i915_gem_gtt.c 102.0 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_vgpu.h"
40
#include "i915_reset.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137 138
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
139
{
140
	u32 pte_flags;
141 142 143 144 145 146 147 148
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
149

150
	/* Applicable to VLV, and gen8+ */
151
	pte_flags = 0;
152
	if (i915_gem_object_is_readonly(vma->obj))
153 154
		pte_flags |= PTE_READ_ONLY;

155
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 157

	return 0;
158 159 160 161
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
162
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163
}
164

165 166 167 168 169 170
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

171 172
	vma->page_sizes = vma->obj->mm.page_sizes;

173 174 175 176 177 178 179 180 181 182 183 184
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
185 186

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 188
}

189 190 191
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
192
{
193 194 195 196
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
197 198 199

	switch (level) {
	case I915_CACHE_NONE:
200
		pte |= PPAT_UNCACHED;
201 202
		break;
	case I915_CACHE_WT:
203
		pte |= PPAT_DISPLAY_ELLC;
204 205
		break;
	default:
206
		pte |= PPAT_CACHED;
207 208 209
		break;
	}

B
Ben Widawsky 已提交
210 211 212
	return pte;
}

213 214
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
215
{
216
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
217 218
	pde |= addr;
	if (level != I915_CACHE_NONE)
219
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
220
	else
221
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
222 223 224
	return pde;
}

225 226 227
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

228 229 230
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
231
{
232
	gen6_pte_t pte = GEN6_PTE_VALID;
233
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 235

	switch (level) {
236 237 238 239 240 241 242 243
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
244
		MISSING_CASE(level);
245 246 247 248 249
	}

	return pte;
}

250 251 252
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
253
{
254
	gen6_pte_t pte = GEN6_PTE_VALID;
255 256 257 258 259
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
260 261 262 263 264
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
265
		pte |= GEN6_PTE_UNCACHED;
266 267
		break;
	default:
268
		MISSING_CASE(level);
269 270
	}

271 272 273
	return pte;
}

274 275 276
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
277
{
278
	gen6_pte_t pte = GEN6_PTE_VALID;
279 280
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

281 282
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
283 284 285 286 287 288 289

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

290 291 292
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 297

	if (level != I915_CACHE_NONE)
298
		pte |= HSW_WB_LLC_AGE3;
299 300 301 302

	return pte;
}

303 304 305
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308 309
	pte |= HSW_PTE_ADDR_ENCODE(addr);

310 311 312 313
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
314
		pte |= HSW_WT_ELLC_LLC_AGE3;
315 316
		break;
	default:
317
		pte |= HSW_WB_ELLC_LLC_AGE3;
318 319
		break;
	}
320 321 322 323

	return pte;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

359
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360
{
361 362
	struct pagevec stack;
	struct page *page;
363

364 365
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
366

367 368 369
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
370 371 372 373 374

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
375 376 377
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
378

379
	/*
380
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 382 383 384 385 386
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
387
	pagevec_init(&stack);
388 389
	do {
		struct page *page;
390

391 392 393 394
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

395 396
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
397

398 399
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
400

401 402
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403

404 405 406
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
407
	}
408

409 410 411 412 413 414 415
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
416 417
}

418 419
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
420
{
421 422
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
423

424
	lockdep_assert_held(&vm->free_pages.lock);
425
	GEM_BUG_ON(!pagevec_count(pvec));
426

427
	if (vm->pt_kmap_wc) {
428 429
		/*
		 * When we use WC, first fill up the global stash and then
430 431
		 * only if full immediately free the overflow.
		 */
432
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433

434 435 436 437 438 439 440 441
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
442

443 444 445 446 447 448 449 450 451 452
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
453
		set_pages_array_wb(pvec->pages, pvec->nr);
454 455

		spin_lock(&vm->free_pages.lock);
456 457 458
	}

	__pagevec_release(pvec);
459 460 461 462
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
463 464 465 466 467 468 469 470
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
471 472
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
473
		vm_free_pages_release(vm, false);
474 475 476
	spin_unlock(&vm->free_pages.lock);
}

477
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
478
{
479 480 481 482 483 484
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
485
	lockdep_set_subclass(&vm->mutex, subclass);
486
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
487

488 489 490 491 492 493 494
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
495
	INIT_LIST_HEAD(&vm->bound_list);
496 497 498 499 500 501 502 503 504 505 506
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
507 508

	mutex_destroy(&vm->mutex);
509
}
510

511 512 513 514
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
515
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
516 517
	if (unlikely(!p->page))
		return -ENOMEM;
518

519 520 521
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
522
				      DMA_ATTR_SKIP_CPU_SYNC |
523
				      DMA_ATTR_NO_WARN);
524 525 526
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
527
	}
528 529

	return 0;
530 531
}

532
static int setup_page_dma(struct i915_address_space *vm,
533
			  struct i915_page_dma *p)
534
{
535
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
536 537
}

538
static void cleanup_page_dma(struct i915_address_space *vm,
539
			     struct i915_page_dma *p)
540
{
541 542
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
543 544
}

545
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
546

547 548
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
549 550
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
551

552 553 554
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
555
{
556
	u64 * const vaddr = kmap_atomic(p->page);
557

558
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
559

560
	kunmap_atomic(vaddr);
561 562
}

563 564 565
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
566
{
567
	fill_page_dma(vm, p, (u64)v << 32 | v);
568 569
}

570
static int
571
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
572
{
573
	unsigned long size;
574

575 576 577 578 579 580 581
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
582 583 584
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
585
	 */
586
	size = I915_GTT_PAGE_SIZE_4K;
587 588
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
589 590
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
591
	}
592 593 594 595 596 597
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
598

599
		page = alloc_pages(gfp, order);
600
		if (unlikely(!page))
601
			goto skip;
602

603 604 605
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
606
					  DMA_ATTR_SKIP_CPU_SYNC |
607
					  DMA_ATTR_NO_WARN);
608 609
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
610

611 612
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
613

614 615
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
616
		vm->scratch_order = order;
617 618 619 620 621 622 623 624 625 626 627 628 629
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
630 631
}

632
static void cleanup_scratch_page(struct i915_address_space *vm)
633
{
634
	struct i915_page_dma *p = &vm->scratch_page;
635
	int order = vm->scratch_order;
636

637
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
638
		       PCI_DMA_BIDIRECTIONAL);
639
	__free_pages(p->page, order);
640 641
}

642
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
643
{
644
	struct i915_page_table *pt;
645

646
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
647
	if (unlikely(!pt))
648 649
		return ERR_PTR(-ENOMEM);

650 651 652 653
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
654

655
	pt->used_ptes = 0;
656 657 658
	return pt;
}

659
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
660
{
661
	cleanup_px(vm, pt);
662 663 664 665 666 667
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
668
	fill_px(vm, pt, vm->scratch_pte);
669 670
}

671
static void gen6_initialize_pt(struct i915_address_space *vm,
672 673
			       struct i915_page_table *pt)
{
674
	fill32_px(vm, pt, vm->scratch_pte);
675 676
}

677
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
678
{
679
	struct i915_page_directory *pd;
680

681
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
682
	if (unlikely(!pd))
683 684
		return ERR_PTR(-ENOMEM);

685 686 687 688
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
689

690
	pd->used_pdes = 0;
691 692 693
	return pd;
}

694
static void free_pd(struct i915_address_space *vm,
695
		    struct i915_page_directory *pd)
696
{
697 698
	cleanup_px(vm, pd);
	kfree(pd);
699 700 701 702 703
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
704 705
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
706
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
707 708
}

709
static int __pdp_init(struct i915_address_space *vm,
710 711
		      struct i915_page_directory_pointer *pdp)
{
712
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
713

714
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
715
					    I915_GFP_ALLOW_FAIL);
716
	if (unlikely(!pdp->page_directory))
717 718
		return -ENOMEM;

719
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
720

721 722 723 724 725 726 727 728 729
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

730 731 732 733 734
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

735 736
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
737 738 739 740
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

741
	GEM_BUG_ON(!use_4lvl(vm));
742 743 744 745 746

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

747
	ret = __pdp_init(vm, pdp);
748 749 750
	if (ret)
		goto fail_bitmap;

751
	ret = setup_px(vm, pdp);
752 753 754 755 756 757 758 759 760 761 762 763 764
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

765
static void free_pdp(struct i915_address_space *vm,
766 767 768
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
769 770 771 772 773 774

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
775 776
}

777 778 779 780 781 782 783
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

784
	fill_px(vm, pdp, scratch_pdpe);
785 786 787 788 789
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
790 791
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
792
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
793 794
}

795 796 797 798 799 800 801
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
802
	ppgtt->pd_dirty_engines = INTEL_INFO(ppgtt->vm.i915)->engine_mask;
803 804
}

805 806 807
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
808
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
809
				struct i915_page_table *pt,
810
				u64 start, u64 length)
811
{
812
	unsigned int num_entries = gen8_pte_count(start, length);
813
	gen8_pte_t *vaddr;
814

815
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
816

817 818 819
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
820

821
	vaddr = kmap_atomic_px(pt);
822
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
823
	kunmap_atomic(vaddr);
824 825

	return false;
826
}
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

842
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
843
				struct i915_page_directory *pd,
844
				u64 start, u64 length)
845 846
{
	struct i915_page_table *pt;
847
	u32 pde;
848 849

	gen8_for_each_pde(pt, pd, start, length, pde) {
850 851
		GEM_BUG_ON(pt == vm->scratch_pt);

852 853
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
854

855
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
856
		GEM_BUG_ON(!pd->used_pdes);
857
		pd->used_pdes--;
858 859

		free_pt(vm, pt);
860 861
	}

862 863
	return !pd->used_pdes;
}
864

865 866 867 868 869 870 871 872
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
873
	if (!use_4lvl(vm))
874 875 876 877 878
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
879
}
880

881 882 883 884
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
885
				 struct i915_page_directory_pointer *pdp,
886
				 u64 start, u64 length)
887 888
{
	struct i915_page_directory *pd;
889
	unsigned int pdpe;
890

891
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
892 893
		GEM_BUG_ON(pd == vm->scratch_pd);

894 895
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
896

897
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
898
		GEM_BUG_ON(!pdp->used_pdpes);
899
		pdp->used_pdpes--;
900

901 902
		free_pd(vm, pd);
	}
903

904
	return !pdp->used_pdpes;
905
}
906

907 908 909 910 911 912
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

913 914 915 916 917 918 919 920 921 922 923 924 925
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

926 927 928 929
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
930 931
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
932
{
933 934
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
935
	struct i915_page_directory_pointer *pdp;
936
	unsigned int pml4e;
937

938
	GEM_BUG_ON(!use_4lvl(vm));
939

940
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
941 942
		GEM_BUG_ON(pdp == vm->scratch_pdp);

943 944
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
945

946 947 948
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
949 950 951
	}
}

952
static inline struct sgt_dma {
953 954
	struct scatterlist *sg;
	dma_addr_t dma, max;
955 956 957 958 959
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

978 979
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
980
			      struct i915_page_directory_pointer *pdp,
981
			      struct sgt_dma *iter,
982
			      struct gen8_insert_pte *idx,
983 984
			      enum i915_cache_level cache_level,
			      u32 flags)
985
{
986
	struct i915_page_directory *pd;
987
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
988 989
	gen8_pte_t *vaddr;
	bool ret;
990

991
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
992 993
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
994
	do {
995 996
		vaddr[idx->pte] = pte_encode | iter->dma;

997
		iter->dma += I915_GTT_PAGE_SIZE;
998 999 1000 1001 1002 1003
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1004

1005 1006
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1007
		}
1008

1009 1010 1011 1012 1013 1014
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1015
				/* Limited by sg length for 3lvl */
1016 1017
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1018
					ret = true;
1019
					break;
1020 1021
				}

1022
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1023
				pd = pdp->page_directory[idx->pdpe];
1024
			}
1025

1026
			kunmap_atomic(vaddr);
1027
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1028
		}
1029
	} while (1);
1030
	kunmap_atomic(vaddr);
1031

1032
	return ret;
1033 1034
}

1035
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1036
				   struct i915_vma *vma,
1037
				   enum i915_cache_level cache_level,
1038
				   u32 flags)
1039
{
1040
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1041
	struct sgt_dma iter = sgt_dma(vma);
1042
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1043

1044
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1045
				      cache_level, flags);
1046 1047

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1048
}
1049

1050 1051 1052
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1053 1054
					   enum i915_cache_level cache_level,
					   u32 flags)
1055
{
1056
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1057 1058 1059 1060 1061 1062 1063 1064
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1065
		bool maybe_64K = false;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1087 1088 1089 1090
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1091
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1092 1093
				maybe_64K = true;

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1113 1114 1115
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1116
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1117 1118
					maybe_64K = false;

1119 1120 1121 1122 1123 1124
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1141
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1155
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1156 1157 1158 1159 1160 1161 1162
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1163
		}
1164 1165

		vma->page_sizes.gtt |= page_size;
1166 1167 1168
	} while (iter->sg);
}

1169
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1170
				   struct i915_vma *vma,
1171
				   enum i915_cache_level cache_level,
1172
				   u32 flags)
1173 1174
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1175
	struct sgt_dma iter = sgt_dma(vma);
1176
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1177

1178
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1179 1180
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1181 1182 1183 1184
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1185 1186
						     &iter, &idx, cache_level,
						     flags))
1187
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1188 1189

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1190
	}
1191 1192
}

1193
static void gen8_free_page_tables(struct i915_address_space *vm,
1194
				  struct i915_page_directory *pd)
1195 1196 1197
{
	int i;

1198 1199 1200
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1201
	}
B
Ben Widawsky 已提交
1202 1203
}

1204 1205
static int gen8_init_scratch(struct i915_address_space *vm)
{
1206
	int ret;
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1220
		vm->scratch_order = clone->scratch_order;
1221 1222 1223 1224 1225 1226 1227
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1228
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1229 1230
	if (ret)
		return ret;
1231

1232 1233 1234 1235 1236
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
				PTE_READ_ONLY);

1237
	vm->scratch_pt = alloc_pt(vm);
1238
	if (IS_ERR(vm->scratch_pt)) {
1239 1240
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1241 1242
	}

1243
	vm->scratch_pd = alloc_pd(vm);
1244
	if (IS_ERR(vm->scratch_pd)) {
1245 1246
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1247 1248
	}

1249
	if (use_4lvl(vm)) {
1250
		vm->scratch_pdp = alloc_pdp(vm);
1251
		if (IS_ERR(vm->scratch_pdp)) {
1252 1253
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1254 1255 1256
		}
	}

1257 1258
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1259
	if (use_4lvl(vm))
1260
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1261 1262

	return 0;
1263 1264

free_pd:
1265
	free_pd(vm, vm->scratch_pd);
1266
free_pt:
1267
	free_pt(vm, vm->scratch_pt);
1268
free_scratch_page:
1269
	cleanup_scratch_page(vm);
1270 1271

	return ret;
1272 1273
}

1274 1275
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1276
	struct i915_address_space *vm = &ppgtt->vm;
1277
	struct drm_i915_private *dev_priv = vm->i915;
1278 1279 1280
	enum vgt_g2v_type msg;
	int i;

1281 1282
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1283

1284 1285
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1286 1287 1288 1289

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1290
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1291
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1292

1293 1294
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1306 1307
static void gen8_free_scratch(struct i915_address_space *vm)
{
1308 1309 1310
	if (!vm->scratch_page.daddr)
		return;

1311
	if (use_4lvl(vm))
1312 1313 1314 1315
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1316 1317
}

1318
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1319
				    struct i915_page_directory_pointer *pdp)
1320
{
1321
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1322 1323
	int i;

1324
	for (i = 0; i < pdpes; i++) {
1325
		if (pdp->page_directory[i] == vm->scratch_pd)
1326 1327
			continue;

1328 1329
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1330
	}
1331

1332
	free_pdp(vm, pdp);
1333 1334 1335 1336 1337 1338
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1339
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1340
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1341 1342
			continue;

1343
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1344 1345
	}

1346
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1347 1348 1349 1350
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1351
	struct drm_i915_private *dev_priv = vm->i915;
1352
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1353

1354
	if (intel_vgpu_active(dev_priv))
1355 1356
		gen8_ppgtt_notify_vgt(ppgtt, false);

1357
	if (use_4lvl(vm))
1358
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1359
	else
1360
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1361

1362
	gen8_free_scratch(vm);
1363 1364
}

1365 1366 1367
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1368
{
1369
	struct i915_page_table *pt;
1370
	u64 from = start;
1371
	unsigned int pde;
1372

1373
	gen8_for_each_pde(pt, pd, start, length, pde) {
1374 1375
		int count = gen8_pte_count(start, length);

1376
		if (pt == vm->scratch_pt) {
1377 1378
			pd->used_pdes++;

1379
			pt = alloc_pt(vm);
1380 1381
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1382
				goto unwind;
1383
			}
1384

1385
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1386
				gen8_initialize_pt(vm, pt);
1387 1388

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1389
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1390
		}
1391

1392
		pt->used_ptes += count;
1393
	}
1394
	return 0;
1395

1396 1397
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1398
	return -ENOMEM;
1399 1400
}

1401 1402 1403
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1404
{
1405
	struct i915_page_directory *pd;
1406 1407
	u64 from = start;
	unsigned int pdpe;
1408 1409
	int ret;

1410
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1411
		if (pd == vm->scratch_pd) {
1412 1413
			pdp->used_pdpes++;

1414
			pd = alloc_pd(vm);
1415 1416
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1417
				goto unwind;
1418
			}
1419

1420
			gen8_initialize_pd(vm, pd);
1421
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1422
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1423 1424 1425
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1426 1427
		if (unlikely(ret))
			goto unwind_pd;
1428
	}
1429

B
Ben Widawsky 已提交
1430
	return 0;
1431

1432 1433 1434 1435 1436 1437 1438
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1439 1440 1441
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1442 1443
}

1444 1445
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1446
{
1447 1448 1449
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1460

1461
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1462 1463 1464 1465
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1466

1467 1468 1469
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1470

1471
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1472 1473
		if (unlikely(ret))
			goto unwind_pdp;
1474 1475 1476 1477
	}

	return 0;

1478 1479 1480 1481 1482
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1483 1484 1485
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1486 1487
}

1488
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1489
{
1490
	struct i915_address_space *vm = &ppgtt->vm;
1491 1492
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1493
	u64 start = 0, length = ppgtt->vm.total;
1494 1495
	u64 from = start;
	unsigned int pdpe;
1496

1497 1498 1499 1500
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1501

1502 1503 1504 1505
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1506

1507 1508
	pdp->used_pdpes++; /* never remove */
	return 0;
1509

1510 1511 1512 1513 1514 1515 1516 1517
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1518 1519
}

1520
/*
1521 1522 1523 1524
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1525
 *
1526
 */
1527
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1528
{
1529 1530 1531 1532 1533 1534 1535
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1536 1537
	kref_init(&ppgtt->ref);

1538 1539
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1540

1541
	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1542 1543 1544
		1ULL << 48 :
		1ULL << 32;

1545 1546
	/* From bdw, there is support for read-only pages in the PPGTT. */
	ppgtt->vm.has_read_only = true;
1547

1548
	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1549

1550 1551 1552
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1553
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1554
		ppgtt->vm.pt_kmap_wc = true;
1555

1556 1557 1558
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1559

1560 1561 1562 1563
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1564

1565
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1566

1567 1568 1569
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1570
	} else {
1571 1572 1573
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1574

1575 1576 1577
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1578
				__pdp_fini(&ppgtt->pdp);
1579
				goto err_scratch;
1580
			}
1581
		}
1582

1583 1584 1585
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1586
	}
1587

1588
	if (intel_vgpu_active(i915))
1589 1590
		gen8_ppgtt_notify_vgt(ppgtt, true);

1591
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1592

1593
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1594 1595 1596 1597
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1598
	return ppgtt;
1599

1600
err_scratch:
1601
	gen8_free_scratch(&ppgtt->vm);
1602 1603 1604
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1605 1606
}

1607
/* Write pde (index) from the page directory @pd to the page table @pt */
1608
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1609 1610
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1611
{
1612
	/* Caller needs to make sure the write completes if necessary */
1613 1614
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1615
}
B
Ben Widawsky 已提交
1616

1617
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1618
{
1619
	struct intel_engine_cs *engine;
1620
	u32 ecochk, ecobits;
1621
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1622

1623 1624
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1625

1626
	ecochk = I915_READ(GAM_ECOCHK);
1627
	if (IS_HASWELL(dev_priv)) {
1628 1629 1630 1631 1632 1633
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1634

1635
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1636
		/* GFX_MODE is per-ring on gen7+ */
1637
		I915_WRITE(RING_MODE_GEN7(engine),
1638
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1639
	}
1640
}
B
Ben Widawsky 已提交
1641

1642
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1643
{
1644
	u32 ecochk, gab_ctl, ecobits;
1645

1646 1647 1648
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1649

1650 1651 1652 1653 1654 1655
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1656 1657
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1658 1659
}

1660
/* PPGTT support for Sandybdrige/Gen6 and later */
1661
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1662
				   u64 start, u64 length)
1663
{
1664
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1665
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1666 1667
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1668
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1669
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1670

1671
	while (num_entries) {
1672
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1673
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1674
		gen6_pte_t *vaddr;
1675

1676 1677 1678 1679 1680 1681 1682 1683
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1684

1685 1686
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1687 1688 1689 1690
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1691

1692
		vaddr = kmap_atomic_px(pt);
1693
		memset32(vaddr + pte, scratch_pte, count);
1694
		kunmap_atomic(vaddr);
1695

1696
		pte = 0;
1697
	}
1698 1699
}

1700
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1701
				      struct i915_vma *vma,
1702 1703
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1704
{
1705
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1706
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1707 1708
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1709
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1710
	struct sgt_dma iter = sgt_dma(vma);
1711 1712
	gen6_pte_t *vaddr;

1713 1714
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1715
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1716 1717
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1718

1719
		iter.dma += I915_GTT_PAGE_SIZE;
1720 1721 1722 1723
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1724

1725 1726 1727
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1728

1729
		if (++act_pte == GEN6_PTES) {
1730 1731
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1732
			act_pte = 0;
D
Daniel Vetter 已提交
1733
		}
1734
	} while (1);
1735
	kunmap_atomic(vaddr);
1736 1737

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1738 1739
}

1740
static int gen6_alloc_va_range(struct i915_address_space *vm,
1741
			       u64 start, u64 length)
1742
{
1743
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1744
	struct i915_page_table *pt;
1745 1746 1747
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1748

1749
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1750 1751
		const unsigned int count = gen6_pte_count(start, length);

1752 1753 1754 1755
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1756

1757
			gen6_initialize_pt(vm, pt);
1758
			ppgtt->base.pd.page_table[pde] = pt;
1759 1760 1761 1762 1763 1764

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1765 1766

			GEM_BUG_ON(pt->used_ptes);
1767
		}
1768 1769

		pt->used_ptes += count;
1770 1771
	}

1772
	if (flush) {
1773 1774
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1775 1776 1777
	}

	return 0;
1778 1779

unwind_out:
1780
	gen6_ppgtt_clear_range(vm, from, start - from);
1781
	return -ENOMEM;
1782 1783
}

1784
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1785
{
1786 1787 1788
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1789
	int ret;
1790

1791
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1792 1793
	if (ret)
		return ret;
1794

1795 1796 1797
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1798

1799
	vm->scratch_pt = alloc_pt(vm);
1800
	if (IS_ERR(vm->scratch_pt)) {
1801
		cleanup_scratch_page(vm);
1802 1803 1804
		return PTR_ERR(vm->scratch_pt);
	}

1805
	gen6_initialize_pt(vm, vm->scratch_pt);
1806 1807
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1808 1809 1810 1811

	return 0;
}

1812
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1813
{
1814 1815
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1816 1817
}

1818
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1819
{
1820
	struct i915_page_table *pt;
1821
	u32 pde;
1822

1823
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1824 1825 1826 1827 1828 1829 1830
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1831

1832
	i915_vma_destroy(ppgtt->vma);
1833 1834 1835

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1836 1837
}

1838
static int pd_vma_set_pages(struct i915_vma *vma)
1839
{
1840 1841 1842
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1843

1844 1845 1846
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1857
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1858 1859
	struct i915_page_table *pt;
	unsigned int pde;
1860

1861 1862
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1863

1864 1865
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1866

1867 1868
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1869

1870
	return 0;
1871
}
1872

1873
static void pd_vma_unbind(struct i915_vma *vma)
1874
{
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1911
	vma = i915_vma_alloc();
1912 1913 1914
	if (!vma)
		return ERR_PTR(-ENOMEM);

1915
	i915_active_init(i915, &vma->active, NULL);
1916
	INIT_ACTIVE_REQUEST(&vma->last_fence);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1928 1929

	mutex_lock(&vma->vm->mutex);
1930
	list_add(&vma->vm_link, &vma->vm->unbound_list);
1931
	mutex_unlock(&vma->vm->mutex);
1932 1933 1934

	return vma;
}
1935

1936
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1937 1938
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1939
	int err;
1940

1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

1950 1951 1952 1953 1954
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
1966 1967
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

1979
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1980
{
1981
	struct i915_ggtt * const ggtt = &i915->ggtt;
1982
	struct gen6_hw_ppgtt *ppgtt;
1983 1984 1985 1986 1987 1988
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1989 1990
	kref_init(&ppgtt->base.ref);

1991 1992
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
1993

1994
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
1995

1996
	i915_address_space_init(&ppgtt->base.vm, VM_CLASS_PPGTT);
1997

1998
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1999 2000 2001
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2002

2003
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2004 2005 2006
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2007

2008 2009
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2010
	err = gen6_ppgtt_init_scratch(ppgtt);
2011 2012 2013
	if (err)
		goto err_free;

2014 2015 2016
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2017
		goto err_scratch;
2018
	}
2019

2020
	return &ppgtt->base;
2021

2022 2023
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2024 2025 2026
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2027
}
2028

2029
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2030 2031 2032 2033 2034
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2035
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2036
	if (IS_BROADWELL(dev_priv))
2037
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2038
	else if (IS_CHERRYVIEW(dev_priv))
2039
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2040
	else if (IS_GEN9_LP(dev_priv))
2041
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2042 2043
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2061 2062
}

2063
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2064
{
2065
	gtt_write_workarounds(dev_priv);
2066

2067
	if (IS_GEN(dev_priv, 6))
2068
		gen6_ppgtt_enable(dev_priv);
2069
	else if (IS_GEN(dev_priv, 7))
2070
		gen7_ppgtt_enable(dev_priv);
2071

2072 2073
	return 0;
}
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2084
struct i915_hw_ppgtt *
2085
i915_ppgtt_create(struct drm_i915_private *i915,
2086
		  struct drm_i915_file_private *fpriv)
2087 2088 2089
{
	struct i915_hw_ppgtt *ppgtt;

2090 2091 2092
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2093

2094
	ppgtt->vm.file = fpriv;
2095

2096
	trace_i915_ppgtt_create(&ppgtt->vm);
2097

2098 2099 2100
	return ppgtt;
}

2101
void i915_ppgtt_close(struct i915_address_space *vm)
2102 2103 2104 2105 2106 2107
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2108 2109
{
	struct list_head *phases[] = {
2110
		&vm->bound_list,
2111 2112 2113 2114 2115 2116 2117 2118 2119
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2120
			i915_vma_destroy(vma);
2121 2122 2123
	}
}

2124
void i915_ppgtt_release(struct kref *kref)
2125 2126 2127 2128
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2129
	trace_i915_ppgtt_release(&ppgtt->vm);
2130

2131
	ppgtt_destroy_vma(&ppgtt->vm);
2132

2133
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2134
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2135

2136 2137
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2138 2139
	kfree(ppgtt);
}
2140

2141 2142 2143
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2144
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2145 2146 2147 2148
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2149
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2150 2151
}

2152
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2153
{
2154
	struct intel_engine_cs *engine;
2155
	enum intel_engine_id id;
2156
	u32 fault;
2157

2158
	for_each_engine(engine, dev_priv, id) {
2159 2160
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2161
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2162
					 "\tAddr: 0x%08lx\n"
2163 2164 2165
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2166 2167 2168 2169
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2170 2171
		}
	}
2172 2173
}

2174
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2175 2176 2177 2178
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2179 2180 2181 2182 2183 2184 2185 2186
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2187
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2188 2189
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2190 2191 2192
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2193 2194 2195
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2206
		gen8_check_faults(dev_priv);
2207
	else if (INTEL_GEN(dev_priv) >= 6)
2208
		gen6_check_faults(dev_priv);
2209 2210
	else
		return;
2211 2212

	i915_clear_error_registers(dev_priv);
2213 2214
}

2215
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2216
{
2217
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2218 2219 2220 2221

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2222
	if (INTEL_GEN(dev_priv) < 6)
2223 2224
		return;

2225
	i915_check_and_clear_faults(dev_priv);
2226

2227
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2228

2229
	i915_ggtt_invalidate(dev_priv);
2230 2231
}

2232 2233
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2234
{
2235
	do {
2236 2237 2238 2239
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2240 2241
			return 0;

2242 2243
		/*
		 * If the DMA remap fails, one cause can be that we have
2244 2245 2246 2247 2248 2249 2250
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2251
				 obj->base.size >> PAGE_SHIFT, NULL,
2252
				 I915_SHRINK_BOUND |
2253
				 I915_SHRINK_UNBOUND));
2254

2255
	return -ENOSPC;
2256 2257
}

2258
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2259 2260 2261 2262
{
	writeq(pte, addr);
}

2263 2264
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2265
				  u64 offset,
2266 2267 2268
				  enum i915_cache_level level,
				  u32 unused)
{
2269
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2270
	gen8_pte_t __iomem *pte =
2271
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2272

2273
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2274

2275
	ggtt->invalidate(vm->i915);
2276 2277
}

B
Ben Widawsky 已提交
2278
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2279
				     struct i915_vma *vma,
2280
				     enum i915_cache_level level,
2281
				     u32 flags)
B
Ben Widawsky 已提交
2282
{
2283
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2284 2285
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2286
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2287
	dma_addr_t addr;
2288

2289 2290 2291 2292
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2293

2294
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2295
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2296
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2297
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2298

2299 2300 2301
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2302
	 */
2303
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2304 2305
}

2306 2307
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2308
				  u64 offset,
2309 2310 2311
				  enum i915_cache_level level,
				  u32 flags)
{
2312
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2313
	gen6_pte_t __iomem *pte =
2314
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2315

2316
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2317

2318
	ggtt->invalidate(vm->i915);
2319 2320
}

2321 2322 2323 2324 2325 2326
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2327
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2328
				     struct i915_vma *vma,
2329 2330
				     enum i915_cache_level level,
				     u32 flags)
2331
{
2332
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2333
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2334
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2335
	struct sgt_iter iter;
2336
	dma_addr_t addr;
2337
	for_each_sgt_dma(addr, iter, vma->pages)
2338
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2339

2340 2341 2342
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2343
	 */
2344
	ggtt->invalidate(vm->i915);
2345 2346
}

2347
static void nop_clear_range(struct i915_address_space *vm,
2348
			    u64 start, u64 length)
2349 2350 2351
{
}

B
Ben Widawsky 已提交
2352
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2353
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2354
{
2355
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2356 2357
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2358
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2359
	gen8_pte_t __iomem *gtt_base =
2360 2361
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2417
	struct i915_vma *vma;
2418
	enum i915_cache_level level;
2419
	u32 flags;
2420 2421 2422 2423 2424 2425
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2426
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2427 2428 2429 2430 2431 2432
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2433
					     struct i915_vma *vma,
2434
					     enum i915_cache_level level,
2435
					     u32 flags)
2436
{
2437
	struct insert_entries arg = { vm, vma, level, flags };
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2467
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2468
				  u64 start, u64 length)
2469
{
2470
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2471 2472
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2473
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2474 2475
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2476 2477 2478 2479 2480 2481 2482
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2483
	scratch_pte = vm->scratch_pte;
2484

2485 2486 2487 2488
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2489 2490
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2491
				  u64 offset,
2492 2493 2494 2495 2496 2497 2498 2499 2500
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2501
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2502
				     struct i915_vma *vma,
2503 2504
				     enum i915_cache_level cache_level,
				     u32 unused)
2505 2506 2507 2508
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2509 2510
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2511 2512
}

2513
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2514
				  u64 start, u64 length)
2515
{
2516
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2517 2518
}

2519 2520 2521
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2522
{
2523
	struct drm_i915_private *i915 = vma->vm->i915;
2524
	struct drm_i915_gem_object *obj = vma->obj;
2525
	intel_wakeref_t wakeref;
2526
	u32 pte_flags;
2527

2528
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2529
	pte_flags = 0;
2530
	if (i915_gem_object_is_readonly(obj))
2531 2532
		pte_flags |= PTE_READ_ONLY;

2533 2534
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2535

2536 2537
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2538 2539 2540 2541 2542
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2543
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2544 2545 2546 2547

	return 0;
}

2548 2549 2550
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2551
	intel_wakeref_t wakeref;
2552

2553 2554
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2555 2556
}

2557 2558 2559
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2560
{
2561
	struct drm_i915_private *i915 = vma->vm->i915;
2562
	u32 pte_flags;
2563
	int ret;
2564

2565
	/* Currently applicable only to VLV */
2566
	pte_flags = 0;
2567
	if (i915_gem_object_is_readonly(vma->obj))
2568
		pte_flags |= PTE_READ_ONLY;
2569

2570 2571 2572
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2573
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2574 2575 2576
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2577
			if (ret)
2578
				return ret;
2579 2580
		}

2581 2582
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2583 2584
	}

2585
	if (flags & I915_VMA_GLOBAL_BIND) {
2586 2587
		intel_wakeref_t wakeref;

2588 2589 2590 2591
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2592
	}
2593

2594
	return 0;
2595 2596
}

2597
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2598
{
2599
	struct drm_i915_private *i915 = vma->vm->i915;
2600

2601
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2602
		struct i915_address_space *vm = vma->vm;
2603 2604
		intel_wakeref_t wakeref;

2605 2606
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2607
	}
2608

2609
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2610
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2611 2612 2613

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2614 2615
}

2616 2617
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2618
{
D
David Weinehall 已提交
2619 2620
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2621
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2622

2623
	if (unlikely(ggtt->do_idle_maps)) {
2624
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2625 2626 2627 2628 2629
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2630

2631
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2632
}
2633

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2644 2645
	vma->page_sizes = vma->obj->mm.page_sizes;

2646 2647 2648
	return 0;
}

C
Chris Wilson 已提交
2649
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2650
				  unsigned long color,
2651 2652
				  u64 *start,
				  u64 *end)
2653
{
2654
	if (node->allocated && node->color != color)
2655
		*start += I915_GTT_PAGE_SIZE;
2656

2657 2658 2659 2660 2661
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2662
	node = list_next_entry(node, node_list);
2663
	if (node->color != color)
2664
		*end -= I915_GTT_PAGE_SIZE;
2665
}
B
Ben Widawsky 已提交
2666

2667 2668 2669 2670 2671 2672
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2673
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2674 2675
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2676

2677
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2678 2679 2680 2681
		err = -ENODEV;
		goto err_ppgtt;
	}

2682 2683 2684 2685 2686 2687 2688 2689 2690
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2691 2692

	i915->mm.aliasing_ppgtt = ppgtt;
2693

2694 2695
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2696

2697 2698
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2699

2700 2701 2702
	return 0;

err_ppgtt:
2703
	i915_ppgtt_put(ppgtt);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2716
	i915_ppgtt_put(ppgtt);
2717

2718 2719
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2720 2721
}

2722
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2723
{
2724 2725 2726 2727 2728 2729 2730 2731 2732
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2733
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2734
	unsigned long hole_start, hole_end;
2735
	struct drm_mm_node *entry;
2736
	int ret;
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2747 2748 2749
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2750

2751
	/* Reserve a mappable slot for our lockless error capture */
2752
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2753 2754 2755
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2756 2757 2758
	if (ret)
		return ret;

2759
	/* Clear any non-preallocated blocks */
2760
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2761 2762
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2763 2764
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2765 2766 2767
	}

	/* And finally clear the reserved guard page */
2768
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2769

2770
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2771
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2772
		if (ret)
2773
			goto err;
2774 2775
	}

2776
	return 0;
2777 2778 2779 2780

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2781 2782
}

2783 2784
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2785
 * @dev_priv: i915 device
2786
 */
2787
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2788
{
2789
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2790
	struct i915_vma *vma, *vn;
2791
	struct pagevec *pvec;
2792

2793
	ggtt->vm.closed = true;
2794 2795

	mutex_lock(&dev_priv->drm.struct_mutex);
2796 2797
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2798
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2799
		WARN_ON(i915_vma_unbind(vma));
2800

2801 2802 2803
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2804
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2805
		intel_vgt_deballoon(dev_priv);
2806
		i915_address_space_fini(&ggtt->vm);
2807 2808
	}

2809
	ggtt->vm.cleanup(&ggtt->vm);
2810

2811
	pvec = &dev_priv->mm.wc_stash.pvec;
2812 2813 2814 2815 2816
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2817
	mutex_unlock(&dev_priv->drm.struct_mutex);
2818 2819

	arch_phys_wc_del(ggtt->mtrr);
2820
	io_mapping_fini(&ggtt->iomap);
2821

2822
	i915_gem_cleanup_stolen(dev_priv);
2823
}
2824

2825
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2826 2827 2828 2829 2830 2831
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2832
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2833 2834 2835 2836 2837
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2838 2839

#ifdef CONFIG_X86_32
2840
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2841 2842 2843 2844
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2845 2846 2847
	return bdw_gmch_ctl << 20;
}

2848
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2859
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2860
{
2861
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2862
	struct pci_dev *pdev = dev_priv->drm.pdev;
2863
	phys_addr_t phys_addr;
2864
	int ret;
B
Ben Widawsky 已提交
2865 2866

	/* For Modern GENs the PTEs and register space are split in the BAR */
2867
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2868

I
Imre Deak 已提交
2869
	/*
2870 2871 2872
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2873 2874 2875
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2876
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2877
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2878
	else
2879
		ggtt->gsm = ioremap_wc(phys_addr, size);
2880
	if (!ggtt->gsm) {
2881
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2882 2883 2884
		return -ENOMEM;
	}

2885
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2886
	if (ret) {
B
Ben Widawsky 已提交
2887 2888
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2889
		iounmap(ggtt->gsm);
2890
		return ret;
B
Ben Widawsky 已提交
2891 2892
	}

2893 2894 2895 2896
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2897
	return 0;
B
Ben Widawsky 已提交
2898 2899
}

2900 2901
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2902
{
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
2946
	struct intel_ppat_entry *entry = NULL;
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
2969
		if (!entry)
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3046
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3084 3085
}

B
Ben Widawsky 已提交
3086 3087 3088
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3089
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3090
{
3091 3092 3093 3094
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3095

3096
	if (!HAS_PPGTT(ppat->i915)) {
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3110 3111 3112
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3113

3114 3115 3116 3117 3118 3119 3120 3121
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3122 3123
}

3124
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3125
{
3126 3127 3128 3129
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3130 3131 3132 3133 3134 3135 3136

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3148 3149
	 */

3150 3151 3152 3153 3154 3155 3156 3157
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3158 3159
}

3160 3161 3162 3163 3164
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3165
	cleanup_scratch_page(vm);
3166 3167
}

3168 3169
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3170 3171 3172 3173 3174
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3175
	if (INTEL_GEN(dev_priv) >= 10)
3176
		cnl_setup_private_ppat(ppat);
3177
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3178
		chv_setup_private_ppat(ppat);
3179
	else
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3191 3192
}

3193
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3194
{
3195
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3196
	struct pci_dev *pdev = dev_priv->drm.pdev;
3197
	unsigned int size;
B
Ben Widawsky 已提交
3198
	u16 snb_gmch_ctl;
3199
	int err;
B
Ben Widawsky 已提交
3200 3201

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3202 3203 3204 3205
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3206

3207 3208 3209 3210 3211
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3212

3213
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3214
	if (IS_CHERRYVIEW(dev_priv))
3215
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3216
	else
3217
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3218

3219
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3220 3221 3222
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3223
	if (intel_scanout_needs_vtd_wa(dev_priv))
3224
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3225

3226
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3227

3228
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3229 3230
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3231 3232 3233 3234
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3235 3236 3237 3238 3239

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3240 3241
	}

3242 3243
	ggtt->invalidate = gen6_ggtt_invalidate;

3244 3245 3246 3247 3248
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3249 3250
	ggtt->vm.pte_encode = gen8_pte_encode;

3251 3252
	setup_private_pat(dev_priv);

3253
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3254 3255
}

3256
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3257
{
3258
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3259
	struct pci_dev *pdev = dev_priv->drm.pdev;
3260
	unsigned int size;
3261
	u16 snb_gmch_ctl;
3262
	int err;
3263

3264 3265 3266 3267
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3268

3269 3270
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3271
	 */
3272
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3273
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3274
		return -ENXIO;
3275 3276
	}

3277 3278 3279 3280 3281
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3282
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3283

3284
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3285
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3286

3287 3288 3289 3290
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3291

3292 3293
	ggtt->invalidate = gen6_ggtt_invalidate;

3294
	if (HAS_EDRAM(dev_priv))
3295
		ggtt->vm.pte_encode = iris_pte_encode;
3296
	else if (IS_HASWELL(dev_priv))
3297
		ggtt->vm.pte_encode = hsw_pte_encode;
3298
	else if (IS_VALLEYVIEW(dev_priv))
3299
		ggtt->vm.pte_encode = byt_pte_encode;
3300
	else if (INTEL_GEN(dev_priv) >= 7)
3301
		ggtt->vm.pte_encode = ivb_pte_encode;
3302
	else
3303
		ggtt->vm.pte_encode = snb_pte_encode;
3304

3305 3306 3307 3308 3309
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3310
	return ggtt_probe_common(ggtt, size);
3311 3312
}

3313
static void i915_gmch_remove(struct i915_address_space *vm)
3314
{
3315
	intel_gmch_remove();
3316
}
3317

3318
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3319
{
3320
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3321
	phys_addr_t gmadr_base;
3322 3323
	int ret;

3324
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3325 3326 3327 3328 3329
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3330
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3331

3332 3333 3334 3335
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3336
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3337 3338 3339 3340
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3341

3342 3343
	ggtt->invalidate = gmch_ggtt_invalidate;

3344 3345 3346 3347 3348
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3349
	if (unlikely(ggtt->do_idle_maps))
3350 3351
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3352 3353 3354
	return 0;
}

3355
/**
3356
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3357
 * @dev_priv: i915 device
3358
 */
3359
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3360
{
3361
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3362 3363
	int ret;

3364 3365
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3366

3367 3368 3369 3370 3371 3372
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3373
	if (ret)
3374 3375
		return ret;

3376 3377 3378 3379 3380
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3381
	if (USES_GUC(dev_priv)) {
3382 3383 3384
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3385 3386
	}

3387
	if ((ggtt->vm.total - 1) >> 32) {
3388
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3389
			  " of address space! Found %lldM!\n",
3390 3391 3392 3393
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3394 3395
	}

3396
	if (ggtt->mappable_end > ggtt->vm.total) {
3397
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3398
			  " aperture=%pa, total=%llx\n",
3399 3400
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3401 3402
	}

3403
	/* GMADR is the PCI mmio aperture into the global GTT. */
3404
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3405
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3406
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3407
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3408
	if (intel_vtd_active())
3409
		DRM_INFO("VT-d active for gfx access\n");
3410 3411

	return 0;
3412 3413 3414 3415
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3416
 * @dev_priv: i915 device
3417
 */
3418
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3419 3420 3421 3422
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3423 3424
	stash_init(&dev_priv->mm.wc_stash);

3425 3426 3427 3428
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3429
	 */
C
Chris Wilson 已提交
3430
	mutex_lock(&dev_priv->drm.struct_mutex);
3431
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3432

3433 3434
	ggtt->vm.is_ggtt = true;

3435 3436 3437
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3438
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3439
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3440
	mutex_unlock(&dev_priv->drm.struct_mutex);
3441

3442 3443
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3444
				dev_priv->ggtt.mappable_end)) {
3445 3446 3447 3448
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3449
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3450

3451 3452 3453 3454
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3455
	ret = i915_gem_init_stolen(dev_priv);
3456 3457 3458 3459
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3460 3461

out_gtt_cleanup:
3462
	ggtt->vm.cleanup(&ggtt->vm);
3463
	return ret;
3464
}
3465

3466
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3467
{
3468
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3469 3470 3471 3472 3473
		return -EIO;

	return 0;
}

3474 3475
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3476 3477
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3478
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3479 3480

	i915_ggtt_invalidate(i915);
3481 3482 3483 3484
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3485 3486 3487 3488
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3489 3490 3491 3492
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3493 3494

	i915_ggtt_invalidate(i915);
3495 3496
}

3497
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3498
{
3499
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3500
	struct i915_vma *vma, *vn;
3501

3502
	i915_check_and_clear_faults(dev_priv);
3503

3504 3505
	mutex_lock(&ggtt->vm.mutex);

3506
	/* First fill our portion of the GTT with scratch pages */
3507 3508
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3509 3510

	/* clflush objects bound into the GGTT and rebind them. */
3511
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3512
		struct drm_i915_gem_object *obj = vma->obj;
3513

3514 3515
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3516

3517 3518
		mutex_unlock(&ggtt->vm.mutex);

3519
		if (!i915_vma_unbind(vma))
3520
			goto lock;
3521

3522 3523 3524 3525 3526
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3527 3528 3529

lock:
		mutex_lock(&ggtt->vm.mutex);
3530
	}
3531

3532
	ggtt->vm.closed = false;
3533
	i915_ggtt_invalidate(dev_priv);
3534

3535 3536
	mutex_unlock(&ggtt->vm.mutex);

3537
	if (INTEL_GEN(dev_priv) >= 8) {
3538
		struct intel_ppat *ppat = &dev_priv->ppat;
3539

3540 3541
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3542 3543 3544 3545
		return;
	}
}

3546
static struct scatterlist *
3547
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3548
	     unsigned int width, unsigned int height,
3549
	     unsigned int stride,
3550
	     struct sg_table *st, struct scatterlist *sg)
3551 3552 3553 3554 3555
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3556
		src_idx = stride * (height - 1) + column + offset;
3557 3558 3559 3560 3561 3562
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3563
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3564 3565
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3566
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3567
			sg = sg_next(sg);
3568
			src_idx -= stride;
3569 3570
		}
	}
3571 3572

	return sg;
3573 3574
}

3575 3576 3577
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3578
{
3579
	unsigned int size = intel_rotation_info_size(rot_info);
3580
	struct sg_table *st;
3581
	struct scatterlist *sg;
3582
	int ret = -ENOMEM;
3583
	int i;
3584 3585 3586 3587 3588 3589

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3590
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3591 3592 3593
	if (ret)
		goto err_sg_alloc;

3594 3595 3596
	st->nents = 0;
	sg = st->sgl;

3597
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3598
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3599 3600
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3601 3602
	}

3603 3604 3605 3606 3607 3608
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3609 3610
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3611

3612 3613
	return ERR_PTR(ret);
}
3614

3615
static noinline struct sg_table *
3616 3617 3618 3619
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3620
	struct scatterlist *sg, *iter;
3621
	unsigned int count = view->partial.size;
3622
	unsigned int offset;
3623 3624 3625 3626 3627 3628
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3629
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3630 3631 3632
	if (ret)
		goto err_sg_alloc;

3633
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3634 3635
	GEM_BUG_ON(!iter);

3636 3637
	sg = st->sgl;
	st->nents = 0;
3638 3639
	do {
		unsigned int len;
3640

3641 3642 3643 3644 3645 3646
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3647 3648

		st->nents++;
3649 3650 3651
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3652 3653
			i915_sg_trim(st); /* Drop any unused tail entries. */

3654 3655
			return st;
		}
3656

3657 3658 3659 3660
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3661 3662 3663 3664 3665 3666 3667

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3668
static int
3669
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3670
{
3671
	int ret;
3672

3673 3674 3675 3676 3677 3678 3679
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3680
	switch (vma->ggtt_view.type) {
3681 3682 3683
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3684 3685
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3686 3687
		return 0;

3688
	case I915_GGTT_VIEW_ROTATED:
3689
		vma->pages =
3690 3691 3692 3693
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3694
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3695 3696
		break;
	}
3697

3698
	ret = 0;
3699
	if (IS_ERR(vma->pages)) {
3700 3701
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3702 3703
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3704
	}
3705
	return ret;
3706 3707
}

3708 3709
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3744
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3745
	GEM_BUG_ON(drm_mm_node_allocated(node));
3746 3747 3748 3749 3750 3751 3752 3753 3754

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3755 3756 3757
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3758 3759 3760 3761 3762 3763 3764
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3790 3791
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3792 3793 3794 3795 3796 3797 3798 3799 3800
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3801
 *         must be #I915_GTT_PAGE_SIZE aligned
3802 3803 3804
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3805 3806 3807 3808 3809 3810
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3811 3812
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3829
	enum drm_mm_insert_mode mode;
3830
	u64 offset;
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3841
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3842
	GEM_BUG_ON(drm_mm_node_allocated(node));
3843 3844 3845 3846 3847 3848 3849

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3850 3851
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3852
		mode = DRM_MM_INSERT_HIGHEST;
3853 3854
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3866 3867 3868
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3869 3870 3871
	if (err != -ENOSPC)
		return err;

3872 3873 3874 3875 3876 3877 3878 3879 3880
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3881 3882 3883
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
3913 3914 3915 3916 3917
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

3918 3919 3920
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
3921
}
3922 3923 3924

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
3925
#include "selftests/i915_gem_gtt.c"
3926
#endif