intel_pstate.c 57.8 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
45

46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
48
#include <acpi/cppc_acpi.h>
49 50
#endif

51
#define FRAC_BITS 8
52 53
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
54

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

86 87 88 89 90 91 92 93 94 95
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

96 97 98 99 100
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

101 102
/**
 * struct sample -	Store performance sample
103
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104 105
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
106
 *			P state. This can be different than core_avg_perf
107 108 109 110 111 112 113 114 115 116 117 118
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
119
struct sample {
120
	int32_t core_avg_perf;
121
	int32_t busy_scaled;
122 123
	u64 aperf;
	u64 mperf;
124
	u64 tsc;
125
	u64 time;
126 127
};

128 129 130 131 132 133 134 135 136 137 138
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
139 140
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141 142 143
 *
 * Stores the per cpu model P state limits and current P state.
 */
144 145 146 147
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
148
	int	max_pstate_physical;
149
	int	scaling;
150
	int	turbo_pstate;
151 152
	unsigned int max_freq;
	unsigned int turbo_freq;
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
168
struct vid_data {
169 170 171
	int min;
	int max;
	int turbo;
172 173 174
	int32_t ratio;
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
192 193
};

194 195 196
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
197
 * @policy:		CPUFreq policy value
198
 * @update_util:	CPUFreq utility callback information
199
 * @update_util_set:	CPUFreq utility callback is set
200 201
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
202 203 204
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
205 206 207
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
208 209 210 211 212 213
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
214 215
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
216 217
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
218 219 220
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
221
 * @epp_policy:		Last saved policy used to set EPP/EPB
222 223 224 225
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
226 227 228
 *
 * This structure stores per CPU instance data for all CPUs.
 */
229 230 231
struct cpudata {
	int cpu;

232
	unsigned int policy;
233
	struct update_util_data update_util;
234
	bool   update_util_set;
235 236

	struct pstate_data pstate;
237
	struct vid_data vid;
238

239
	u64	last_update;
240
	u64	last_sample_time;
241
	u64	aperf_mperf_shift;
242 243
	u64	prev_aperf;
	u64	prev_mperf;
244
	u64	prev_tsc;
245
	u64	prev_cummulative_iowait;
246
	struct sample sample;
247 248
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
249 250 251 252
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
253
	unsigned int iowait_boost;
254
	s16 epp_powersave;
255
	s16 epp_policy;
256 257
	s16 epp_default;
	s16 epp_saved;
258 259 260
};

static struct cpudata **all_cpu_data;
261 262 263 264 265 266 267 268 269 270

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
271
 * @update_util:	Active mode utilization update callback.
272 273 274 275
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
276 277
struct pstate_funcs {
	int (*get_max)(void);
278
	int (*get_max_physical)(void);
279 280
	int (*get_min)(void);
	int (*get_turbo)(void);
281
	int (*get_scaling)(void);
282
	int (*get_aperf_mperf_shift)(void);
283
	u64 (*get_val)(struct cpudata*, int pstate);
284
	void (*get_vid)(struct cpudata *);
285 286
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
287 288
};

289
static struct pstate_funcs pstate_funcs __read_mostly;
290

291
static int hwp_active __read_mostly;
292
static bool per_cpu_limits __read_mostly;
293

294
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
295

296 297 298
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
299

300
static struct global_params global;
301

302
static DEFINE_MUTEX(intel_pstate_driver_lock);
303 304
static DEFINE_MUTEX(intel_pstate_limits_lock);

305
#ifdef CONFIG_ACPI
306 307 308 309 310 311 312 313 314 315

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

367 368 369 370 371 372
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

373 374
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
375
		return;
376
	}
377

378
	if (!intel_pstate_get_ppc_enable_status())
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
421
	 * correct max turbo frequency based on the turbo state.
422 423
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
424
	if (!global.turbo_disabled)
425 426 427
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
428
	pr_debug("_PPC limits will be enforced\n");
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
448
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
449 450 451
{
}

452
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
453 454 455 456
{
}
#endif

457 458 459 460 461 462 463
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
464
	global.turbo_disabled =
465 466 467 468
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

469 470 471
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
472
	int turbo_pstate = cpu->pstate.turbo_pstate;
473

474
	return turbo_pstate ?
475
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

497 498 499 500 501 502 503 504 505 506 507
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
508
		epp = (hwp_req_data >> 24) & 0xff;
509
	} else {
510 511
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
512
	}
513 514 515 516

	return epp;
}

517
static int intel_pstate_set_epb(int cpu, s16 pref)
518 519
{
	u64 epb;
520
	int ret;
521 522

	if (!static_cpu_has(X86_FEATURE_EPB))
523
		return -ENXIO;
524

525 526 527
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
528 529 530

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
531 532

	return 0;
533 534
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
554 555 556 557 558 559
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
560 561 562 563 564 565 566 567 568 569 570

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
571 572 573 574 575 576 577 578
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
617
			epp = epp_values[pref_index - 1];
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

691 692
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
693
{
694
	u64 cap;
695

696 697
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	if (global.no_turbo)
698
		*current_max = HWP_GUARANTEED_PERF(cap);
699
	else
700 701 702 703 704 705 706 707 708 709 710 711 712 713
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
714

715 716
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
717

718
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
719

720 721
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
722

723 724
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
725

726 727
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
728

729
	cpu_data->epp_policy = cpu_data->policy;
730

731 732 733 734 735
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
736

737 738 739 740 741 742
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
743

744 745 746 747 748
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
749

750 751 752 753 754 755 756 757 758 759
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
760

761 762
		epp = cpu_data->epp_powersave;
	}
763
update_epp:
764 765 766 767 768
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
769
	}
770 771
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
772
}
D
Dirk Brandewie 已提交
773

774 775 776 777 778 779 780 781 782 783 784 785
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

786 787 788 789 790
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

791 792
	mutex_lock(&intel_pstate_limits_lock);

793
	all_cpu_data[policy->cpu]->epp_policy = 0;
794
	intel_pstate_hwp_set(policy->cpu);
795 796 797

	mutex_unlock(&intel_pstate_limits_lock);

798
	return 0;
799 800
}

801
static void intel_pstate_update_policies(void)
802
{
803 804 805 806
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
807 808
}

809 810 811 812 813
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
814
		return sprintf(buf, "%u\n", global.object);		\
815 816
	}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

845 846 847 848 849 850 851
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

852 853
	mutex_lock(&intel_pstate_driver_lock);

854
	if (!intel_pstate_driver) {
855 856 857 858
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

859 860 861 862
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
863
	turbo_fp = div_fp(no_turbo, total);
864
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
865 866 867

	mutex_unlock(&intel_pstate_driver_lock);

868 869 870
	return sprintf(buf, "%u\n", turbo_pct);
}

871 872 873 874 875 876
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

877 878
	mutex_lock(&intel_pstate_driver_lock);

879
	if (!intel_pstate_driver) {
880 881 882 883
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

884 885
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
886 887 888

	mutex_unlock(&intel_pstate_driver_lock);

889 890 891
	return sprintf(buf, "%u\n", total);
}

892 893 894 895 896
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

897 898
	mutex_lock(&intel_pstate_driver_lock);

899
	if (!intel_pstate_driver) {
900 901 902 903
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

904
	update_turbo_state();
905 906
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
907
	else
908
		ret = sprintf(buf, "%u\n", global.no_turbo);
909

910 911
	mutex_unlock(&intel_pstate_driver_lock);

912 913 914
	return ret;
}

915
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
916
			      const char *buf, size_t count)
917 918 919
{
	unsigned int input;
	int ret;
920

921 922 923
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
924

925 926
	mutex_lock(&intel_pstate_driver_lock);

927
	if (!intel_pstate_driver) {
928 929 930 931
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

932 933
	mutex_lock(&intel_pstate_limits_lock);

934
	update_turbo_state();
935
	if (global.turbo_disabled) {
J
Joe Perches 已提交
936
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
937
		mutex_unlock(&intel_pstate_limits_lock);
938
		mutex_unlock(&intel_pstate_driver_lock);
939
		return -EPERM;
940
	}
D
Dirk Brandewie 已提交
941

942
	global.no_turbo = clamp_t(int, input, 0, 1);
943

944 945 946 947 948 949 950 951 952
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

953 954
	mutex_unlock(&intel_pstate_limits_lock);

955 956
	intel_pstate_update_policies();

957 958
	mutex_unlock(&intel_pstate_driver_lock);

959 960 961 962
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
963
				  const char *buf, size_t count)
964 965 966
{
	unsigned int input;
	int ret;
967

968 969 970 971
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

972 973
	mutex_lock(&intel_pstate_driver_lock);

974
	if (!intel_pstate_driver) {
975 976 977 978
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

979 980
	mutex_lock(&intel_pstate_limits_lock);

981
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
982

983 984
	mutex_unlock(&intel_pstate_limits_lock);

985 986
	intel_pstate_update_policies();

987 988
	mutex_unlock(&intel_pstate_driver_lock);

989 990 991 992
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
993
				  const char *buf, size_t count)
994 995 996
{
	unsigned int input;
	int ret;
997

998 999 1000
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1001

1002 1003
	mutex_lock(&intel_pstate_driver_lock);

1004
	if (!intel_pstate_driver) {
1005 1006 1007 1008
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1009 1010
	mutex_lock(&intel_pstate_limits_lock);

1011 1012
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1013

1014 1015
	mutex_unlock(&intel_pstate_limits_lock);

1016 1017
	intel_pstate_update_policies();

1018 1019
	mutex_unlock(&intel_pstate_driver_lock);

1020 1021 1022 1023 1024 1025
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1026
define_one_global_rw(status);
1027 1028 1029
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1030
define_one_global_ro(turbo_pct);
1031
define_one_global_ro(num_pstates);
1032 1033

static struct attribute *intel_pstate_attributes[] = {
1034
	&status.attr,
1035
	&no_turbo.attr,
1036
	&turbo_pct.attr,
1037
	&num_pstates.attr,
1038 1039 1040
	NULL
};

1041
static const struct attribute_group intel_pstate_attr_group = {
1042 1043 1044
	.attrs = intel_pstate_attributes,
};

1045
static void __init intel_pstate_sysfs_expose_params(void)
1046
{
1047
	struct kobject *intel_pstate_kobject;
1048 1049 1050 1051
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1052 1053 1054
	if (WARN_ON(!intel_pstate_kobject))
		return;

1055
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1072 1073
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1074

1075
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1076
{
1077
	/* First disable HWP notification interrupt as we don't process them */
1078 1079
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1080

1081
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1082
	cpudata->epp_policy = 0;
1083 1084
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1085 1086
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1106
static int atom_get_min_pstate(void)
1107 1108
{
	u64 value;
1109

1110
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1111
	return (value >> 8) & 0x7F;
1112 1113
}

1114
static int atom_get_max_pstate(void)
1115 1116
{
	u64 value;
1117

1118
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1119
	return (value >> 16) & 0x7F;
1120
}
1121

1122
static int atom_get_turbo_pstate(void)
1123 1124
{
	u64 value;
1125

1126
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1127
	return value & 0x7F;
1128 1129
}

1130
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1131 1132 1133 1134 1135
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1136
	val = (u64)pstate << 8;
1137
	if (global.no_turbo && !global.turbo_disabled)
1138 1139 1140 1141 1142 1143 1144
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1145
	vid = ceiling_fp(vid_fp);
1146

1147 1148 1149
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1150
	return val | vid;
1151 1152
}

1153
static int silvermont_get_scaling(void)
1154 1155 1156
{
	u64 value;
	int i;
1157 1158 1159
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1160 1161

	rdmsrl(MSR_FSB_FREQ, value);
1162 1163
	i = value & 0x7;
	WARN_ON(i > 4);
1164

1165 1166
	return silvermont_freq_table[i];
}
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1182 1183
}

1184
static void atom_get_vid(struct cpudata *cpudata)
1185 1186 1187
{
	u64 value;

1188
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1189 1190
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1191 1192 1193 1194
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1195

1196
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1197
	cpudata->vid.turbo = value & 0x7f;
1198 1199
}

1200
static int core_get_min_pstate(void)
1201 1202
{
	u64 value;
1203

1204
	rdmsrl(MSR_PLATFORM_INFO, value);
1205 1206 1207
	return (value >> 40) & 0xFF;
}

1208
static int core_get_max_pstate_physical(void)
1209 1210
{
	u64 value;
1211

1212
	rdmsrl(MSR_PLATFORM_INFO, value);
1213 1214 1215
	return (value >> 8) & 0xFF;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1249
static int core_get_max_pstate(void)
1250
{
1251 1252 1253
	u64 tar;
	u64 plat_info;
	int max_pstate;
1254
	int tdp_ratio;
1255 1256 1257 1258 1259
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1260 1261 1262 1263 1264 1265 1266 1267 1268
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1269 1270
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1271 1272
		int tar_levels;

1273
		/* Do some sanity checking for safety */
1274 1275 1276 1277
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1278 1279
		}
	}
1280

1281
	return max_pstate;
1282 1283
}

1284
static int core_get_turbo_pstate(void)
1285 1286 1287
{
	u64 value;
	int nont, ret;
1288

1289
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1290
	nont = core_get_max_pstate();
1291
	ret = (value) & 255;
1292 1293 1294 1295 1296
	if (ret <= nont)
		ret = nont;
	return ret;
}

1297 1298 1299 1300 1301
static inline int core_get_scaling(void)
{
	return 100000;
}

1302
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1303 1304 1305
{
	u64 val;

1306
	val = (u64)pstate << 8;
1307
	if (global.no_turbo && !global.turbo_disabled)
1308 1309
		val |= (u64)1 << 32;

1310
	return val;
1311 1312
}

1313 1314 1315 1316 1317
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1318 1319 1320 1321 1322
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1323
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1324 1325 1326 1327 1328 1329 1330
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1331
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1332
{
1333 1334
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1335 1336
}

1337
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1338
{
1339 1340
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1341 1342 1343 1344 1345 1346 1347
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1348 1349
}

1350 1351 1352 1353 1354 1355 1356
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1357
	int pstate;
1358 1359

	update_turbo_state();
1360
	pstate = intel_pstate_get_base_pstate(cpu);
1361
	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1362
	intel_pstate_set_pstate(cpu, pstate);
1363 1364
}

1365 1366
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1367 1368
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1369
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1370
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1371
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1372 1373
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1374

1375 1376 1377
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1378 1379
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1380 1381

	intel_pstate_set_min_pstate(cpu);
1382 1383
}

1384
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1385
{
1386
	struct sample *sample = &cpu->sample;
1387

1388
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1389 1390
}

1391
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1392 1393
{
	u64 aperf, mperf;
1394
	unsigned long flags;
1395
	u64 tsc;
1396

1397
	local_irq_save(flags);
1398 1399
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1400
	tsc = rdtsc();
1401
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1402
		local_irq_restore(flags);
1403
		return false;
1404
	}
1405
	local_irq_restore(flags);
1406

1407
	cpu->last_sample_time = cpu->sample.time;
1408
	cpu->sample.time = time;
1409 1410
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1411
	cpu->sample.tsc =  tsc;
1412 1413
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1414
	cpu->sample.tsc -= cpu->prev_tsc;
1415

1416 1417
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1418
	cpu->prev_tsc = tsc;
1419 1420 1421 1422 1423 1424 1425
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1426 1427 1428 1429 1430
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1431 1432
}

1433 1434
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1435 1436
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1437 1438
}

1439 1440
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1441 1442
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1443 1444
}

1445 1446 1447
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1448
	int32_t busy_frac, boost;
1449
	int target, avg_pstate;
1450

1451 1452
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1453

1454 1455
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1456

1457 1458
	if (busy_frac < boost)
		busy_frac = boost;
1459

1460
	sample->busy_scaled = busy_frac * 100;
1461

1462
	target = global.no_turbo || global.turbo_disabled ?
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1481 1482
}

1483
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1484
{
1485 1486
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1487

1488 1489
	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1490
	return clamp_t(int, pstate, min_pstate, max_pstate);
1491 1492 1493 1494
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1495 1496 1497
	if (pstate == cpu->pstate.current_pstate)
		return;

1498
	cpu->pstate.current_pstate = pstate;
1499 1500 1501
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1502
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1503
{
1504
	int from = cpu->pstate.current_pstate;
1505 1506
	struct sample *sample;

1507 1508
	update_turbo_state();

1509 1510
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1511
	intel_pstate_update_pstate(cpu, target_pstate);
1512 1513

	sample = &cpu->sample;
1514
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1515
		fp_toint(sample->busy_scaled),
1516 1517 1518 1519 1520
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1521 1522
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1523 1524
}

1525
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1526
				     unsigned int flags)
1527
{
1528
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1529 1530
	u64 delta_ns;

1531 1532 1533 1534 1535 1536 1537
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1538
	}
1539
	cpu->last_update = time;
1540
	delta_ns = time - cpu->sample.time;
1541 1542
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1543

1544 1545
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1546

1547 1548 1549 1550
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1551

1552 1553 1554 1555 1556 1557 1558
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1559
	.update_util = intel_pstate_update_util,
1560 1561
};

1562 1563 1564 1565 1566 1567 1568 1569 1570
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1571 1572
};

1573 1574 1575 1576 1577 1578 1579 1580 1581
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1582 1583
};

1584 1585 1586 1587 1588
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1589
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1590 1591
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1592
	.update_util = intel_pstate_update_util,
1593 1594
};

1595 1596 1597 1598 1599 1600 1601 1602
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1603 1604
};

1605
#define ICPU(model, policy) \
1606 1607
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1608 1609

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1629
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1630 1631 1632 1633
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1634
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1635 1636 1637
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1638 1639 1640
	{}
};

1641
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1642
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1643 1644 1645
	{}
};

1646 1647 1648 1649
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1650 1651 1652
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1653
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1654 1655 1656 1657 1658
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1659 1660 1661
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1662
	}
1663 1664 1665 1666

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1667

1668
	if (hwp_active) {
1669 1670 1671 1672 1673 1674
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1675
		intel_pstate_hwp_enable(cpu);
1676
	}
1677

1678
	intel_pstate_get_cpu_pstates(cpu);
1679

J
Joe Perches 已提交
1680
	pr_debug("controlling: cpu %d\n", cpunum);
1681 1682 1683 1684 1685 1686

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1687
	struct cpudata *cpu = all_cpu_data[cpu_num];
1688

1689
	return cpu ? get_avg_frequency(cpu) : 0;
1690 1691
}

1692
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1693
{
1694 1695
	struct cpudata *cpu = all_cpu_data[cpu_num];

1696 1697 1698
	if (hwp_active)
		return;

1699 1700 1701
	if (cpu->update_util_set)
		return;

1702 1703
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1704 1705
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1706
	cpu->update_util_set = true;
1707 1708 1709 1710
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1711 1712 1713 1714 1715
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1716
	cpufreq_remove_update_util_hook(cpu);
1717
	cpu_data->update_util_set = false;
1718 1719 1720
	synchronize_sched();
}

1721 1722 1723 1724 1725 1726
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1727
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1728
					    struct cpudata *cpu)
1729
{
1730
	int max_freq = intel_pstate_get_max_freq(cpu);
1731
	int32_t max_policy_perf, min_policy_perf;
1732
	int max_state, turbo_max;
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
		max_state = intel_pstate_get_base_pstate(cpu);
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
1747
	if (policy->max == policy->min) {
1748
		min_policy_perf = max_policy_perf;
1749
	} else {
1750
		min_policy_perf = max_state * policy->min / max_freq;
1751 1752
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1753
	}
1754

1755 1756 1757 1758
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

1759
	/* Normalize user input to [min_perf, max_perf] */
1760
	if (per_cpu_limits) {
1761 1762
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
1763 1764 1765 1766
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
1767 1768
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1769
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1770

1771 1772
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
1773

1774 1775 1776 1777
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1778

1779 1780 1781
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
1782

1783 1784 1785 1786
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
1787 1788
}

1789 1790
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1791 1792
	struct cpudata *cpu;

1793 1794 1795
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1796 1797 1798
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1799
	cpu = all_cpu_data[policy->cpu];
1800 1801
	cpu->policy = policy->policy;

1802 1803
	mutex_lock(&intel_pstate_limits_lock);

1804
	intel_pstate_update_perf_limits(policy, cpu);
1805

1806
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1807 1808 1809 1810 1811 1812
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
1813 1814
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
1815 1816
	}

1817
	if (hwp_active)
1818
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
1819

1820 1821
	mutex_unlock(&intel_pstate_limits_lock);

1822 1823 1824
	return 0;
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

1836 1837
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1838 1839 1840
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
1841 1842
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
1843

1844
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1845
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1846 1847
		return -EINVAL;

1848 1849
	intel_pstate_adjust_policy_max(policy, cpu);

1850 1851 1852
	return 0;
}

1853 1854 1855 1856 1857
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

1858
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1859
{
1860
	pr_debug("CPU %d exiting\n", policy->cpu);
1861

1862
	intel_pstate_clear_update_util_hook(policy->cpu);
1863 1864 1865
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
1866 1867
		intel_cpufreq_stop_cpu(policy);
}
1868

1869 1870 1871
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
1872

1873
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
1874

1875
	return 0;
1876 1877
}

1878
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1879 1880
{
	struct cpudata *cpu;
1881
	int rc;
1882 1883 1884 1885 1886 1887 1888

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1889 1890
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
1891

1892 1893
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1894 1895

	/* cpuinfo and default policy values */
1896
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1897
	update_turbo_state();
1898
	policy->cpuinfo.max_freq = global.turbo_disabled ?
1899 1900 1901
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1902
	intel_pstate_init_acpi_perf_limits(policy);
1903 1904
	cpumask_set_cpu(policy->cpu, policy->cpus);

1905 1906
	policy->fast_switch_possible = true;

1907 1908 1909
	return 0;
}

1910
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1911
{
1912 1913 1914 1915 1916 1917
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1918
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1919 1920 1921
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1922 1923 1924 1925

	return 0;
}

1926
static struct cpufreq_driver intel_pstate = {
1927 1928 1929
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1930
	.suspend	= intel_pstate_hwp_save_state,
1931
	.resume		= intel_pstate_resume,
1932 1933
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1934
	.exit		= intel_pstate_cpu_exit,
1935
	.stop_cpu	= intel_pstate_stop_cpu,
1936 1937 1938
	.name		= "intel_pstate",
};

1939 1940 1941 1942 1943
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
1944 1945
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
1946

1947
	intel_pstate_adjust_policy_max(policy, cpu);
1948

1949 1950
	intel_pstate_update_perf_limits(policy, cpu);

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

1962 1963
	update_turbo_state();

1964
	freqs.old = policy->cur;
1965
	freqs.new = target_freq;
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
1985
	freqs.new = target_pstate * cpu->pstate.scaling;
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

1997 1998
	update_turbo_state();

1999
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2000
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2001
	intel_pstate_update_pstate(cpu, target_pstate);
2002
	return target_pstate * cpu->pstate.scaling;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2013
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2031
static struct cpufreq_driver *default_driver = &intel_pstate;
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2048
	intel_pstate_driver = NULL;
2049 2050
}

2051
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2052 2053 2054
{
	int ret;

2055 2056
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2057

2058
	intel_pstate_driver = driver;
2059 2060 2061 2062 2063 2064
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2065 2066
	global.min_perf_pct = min_perf_pct_min();

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2083
	if (!intel_pstate_driver)
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2095
		return intel_pstate_driver ?
2096 2097 2098
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2099
		if (intel_pstate_driver) {
2100 2101 2102 2103 2104 2105 2106 2107
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2108
		return intel_pstate_register_driver(&intel_pstate);
2109 2110 2111
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2112
		if (intel_pstate_driver) {
2113
			if (intel_pstate_driver == &intel_cpufreq)
2114 2115 2116 2117 2118 2119 2120
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2121
		return intel_pstate_register_driver(&intel_cpufreq);
2122 2123 2124 2125 2126
	}

	return -EINVAL;
}

2127 2128 2129
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2130
static unsigned int force_load __initdata;
2131

2132
static int __init intel_pstate_msrs_not_valid(void)
2133
{
2134
	if (!pstate_funcs.get_max() ||
2135 2136
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2137 2138 2139 2140
		return -ENODEV;

	return 0;
}
2141

2142
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2143 2144
{
	pstate_funcs.get_max   = funcs->get_max;
2145
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2146 2147
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2148
	pstate_funcs.get_scaling = funcs->get_scaling;
2149
	pstate_funcs.get_val   = funcs->get_val;
2150
	pstate_funcs.get_vid   = funcs->get_vid;
2151
	pstate_funcs.update_util = funcs->update_util;
2152
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2153 2154
}

2155
#ifdef CONFIG_ACPI
2156

2157
static bool __init intel_pstate_no_acpi_pss(void)
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2186
static bool __init intel_pstate_has_acpi_ppc(void)
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2206 2207 2208 2209
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2210
	int  oem_pwr_table;
2211 2212 2213
};

/* Hardware vendor-specific info that has its own power management modes */
2214
static struct hw_vendor_info vendor_info[] __initdata = {
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2226 2227 2228 2229
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2230 2231 2232
	{0, "", ""},
};

2233
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2234 2235 2236
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2246

2247 2248
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2249 2250 2251
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2252
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2253 2254 2255 2256 2257 2258
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2259 2260
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2261
			}
2262 2263 2264 2265
	}

	return false;
}
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2276 2277
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2278
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2279
static inline void intel_pstate_request_control_from_smm(void) {}
2280 2281
#endif /* CONFIG_ACPI */

2282 2283 2284 2285 2286
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2287 2288
static int __init intel_pstate_init(void)
{
2289
	int rc;
2290

2291 2292 2293
	if (no_load)
		return -ENODEV;

2294
	if (x86_match_cpu(hwp_support_ids)) {
2295
		copy_cpu_funcs(&core_funcs);
2296
		if (no_hwp) {
2297
			pstate_funcs.update_util = intel_pstate_update_util;
2298 2299 2300 2301 2302 2303 2304
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2305

2306 2307 2308
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2309

2310
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2311
	}
2312

2313 2314 2315
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2316 2317 2318 2319 2320 2321 2322 2323
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2324 2325 2326
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2327
	pr_info("Intel P-state driver initializing\n");
2328

2329
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2330 2331 2332
	if (!all_cpu_data)
		return -ENOMEM;

2333 2334
	intel_pstate_request_control_from_smm();

2335
	intel_pstate_sysfs_expose_params();
2336

2337
	mutex_lock(&intel_pstate_driver_lock);
2338
	rc = intel_pstate_register_driver(default_driver);
2339
	mutex_unlock(&intel_pstate_driver_lock);
2340 2341
	if (rc)
		return rc;
2342

2343
	if (hwp_active)
J
Joe Perches 已提交
2344
		pr_info("HWP enabled\n");
2345

2346
	return 0;
2347 2348 2349
}
device_initcall(intel_pstate_init);

2350 2351 2352 2353 2354
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2355
	if (!strcmp(str, "disable")) {
2356
		no_load = 1;
2357 2358
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2359
		default_driver = &intel_cpufreq;
2360 2361
		no_hwp = 1;
	}
2362
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2363
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2364
		no_hwp = 1;
2365
	}
2366 2367
	if (!strcmp(str, "force"))
		force_load = 1;
2368 2369
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2370 2371
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2372 2373 2374 2375 2376 2377

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2378 2379 2380 2381
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2382 2383 2384
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");