree(req);

	return intel_pstate_cpu_exit(policy);
2523 2524 2525 2526 2527 2528 2529 2530
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
2531
	.exit		= intel_cpufreq_cpu_exit,
2532
	.stop_cpu	= intel_cpufreq_stop_cpu,
2533
	.update_limits	= intel_pstate_update_limits,
2534 2535 2536
	.name		= "intel_cpufreq",
};

2537
static struct cpufreq_driver *default_driver = &intel_pstate;
2538

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2554
	intel_pstate_driver = NULL;
2555 2556
}

2557
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2558 2559 2560
{
	int ret;

2561 2562
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2563

2564
	intel_pstate_driver = driver;
2565 2566 2567 2568 2569 2570
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2571 2572
	global.min_perf_pct = min_perf_pct_min();

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2589
	if (!intel_pstate_driver)
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2601
		return intel_pstate_driver ?
2602 2603 2604
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2605
		if (intel_pstate_driver) {
2606 2607 2608 2609 2610 2611 2612 2613
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2614
		return intel_pstate_register_driver(&intel_pstate);
2615 2616 2617
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2618
		if (intel_pstate_driver) {
2619
			if (intel_pstate_driver == &intel_cpufreq)
2620 2621 2622 2623 2624 2625 2626
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2627
		return intel_pstate_register_driver(&intel_cpufreq);
2628 2629 2630 2631 2632
	}

	return -EINVAL;
}

2633 2634 2635
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2636
static unsigned int force_load __initdata;
2637

2638
static int __init intel_pstate_msrs_not_valid(void)
2639
{
2640
	if (!pstate_funcs.get_max() ||
2641 2642
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2643 2644 2645 2646
		return -ENODEV;

	return 0;
}
2647

2648
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2649 2650
{
	pstate_funcs.get_max   = funcs->get_max;
2651
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2652 2653
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2654
	pstate_funcs.get_scaling = funcs->get_scaling;
2655
	pstate_funcs.get_val   = funcs->get_val;
2656
	pstate_funcs.get_vid   = funcs->get_vid;
2657
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2658 2659
}

2660
#ifdef CONFIG_ACPI
2661

2662
static bool __init intel_pstate_no_acpi_pss(void)
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2688
	pr_debug("ACPI _PSS not found\n");
2689 2690 2691
	return true;
}

2692 2693 2694 2695 2696 2697 2698
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2699 2700 2701 2702
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2703

2704 2705 2706
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2707 2708
}

2709
static bool __init intel_pstate_has_acpi_ppc(void)
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2721
	pr_debug("ACPI _PPC not found\n");
2722 2723 2724 2725 2726 2727 2728 2729
	return false;
}

enum {
	PSS,
	PPC,
};

2730
/* Hardware vendor-specific info that has its own power management modes */
2731
static struct acpi_platform_list plat_info[] __initdata = {
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2747
	{ } /* End */
2748 2749
};

2750 2751
#define BITMASK_OOB	(BIT(8) | BIT(18))

2752
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2753
{
D
Dirk Brandewie 已提交
2754 2755
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2756
	int idx;
D
Dirk Brandewie 已提交
2757 2758 2759 2760

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2761 2762 2763
		if (misc_pwr & BITMASK_OOB) {
			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
D
Dirk Brandewie 已提交
2764
			return true;
2765
		}
D
Dirk Brandewie 已提交
2766
	}
2767

2768 2769
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2770 2771
		return false;

2772 2773
	switch (plat_info[idx].data) {
	case PSS:
2774 2775 2776 2777
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2778 2779
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2780 2781 2782 2783
	}

	return false;
}
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2794 2795
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2796
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2797
static inline void intel_pstate_request_control_from_smm(void) {}
2798 2799
#endif /* CONFIG_ACPI */

2800 2801
#define INTEL_PSTATE_HWP_BROADWELL	0x01

2802 2803
#define X86_MATCH_HWP(model, hwp_mode)					\
	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2804
					   X86_FEATURE_HWP, hwp_mode)
2805

2806
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2807 2808 2809
	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
	X86_MATCH_HWP(ANY,		0),
2810 2811 2812
	{}
};

2813 2814
static int __init intel_pstate_init(void)
{
2815
	const struct x86_cpu_id *id;
2816
	int rc;
2817

2818 2819 2820
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2821 2822 2823
	if (no_load)
		return -ENODEV;

2824 2825
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2826
		copy_cpu_funcs(&core_funcs);
2827
		if (!no_hwp) {
2828
			hwp_active++;
2829
			hwp_mode_bdw = id->driver_data;
2830 2831 2832 2833 2834
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2835
		if (!id) {
2836
			pr_info("CPU model not supported\n");
2837
			return -ENODEV;
2838
		}
2839

2840
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2841
	}
2842

2843 2844
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2845
		return -ENODEV;
2846
	}
2847 2848
	/* Without HWP start in the passive mode. */
	default_driver = &intel_cpufreq;
2849

2850 2851 2852 2853 2854
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2855 2856
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2857
		return -ENODEV;
2858
	}
2859

2860 2861 2862
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2863
	pr_info("Intel P-state driver initializing\n");
2864

2865
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2866 2867 2868
	if (!all_cpu_data)
		return -ENOMEM;

2869 2870
	intel_pstate_request_control_from_smm();

2871
	intel_pstate_sysfs_expose_params();
2872

2873
	mutex_lock(&intel_pstate_driver_lock);
2874
	rc = intel_pstate_register_driver(default_driver);
2875
	mutex_unlock(&intel_pstate_driver_lock);
2876 2877
	if (rc)
		return rc;
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887
	if (hwp_active) {
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id) {
			set_power_ctl_ee_state(false);
			pr_info("Disabling energy efficiency optimization\n");
		}

J
Joe Perches 已提交
2888
		pr_info("HWP enabled\n");
2889
	}
2890

2891
	return 0;
2892 2893 2894
}
device_initcall(intel_pstate_init);

2895 2896 2897 2898 2899
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2900
	if (!strcmp(str, "disable")) {
2901
		no_load = 1;
2902
	} else if (!strcmp(str, "passive")) {
2903
		default_driver = &intel_cpufreq;
2904 2905
		no_hwp = 1;
	}
2906
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2907
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2908
		no_hwp = 1;
2909
	}
2910 2911
	if (!strcmp(str, "force"))
		force_load = 1;
2912 2913
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2914 2915
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2916 2917 2918 2919 2920 2921

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2922 2923 2924 2925
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2926 2927 2928
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");