i915_gem_gtt.c 104.4 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_vgpu.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
82 83 84
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

107 108 109
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

110 111
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
112 113
	/*
	 * Note that as an uncached mmio write, this will flush the
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

135 136 137
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
138
{
139
	u32 pte_flags;
140 141 142 143 144 145 146 147
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
148

149
	/* Applicable to VLV, and gen8+ */
150
	pte_flags = 0;
151
	if (i915_gem_object_is_readonly(vma->obj))
152 153
		pte_flags |= PTE_READ_ONLY;

154
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
155 156

	return 0;
157 158 159 160
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
161
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
162
}
163

164 165 166 167 168 169
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

170 171
	vma->page_sizes = vma->obj->mm.page_sizes;

172 173 174 175 176 177 178 179 180 181 182 183
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
184 185

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
186 187
}

188 189 190
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
191
{
192 193 194 195
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
196 197 198

	switch (level) {
	case I915_CACHE_NONE:
199
		pte |= PPAT_UNCACHED;
200 201
		break;
	case I915_CACHE_WT:
202
		pte |= PPAT_DISPLAY_ELLC;
203 204
		break;
	default:
205
		pte |= PPAT_CACHED;
206 207 208
		break;
	}

B
Ben Widawsky 已提交
209 210 211
	return pte;
}

212 213
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
214
{
215
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
216 217
	pde |= addr;
	if (level != I915_CACHE_NONE)
218
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
219
	else
220
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
221 222 223
	return pde;
}

224 225 226
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

227 228 229
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
230
{
231
	gen6_pte_t pte = GEN6_PTE_VALID;
232
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
233 234

	switch (level) {
235 236 237 238 239 240 241 242
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
243
		MISSING_CASE(level);
244 245 246 247 248
	}

	return pte;
}

249 250 251
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
252
{
253
	gen6_pte_t pte = GEN6_PTE_VALID;
254 255 256 257 258
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
259 260 261 262 263
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
264
		pte |= GEN6_PTE_UNCACHED;
265 266
		break;
	default:
267
		MISSING_CASE(level);
268 269
	}

270 271 272
	return pte;
}

273 274 275
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
276
{
277
	gen6_pte_t pte = GEN6_PTE_VALID;
278 279
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

280 281
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
282 283 284 285 286 287 288

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

289 290 291
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
292
{
293
	gen6_pte_t pte = GEN6_PTE_VALID;
294
	pte |= HSW_PTE_ADDR_ENCODE(addr);
295 296

	if (level != I915_CACHE_NONE)
297
		pte |= HSW_WB_LLC_AGE3;
298 299 300 301

	return pte;
}

302 303 304
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
305
{
306
	gen6_pte_t pte = GEN6_PTE_VALID;
307 308
	pte |= HSW_PTE_ADDR_ENCODE(addr);

309 310 311 312
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
313
		pte |= HSW_WT_ELLC_LLC_AGE3;
314 315
		break;
	default:
316
		pte |= HSW_WB_ELLC_LLC_AGE3;
317 318
		break;
	}
319 320 321 322

	return pte;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

358
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
359
{
360 361
	struct pagevec stack;
	struct page *page;
362

363 364
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
365

366 367 368
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
369 370 371 372 373

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
374 375 376
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
377

378
	/*
379
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
380 381 382 383 384 385
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
386
	pagevec_init(&stack);
387 388
	do {
		struct page *page;
389

390 391 392 393
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

394 395
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
396

397 398
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
399

400 401
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
402

403 404 405
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
406
	}
407

408 409 410 411 412 413 414
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
415 416
}

417 418
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
419
{
420 421
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
422

423
	lockdep_assert_held(&vm->free_pages.lock);
424
	GEM_BUG_ON(!pagevec_count(pvec));
425

426
	if (vm->pt_kmap_wc) {
427 428
		/*
		 * When we use WC, first fill up the global stash and then
429 430
		 * only if full immediately free the overflow.
		 */
431
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
432

433 434 435 436 437 438 439 440
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
441

442 443 444 445 446 447 448 449 450 451
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
452
		set_pages_array_wb(pvec->pages, pvec->nr);
453 454

		spin_lock(&vm->free_pages.lock);
455 456 457
	}

	__pagevec_release(pvec);
458 459 460 461
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
462 463 464 465 466 467 468 469
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
470 471
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
472
		vm_free_pages_release(vm, false);
473 474 475
	spin_unlock(&vm->free_pages.lock);
}

476
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
477
{
478 479 480 481 482 483
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
484
	lockdep_set_subclass(&vm->mutex, subclass);
485
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
486

487 488 489 490 491 492 493
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
494
	INIT_LIST_HEAD(&vm->bound_list);
495 496 497 498 499 500 501 502 503 504 505
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
506 507

	mutex_destroy(&vm->mutex);
508
}
509

510 511 512 513
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
514
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
515 516
	if (unlikely(!p->page))
		return -ENOMEM;
517

518 519 520
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
521
				      DMA_ATTR_SKIP_CPU_SYNC |
522
				      DMA_ATTR_NO_WARN);
523 524 525
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
526
	}
527 528

	return 0;
529 530
}

531
static int setup_page_dma(struct i915_address_space *vm,
532
			  struct i915_page_dma *p)
533
{
534
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
535 536
}

537
static void cleanup_page_dma(struct i915_address_space *vm,
538
			     struct i915_page_dma *p)
539
{
540 541
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
542 543
}

544
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
545

546 547
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
548 549
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
550

551 552 553
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
554
{
555
	u64 * const vaddr = kmap_atomic(p->page);
556

557
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
558

559
	kunmap_atomic(vaddr);
560 561
}

562 563 564
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
565
{
566
	fill_page_dma(vm, p, (u64)v << 32 | v);
567 568
}

569
static int
570
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
571
{
572
	unsigned long size;
573

574 575 576 577 578 579 580
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
581 582 583
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
584
	 */
585
	size = I915_GTT_PAGE_SIZE_4K;
586
	if (i915_vm_is_4lvl(vm) &&
587
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
588 589
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
590
	}
591 592 593 594 595 596
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
597

598
		page = alloc_pages(gfp, order);
599
		if (unlikely(!page))
600
			goto skip;
601

602 603 604
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
605
					  DMA_ATTR_SKIP_CPU_SYNC |
606
					  DMA_ATTR_NO_WARN);
607 608
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
609

610 611
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
612

613 614
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
615
		vm->scratch_order = order;
616 617 618 619 620 621 622 623 624 625 626 627 628
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
629 630
}

631
static void cleanup_scratch_page(struct i915_address_space *vm)
632
{
633
	struct i915_page_dma *p = &vm->scratch_page;
634
	int order = vm->scratch_order;
635

636
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
637
		       PCI_DMA_BIDIRECTIONAL);
638
	__free_pages(p->page, order);
639 640
}

641
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
642
{
643
	struct i915_page_table *pt;
644

645
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
646
	if (unlikely(!pt))
647 648
		return ERR_PTR(-ENOMEM);

649 650 651 652
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
653

654
	pt->used_ptes = 0;
655 656 657
	return pt;
}

658
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
659
{
660
	cleanup_px(vm, pt);
661 662 663 664 665 666
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
667
	fill_px(vm, pt, vm->scratch_pte);
668 669
}

670
static void gen6_initialize_pt(struct i915_address_space *vm,
671 672
			       struct i915_page_table *pt)
{
673
	fill32_px(vm, pt, vm->scratch_pte);
674 675
}

676
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
677
{
678
	struct i915_page_directory *pd;
679

680
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
681
	if (unlikely(!pd))
682 683
		return ERR_PTR(-ENOMEM);

684 685 686 687
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
688

689
	pd->used_pdes = 0;
690 691 692
	return pd;
}

693
static void free_pd(struct i915_address_space *vm,
694
		    struct i915_page_directory *pd)
695
{
696 697
	cleanup_px(vm, pd);
	kfree(pd);
698 699 700 701 702
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
703 704
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
705
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
706 707
}

708
static int __pdp_init(struct i915_address_space *vm,
709 710
		      struct i915_page_directory_pointer *pdp)
{
711
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
712

713
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
714
					    I915_GFP_ALLOW_FAIL);
715
	if (unlikely(!pdp->page_directory))
716 717
		return -ENOMEM;

718
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
719

720 721 722 723 724 725 726 727 728
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

729 730
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
731 732 733 734
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

735
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
736 737 738 739 740

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

741
	ret = __pdp_init(vm, pdp);
742 743 744
	if (ret)
		goto fail_bitmap;

745
	ret = setup_px(vm, pdp);
746 747 748 749 750 751 752 753 754 755 756 757 758
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

759
static void free_pdp(struct i915_address_space *vm,
760 761 762
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
763

764
	if (!i915_vm_is_4lvl(vm))
765 766 767 768
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
769 770
}

771 772 773 774 775 776 777
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

778
	fill_px(vm, pdp, scratch_pdpe);
779 780 781 782 783
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
784 785
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
786
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
787 788
}

789 790
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
791 792 793 794 795 796
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
797
	ppgtt->pd_dirty_engines = ALL_ENGINES;
798 799
}

800 801 802
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
803
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
804
				struct i915_page_table *pt,
805
				u64 start, u64 length)
806
{
807
	unsigned int num_entries = gen8_pte_count(start, length);
808
	gen8_pte_t *vaddr;
809

810
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
811

812 813 814
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
815

816
	vaddr = kmap_atomic_px(pt);
817
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
818
	kunmap_atomic(vaddr);
819 820

	return false;
821
}
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

837
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
838
				struct i915_page_directory *pd,
839
				u64 start, u64 length)
840 841
{
	struct i915_page_table *pt;
842
	u32 pde;
843 844

	gen8_for_each_pde(pt, pd, start, length, pde) {
845 846
		GEM_BUG_ON(pt == vm->scratch_pt);

847 848
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
849

850
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
851
		GEM_BUG_ON(!pd->used_pdes);
852
		pd->used_pdes--;
853 854

		free_pt(vm, pt);
855 856
	}

857 858
	return !pd->used_pdes;
}
859

860 861 862 863 864 865 866 867
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
868
	if (!i915_vm_is_4lvl(vm))
869 870 871 872 873
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
874
}
875

876 877 878 879
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
880
				 struct i915_page_directory_pointer *pdp,
881
				 u64 start, u64 length)
882 883
{
	struct i915_page_directory *pd;
884
	unsigned int pdpe;
885

886
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
887 888
		GEM_BUG_ON(pd == vm->scratch_pd);

889 890
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
891

892
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
893
		GEM_BUG_ON(!pdp->used_pdpes);
894
		pdp->used_pdpes--;
895

896 897
		free_pd(vm, pd);
	}
898

899
	return !pdp->used_pdpes;
900
}
901

902 903 904 905 906 907
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

908 909 910 911 912 913 914 915 916 917 918 919 920
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

921 922 923 924
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
925 926
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
927
{
928 929
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
930
	struct i915_page_directory_pointer *pdp;
931
	unsigned int pml4e;
932

933
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
934

935
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
936 937
		GEM_BUG_ON(pdp == vm->scratch_pdp);

938 939
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
940

941 942 943
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
944 945 946
	}
}

947
static inline struct sgt_dma {
948 949
	struct scatterlist *sg;
	dma_addr_t dma, max;
950 951 952 953 954
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

973 974
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
975
			      struct i915_page_directory_pointer *pdp,
976
			      struct sgt_dma *iter,
977
			      struct gen8_insert_pte *idx,
978 979
			      enum i915_cache_level cache_level,
			      u32 flags)
980
{
981
	struct i915_page_directory *pd;
982
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
983 984
	gen8_pte_t *vaddr;
	bool ret;
985

986
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
987 988
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
989
	do {
990 991
		vaddr[idx->pte] = pte_encode | iter->dma;

992
		iter->dma += I915_GTT_PAGE_SIZE;
993 994 995 996 997 998
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
999

1000 1001
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1002
		}
1003

1004 1005 1006 1007 1008 1009
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1010
				/* Limited by sg length for 3lvl */
1011 1012
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1013
					ret = true;
1014
					break;
1015 1016
				}

1017
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1018
				pd = pdp->page_directory[idx->pdpe];
1019
			}
1020

1021
			kunmap_atomic(vaddr);
1022
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1023
		}
1024
	} while (1);
1025
	kunmap_atomic(vaddr);
1026

1027
	return ret;
1028 1029
}

1030
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1031
				   struct i915_vma *vma,
1032
				   enum i915_cache_level cache_level,
1033
				   u32 flags)
1034
{
1035
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1036
	struct sgt_dma iter = sgt_dma(vma);
1037
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1038

1039
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1040
				      cache_level, flags);
1041 1042

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1043
}
1044

1045 1046 1047
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1048 1049
					   enum i915_cache_level cache_level,
					   u32 flags)
1050
{
1051
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1052 1053 1054 1055 1056 1057 1058 1059
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1060
		bool maybe_64K = false;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1082 1083 1084 1085
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1086
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1087 1088
				maybe_64K = true;

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1108 1109 1110
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1111
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1112 1113
					maybe_64K = false;

1114 1115 1116 1117 1118 1119
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1136
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1150
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1151 1152 1153 1154 1155 1156 1157
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1158
		}
1159 1160

		vma->page_sizes.gtt |= page_size;
1161 1162 1163
	} while (iter->sg);
}

1164
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1165
				   struct i915_vma *vma,
1166
				   enum i915_cache_level cache_level,
1167
				   u32 flags)
1168 1169
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1170
	struct sgt_dma iter = sgt_dma(vma);
1171
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1172

1173
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1174 1175
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1176 1177 1178 1179
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1180 1181
						     &iter, &idx, cache_level,
						     flags))
1182
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1183 1184

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1185
	}
1186 1187
}

1188
static void gen8_free_page_tables(struct i915_address_space *vm,
1189
				  struct i915_page_directory *pd)
1190 1191 1192
{
	int i;

1193 1194 1195
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1196
	}
B
Ben Widawsky 已提交
1197 1198
}

1199 1200
static int gen8_init_scratch(struct i915_address_space *vm)
{
1201
	int ret;
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1215
		vm->scratch_order = clone->scratch_order;
1216 1217 1218 1219 1220 1221 1222
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1223
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1224 1225
	if (ret)
		return ret;
1226

1227 1228 1229
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1230
				vm->has_read_only);
1231

1232
	vm->scratch_pt = alloc_pt(vm);
1233
	if (IS_ERR(vm->scratch_pt)) {
1234 1235
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1236 1237
	}

1238
	vm->scratch_pd = alloc_pd(vm);
1239
	if (IS_ERR(vm->scratch_pd)) {
1240 1241
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1242 1243
	}

1244
	if (i915_vm_is_4lvl(vm)) {
1245
		vm->scratch_pdp = alloc_pdp(vm);
1246
		if (IS_ERR(vm->scratch_pdp)) {
1247 1248
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1249 1250 1251
		}
	}

1252 1253
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1254
	if (i915_vm_is_4lvl(vm))
1255
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1256 1257

	return 0;
1258 1259

free_pd:
1260
	free_pd(vm, vm->scratch_pd);
1261
free_pt:
1262
	free_pt(vm, vm->scratch_pt);
1263
free_scratch_page:
1264
	cleanup_scratch_page(vm);
1265 1266

	return ret;
1267 1268
}

1269 1270
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1271
	struct i915_address_space *vm = &ppgtt->vm;
1272
	struct drm_i915_private *dev_priv = vm->i915;
1273 1274 1275
	enum vgt_g2v_type msg;
	int i;

1276
	if (i915_vm_is_4lvl(vm)) {
1277
		const u64 daddr = px_dma(&ppgtt->pml4);
1278

1279 1280
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1281 1282 1283 1284

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1285
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1286
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1287

1288 1289
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1301 1302
static void gen8_free_scratch(struct i915_address_space *vm)
{
1303 1304 1305
	if (!vm->scratch_page.daddr)
		return;

1306
	if (i915_vm_is_4lvl(vm))
1307 1308 1309 1310
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1311 1312
}

1313
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1314
				    struct i915_page_directory_pointer *pdp)
1315
{
1316
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1317 1318
	int i;

1319
	for (i = 0; i < pdpes; i++) {
1320
		if (pdp->page_directory[i] == vm->scratch_pd)
1321 1322
			continue;

1323 1324
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1325
	}
1326

1327
	free_pdp(vm, pdp);
1328 1329 1330 1331 1332 1333
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1334
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1335
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1336 1337
			continue;

1338
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1339 1340
	}

1341
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1342 1343 1344 1345
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1346
	struct drm_i915_private *dev_priv = vm->i915;
1347
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1348

1349
	if (intel_vgpu_active(dev_priv))
1350 1351
		gen8_ppgtt_notify_vgt(ppgtt, false);

1352
	if (i915_vm_is_4lvl(vm))
1353
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1354
	else
1355
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1356

1357
	gen8_free_scratch(vm);
1358 1359
}

1360 1361 1362
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1363
{
1364
	struct i915_page_table *pt;
1365
	u64 from = start;
1366
	unsigned int pde;
1367

1368
	gen8_for_each_pde(pt, pd, start, length, pde) {
1369 1370
		int count = gen8_pte_count(start, length);

1371
		if (pt == vm->scratch_pt) {
1372 1373
			pd->used_pdes++;

1374
			pt = alloc_pt(vm);
1375 1376
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1377
				goto unwind;
1378
			}
1379

1380
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1381
				gen8_initialize_pt(vm, pt);
1382 1383

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1384
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1385
		}
1386

1387
		pt->used_ptes += count;
1388
	}
1389
	return 0;
1390

1391 1392
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1393
	return -ENOMEM;
1394 1395
}

1396 1397 1398
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1399
{
1400
	struct i915_page_directory *pd;
1401 1402
	u64 from = start;
	unsigned int pdpe;
1403 1404
	int ret;

1405
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1406
		if (pd == vm->scratch_pd) {
1407 1408
			pdp->used_pdpes++;

1409
			pd = alloc_pd(vm);
1410 1411
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1412
				goto unwind;
1413
			}
1414

1415
			gen8_initialize_pd(vm, pd);
1416
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1417
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1418 1419 1420
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1421 1422
		if (unlikely(ret))
			goto unwind_pd;
1423
	}
1424

B
Ben Widawsky 已提交
1425
	return 0;
1426

1427 1428 1429 1430 1431 1432 1433
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1434 1435 1436
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1437 1438
}

1439 1440
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1441
{
1442 1443 1444
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1455

1456
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1457 1458 1459 1460
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1461

1462 1463 1464
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1465

1466
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1467 1468
		if (unlikely(ret))
			goto unwind_pdp;
1469 1470 1471 1472
	}

	return 0;

1473 1474 1475 1476 1477
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1478 1479 1480
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1481 1482
}

1483
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1484
{
1485
	struct i915_address_space *vm = &ppgtt->vm;
1486 1487
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1488
	u64 start = 0, length = ppgtt->vm.total;
1489 1490
	u64 from = start;
	unsigned int pdpe;
1491

1492 1493 1494 1495
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1496

1497 1498 1499 1500
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1501

1502 1503
	pdp->used_pdpes++; /* never remove */
	return 0;
1504

1505 1506 1507 1508 1509 1510 1511 1512
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static void ppgtt_init(struct drm_i915_private *i915,
		       struct i915_hw_ppgtt *ppgtt)
{
	kref_init(&ppgtt->ref);

	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1532
/*
1533 1534 1535 1536
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1537
 *
1538
 */
1539
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1540
{
1541 1542 1543 1544 1545 1546 1547
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1548
	ppgtt_init(i915, ppgtt);
1549

1550 1551 1552 1553 1554 1555 1556
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1557

1558 1559 1560
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1561
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1562
		ppgtt->vm.pt_kmap_wc = true;
1563

1564 1565 1566
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1567

1568
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1569 1570 1571
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1572

1573
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1574

1575 1576 1577
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1578
	} else {
1579 1580 1581
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1582

1583 1584 1585
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1586
				__pdp_fini(&ppgtt->pdp);
1587
				goto err_scratch;
1588
			}
1589
		}
1590

1591 1592 1593
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1594
	}
1595

1596
	if (intel_vgpu_active(i915))
1597 1598
		gen8_ppgtt_notify_vgt(ppgtt, true);

1599
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1600

1601
	return ppgtt;
1602

1603
err_scratch:
1604
	gen8_free_scratch(&ppgtt->vm);
1605 1606 1607
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1608 1609
}

1610
/* Write pde (index) from the page directory @pd to the page table @pt */
1611
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1612 1613
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1614
{
1615
	/* Caller needs to make sure the write completes if necessary */
1616 1617
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1618
}
B
Ben Widawsky 已提交
1619

1620
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1621
{
1622
	struct intel_engine_cs *engine;
1623
	u32 ecochk, ecobits;
1624
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1625

1626 1627
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1628

1629
	ecochk = I915_READ(GAM_ECOCHK);
1630
	if (IS_HASWELL(dev_priv)) {
1631 1632 1633 1634 1635 1636
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1637

1638
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1639
		/* GFX_MODE is per-ring on gen7+ */
1640
		I915_WRITE(RING_MODE_GEN7(engine),
1641
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1642
	}
1643
}
B
Ben Widawsky 已提交
1644

1645
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1646
{
1647
	u32 ecochk, gab_ctl, ecobits;
1648

1649 1650 1651
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1652

1653 1654 1655 1656 1657 1658
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1659 1660
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1661 1662
}

1663
/* PPGTT support for Sandybdrige/Gen6 and later */
1664
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1665
				   u64 start, u64 length)
1666
{
1667
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1668
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1669 1670
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1671
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1672
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1673

1674
	while (num_entries) {
1675
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1676
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1677
		gen6_pte_t *vaddr;
1678

1679 1680 1681 1682 1683 1684 1685 1686
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1687

1688 1689
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1690 1691 1692 1693
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1694

1695
		vaddr = kmap_atomic_px(pt);
1696
		memset32(vaddr + pte, scratch_pte, count);
1697
		kunmap_atomic(vaddr);
1698

1699
		pte = 0;
1700
	}
1701 1702
}

1703
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1704
				      struct i915_vma *vma,
1705 1706
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1707
{
1708
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1709
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1710 1711
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1712
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1713
	struct sgt_dma iter = sgt_dma(vma);
1714 1715
	gen6_pte_t *vaddr;

1716 1717
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1718
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1719 1720
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1721

1722
		iter.dma += I915_GTT_PAGE_SIZE;
1723 1724 1725 1726
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1727

1728 1729 1730
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1731

1732
		if (++act_pte == GEN6_PTES) {
1733 1734
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1735
			act_pte = 0;
D
Daniel Vetter 已提交
1736
		}
1737
	} while (1);
1738
	kunmap_atomic(vaddr);
1739 1740

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1741 1742
}

1743
static int gen6_alloc_va_range(struct i915_address_space *vm,
1744
			       u64 start, u64 length)
1745
{
1746
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1747
	struct i915_page_table *pt;
1748 1749 1750
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1751

1752
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1753 1754
		const unsigned int count = gen6_pte_count(start, length);

1755 1756 1757 1758
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1759

1760
			gen6_initialize_pt(vm, pt);
1761
			ppgtt->base.pd.page_table[pde] = pt;
1762 1763 1764 1765 1766 1767

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1768 1769

			GEM_BUG_ON(pt->used_ptes);
1770
		}
1771 1772

		pt->used_ptes += count;
1773 1774
	}

1775
	if (flush) {
1776 1777
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1778 1779 1780
	}

	return 0;
1781 1782

unwind_out:
1783
	gen6_ppgtt_clear_range(vm, from, start - from);
1784
	return -ENOMEM;
1785 1786
}

1787
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1788
{
1789 1790 1791
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1792
	int ret;
1793

1794
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1795 1796
	if (ret)
		return ret;
1797

1798 1799 1800
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1801

1802
	vm->scratch_pt = alloc_pt(vm);
1803
	if (IS_ERR(vm->scratch_pt)) {
1804
		cleanup_scratch_page(vm);
1805 1806 1807
		return PTR_ERR(vm->scratch_pt);
	}

1808
	gen6_initialize_pt(vm, vm->scratch_pt);
1809 1810
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1811 1812 1813 1814

	return 0;
}

1815
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1816
{
1817 1818
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1819 1820
}

1821
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1822
{
1823
	struct i915_page_table *pt;
1824
	u32 pde;
1825

1826
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1827 1828 1829 1830
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1850 1851 1852
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1853
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1854

1855 1856 1857 1858
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
	schedule_work(&work->base);
1859 1860 1861

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1862 1863
}

1864
static int pd_vma_set_pages(struct i915_vma *vma)
1865
{
1866 1867 1868
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1869

1870 1871 1872
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1883
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1884 1885
	struct i915_page_table *pt;
	unsigned int pde;
1886

1887 1888
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1889

1890 1891
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1892

1893 1894
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1895

1896
	return 0;
1897
}
1898

1899
static void pd_vma_unbind(struct i915_vma *vma)
1900
{
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1937
	vma = i915_vma_alloc();
1938 1939 1940
	if (!vma)
		return ERR_PTR(-ENOMEM);

1941
	i915_active_init(i915, &vma->active, NULL);
1942
	INIT_ACTIVE_REQUEST(&vma->last_fence);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1954 1955

	mutex_lock(&vma->vm->mutex);
1956
	list_add(&vma->vm_link, &vma->vm->unbound_list);
1957
	mutex_unlock(&vma->vm->mutex);
1958 1959 1960

	return vma;
}
1961

1962
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1963 1964
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1965
	int err;
1966

1967 1968
	GEM_BUG_ON(ppgtt->base.vm.closed);

1969 1970 1971 1972 1973 1974 1975 1976 1977
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

1978 1979 1980 1981 1982
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2018
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2019
{
2020
	struct i915_ggtt * const ggtt = &i915->ggtt;
2021
	struct gen6_hw_ppgtt *ppgtt;
2022 2023 2024 2025 2026 2027
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2028
	ppgtt_init(i915, &ppgtt->base);
2029

2030
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2031 2032 2033
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2034

2035 2036
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2037 2038 2039 2040
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
	if (!ppgtt->work)
		goto err_free;

2041
	err = gen6_ppgtt_init_scratch(ppgtt);
2042
	if (err)
2043
		goto err_work;
2044

2045 2046 2047
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2048
		goto err_scratch;
2049
	}
2050

2051
	return &ppgtt->base;
2052

2053 2054
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2055 2056
err_work:
	kfree(ppgtt->work);
2057 2058 2059
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2060
}
2061

2062
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2063 2064 2065 2066 2067
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2068
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2069
	if (IS_BROADWELL(dev_priv))
2070
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2071
	else if (IS_CHERRYVIEW(dev_priv))
2072
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2073
	else if (IS_GEN9_LP(dev_priv))
2074
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2075 2076
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2094 2095
}

2096
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2097
{
2098
	gtt_write_workarounds(dev_priv);
2099

2100
	if (IS_GEN(dev_priv, 6))
2101
		gen6_ppgtt_enable(dev_priv);
2102
	else if (IS_GEN(dev_priv, 7))
2103
		gen7_ppgtt_enable(dev_priv);
2104

2105 2106
	return 0;
}
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2117
struct i915_hw_ppgtt *
2118
i915_ppgtt_create(struct drm_i915_private *i915)
2119 2120 2121
{
	struct i915_hw_ppgtt *ppgtt;

2122 2123 2124
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2125

2126
	trace_i915_ppgtt_create(&ppgtt->vm);
2127

2128 2129 2130
	return ppgtt;
}

2131
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2132 2133
{
	struct list_head *phases[] = {
2134
		&vm->bound_list,
2135 2136 2137 2138 2139 2140 2141 2142 2143
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2144
			i915_vma_destroy(vma);
2145 2146 2147
	}
}

2148
void i915_ppgtt_release(struct kref *kref)
2149 2150 2151 2152
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2153
	trace_i915_ppgtt_release(&ppgtt->vm);
2154

2155
	ppgtt_destroy_vma(&ppgtt->vm);
2156

2157
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2158
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2159

2160 2161
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2162 2163
	kfree(ppgtt);
}
2164

2165 2166 2167
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2168
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2169 2170 2171 2172
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2173
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2174 2175
}

2176
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2177
{
2178
	struct intel_engine_cs *engine;
2179
	enum intel_engine_id id;
2180
	u32 fault;
2181

2182
	for_each_engine(engine, dev_priv, id) {
2183 2184
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2185
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2186
					 "\tAddr: 0x%08lx\n"
2187 2188 2189
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2190 2191 2192 2193
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2194 2195
		}
	}
2196 2197
}

2198
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2199 2200 2201 2202
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2203 2204 2205 2206 2207 2208 2209 2210
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2211
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2212 2213
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2214 2215 2216
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2217 2218 2219
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2230
		gen8_check_faults(dev_priv);
2231
	else if (INTEL_GEN(dev_priv) >= 6)
2232
		gen6_check_faults(dev_priv);
2233 2234
	else
		return;
2235 2236

	i915_clear_error_registers(dev_priv);
2237 2238
}

2239
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2240
{
2241
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2242 2243 2244 2245

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2246
	if (INTEL_GEN(dev_priv) < 6)
2247 2248
		return;

2249
	i915_check_and_clear_faults(dev_priv);
2250

2251
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2252

2253
	i915_ggtt_invalidate(dev_priv);
2254 2255
}

2256 2257
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2258
{
2259
	do {
2260 2261 2262 2263
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2264 2265
			return 0;

2266 2267
		/*
		 * If the DMA remap fails, one cause can be that we have
2268 2269 2270 2271 2272 2273 2274
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2275
				 obj->base.size >> PAGE_SHIFT, NULL,
2276
				 I915_SHRINK_BOUND |
2277
				 I915_SHRINK_UNBOUND));
2278

2279
	return -ENOSPC;
2280 2281
}

2282
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2283 2284 2285 2286
{
	writeq(pte, addr);
}

2287 2288
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2289
				  u64 offset,
2290 2291 2292
				  enum i915_cache_level level,
				  u32 unused)
{
2293
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2294
	gen8_pte_t __iomem *pte =
2295
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2296

2297
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2298

2299
	ggtt->invalidate(vm->i915);
2300 2301
}

B
Ben Widawsky 已提交
2302
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2303
				     struct i915_vma *vma,
2304
				     enum i915_cache_level level,
2305
				     u32 flags)
B
Ben Widawsky 已提交
2306
{
2307
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2308 2309
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2310
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2311
	dma_addr_t addr;
2312

2313 2314 2315 2316
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2317

2318
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2319
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2320
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2321
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2322

2323 2324 2325
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2326
	 */
2327
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2328 2329
}

2330 2331
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2332
				  u64 offset,
2333 2334 2335
				  enum i915_cache_level level,
				  u32 flags)
{
2336
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2337
	gen6_pte_t __iomem *pte =
2338
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2339

2340
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2341

2342
	ggtt->invalidate(vm->i915);
2343 2344
}

2345 2346 2347 2348 2349 2350
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2351
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2352
				     struct i915_vma *vma,
2353 2354
				     enum i915_cache_level level,
				     u32 flags)
2355
{
2356
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2357
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2358
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2359
	struct sgt_iter iter;
2360
	dma_addr_t addr;
2361
	for_each_sgt_dma(addr, iter, vma->pages)
2362
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2363

2364 2365 2366
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2367
	 */
2368
	ggtt->invalidate(vm->i915);
2369 2370
}

2371
static void nop_clear_range(struct i915_address_space *vm,
2372
			    u64 start, u64 length)
2373 2374 2375
{
}

B
Ben Widawsky 已提交
2376
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2377
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2378
{
2379
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2380 2381
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2382
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2383
	gen8_pte_t __iomem *gtt_base =
2384 2385
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2441
	struct i915_vma *vma;
2442
	enum i915_cache_level level;
2443
	u32 flags;
2444 2445 2446 2447 2448 2449
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2450
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2451 2452 2453 2454 2455 2456
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2457
					     struct i915_vma *vma,
2458
					     enum i915_cache_level level,
2459
					     u32 flags)
2460
{
2461
	struct insert_entries arg = { vm, vma, level, flags };
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2491
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2492
				  u64 start, u64 length)
2493
{
2494
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2495 2496
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2497
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2498 2499
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2500 2501 2502 2503 2504 2505 2506
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2507
	scratch_pte = vm->scratch_pte;
2508

2509 2510 2511 2512
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2513 2514
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2515
				  u64 offset,
2516 2517 2518 2519 2520 2521 2522 2523 2524
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2525
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2526
				     struct i915_vma *vma,
2527 2528
				     enum i915_cache_level cache_level,
				     u32 unused)
2529 2530 2531 2532
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2533 2534
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2535 2536
}

2537
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2538
				  u64 start, u64 length)
2539
{
2540
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2541 2542
}

2543 2544 2545
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2546
{
2547
	struct drm_i915_private *i915 = vma->vm->i915;
2548
	struct drm_i915_gem_object *obj = vma->obj;
2549
	intel_wakeref_t wakeref;
2550
	u32 pte_flags;
2551

2552
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2553
	pte_flags = 0;
2554
	if (i915_gem_object_is_readonly(obj))
2555 2556
		pte_flags |= PTE_READ_ONLY;

2557 2558
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2559

2560 2561
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2562 2563 2564 2565 2566
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2567
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2568 2569 2570 2571

	return 0;
}

2572 2573 2574
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2575
	intel_wakeref_t wakeref;
2576

2577 2578
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2579 2580
}

2581 2582 2583
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2584
{
2585
	struct drm_i915_private *i915 = vma->vm->i915;
2586
	u32 pte_flags;
2587
	int ret;
2588

2589
	/* Currently applicable only to VLV */
2590
	pte_flags = 0;
2591
	if (i915_gem_object_is_readonly(vma->obj))
2592
		pte_flags |= PTE_READ_ONLY;
2593

2594 2595 2596
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2597
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2598 2599 2600
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2601
			if (ret)
2602
				return ret;
2603 2604
		}

2605 2606
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2607 2608
	}

2609
	if (flags & I915_VMA_GLOBAL_BIND) {
2610 2611
		intel_wakeref_t wakeref;

2612 2613 2614 2615
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2616
	}
2617

2618
	return 0;
2619 2620
}

2621
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2622
{
2623
	struct drm_i915_private *i915 = vma->vm->i915;
2624

2625
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2626
		struct i915_address_space *vm = vma->vm;
2627 2628
		intel_wakeref_t wakeref;

2629 2630
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2631
	}
2632

2633
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2634
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2635 2636 2637

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2638 2639
}

2640 2641
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2642
{
D
David Weinehall 已提交
2643 2644
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2645
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2646

2647
	if (unlikely(ggtt->do_idle_maps)) {
2648
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2649 2650 2651 2652 2653
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2654

2655
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2656
}
2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2668 2669
	vma->page_sizes = vma->obj->mm.page_sizes;

2670 2671 2672
	return 0;
}

C
Chris Wilson 已提交
2673
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2674
				  unsigned long color,
2675 2676
				  u64 *start,
				  u64 *end)
2677
{
2678
	if (node->allocated && node->color != color)
2679
		*start += I915_GTT_PAGE_SIZE;
2680

2681 2682 2683 2684 2685
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2686
	node = list_next_entry(node, node_list);
2687
	if (node->color != color)
2688
		*end -= I915_GTT_PAGE_SIZE;
2689
}
B
Ben Widawsky 已提交
2690

2691 2692 2693 2694 2695 2696
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2697
	ppgtt = i915_ppgtt_create(i915);
2698 2699
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2700

2701
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2702 2703 2704 2705
		err = -ENODEV;
		goto err_ppgtt;
	}

2706 2707 2708 2709 2710 2711 2712 2713 2714
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2715 2716

	i915->mm.aliasing_ppgtt = ppgtt;
2717

2718 2719
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2720

2721 2722
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2723

2724 2725 2726
	return 0;

err_ppgtt:
2727
	i915_ppgtt_put(ppgtt);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2740
	i915_ppgtt_put(ppgtt);
2741

2742 2743
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2744 2745
}

2746
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2747
{
2748 2749 2750 2751 2752 2753 2754 2755 2756
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2757
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2758
	unsigned long hole_start, hole_end;
2759
	struct drm_mm_node *entry;
2760
	int ret;
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2771 2772 2773
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2774

2775
	/* Reserve a mappable slot for our lockless error capture */
2776
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2777 2778 2779
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2780 2781 2782
	if (ret)
		return ret;

2783 2784 2785 2786 2787 2788
	if (USES_GUC(dev_priv)) {
		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
		if (ret)
			goto err_reserve;
	}

2789
	/* Clear any non-preallocated blocks */
2790
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2791 2792
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2793 2794
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2795 2796 2797
	}

	/* And finally clear the reserved guard page */
2798
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2799

2800
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2801
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2802
		if (ret)
2803
			goto err_appgtt;
2804 2805
	}

2806
	return 0;
2807

2808 2809 2810
err_appgtt:
	intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
2811 2812
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2813 2814
}

2815 2816
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2817
 * @dev_priv: i915 device
2818
 */
2819
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2820
{
2821
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2822
	struct i915_vma *vma, *vn;
2823
	struct pagevec *pvec;
2824

2825
	ggtt->vm.closed = true;
2826 2827

	mutex_lock(&dev_priv->drm.struct_mutex);
2828 2829
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2830
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2831
		WARN_ON(i915_vma_unbind(vma));
2832

2833 2834 2835
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2836 2837
	intel_guc_release_ggtt_top(&dev_priv->guc);

2838
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2839
		intel_vgt_deballoon(dev_priv);
2840
		i915_address_space_fini(&ggtt->vm);
2841 2842
	}

2843
	ggtt->vm.cleanup(&ggtt->vm);
2844

2845
	pvec = &dev_priv->mm.wc_stash.pvec;
2846 2847 2848 2849 2850
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2851
	mutex_unlock(&dev_priv->drm.struct_mutex);
2852 2853

	arch_phys_wc_del(ggtt->mtrr);
2854
	io_mapping_fini(&ggtt->iomap);
2855

2856
	i915_gem_cleanup_stolen(dev_priv);
2857
}
2858

2859
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2860 2861 2862 2863 2864 2865
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2866
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2867 2868 2869 2870 2871
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2872 2873

#ifdef CONFIG_X86_32
2874
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2875 2876 2877 2878
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2879 2880 2881
	return bdw_gmch_ctl << 20;
}

2882
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2893
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2894
{
2895
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2896
	struct pci_dev *pdev = dev_priv->drm.pdev;
2897
	phys_addr_t phys_addr;
2898
	int ret;
B
Ben Widawsky 已提交
2899 2900

	/* For Modern GENs the PTEs and register space are split in the BAR */
2901
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2902

I
Imre Deak 已提交
2903
	/*
2904 2905 2906
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2907 2908 2909
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2910
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2911
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2912
	else
2913
		ggtt->gsm = ioremap_wc(phys_addr, size);
2914
	if (!ggtt->gsm) {
2915
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2916 2917 2918
		return -ENOMEM;
	}

2919
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2920
	if (ret) {
B
Ben Widawsky 已提交
2921 2922
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2923
		iounmap(ggtt->gsm);
2924
		return ret;
B
Ben Widawsky 已提交
2925 2926
	}

2927 2928 2929 2930
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2931
	return 0;
B
Ben Widawsky 已提交
2932 2933
}

2934 2935
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2936
{
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
2980
	struct intel_ppat_entry *entry = NULL;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3003
		if (!entry)
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3080
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3118 3119
}

B
Ben Widawsky 已提交
3120 3121 3122
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3123
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3124
{
3125 3126 3127 3128
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3129

3130
	if (!HAS_PPGTT(ppat->i915)) {
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3144 3145 3146
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3147

3148 3149 3150 3151 3152 3153 3154 3155
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3156 3157
}

3158
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3159
{
3160 3161 3162 3163
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3164 3165 3166 3167 3168 3169 3170

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3182 3183
	 */

3184 3185 3186 3187 3188 3189 3190 3191
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3192 3193
}

3194 3195 3196 3197 3198
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3199
	cleanup_scratch_page(vm);
3200 3201
}

3202 3203
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3204 3205 3206 3207 3208
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3209
	if (INTEL_GEN(dev_priv) >= 10)
3210
		cnl_setup_private_ppat(ppat);
3211
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3212
		chv_setup_private_ppat(ppat);
3213
	else
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3225 3226
}

3227
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3228
{
3229
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3230
	struct pci_dev *pdev = dev_priv->drm.pdev;
3231
	unsigned int size;
B
Ben Widawsky 已提交
3232
	u16 snb_gmch_ctl;
3233
	int err;
B
Ben Widawsky 已提交
3234 3235

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3236 3237 3238 3239
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3240

3241 3242 3243 3244 3245
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3246

3247
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3248
	if (IS_CHERRYVIEW(dev_priv))
3249
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3250
	else
3251
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3252

3253
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3254 3255 3256
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3257
	if (intel_scanout_needs_vtd_wa(dev_priv))
3258
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3259

3260
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3261

3262
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3263 3264
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3265 3266 3267 3268
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3269 3270 3271 3272 3273

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3274 3275
	}

3276 3277
	ggtt->invalidate = gen6_ggtt_invalidate;

3278 3279 3280 3281 3282
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3283 3284
	ggtt->vm.pte_encode = gen8_pte_encode;

3285 3286
	setup_private_pat(dev_priv);

3287
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3288 3289
}

3290
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3291
{
3292
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3293
	struct pci_dev *pdev = dev_priv->drm.pdev;
3294
	unsigned int size;
3295
	u16 snb_gmch_ctl;
3296
	int err;
3297

3298 3299 3300 3301
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3302

3303 3304
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3305
	 */
3306
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3307
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3308
		return -ENXIO;
3309 3310
	}

3311 3312 3313 3314 3315
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3316
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3317

3318
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3319
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3320

3321 3322 3323
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3324 3325 3326
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3327

3328 3329
	ggtt->invalidate = gen6_ggtt_invalidate;

3330
	if (HAS_EDRAM(dev_priv))
3331
		ggtt->vm.pte_encode = iris_pte_encode;
3332
	else if (IS_HASWELL(dev_priv))
3333
		ggtt->vm.pte_encode = hsw_pte_encode;
3334
	else if (IS_VALLEYVIEW(dev_priv))
3335
		ggtt->vm.pte_encode = byt_pte_encode;
3336
	else if (INTEL_GEN(dev_priv) >= 7)
3337
		ggtt->vm.pte_encode = ivb_pte_encode;
3338
	else
3339
		ggtt->vm.pte_encode = snb_pte_encode;
3340

3341 3342 3343 3344 3345
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3346
	return ggtt_probe_common(ggtt, size);
3347 3348
}

3349
static void i915_gmch_remove(struct i915_address_space *vm)
3350
{
3351
	intel_gmch_remove();
3352
}
3353

3354
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3355
{
3356
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3357
	phys_addr_t gmadr_base;
3358 3359
	int ret;

3360
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3361 3362 3363 3364 3365
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3366
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3367

3368 3369 3370 3371
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3372
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3373 3374 3375 3376
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3377

3378 3379
	ggtt->invalidate = gmch_ggtt_invalidate;

3380 3381 3382 3383 3384
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3385
	if (unlikely(ggtt->do_idle_maps))
3386 3387
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3388 3389 3390
	return 0;
}

3391
/**
3392
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3393
 * @dev_priv: i915 device
3394
 */
3395
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3396
{
3397
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3398 3399
	int ret;

3400 3401
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3402

3403 3404 3405 3406 3407 3408
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3409
	if (ret)
3410 3411
		return ret;

3412
	if ((ggtt->vm.total - 1) >> 32) {
3413
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3414
			  " of address space! Found %lldM!\n",
3415 3416 3417 3418
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3419 3420
	}

3421
	if (ggtt->mappable_end > ggtt->vm.total) {
3422
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3423
			  " aperture=%pa, total=%llx\n",
3424 3425
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3426 3427
	}

3428
	/* GMADR is the PCI mmio aperture into the global GTT. */
3429
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3430
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3431
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3432
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3433
	if (intel_vtd_active())
3434
		DRM_INFO("VT-d active for gfx access\n");
3435 3436

	return 0;
3437 3438 3439 3440
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3441
 * @dev_priv: i915 device
3442
 */
3443
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3444 3445 3446 3447
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3448 3449
	stash_init(&dev_priv->mm.wc_stash);

3450 3451 3452 3453
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3454
	 */
C
Chris Wilson 已提交
3455
	mutex_lock(&dev_priv->drm.struct_mutex);
3456
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3457

3458 3459
	ggtt->vm.is_ggtt = true;

3460 3461 3462
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3463
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3464
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3465
	mutex_unlock(&dev_priv->drm.struct_mutex);
3466

3467 3468
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3469
				dev_priv->ggtt.mappable_end)) {
3470 3471 3472 3473
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3474
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3475

3476 3477 3478 3479
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3480
	ret = i915_gem_init_stolen(dev_priv);
3481 3482 3483 3484
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3485 3486

out_gtt_cleanup:
3487
	ggtt->vm.cleanup(&ggtt->vm);
3488
	return ret;
3489
}
3490

3491
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3492
{
3493
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3494 3495 3496 3497 3498
		return -EIO;

	return 0;
}

3499 3500
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3501 3502
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3503
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3504 3505

	i915_ggtt_invalidate(i915);
3506 3507 3508 3509
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3510 3511 3512 3513
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3514 3515 3516 3517
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3518 3519

	i915_ggtt_invalidate(i915);
3520 3521
}

3522
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3523
{
3524
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3525
	struct i915_vma *vma, *vn;
3526

3527
	i915_check_and_clear_faults(dev_priv);
3528

3529 3530
	mutex_lock(&ggtt->vm.mutex);

3531
	/* First fill our portion of the GTT with scratch pages */
3532 3533
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3534 3535

	/* clflush objects bound into the GGTT and rebind them. */
3536
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3537
		struct drm_i915_gem_object *obj = vma->obj;
3538

3539 3540
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3541

3542 3543
		mutex_unlock(&ggtt->vm.mutex);

3544
		if (!i915_vma_unbind(vma))
3545
			goto lock;
3546

3547 3548 3549 3550 3551
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3552 3553 3554

lock:
		mutex_lock(&ggtt->vm.mutex);
3555
	}
3556

3557
	ggtt->vm.closed = false;
3558
	i915_ggtt_invalidate(dev_priv);
3559

3560 3561
	mutex_unlock(&ggtt->vm.mutex);

3562
	if (INTEL_GEN(dev_priv) >= 8) {
3563
		struct intel_ppat *ppat = &dev_priv->ppat;
3564

3565 3566
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3567 3568 3569 3570
		return;
	}
}

3571
static struct scatterlist *
3572
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3573
	     unsigned int width, unsigned int height,
3574
	     unsigned int stride,
3575
	     struct sg_table *st, struct scatterlist *sg)
3576 3577 3578 3579 3580
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3581
		src_idx = stride * (height - 1) + column + offset;
3582 3583 3584 3585 3586 3587
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3588
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3589 3590
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3591
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3592
			sg = sg_next(sg);
3593
			src_idx -= stride;
3594 3595
		}
	}
3596 3597

	return sg;
3598 3599
}

3600 3601 3602
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3603
{
3604
	unsigned int size = intel_rotation_info_size(rot_info);
3605
	struct sg_table *st;
3606
	struct scatterlist *sg;
3607
	int ret = -ENOMEM;
3608
	int i;
3609 3610 3611 3612 3613 3614

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3615
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3616 3617 3618
	if (ret)
		goto err_sg_alloc;

3619 3620 3621
	st->nents = 0;
	sg = st->sgl;

3622
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3623
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3624 3625
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3626 3627
	}

3628 3629 3630 3631 3632 3633
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3634 3635
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3636

3637 3638
	return ERR_PTR(ret);
}
3639

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3723
static noinline struct sg_table *
3724 3725 3726 3727
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3728
	struct scatterlist *sg, *iter;
3729
	unsigned int count = view->partial.size;
3730
	unsigned int offset;
3731 3732 3733 3734 3735 3736
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3737
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3738 3739 3740
	if (ret)
		goto err_sg_alloc;

3741
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3742 3743
	GEM_BUG_ON(!iter);

3744 3745
	sg = st->sgl;
	st->nents = 0;
3746 3747
	do {
		unsigned int len;
3748

3749 3750 3751 3752 3753 3754
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3755 3756

		st->nents++;
3757 3758 3759
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3760 3761
			i915_sg_trim(st); /* Drop any unused tail entries. */

3762 3763
			return st;
		}
3764

3765 3766 3767 3768
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3769 3770 3771 3772 3773 3774 3775

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3776
static int
3777
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3778
{
3779
	int ret;
3780

3781 3782 3783 3784 3785 3786 3787
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3788
	switch (vma->ggtt_view.type) {
3789 3790 3791
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3792 3793
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3794 3795
		return 0;

3796
	case I915_GGTT_VIEW_ROTATED:
3797
		vma->pages =
3798 3799 3800
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3801 3802 3803 3804 3805
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3806
	case I915_GGTT_VIEW_PARTIAL:
3807
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3808 3809
		break;
	}
3810

3811
	ret = 0;
3812
	if (IS_ERR(vma->pages)) {
3813 3814
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3815 3816
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3817
	}
3818
	return ret;
3819 3820
}

3821 3822
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3857
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3858
	GEM_BUG_ON(drm_mm_node_allocated(node));
3859 3860 3861 3862 3863 3864 3865 3866 3867

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3868 3869 3870
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3871 3872 3873 3874 3875 3876 3877
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3903 3904
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3905 3906 3907 3908 3909 3910 3911 3912 3913
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3914
 *         must be #I915_GTT_PAGE_SIZE aligned
3915 3916 3917
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3918 3919 3920 3921 3922 3923
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3924 3925
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3942
	enum drm_mm_insert_mode mode;
3943
	u64 offset;
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3954
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3955
	GEM_BUG_ON(drm_mm_node_allocated(node));
3956 3957 3958 3959 3960 3961 3962

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3963 3964
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3965
		mode = DRM_MM_INSERT_HIGHEST;
3966 3967
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3979 3980 3981
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3982 3983 3984
	if (err != -ENOSPC)
		return err;

3985 3986 3987 3988 3989 3990 3991 3992 3993
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3994 3995 3996
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4026 4027 4028 4029 4030
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4031 4032 4033
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4034
}
4035 4036 4037

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4038
#include "selftests/i915_gem_gtt.c"
4039
#endif