scrub.c 115.9 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	atomic_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204 205

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 252
				struct scrub_block *sblock,
				int retry_failed_mirror);
253
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255
					     struct scrub_block *sblock_good);
256 257 258
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
259 260 261
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
262 263 264 265 266
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
267 268
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
269 270
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
271 272
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
273
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274
		       u64 physical, struct btrfs_device *dev, u64 flags,
275 276
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
277
static void scrub_bio_end_io(struct bio *bio);
278 279
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
294
static void scrub_wr_bio_end_io(struct bio *bio);
295 296 297 298
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299
				      struct scrub_copy_nocow_ctx *ctx);
300 301 302
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
303
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
306 307


308 309
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
310
	atomic_inc(&sctx->refs);
311 312 313 314 315 316 317
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
318
	scrub_put_ctx(sctx);
319 320
}

321
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 323 324 325 326 327 328 329 330
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

331
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 333 334
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
335
}
336

337 338
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
339 340 341 342 343 344 345 346
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

347 348 349 350 351 352
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

353 354 355 356 357 358
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
359
	struct btrfs_fs_info *fs_info = sctx->fs_info;
360

361
	atomic_inc(&sctx->refs);
362 363 364 365 366 367 368 369 370 371 372 373 374
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
375 376 377 378 379 380 381 382 383 384

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

385 386 387 388 389 390
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
391
	struct btrfs_fs_info *fs_info = sctx->fs_info;
392 393 394 395 396 397 398 399 400 401 402 403

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
404
	scrub_put_ctx(sctx);
405 406
}

407
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
408
{
409
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
410
		struct btrfs_ordered_sum *sum;
411
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
412 413 414 415 416 417
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

418
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
419 420 421
{
	int i;

422
	if (!sctx)
A
Arne Jansen 已提交
423 424
		return;

425 426
	scrub_free_wr_ctx(&sctx->wr_ctx);

427
	/* this can happen when scrub is cancelled */
428 429
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 431

		for (i = 0; i < sbio->page_count; i++) {
432
			WARN_ON(!sbio->pagev[i]->page);
433 434 435 436 437
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

438
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
440 441 442 443 444 445

		if (!sbio)
			break;
		kfree(sbio);
	}

446 447
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
448 449
}

450 451 452 453 454 455
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
456
static noinline_for_stack
457
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
458
{
459
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
460
	int		i;
461
	struct btrfs_fs_info *fs_info = dev->fs_info;
462
	int ret;
A
Arne Jansen 已提交
463

464
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465
	if (!sctx)
A
Arne Jansen 已提交
466
		goto nomem;
467
	atomic_set(&sctx->refs, 1);
468
	sctx->is_dev_replace = is_dev_replace;
469
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470
	sctx->curr = -1;
471
	sctx->fs_info = dev->fs_info;
472
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
473 474
		struct scrub_bio *sbio;

475
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
476 477
		if (!sbio)
			goto nomem;
478
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
479 480

		sbio->index = i;
481
		sbio->sctx = sctx;
482
		sbio->page_count = 0;
483 484
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
485

486
		if (i != SCRUB_BIOS_PER_SCTX - 1)
487
			sctx->bios[i]->next_free = i + 1;
488
		else
489 490 491
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
492 493
	sctx->nodesize = fs_info->nodesize;
	sctx->sectorsize = fs_info->sectorsize;
494 495
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
496 497 498 499 500 501 502
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
503 504 505 506 507 508 509

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
510
	return sctx;
A
Arne Jansen 已提交
511 512

nomem:
513
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
514 515 516
	return ERR_PTR(-ENOMEM);
}

517 518
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
519 520 521 522 523 524 525
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
526
	struct scrub_warning *swarn = warn_ctx;
527
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
528 529 530
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
531
	struct btrfs_key key;
532 533 534 535 536 537 538 539 540 541

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

542 543 544
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
545 546 547 548 549
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 551 552 553 554 555 556 557 558 559 560 561 562
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
563 564 565 566 567
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
568 569 570 571 572 573 574 575 576 577
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
578 579 580 581 582 583 584 585
		btrfs_warn_in_rcu(fs_info,
				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
				  (unsigned long long)swarn->sector,
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
586 587 588 589 590

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
591 592 593 594 595 596
	btrfs_warn_in_rcu(fs_info,
			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
			  (unsigned long long)swarn->sector,
			  root, inum, offset, ret);
597 598 599 600 601

	free_ipath(ipath);
	return 0;
}

602
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
603
{
604 605
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
606 607 608 609 610
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
611 612 613
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
614
	u64 ref_root;
615
	u32 item_size;
616
	u8 ref_level = 0;
617
	int ret;
618

619
	WARN_ON(sblock->page_count < 1);
620
	dev = sblock->pagev[0]->dev;
621
	fs_info = sblock->sctx->fs_info;
622

623
	path = btrfs_alloc_path();
624 625
	if (!path)
		return;
626

627 628
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
629
	swarn.errstr = errstr;
630
	swarn.dev = NULL;
631

632 633
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
634 635 636
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
637
	extent_item_pos = swarn.logical - found_key.objectid;
638 639 640 641 642 643
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

644
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
645
		do {
646 647 648
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
649
			btrfs_warn_in_rcu(fs_info,
J
Jeff Mahoney 已提交
650 651
				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
				errstr, swarn.logical,
652
				rcu_str_deref(dev->name),
653 654 655 656 657
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
658
		btrfs_release_path(path);
659
	} else {
660
		btrfs_release_path(path);
661
		swarn.path = path;
662
		swarn.dev = dev;
663 664
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
665 666 667 668 669 670 671
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

672
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
673
{
674
	struct page *page = NULL;
675
	unsigned long index;
676
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
677
	int ret;
678
	int corrected = 0;
679
	struct btrfs_key key;
680
	struct inode *inode = NULL;
681
	struct btrfs_fs_info *fs_info;
682 683
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
684
	int srcu_index;
685 686 687 688

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
689 690 691 692 693 694 695

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
696
		return PTR_ERR(local_root);
697
	}
698 699 700 701

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
702 703
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
704 705 706
	if (IS_ERR(inode))
		return PTR_ERR(inode);

707
	index = offset >> PAGE_SHIFT;
708 709

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
736
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
737
					fixup->logical, page,
738
					offset - page_offset(page),
739 740 741 742 743 744 745 746 747 748
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
749
					EXTENT_DAMAGED);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
767
						EXTENT_DAMAGED);
768 769 770 771 772
	}

out:
	if (page)
		put_page(page);
773 774

	iput(inode);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
792
	struct btrfs_fs_info *fs_info;
793 794
	int ret;
	struct scrub_fixup_nodatasum *fixup;
795
	struct scrub_ctx *sctx;
796 797 798 799 800
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
801
	sctx = fixup->sctx;
802
	fs_info = fixup->root->fs_info;
803 804 805

	path = btrfs_alloc_path();
	if (!path) {
806 807 808
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
828 829
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
					  scrub_fixup_readpage, fixup);
830 831 832 833 834 835
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

836 837 838
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
839 840 841 842 843

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
844 845 846
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
847 848 849
		btrfs_dev_replace_stats_inc(
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
850
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
851
			fixup->logical, rcu_str_deref(fixup->dev->name));
852 853 854 855 856
	}

	btrfs_free_path(path);
	kfree(fixup);

857
	scrub_pending_trans_workers_dec(sctx);
858 859
}

860 861 862 863 864 865 866 867
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
868
		btrfs_put_bbio(recover->bbio);
869 870 871 872
		kfree(recover);
	}
}

A
Arne Jansen 已提交
873
/*
874 875 876 877 878 879
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
880
 */
881
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
882
{
883
	struct scrub_ctx *sctx = sblock_to_check->sctx;
884
	struct btrfs_device *dev;
885 886 887 888 889 890 891 892 893 894 895 896
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
897
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
898 899 900
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
901
	fs_info = sctx->fs_info;
902 903 904 905 906 907 908 909 910 911 912
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
913
	length = sblock_to_check->page_count * PAGE_SIZE;
914 915 916 917
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
918
			BTRFS_EXTENT_FLAG_DATA);
919 920
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
921

922 923 924 925 926
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

956 957
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
958
	if (!sblocks_for_recheck) {
959 960 961 962 963
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
964
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
965
		goto out;
A
Arne Jansen 已提交
966 967
	}

968
	/* setup the context, map the logical blocks and alloc the pages */
969
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
970
	if (ret) {
971 972 973 974
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
975
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 977 978 979
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
980

981
	/* build and submit the bios for the failed mirror, check checksums */
982
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
983

984 985 986 987 988 989 990 991 992 993
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
994 995
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
996
		sblock_to_check->data_corrected = 1;
997
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
998

999 1000
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1001
		goto out;
A
Arne Jansen 已提交
1002 1003
	}

1004
	if (!sblock_bad->no_io_error_seen) {
1005 1006 1007
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1008 1009
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1010
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011
	} else if (sblock_bad->checksum_error) {
1012 1013 1014
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1015 1016
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1017
		btrfs_dev_stat_inc_and_print(dev,
1018
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019
	} else if (sblock_bad->header_error) {
1020 1021 1022
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1023 1024 1025
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1026
		if (sblock_bad->generation_error)
1027
			btrfs_dev_stat_inc_and_print(dev,
1028 1029
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1030
			btrfs_dev_stat_inc_and_print(dev,
1031
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032
	}
A
Arne Jansen 已提交
1033

1034 1035 1036 1037
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1038

1039 1040
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1041

1042 1043
		WARN_ON(sctx->is_dev_replace);

1044 1045
nodatasum_case:

1046 1047
		/*
		 * !is_metadata and !have_csum, this means that the data
1048
		 * might not be COWed, that it might be modified
1049 1050 1051 1052 1053 1054 1055
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1056
		fixup_nodatasum->sctx = sctx;
1057
		fixup_nodatasum->dev = dev;
1058 1059 1060
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061
		scrub_pending_trans_workers_inc(sctx);
1062 1063
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1064 1065
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1066
		goto out;
A
Arne Jansen 已提交
1067 1068
	}

1069 1070
	/*
	 * now build and submit the bios for the other mirrors, check
1071 1072
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1088
		struct scrub_block *sblock_other;
1089

1090 1091 1092 1093 1094
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1095
		scrub_recheck_block(fs_info, sblock_other, 0);
1096 1097

		if (!sblock_other->header_error &&
1098 1099
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1100 1101
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1102
				goto corrected_error;
1103 1104
			} else {
				ret = scrub_repair_block_from_good_copy(
1105 1106 1107
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1108
			}
1109 1110
		}
	}
A
Arne Jansen 已提交
1111

1112 1113
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1114 1115 1116

	/*
	 * In case of I/O errors in the area that is supposed to be
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1129
	 * the final checksum succeeds. But this would be a rare
1130 1131 1132 1133 1134 1135 1136 1137
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1138
	 */
1139
	success = 1;
1140 1141
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1142
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143
		struct scrub_block *sblock_other = NULL;
1144

1145 1146
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1147
			continue;
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1160 1161
				}
			}
1162 1163
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1164
		}
A
Arne Jansen 已提交
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1180
					&fs_info->dev_replace.num_write_errors);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1191
		}
A
Arne Jansen 已提交
1192 1193
	}

1194
	if (success && !sctx->is_dev_replace) {
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1205
			scrub_recheck_block(fs_info, sblock_bad, 1);
1206
			if (!sblock_bad->header_error &&
1207 1208 1209 1210 1211 1212 1213
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1214 1215
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1216
			sblock_to_check->data_corrected = 1;
1217
			spin_unlock(&sctx->stat_lock);
1218 1219
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1220
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1221
		}
1222 1223
	} else {
did_not_correct_error:
1224 1225 1226
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1227 1228
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1229
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1230
	}
A
Arne Jansen 已提交
1231

1232 1233 1234 1235 1236 1237
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1238
			struct scrub_recover *recover;
1239 1240
			int page_index;

1241 1242 1243
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1244 1245 1246 1247 1248 1249
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1250 1251
				scrub_page_put(sblock->pagev[page_index]);
			}
1252 1253 1254
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1255

1256 1257
	return 0;
}
A
Arne Jansen 已提交
1258

1259
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260
{
Z
Zhao Lei 已提交
1261 1262 1263 1264 1265
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1266 1267 1268
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1269 1270
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1271 1272 1273 1274 1275 1276 1277
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1278
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1299
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300 1301
				     struct scrub_block *sblocks_for_recheck)
{
1302
	struct scrub_ctx *sctx = original_sblock->sctx;
1303
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1304 1305
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1306 1307 1308
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1309 1310 1311 1312 1313 1314
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1315
	int page_index = 0;
1316
	int mirror_index;
1317
	int nmirrors;
1318 1319 1320
	int ret;

	/*
1321
	 * note: the two members refs and outstanding_pages
1322 1323 1324 1325 1326
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1327 1328 1329
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1330

1331 1332 1333 1334
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1335 1336
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				logical, &mapped_length, &bbio, 0, 1);
1337
		if (ret || !bbio || mapped_length < sublen) {
1338
			btrfs_put_bbio(bbio);
1339 1340
			return -EIO;
		}
A
Arne Jansen 已提交
1341

1342 1343
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1344
			btrfs_put_bbio(bbio);
1345 1346 1347 1348 1349 1350 1351
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1352
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1353

1354
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1355

1356
		for (mirror_index = 0; mirror_index < nmirrors;
1357 1358 1359 1360 1361
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1362
			sblock->sctx = sctx;
1363

1364 1365 1366
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1367 1368 1369
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1370
				scrub_put_recover(recover);
1371 1372
				return -ENOMEM;
			}
1373 1374
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1375 1376 1377
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1378
			page->logical = logical;
1379 1380 1381 1382 1383
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1384

Z
Zhao Lei 已提交
1385 1386 1387
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1388
						      mapped_length,
1389 1390
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1391 1392 1393 1394 1395 1396 1397
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1398 1399 1400 1401
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1402 1403
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1404
			sblock->page_count++;
1405 1406 1407
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1408 1409 1410

			scrub_get_recover(recover);
			page->recover = recover;
1411
		}
1412
		scrub_put_recover(recover);
1413 1414 1415 1416 1417 1418
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1419 1420
}

1421 1422 1423 1424 1425
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1426
static void scrub_bio_wait_endio(struct bio *bio)
1427 1428 1429
{
	struct scrub_bio_ret *ret = bio->bi_private;

1430
	ret->error = bio->bi_error;
1431 1432 1433 1434 1435
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1436
	return page->recover &&
1437
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1453
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1454
				    page->recover->map_length,
1455
				    page->mirror_num, 0);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1466 1467 1468 1469 1470 1471 1472
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1473
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1474 1475
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1476
{
1477
	int page_num;
I
Ilya Dryomov 已提交
1478

1479
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1480

1481 1482
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1483
		struct scrub_page *page = sblock->pagev[page_num];
1484

1485
		if (page->dev->bdev == NULL) {
1486 1487 1488 1489 1490
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1491
		WARN_ON(!page->page);
1492
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1493 1494 1495 1496 1497
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1498
		bio->bi_bdev = page->dev->bdev;
1499

1500
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1501 1502 1503 1504 1505
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;
M
Mike Christie 已提交
1506
			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1507

1508
			if (btrfsic_submit_bio_wait(bio))
1509 1510
				sblock->no_io_error_seen = 0;
		}
1511

1512 1513
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1514

1515
	if (sblock->no_io_error_seen)
1516
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1517 1518
}

M
Miao Xie 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1529
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1530
{
1531 1532 1533
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1534

1535 1536 1537 1538
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1539 1540
}

1541
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542
					     struct scrub_block *sblock_good)
1543 1544 1545
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1546

1547 1548
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1549

1550 1551
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1552
							   page_num, 1);
1553 1554
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1555
	}
1556 1557 1558 1559 1560 1561 1562 1563

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1564 1565
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1567

1568 1569
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1570 1571 1572 1573 1574
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1575
		if (!page_bad->dev->bdev) {
1576
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1577
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1578 1579 1580
			return -EIO;
		}

1581
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 1583
		if (!bio)
			return -EIO;
1584
		bio->bi_bdev = page_bad->dev->bdev;
1585
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1586
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1587 1588 1589 1590 1591

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1592
		}
1593

1594
		if (btrfsic_submit_bio_wait(bio)) {
1595 1596
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1597
			btrfs_dev_replace_stats_inc(
1598
				&fs_info->dev_replace.num_write_errors);
1599 1600 1601
			bio_put(bio);
			return -EIO;
		}
1602
		bio_put(bio);
A
Arne Jansen 已提交
1603 1604
	}

1605 1606 1607
	return 0;
}

1608 1609
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1610
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1611 1612
	int page_num;

1613 1614 1615 1616 1617 1618 1619
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1620 1621 1622 1623 1624 1625
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1626
				&fs_info->dev_replace.num_write_errors);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1639
		memset(mapped_buffer, 0, PAGE_SIZE);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657
					      GFP_KERNEL);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1674 1675
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					wr_ctx->pages_per_wr_bio);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1686
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1687
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1735
	btrfsic_submit_bio(sbio->bio);
1736 1737
}

1738
static void scrub_wr_bio_end_io(struct bio *bio)
1739 1740
{
	struct scrub_bio *sbio = bio->bi_private;
1741
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1742

1743
	sbio->err = bio->bi_error;
1744 1745
	sbio->bio = bio;

1746 1747
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1748
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
1760
			&sbio->sctx->fs_info->dev_replace;
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1780 1781 1782 1783
{
	u64 flags;
	int ret;

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1796 1797
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1809 1810

	return ret;
A
Arne Jansen 已提交
1811 1812
}

1813
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1814
{
1815
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1816
	u8 csum[BTRFS_CSUM_SIZE];
1817 1818 1819
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1820
	u32 crc = ~(u32)0;
1821 1822
	u64 len;
	int index;
A
Arne Jansen 已提交
1823

1824
	BUG_ON(sblock->page_count < 1);
1825
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1826 1827
		return 0;

1828 1829
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1830
	buffer = kmap_atomic(page);
1831

1832
	len = sctx->sectorsize;
1833 1834 1835 1836
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1837
		crc = btrfs_csum_data(buffer, crc, l);
1838
		kunmap_atomic(buffer);
1839 1840 1841 1842 1843
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1844 1845
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1846
		buffer = kmap_atomic(page);
1847 1848
	}

A
Arne Jansen 已提交
1849
	btrfs_csum_final(crc, csum);
1850
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1851
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1852

1853
	return sblock->checksum_error;
A
Arne Jansen 已提交
1854 1855
}

1856
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1857
{
1858
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1859
	struct btrfs_header *h;
1860
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1861 1862 1863 1864 1865 1866
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1867
	u32 crc = ~(u32)0;
1868 1869 1870 1871
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1872
	page = sblock->pagev[0]->page;
1873
	mapped_buffer = kmap_atomic(page);
1874
	h = (struct btrfs_header *)mapped_buffer;
1875
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1876 1877 1878 1879 1880 1881

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1882
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883
		sblock->header_error = 1;
A
Arne Jansen 已提交
1884

1885 1886 1887 1888
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1889

M
Miao Xie 已提交
1890
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891
		sblock->header_error = 1;
A
Arne Jansen 已提交
1892 1893 1894

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1895
		sblock->header_error = 1;
A
Arne Jansen 已提交
1896

1897
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898 1899 1900 1901 1902 1903
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1904
		crc = btrfs_csum_data(p, crc, l);
1905
		kunmap_atomic(mapped_buffer);
1906 1907 1908 1909 1910
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1911 1912
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1913
		mapped_buffer = kmap_atomic(page);
1914 1915 1916 1917 1918
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1919
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1921

1922
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1923 1924
}

1925
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1926 1927
{
	struct btrfs_super_block *s;
1928
	struct scrub_ctx *sctx = sblock->sctx;
1929 1930 1931 1932 1933 1934
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1935
	u32 crc = ~(u32)0;
1936 1937
	int fail_gen = 0;
	int fail_cor = 0;
1938 1939
	u64 len;
	int index;
A
Arne Jansen 已提交
1940

1941
	BUG_ON(sblock->page_count < 1);
1942
	page = sblock->pagev[0]->page;
1943
	mapped_buffer = kmap_atomic(page);
1944
	s = (struct btrfs_super_block *)mapped_buffer;
1945
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1946

1947
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948
		++fail_cor;
A
Arne Jansen 已提交
1949

1950
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951
		++fail_gen;
A
Arne Jansen 已提交
1952

M
Miao Xie 已提交
1953
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954
		++fail_cor;
A
Arne Jansen 已提交
1955

1956 1957 1958 1959 1960 1961 1962
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1963
		crc = btrfs_csum_data(p, crc, l);
1964
		kunmap_atomic(mapped_buffer);
1965 1966 1967 1968 1969
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1970 1971
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1972
		mapped_buffer = kmap_atomic(page);
1973 1974 1975 1976 1977
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1978
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979
		++fail_cor;
A
Arne Jansen 已提交
1980

1981
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1982 1983 1984 1985 1986
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1987 1988 1989
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1990
		if (fail_cor)
1991
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992 1993
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1994
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1996 1997
	}

1998
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1999 2000
}

2001 2002
static void scrub_block_get(struct scrub_block *sblock)
{
2003
	atomic_inc(&sblock->refs);
2004 2005 2006 2007
}

static void scrub_block_put(struct scrub_block *sblock)
{
2008
	if (atomic_dec_and_test(&sblock->refs)) {
2009 2010
		int i;

2011 2012 2013
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2014
		for (i = 0; i < sblock->page_count; i++)
2015
			scrub_page_put(sblock->pagev[i]);
2016 2017 2018 2019
		kfree(sblock);
	}
}

2020 2021
static void scrub_page_get(struct scrub_page *spage)
{
2022
	atomic_inc(&spage->refs);
2023 2024 2025 2026
}

static void scrub_page_put(struct scrub_page *spage)
{
2027
	if (atomic_dec_and_test(&spage->refs)) {
2028 2029 2030 2031 2032 2033
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2034
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2035 2036 2037
{
	struct scrub_bio *sbio;

2038
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2039
		return;
A
Arne Jansen 已提交
2040

2041 2042
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2043
	scrub_pending_bio_inc(sctx);
2044
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2045 2046
}

2047 2048
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2049
{
2050
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2051
	struct scrub_bio *sbio;
2052
	int ret;
A
Arne Jansen 已提交
2053 2054 2055 2056 2057

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2058 2059 2060 2061 2062 2063 2064 2065
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2066
		} else {
2067 2068
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2069 2070
		}
	}
2071
	sbio = sctx->bios[sctx->curr];
2072
	if (sbio->page_count == 0) {
2073 2074
		struct bio *bio;

2075 2076
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2077
		sbio->dev = spage->dev;
2078 2079
		bio = sbio->bio;
		if (!bio) {
2080 2081
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					sctx->pages_per_rd_bio);
2082 2083 2084 2085
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2086 2087 2088

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2089
		bio->bi_bdev = sbio->dev->bdev;
2090
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2091
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092
		sbio->err = 0;
2093 2094 2095
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2096 2097
		   spage->logical ||
		   sbio->dev != spage->dev) {
2098
		scrub_submit(sctx);
A
Arne Jansen 已提交
2099 2100
		goto again;
	}
2101

2102 2103 2104 2105 2106 2107 2108 2109
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2110
		scrub_submit(sctx);
2111 2112 2113
		goto again;
	}

2114
	scrub_block_get(sblock); /* one for the page added to the bio */
2115 2116
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2117
	if (sbio->page_count == sctx->pages_per_rd_bio)
2118
		scrub_submit(sctx);
2119 2120 2121 2122

	return 0;
}

2123
static void scrub_missing_raid56_end_io(struct bio *bio)
2124 2125
{
	struct scrub_block *sblock = bio->bi_private;
2126
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2127

2128
	if (bio->bi_error)
2129 2130
		sblock->no_io_error_seen = 0;

2131 2132
	bio_put(bio);

2133 2134 2135 2136 2137 2138 2139
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2140
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2141 2142 2143 2144 2145 2146
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2147
	if (sblock->no_io_error_seen)
2148
		scrub_recheck_block_checksum(sblock);
2149 2150 2151 2152 2153

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2154
		btrfs_err_rl_in_rcu(fs_info,
2155
			"IO error rebuilding logical %llu for dev %s",
2156 2157 2158 2159 2160
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2161
		btrfs_err_rl_in_rcu(fs_info,
2162
			"failed to rebuild valid logical %llu for dev %s",
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2183
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2184 2185
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2186
	struct btrfs_bio *bbio = NULL;
2187 2188 2189 2190 2191
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2192 2193
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
			&length, &bbio, 0, 1);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2216
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2242
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2243
		       u64 physical, struct btrfs_device *dev, u64 flags,
2244 2245
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2246 2247 2248 2249
{
	struct scrub_block *sblock;
	int index;

2250
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2251
	if (!sblock) {
2252 2253 2254
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2255
		return -ENOMEM;
A
Arne Jansen 已提交
2256
	}
2257

2258 2259
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2260
	atomic_set(&sblock->refs, 1);
2261
	sblock->sctx = sctx;
2262 2263 2264
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2265
		struct scrub_page *spage;
2266 2267
		u64 l = min_t(u64, len, PAGE_SIZE);

2268
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2269 2270
		if (!spage) {
leave_nomem:
2271 2272 2273
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2274
			scrub_block_put(sblock);
2275 2276
			return -ENOMEM;
		}
2277 2278 2279
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2280
		spage->sblock = sblock;
2281
		spage->dev = dev;
2282 2283 2284 2285
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2286
		spage->physical_for_dev_replace = physical_for_dev_replace;
2287 2288 2289
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2290
			memcpy(spage->csum, csum, sctx->csum_size);
2291 2292 2293 2294
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2295
		spage->page = alloc_page(GFP_KERNEL);
2296 2297
		if (!spage->page)
			goto leave_nomem;
2298 2299 2300
		len -= l;
		logical += l;
		physical += l;
2301
		physical_for_dev_replace += l;
2302 2303
	}

2304
	WARN_ON(sblock->page_count == 0);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2315

2316 2317 2318 2319 2320
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2321
		}
A
Arne Jansen 已提交
2322

2323 2324 2325
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2326

2327 2328
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2329 2330 2331
	return 0;
}

2332
static void scrub_bio_end_io(struct bio *bio)
2333 2334
{
	struct scrub_bio *sbio = bio->bi_private;
2335
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2336

2337
	sbio->err = bio->bi_error;
2338 2339
	sbio->bio = bio;

2340
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2341 2342 2343 2344 2345
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2346
	struct scrub_ctx *sctx = sbio->sctx;
2347 2348
	int i;

2349
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2371 2372 2373 2374
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2375 2376 2377 2378 2379 2380 2381 2382

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2383
	scrub_pending_bio_dec(sctx);
2384 2385
}

2386 2387 2388 2389
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2390
	u32 offset;
2391
	int nsectors;
2392
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2393 2394 2395 2396 2397 2398 2399

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2400
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2425 2426
static void scrub_block_complete(struct scrub_block *sblock)
{
2427 2428
	int corrupted = 0;

2429
	if (!sblock->no_io_error_seen) {
2430
		corrupted = 1;
2431
		scrub_handle_errored_block(sblock);
2432 2433 2434 2435 2436 2437
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2438 2439
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2440 2441
			scrub_write_block_to_dev_replace(sblock);
	}
2442 2443 2444 2445 2446 2447 2448 2449 2450

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2451 2452
}

2453
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2454 2455
{
	struct btrfs_ordered_sum *sum = NULL;
2456
	unsigned long index;
A
Arne Jansen 已提交
2457 2458
	unsigned long num_sectors;

2459 2460
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2461 2462 2463 2464 2465 2466
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2467
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2468 2469 2470 2471 2472 2473 2474
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2475
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2476
	num_sectors = sum->len / sctx->sectorsize;
2477 2478
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2479 2480 2481
		list_del(&sum->list);
		kfree(sum);
	}
2482
	return 1;
A
Arne Jansen 已提交
2483 2484 2485
}

/* scrub extent tries to collect up to 64 kB for each bio */
2486
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2487
			u64 physical, struct btrfs_device *dev, u64 flags,
2488
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2489 2490 2491
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2492 2493 2494
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2495 2496 2497 2498 2499
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2500
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2501 2502 2503 2504 2505
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2506
	} else {
2507
		blocksize = sctx->sectorsize;
2508
		WARN_ON(1);
2509
	}
A
Arne Jansen 已提交
2510 2511

	while (len) {
2512
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2513 2514 2515 2516
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2517
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2518
			if (have_csum == 0)
2519
				++sctx->stat.no_csum;
2520 2521 2522 2523 2524 2525
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2526
		}
2527
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2528 2529 2530
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2531 2532 2533 2534 2535
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2536
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2537 2538 2539 2540
	}
	return 0;
}

2541 2542 2543 2544 2545 2546 2547 2548 2549
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2550
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2560
	atomic_set(&sblock->refs, 1);
2561 2562 2563 2564 2565 2566 2567 2568 2569
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2570
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2600
		spage->page = alloc_page(GFP_KERNEL);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2635 2636 2637 2638 2639
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2655
			have_csum = scrub_find_csum(sctx, logical, csum);
2656 2657 2658 2659 2660 2661 2662 2663
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2664
skip:
2665 2666 2667 2668 2669 2670 2671
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2672 2673 2674 2675 2676 2677 2678 2679
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2680 2681
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2682 2683 2684 2685 2686
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2687 2688
	u32 stripe_index;
	u32 rot;
2689 2690 2691

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2692 2693 2694
	if (stripe_start)
		*stripe_start = last_offset;

2695 2696 2697 2698
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2699 2700
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2701 2702

		/* Work out the disk rotation on this stripe-set */
2703
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2704 2705
		/* calculate which stripe this data locates */
		rot += i;
2706
		stripe_index = rot % map->num_stripes;
2707 2708 2709 2710 2711 2712 2713 2714 2715
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2748
static void scrub_parity_bio_endio(struct bio *bio)
2749 2750
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2751
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2752

2753
	if (bio->bi_error)
2754 2755 2756 2757
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2758 2759 2760

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
2761
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2762 2763 2764 2765 2766
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2767
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2779
	length = sparity->logic_end - sparity->logic_start;
2780
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781 2782
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2793
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2794
					      length, sparity->scrub_dev,
2795 2796 2797 2798 2799 2800
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2801
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2802 2803 2804 2805 2806 2807 2808 2809

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2810
	btrfs_put_bbio(bbio);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2822
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2823 2824 2825 2826
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2827
	atomic_inc(&sparity->refs);
2828 2829 2830 2831
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2832
	if (!atomic_dec_and_test(&sparity->refs))
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2845
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2846 2847 2848
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2849
	struct btrfs_bio *bbio = NULL;
2850 2851 2852 2853 2854 2855 2856 2857 2858
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2859
	u64 mapped_length;
2860 2861 2862 2863 2864 2865 2866
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2867
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2884
	atomic_set(&sparity->refs, 1);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2933 2934 2935 2936
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2937
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2938
				bytes = fs_info->nodesize;
2939 2940 2941 2942 2943 2944
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2945
			if (key.objectid >= logic_end) {
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2958 2959 2960 2961
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2962 2963
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964
					  key.objectid, logic_start);
2965 2966 2967
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2987
			mapped_length = extent_len;
2988
			bbio = NULL;
2989 2990 2991
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3018 3019 3020

			scrub_free_csums(sctx);

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3052
						logic_end - logic_start);
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3063
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3064 3065
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3066 3067
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3068
{
3069
	struct btrfs_path *path, *ppath;
3070
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3071 3072 3073
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3074
	struct blk_plug plug;
A
Arne Jansen 已提交
3075 3076 3077 3078 3079 3080 3081
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3082
	u64 logic_end;
3083
	u64 physical_end;
A
Arne Jansen 已提交
3084
	u64 generation;
3085
	int mirror_num;
A
Arne Jansen 已提交
3086 3087
	struct reada_control *reada1;
	struct reada_control *reada2;
3088
	struct btrfs_key key;
A
Arne Jansen 已提交
3089
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3090 3091
	u64 increment = map->stripe_len;
	u64 offset;
3092 3093 3094
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3095 3096
	u64 stripe_logical;
	u64 stripe_end;
3097 3098
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3099
	int stop_loop = 0;
D
David Woodhouse 已提交
3100

3101
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3102
	offset = 0;
3103
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3104 3105 3106
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3107
		mirror_num = 1;
A
Arne Jansen 已提交
3108 3109 3110 3111
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3112
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3113 3114
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3115
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3116 3117
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3118
		mirror_num = num % map->num_stripes + 1;
3119
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3120
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3121 3122
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3123 3124
	} else {
		increment = map->stripe_len;
3125
		mirror_num = 1;
A
Arne Jansen 已提交
3126 3127 3128 3129 3130 3131
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3132 3133
	ppath = btrfs_alloc_path();
	if (!ppath) {
3134
		btrfs_free_path(path);
3135 3136 3137
		return -ENOMEM;
	}

3138 3139 3140 3141 3142
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3143 3144 3145
	path->search_commit_root = 1;
	path->skip_locking = 1;

3146 3147
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3148
	/*
A
Arne Jansen 已提交
3149 3150 3151
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3152 3153
	 */
	logical = base + offset;
3154
	physical_end = physical + nstripes * map->stripe_len;
3155
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3156
		get_raid56_logic_offset(physical_end, num,
3157
					map, &logic_end, NULL);
3158 3159 3160 3161
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3162
	wait_event(sctx->list_wait,
3163
		   atomic_read(&sctx->bios_in_flight) == 0);
3164
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3165 3166

	/* FIXME it might be better to start readahead at commit root */
3167 3168 3169
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3170
	key_end.objectid = logic_end;
3171 3172
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3173
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3174

3175 3176 3177
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3178 3179
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3180
	key_end.offset = logic_end;
3181
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3182 3183 3184 3185 3186 3187

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3188 3189 3190 3191 3192

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3193
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3194 3195 3196 3197 3198

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3199
	while (physical < physical_end) {
A
Arne Jansen 已提交
3200 3201 3202 3203
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3204
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3205 3206 3207 3208 3209 3210 3211 3212
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3213
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3214
			scrub_submit(sctx);
3215 3216 3217
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3218
			wait_event(sctx->list_wait,
3219
				   atomic_read(&sctx->bios_in_flight) == 0);
3220
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3221
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3222 3223
		}

3224 3225 3226 3227 3228 3229
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3230
				/* it is parity strip */
3231
				stripe_logical += base;
3232
				stripe_end = stripe_logical + increment;
3233 3234 3235 3236 3237 3238 3239 3240 3241
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3242 3243 3244 3245
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3246
		key.objectid = logical;
L
Liu Bo 已提交
3247
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3248 3249 3250 3251

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3252

3253
		if (ret > 0) {
3254
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3255 3256
			if (ret < 0)
				goto out;
3257 3258 3259 3260 3261 3262 3263 3264 3265
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3266 3267
		}

L
Liu Bo 已提交
3268
		stop_loop = 0;
A
Arne Jansen 已提交
3269
		while (1) {
3270 3271
			u64 bytes;

A
Arne Jansen 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3281
				stop_loop = 1;
A
Arne Jansen 已提交
3282 3283 3284 3285
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3286 3287 3288 3289
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3290
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3291
				bytes = fs_info->nodesize;
3292 3293 3294 3295
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3296 3297
				goto next;

L
Liu Bo 已提交
3298 3299 3300 3301 3302 3303
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3304 3305 3306 3307 3308 3309

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3310 3311 3312 3313
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3314
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3315
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3316
				       key.objectid, logical);
3317 3318 3319
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3320 3321 3322
				goto next;
			}

L
Liu Bo 已提交
3323 3324 3325 3326
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3327 3328 3329
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3330 3331 3332
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3333
			}
L
Liu Bo 已提交
3334
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3335
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3336 3337
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3338 3339
			}

L
Liu Bo 已提交
3340
			extent_physical = extent_logical - logical + physical;
3341 3342 3343 3344 3345 3346 3347
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3348

3349 3350 3351 3352 3353
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3354 3355 3356
			if (ret)
				goto out;

3357 3358 3359
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3360
					   extent_logical - logical + physical);
3361 3362 3363

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3364 3365 3366
			if (ret)
				goto out;

L
Liu Bo 已提交
3367 3368
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3369
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3370 3371 3372 3373
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3384
								increment;
3385 3386 3387 3388 3389 3390 3391 3392
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3393 3394 3395 3396
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3397 3398 3399 3400 3401
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3402
				if (physical >= physical_end) {
L
Liu Bo 已提交
3403 3404 3405 3406
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3407 3408 3409
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3410
		btrfs_release_path(path);
3411
skip:
A
Arne Jansen 已提交
3412 3413
		logical += increment;
		physical += map->stripe_len;
3414
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3415 3416 3417 3418 3419
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3420
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3421 3422
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3423
	}
3424
out:
A
Arne Jansen 已提交
3425
	/* push queued extents */
3426
	scrub_submit(sctx);
3427 3428 3429
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3430

3431
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3432
	btrfs_free_path(path);
3433
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3434 3435 3436
	return ret < 0 ? ret : 0;
}

3437
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3438 3439
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3440 3441 3442
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3443
{
3444 3445
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3446 3447 3448
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3449
	int ret = 0;
A
Arne Jansen 已提交
3450 3451 3452 3453 3454

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3467

3468
	map = em->map_lookup;
A
Arne Jansen 已提交
3469 3470 3471 3472 3473 3474 3475
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3476
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3477
		    map->stripes[i].physical == dev_offset) {
3478
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3479 3480
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3492
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3493 3494
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3495 3496 3497
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3498 3499
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3500 3501
	u64 length;
	u64 chunk_offset;
3502
	int ret = 0;
3503
	int ro_set;
A
Arne Jansen 已提交
3504 3505 3506 3507 3508
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3509
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3510 3511 3512 3513 3514

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3515
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3516 3517 3518
	path->search_commit_root = 1;
	path->skip_locking = 1;

3519
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3520 3521 3522 3523 3524 3525
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3526 3527 3528 3529 3530
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3531 3532 3533 3534
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3535
					break;
3536 3537 3538
				}
			} else {
				ret = 0;
3539 3540
			}
		}
A
Arne Jansen 已提交
3541 3542 3543 3544 3545 3546

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3547
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3548 3549
			break;

3550
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3562 3563
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3564 3565 3566 3567 3568 3569 3570 3571

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572 3573 3574 3575 3576 3577

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
			ret = btrfs_wait_ordered_roots(fs_info, -1,
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
					ret = btrfs_commit_transaction(trans,
								       root);
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3628
		scrub_pause_off(fs_info);
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3642 3643
			btrfs_warn(fs_info,
				   "failed setting block group ro, ret=%d\n",
3644
				   ret);
3645 3646 3647 3648
			btrfs_put_block_group(cache);
			break;
		}

3649
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3650 3651 3652
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3653
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3654
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3655
				  found_key.offset, cache, is_dev_replace);
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3675 3676

		scrub_pause_on(fs_info);
3677 3678 3679 3680 3681 3682

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3683 3684
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3685 3686
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3687
		scrub_pause_off(fs_info);
3688

3689 3690 3691 3692 3693
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3694
		if (ro_set)
3695
			btrfs_dec_block_group_ro(cache);
3696

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3719 3720 3721
		btrfs_put_block_group(cache);
		if (ret)
			break;
3722 3723
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3724 3725 3726 3727 3728 3729 3730
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3731
skip:
A
Arne Jansen 已提交
3732
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3733
		btrfs_release_path(path);
A
Arne Jansen 已提交
3734 3735 3736
	}

	btrfs_free_path(path);
3737

3738
	return ret;
A
Arne Jansen 已提交
3739 3740
}

3741 3742
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3743 3744 3745 3746 3747
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3748
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3749

3750
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3751 3752
		return -EIO;

3753
	/* Seed devices of a new filesystem has their own generation. */
3754
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3755 3756
		gen = scrub_dev->generation;
	else
3757
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3758 3759 3760

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3761 3762
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3763 3764
			break;

3765
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3766
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3767
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3768 3769 3770
		if (ret)
			return ret;
	}
3771
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3772 3773 3774 3775 3776 3777 3778

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3779 3780
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3781
{
3782
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3783
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3784

A
Arne Jansen 已提交
3785
	if (fs_info->scrub_workers_refcnt == 0) {
3786
		if (is_dev_replace)
3787
			fs_info->scrub_workers =
3788
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3789
						      1, 4);
3790
		else
3791
			fs_info->scrub_workers =
3792
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3793
						      max_active, 4);
3794 3795 3796
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3797
		fs_info->scrub_wr_completion_workers =
3798
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3799
					      max_active, 2);
3800 3801 3802
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3803
		fs_info->scrub_nocow_workers =
3804
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3805 3806
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3807
		fs_info->scrub_parity_workers =
3808
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3809
					      max_active, 2);
3810 3811
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3812
	}
A
Arne Jansen 已提交
3813
	++fs_info->scrub_workers_refcnt;
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3824 3825
}

3826
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3827
{
3828
	if (--fs_info->scrub_workers_refcnt == 0) {
3829 3830 3831
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3832
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3833
	}
A
Arne Jansen 已提交
3834 3835 3836
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3837 3838
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3839
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3840
{
3841
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3842 3843
	int ret;
	struct btrfs_device *dev;
3844
	struct rcu_string *name;
A
Arne Jansen 已提交
3845

3846
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3847 3848
		return -EINVAL;

3849
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3850 3851 3852 3853 3854
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3855 3856
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3857 3858
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3859 3860 3861
		return -EINVAL;
	}

3862
	if (fs_info->sectorsize != PAGE_SIZE) {
3863
		/* not supported for data w/o checksums */
3864
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3865
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3866
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3867 3868 3869
		return -EINVAL;
	}

3870
	if (fs_info->nodesize >
3871
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3872
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3873 3874 3875 3876
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3877 3878
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3879
		       fs_info->nodesize,
3880
		       SCRUB_MAX_PAGES_PER_BLOCK,
3881
		       fs_info->sectorsize,
3882 3883 3884 3885
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3886

3887 3888
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3889
	if (!dev || (dev->missing && !is_dev_replace)) {
3890
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3891 3892 3893
		return -ENODEV;
	}

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3904
	mutex_lock(&fs_info->scrub_lock);
3905
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3906
		mutex_unlock(&fs_info->scrub_lock);
3907 3908
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3909 3910
	}

3911
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3912 3913 3914
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3915
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
3916
		mutex_unlock(&fs_info->scrub_lock);
3917
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3918 3919
		return -EINPROGRESS;
	}
3920
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3921 3922 3923 3924 3925 3926 3927 3928

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3929
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3930
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3931
		mutex_unlock(&fs_info->scrub_lock);
3932 3933
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3934
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3935
	}
3936 3937
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3938
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3939

3940 3941 3942 3943
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3944
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3945 3946 3947
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3948
	if (!is_dev_replace) {
3949 3950 3951 3952
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3953
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3954
		ret = scrub_supers(sctx, dev);
3955
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3956
	}
A
Arne Jansen 已提交
3957 3958

	if (!ret)
3959 3960
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3961

3962
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3963 3964 3965
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3966
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3967

A
Arne Jansen 已提交
3968
	if (progress)
3969
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3970 3971 3972

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3973
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3974 3975
	mutex_unlock(&fs_info->scrub_lock);

3976
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3977 3978 3979 3980

	return ret;
}

3981
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3996
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3997 3998 3999 4000 4001
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4002
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4023 4024
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4025
{
4026
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4027 4028

	mutex_lock(&fs_info->scrub_lock);
4029 4030
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4031 4032 4033
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4034
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4045

4046
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4047 4048 4049
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4050
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4051

4052 4053
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4054
	if (dev)
4055 4056 4057
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4058
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4059

4060
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4061
}
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4074
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4075 4076 4077
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4078
		btrfs_put_bbio(bbio);
4079 4080 4081 4082 4083 4084
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4085
	btrfs_put_bbio(bbio);
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
4102
	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4120
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4137 4138
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4139
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4140 4141
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4142 4143 4144 4145

	return 0;
}

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4163 4164 4165 4166 4167
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4168 4169
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4195
					  record_inode_for_nocow, nocow_ctx);
4196
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4197 4198 4199 4200
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4201 4202 4203 4204
		not_written = 1;
		goto out;
	}

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4223
out:
4224 4225 4226 4227 4228 4229 4230 4231
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

4256
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4288 4289
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4290
{
4291
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4292
	struct btrfs_key key;
4293 4294
	struct inode *inode;
	struct page *page;
4295
	struct btrfs_root *local_root;
4296
	struct extent_io_tree *io_tree;
4297
	u64 physical_for_dev_replace;
4298
	u64 nocow_ctx_logical;
4299
	u64 len = nocow_ctx->len;
4300
	unsigned long index;
4301
	int srcu_index;
4302 4303
	int ret = 0;
	int err = 0;
4304 4305 4306 4307

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4308 4309 4310

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4311
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4312 4313
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4314
		return PTR_ERR(local_root);
4315
	}
4316 4317 4318 4319 4320

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4321
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4322 4323 4324
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4325
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4326
	inode_lock(inode);
4327 4328
	inode_dio_wait(inode);

4329
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4330
	io_tree = &BTRFS_I(inode)->io_tree;
4331
	nocow_ctx_logical = nocow_ctx->logical;
4332

4333 4334 4335 4336
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4337 4338
	}

4339 4340
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4341
again:
4342 4343
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4344
			btrfs_err(fs_info, "find_or_create_page() failed");
4345
			ret = -ENOMEM;
4346
			goto out;
4347 4348 4349 4350 4351 4352 4353
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4354
			err = extent_read_full_page(io_tree, page,
4355 4356
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4357 4358
			if (err) {
				ret = err;
4359 4360
				goto next_page;
			}
4361

4362
			lock_page(page);
4363 4364 4365 4366 4367 4368 4369
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4370
				unlock_page(page);
4371
				put_page(page);
4372 4373
				goto again;
			}
4374 4375 4376 4377 4378
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4379 4380 4381 4382 4383 4384 4385 4386

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4387 4388 4389 4390
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4391
next_page:
4392
		unlock_page(page);
4393
		put_page(page);
4394 4395 4396 4397

		if (ret)
			break;

4398 4399 4400 4401
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4402
	}
4403
	ret = COPY_COMPLETE;
4404
out:
A
Al Viro 已提交
4405
	inode_unlock(inode);
4406
	iput(inode);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4421
		btrfs_warn_rl(dev->fs_info,
4422
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4423 4424
		return -EIO;
	}
4425
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4426 4427 4428 4429 4430 4431
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4432 4433
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4434
	bio->bi_bdev = dev->bdev;
M
Mike Christie 已提交
4435
	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_SYNC);
4436 4437
	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
4438 4439 4440 4441 4442 4443
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4444
	if (btrfsic_submit_bio_wait(bio))
4445 4446 4447 4448 4449
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}