intel_engine_cs.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40
#include "intel_ring.h"
41

42 43 44 45 46 47 48 49 50
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

51
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
52 53
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
55
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
56 57 58

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

59
#define MAX_MMIO_BASES 3
60
struct engine_info {
61
	unsigned int hw_id;
62 63
	u8 class;
	u8 instance;
64 65 66 67 68
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
69 70 71
};

static const struct engine_info intel_engines[] = {
72 73
	[RCS0] = {
		.hw_id = RCS0_HW,
74 75
		.class = RENDER_CLASS,
		.instance = 0,
76 77 78
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
79
	},
80 81
	[BCS0] = {
		.hw_id = BCS0_HW,
82 83
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
84 85 86
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
87
	},
88 89
	[VCS0] = {
		.hw_id = VCS0_HW,
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
92 93 94 95 96
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
97
	},
98 99
	[VCS1] = {
		.hw_id = VCS1_HW,
100 101
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
102 103 104 105
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
106
	},
107 108
	[VCS2] = {
		.hw_id = VCS2_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
111 112 113
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
114
	},
115 116
	[VCS3] = {
		.hw_id = VCS3_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
122
	},
123 124
	[VECS0] = {
		.hw_id = VECS0_HW,
125 126
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
131
	},
132 133
	[VECS1] = {
		.hw_id = VECS1_HW,
134 135
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
139
	},
140 141
};

142
/**
143
 * intel_engine_context_size() - return the size of the context for an engine
144
 * @gt: the gt
145 146 147 148 149 150 151 152 153 154 155
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
156
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157
{
158
	struct intel_uncore *uncore = gt->uncore;
159 160 161 162 163 164
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
165
		switch (INTEL_GEN(gt->i915)) {
166
		default:
167
			MISSING_CASE(INTEL_GEN(gt->i915));
168
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169
		case 12:
170 171
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
172
		case 10:
O
Oscar Mateo 已提交
173
			return GEN10_LR_CONTEXT_RENDER_SIZE;
174 175 176
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
177
			return GEN8_LR_CONTEXT_RENDER_SIZE;
178
		case 7:
179
			if (IS_HASWELL(gt->i915))
180 181
				return HSW_CXT_TOTAL_SIZE;

182
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183 184 185
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
186
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187 188 189
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
190
		case 4:
191 192 193 194 195 196 197 198 199 200
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
201
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
203
					 INTEL_GEN(gt->i915),
204 205 206
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
207 208 209 210 211 212 213 214 215
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
216
		/* fall through */
217 218 219
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
220
		if (INTEL_GEN(gt->i915) < 8)
221 222 223 224 225
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

241
static void __sprint_engine_name(struct intel_engine_cs *engine)
242
{
243 244 245 246 247 248 249 250
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
251 252
}

253 254 255 256 257 258
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
259
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260 261
		return;

262 263
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
264
	else
265
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 267 268 269 270 271 272 273
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

274
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 276
{
	const struct engine_info *info = &intel_engines[id];
277 278
	struct intel_engine_cs *engine;

279 280 281
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

282 283 284
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

285
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
286 287
		return -EINVAL;

288
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
289 290
		return -EINVAL;

291
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
292 293
		return -EINVAL;

294 295 296
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
297

298 299
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

300
	engine->id = id;
301
	engine->legacy_idx = INVALID_ENGINE;
302
	engine->mask = BIT(id);
303 304 305
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
306
	engine->hw_id = engine->guc_id = info->hw_id;
307
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
308

309 310
	engine->class = info->class;
	engine->instance = info->instance;
311
	__sprint_engine_name(engine);
312

313 314
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
315 316
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
317 318
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
319 320
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
321

322 323 324 325 326 327
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

328
	engine->context_size = intel_engine_context_size(gt, engine->class);
329 330
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
331
	if (engine->context_size)
332
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
333

334 335 336
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

337
	ewma__engine_latency_init(&engine->latency);
338
	seqlock_init(&engine->stats.lock);
339

340 341
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

342 343 344
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

345
	gt->engine_class[info->class][info->instance] = engine;
346
	gt->engine[id] = engine;
347 348 349

	gt->i915->engine[id] = engine;

350
	return 0;
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

383
static void intel_setup_engine_capabilities(struct intel_gt *gt)
384 385 386 387
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

388
	for_each_engine(engine, gt, id)
389 390 391
		__setup_engine_capabilities(engine);
}

392 393
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
394
 * @gt: pointer to struct intel_gt
395
 */
396
void intel_engines_cleanup(struct intel_gt *gt)
397 398 399 400
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

401
	for_each_engine(engine, gt, id) {
402
		engine->destroy(engine);
403 404
		gt->engine[id] = NULL;
		gt->i915->engine[id] = NULL;
405 406 407
	}
}

408
/**
409
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
410
 * @gt: pointer to struct intel_gt
411 412 413
 *
 * Return: non-zero if the initialization failed.
 */
414
int intel_engines_init_mmio(struct intel_gt *gt)
415
{
416
	struct drm_i915_private *i915 = gt->i915;
417 418
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
419
	unsigned int mask = 0;
420
	unsigned int i;
421
	int err;
422

423 424
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
425
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
426

427
	if (i915_inject_probe_failure(i915))
428 429
		return -ENODEV;

430
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
431
		if (!HAS_ENGINE(i915, i))
432 433
			continue;

434
		err = intel_engine_setup(gt, i);
435 436 437
		if (err)
			goto cleanup;

438
		mask |= BIT(i);
439 440 441 442 443 444 445
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
446 447
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
448

449
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
450

451
	intel_gt_check_and_clear_faults(gt);
452

453
	intel_setup_engine_capabilities(gt);
454

455 456 457
	return 0;

cleanup:
458
	intel_engines_cleanup(gt);
459 460 461 462
	return err;
}

/**
463
 * intel_engines_init() - init the Engine Command Streamers
464
 * @gt: pointer to struct intel_gt
465 466 467
 *
 * Return: non-zero if the initialization failed.
 */
468
int intel_engines_init(struct intel_gt *gt)
469
{
470
	int (*init)(struct intel_engine_cs *engine);
471
	struct intel_engine_cs *engine;
472
	enum intel_engine_id id;
473
	int err;
474

475
	if (HAS_EXECLISTS(gt->i915))
476 477 478
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
479

480
	for_each_engine(engine, gt, id) {
481
		err = init(engine);
482
		if (err)
483
			goto cleanup;
484 485

		intel_engine_add_user(engine);
486 487 488 489 490
	}

	return 0;

cleanup:
491
	intel_engines_cleanup(gt);
492
	return err;
493 494
}

495
void intel_engine_init_execlists(struct intel_engine_cs *engine)
496 497 498
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

499
	execlists->port_mask = 1;
500
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
501 502
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

503 504 505 506
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

507
	execlists->queue_priority_hint = INT_MIN;
508
	execlists->queue = RB_ROOT_CACHED;
509 510
}

511
static void cleanup_status_page(struct intel_engine_cs *engine)
512
{
513 514
	struct i915_vma *vma;

515 516 517
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

518 519 520
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
521

522 523 524 525
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
526
	i915_gem_object_put(vma->obj);
527 528 529 530 531 532 533 534
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
535
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
536 537 538 539 540 541 542 543 544 545 546 547 548 549
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
550

551
	return i915_vma_pin(vma, 0, 0, flags);
552 553 554 555 556 557 558 559 560
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

561 562 563 564 565 566 567
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
568 569 570 571 572 573
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

574
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
575

576
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
577 578 579 580 581 582 583 584
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
585
		goto err;
586 587
	}

588
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
589
	engine->status_page.vma = vma;
590 591 592 593 594 595 596

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

597 598 599
	return 0;

err_unpin:
600
	i915_gem_object_unpin_map(obj);
601 602 603 604 605
err:
	i915_gem_object_put(obj);
	return ret;
}

606
static int intel_engine_setup_common(struct intel_engine_cs *engine)
607 608 609
{
	int err;

610 611
	init_llist_head(&engine->barrier_tasks);

612 613 614 615
	err = init_status_page(engine);
	if (err)
		return err;

616
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
617
	intel_engine_init_breadcrumbs(engine);
618
	intel_engine_init_execlists(engine);
619
	intel_engine_init_cmd_parser(engine);
620
	intel_engine_init__pm(engine);
621
	intel_engine_init_retire(engine);
622

623 624
	intel_engine_pool_init(&engine->pool);

625 626 627 628
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

629 630 631 632
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

633 634 635
	return 0;
}

636 637
/**
 * intel_engines_setup- setup engine state not requiring hw access
638
 * @gt: pointer to struct intel_gt
639 640 641 642 643 644
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
645
int intel_engines_setup(struct intel_gt *gt)
646 647 648 649 650 651
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

652
	if (HAS_EXECLISTS(gt->i915))
653 654 655 656
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

657
	for_each_engine(engine, gt, id) {
658 659 660 661 662 663 664 665
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

666 667 668
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

669 670 671 672 673 674
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
675
	intel_engines_cleanup(gt);
676 677 678
	return err;
}

679 680
struct measure_breadcrumb {
	struct i915_request rq;
681
	struct intel_timeline timeline;
682 683 684 685
	struct intel_ring ring;
	u32 cs[1024];
};

686
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
687 688
{
	struct measure_breadcrumb *frame;
689
	int dw = -ENOMEM;
690

691
	GEM_BUG_ON(!engine->gt->scratch);
692 693 694 695 696

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

697 698 699
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
700
		goto out_frame;
701

702 703
	mutex_lock(&frame->timeline.mutex);

704 705 706 707 708 709 710 711
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
712
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
713

714
	dw = intel_timeline_pin(&frame->timeline);
715 716 717
	if (dw < 0)
		goto out_timeline;

718
	spin_lock_irq(&engine->active.lock);
719
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
720 721
	spin_unlock_irq(&engine->active.lock);

722
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
723

724
	intel_timeline_unpin(&frame->timeline);
725

726
out_timeline:
727
	mutex_unlock(&frame->timeline.mutex);
728
	intel_timeline_fini(&frame->timeline);
729 730
out_frame:
	kfree(frame);
731 732 733
	return dw;
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

755 756 757
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
758
	static struct lock_class_key kernel;
759 760 761
	struct intel_context *ce;
	int err;

762
	ce = intel_context_create(engine);
763 764 765
	if (IS_ERR(ce))
		return ce;

766
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
767

768
	err = intel_context_pin(ce); /* perma-pin so it is always available */
769 770 771 772 773
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

774 775 776 777 778 779 780 781
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

782 783 784
	return ce;
}

785 786 787 788 789 790 791 792 793 794 795 796 797
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
798
	struct intel_context *ce;
799 800
	int ret;

801 802
	engine->set_default_submission(engine);

803 804 805 806 807 808
	ret = measure_breadcrumb_dw(engine);
	if (ret < 0)
		return ret;

	engine->emit_fini_breadcrumb_dw = ret;

809 810
	/*
	 * We may need to do things with the shrinker which
811 812 813 814 815 816
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
817 818 819 820 821
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
822

823
	return 0;
824
}
825 826 827 828 829 830 831 832 833 834

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
835 836
	GEM_BUG_ON(!list_empty(&engine->active.requests));

837
	cleanup_status_page(engine);
838

839
	intel_engine_fini_retire(engine);
840
	intel_engine_pool_fini(&engine->pool);
841
	intel_engine_fini_breadcrumbs(engine);
842
	intel_engine_cleanup_cmd_parser(engine);
843

844 845 846
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

847 848 849 850
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
851
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
852

853
	intel_wa_list_free(&engine->ctx_wa_list);
854
	intel_wa_list_free(&engine->wa_list);
855
	intel_wa_list_free(&engine->whitelist);
856
}
857

858
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
859
{
860 861
	struct drm_i915_private *i915 = engine->i915;

862 863
	u64 acthd;

864 865 866 867
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
868
	else
869
		acthd = ENGINE_READ(engine, ACTHD);
870 871 872 873

	return acthd;
}

874
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
875 876 877
{
	u64 bbaddr;

878 879
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
880
	else
881
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
882 883 884

	return bbaddr;
}
885

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

901 902
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
903
	struct intel_uncore *uncore = engine->uncore;
904 905 906 907
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

908
	if (INTEL_GEN(engine->i915) < 3)
909 910
		return -ENODEV;

911
	ENGINE_TRACE(engine, "\n");
912

913
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
914 915

	err = 0;
916
	if (__intel_wait_for_register_fw(uncore,
917
					 mode, MODE_IDLE, MODE_IDLE,
918
					 1000, stop_timeout(engine),
919
					 NULL)) {
920
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
921 922 923 924
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
925
	intel_uncore_posting_read_fw(uncore, mode);
926 927 928 929

	return err;
}

930 931
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
932
	ENGINE_TRACE(engine, "\n");
933

934
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
935 936
}

937 938 939 940 941 942 943 944 945 946 947
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

948 949 950
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
951
{
952 953
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
954
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
955 956
	enum forcewake_domains fw_domains;

957
	if (INTEL_GEN(i915) >= 11) {
958 959
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
960
	} else {
961 962
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
963 964
	}

965
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
966
						    FW_REG_READ);
967
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
968 969 970
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

971 972
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
973

974
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
975

976 977
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
978
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
979

980
	val = intel_uncore_read_fw(uncore, reg);
981

982 983
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
984

985
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
986

987 988
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
989

990
	return val;
991 992 993 994 995 996
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
997
	struct drm_i915_private *i915 = engine->i915;
998
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
999
	struct intel_uncore *uncore = engine->uncore;
1000 1001 1002 1003 1004 1005
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1006
	switch (INTEL_GEN(i915)) {
1007
	default:
1008 1009
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1010

1011
		if (engine->id != RCS0)
1012 1013
			break;

1014 1015
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1016
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1017
			instdone->sampler[slice][subslice] =
1018
				read_subslice_reg(engine, slice, subslice,
1019 1020
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1021
				read_subslice_reg(engine, slice, subslice,
1022 1023 1024 1025
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1026 1027
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1028

1029
		if (engine->id != RCS0)
1030 1031
			break;

1032 1033 1034 1035 1036 1037
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1038 1039 1040 1041 1042

		break;
	case 6:
	case 5:
	case 4:
1043 1044
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1045
		if (engine->id == RCS0)
1046
			/* HACK: Using the wrong struct member */
1047 1048
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1049 1050 1051
		break;
	case 3:
	case 2:
1052
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1053 1054 1055
		break;
	}
}
1056

1057 1058 1059 1060
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1061 1062 1063
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1064
	if (!intel_engine_pm_get_if_awake(engine))
1065
		return true;
1066

1067
	/* First check that no commands are left in the ring */
1068 1069
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1070
		idle = false;
1071

1072
	/* No bit for gen2, so assume the CS parser is idle */
1073
	if (INTEL_GEN(engine->i915) > 2 &&
1074
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1075 1076
		idle = false;

1077
	intel_engine_pm_put(engine);
1078 1079 1080 1081

	return idle;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
void intel_engine_flush_submission(struct intel_engine_cs *engine)
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1110
	/* More white lies, if wedged, hw state is inconsistent */
1111
	if (intel_gt_is_wedged(engine->gt))
1112 1113
		return true;

1114
	if (!intel_engine_pm_is_awake(engine))
1115 1116
		return true;

1117
	/* Waiting to drain ELSP? */
1118
	if (execlists_active(&engine->execlists)) {
1119
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1120

1121
		intel_engine_flush_submission(engine);
1122

1123
		if (execlists_active(&engine->execlists))
1124 1125
			return false;
	}
1126

1127
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1128
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1129 1130
		return false;

1131
	/* Ring stopped? */
1132
	return ring_is_idle(engine);
1133 1134
}

1135
bool intel_engines_are_idle(struct intel_gt *gt)
1136 1137 1138 1139
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1140 1141
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1142 1143
	 * report that it is still busy, even though we have stopped using it.
	 */
1144
	if (intel_gt_is_wedged(gt))
1145 1146
		return true;

1147
	/* Already parked (and passed an idleness test); must still be idle */
1148
	if (!READ_ONCE(gt->awake))
1149 1150
		return true;

1151
	for_each_engine(engine, gt, id) {
1152 1153 1154 1155 1156 1157 1158
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1159
void intel_engines_reset_default_submission(struct intel_gt *gt)
1160 1161 1162 1163
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1164
	for_each_engine(engine, gt, id)
1165 1166 1167
		engine->set_default_submission(engine);
}

1168 1169 1170 1171 1172 1173 1174 1175
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1176 1177
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1178 1179 1180 1181 1182 1183 1184
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1185 1186 1187
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1188 1189
{
	if (attr->priority == I915_PRIORITY_INVALID)
1190 1191 1192 1193
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1194

1195
	return x;
1196 1197
}

1198
static void print_request(struct drm_printer *m,
1199
			  struct i915_request *rq,
1200 1201
			  const char *prefix)
{
1202
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1203
	char buf[80] = "";
1204 1205 1206
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1207

1208
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1209
		   prefix,
1210
		   rq->fence.context, rq->fence.seqno,
1211 1212 1213
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1214 1215
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1216
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1217 1218
			    &rq->fence.flags) ? "-" :
		   "",
1219
		   buf,
1220
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1221
		   name);
1222 1223
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1246
		drm_printf(m, "[%04zx] %s\n", pos, line);
1247 1248 1249 1250 1251 1252

		prev = buf + pos;
		skip = false;
	}
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1285
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1286
					 struct drm_printer *m)
1287 1288
{
	struct drm_i915_private *dev_priv = engine->i915;
1289
	struct intel_engine_execlists * const execlists = &engine->execlists;
1290 1291
	u64 addr;

1292
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1293
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1294
	drm_printf(m, "\tRING_START: 0x%08x\n",
1295
		   ENGINE_READ(engine, RING_START));
1296
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1297
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1298
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1299
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1300
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1301 1302
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1303 1304
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1305 1306
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1307
	}
1308 1309

	if (INTEL_GEN(dev_priv) >= 6) {
1310 1311
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1312 1313
	}

1314 1315 1316 1317 1318 1319
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1320
	if (INTEL_GEN(dev_priv) >= 8)
1321
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1322
	else if (INTEL_GEN(dev_priv) >= 4)
1323
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1324
	else
1325
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1326 1327 1328 1329
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1330
			   ENGINE_READ(engine, RING_IPEIR));
1331
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1332
			   ENGINE_READ(engine, RING_IPEHR));
1333
	} else {
1334 1335
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1336
	}
1337

1338
	if (HAS_EXECLISTS(dev_priv)) {
1339
		struct i915_request * const *port, *rq;
1340 1341
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1342
		const u8 num_entries = execlists->csb_size;
1343
		unsigned int idx;
1344
		u8 read, write;
1345

1346
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1347 1348 1349
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1350
			   repr_timer(&engine->execlists.preempt),
1351
			   repr_timer(&engine->execlists.timer));
1352

1353 1354 1355
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1356 1357 1358 1359 1360
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1361
		if (read >= num_entries)
1362
			read = 0;
1363
		if (write >= num_entries)
1364 1365
			write = 0;
		if (read > write)
1366
			write += num_entries;
1367
		while (read < write) {
1368 1369 1370
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1371 1372
		}

1373
		execlists_active_lock_bh(execlists);
1374
		rcu_read_lock();
1375 1376 1377 1378 1379
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1380
				       "\t\tActive[%d]: ",
1381
				       (int)(port - execlists->active));
1382 1383 1384
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1385 1386 1387
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1388
						tl ? tl->hwsp_offset : 0,
1389
						hwsp_seqno(rq));
1390 1391 1392 1393

				if (tl)
					intel_timeline_put(tl);
			}
1394 1395 1396 1397
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1398
			struct intel_timeline *tl = get_timeline(rq);
1399
			char hdr[80];
1400

1401 1402 1403 1404
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1405
				 tl ? tl->hwsp_offset : 0,
1406 1407
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1408 1409 1410

			if (tl)
				intel_timeline_put(tl);
1411
		}
1412
		rcu_read_unlock();
1413
		execlists_active_unlock_bh(execlists);
1414 1415
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1416
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1417
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1418
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1419
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1420
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1421
	}
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1457 1458 1459 1460 1461
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1462
	struct i915_request *rq;
1463
	intel_wakeref_t wakeref;
1464
	unsigned long flags;
1465 1466 1467 1468 1469 1470 1471 1472 1473

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1474
	if (intel_gt_is_wedged(engine->gt))
1475 1476
		drm_printf(m, "*** WEDGED ***\n");

1477
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1478 1479
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1480 1481
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1482 1483 1484 1485 1486 1487 1488

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1489 1490 1491 1492 1493 1494
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1495
	spin_lock_irqsave(&engine->active.lock, flags);
1496
	rq = intel_engine_find_active_request(engine);
1497
	if (rq) {
1498 1499
		struct intel_timeline *tl = get_timeline(rq);

1500
		print_request(m, rq, "\t\tactive ");
1501

1502
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1503
			   i915_ggtt_offset(rq->ring->vma));
1504
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1505
			   rq->ring->head);
1506
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1507
			   rq->ring->tail);
1508 1509 1510 1511
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1512 1513 1514 1515 1516 1517

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1518 1519

		print_request_ring(m, rq);
1520

1521
		if (rq->context->lrc_reg_state) {
1522
			drm_printf(m, "Logical Ring Context:\n");
1523
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1524
		}
1525
	}
1526
	spin_unlock_irqrestore(&engine->active.lock, flags);
1527

1528
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1529
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1530
	if (wakeref) {
1531
		intel_engine_print_registers(engine, m);
1532
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1533 1534 1535
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1536

1537
	intel_execlists_show_requests(engine, m, print_request, 8);
1538

1539
	drm_printf(m, "HWSP:\n");
1540
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1541

1542
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1543 1544

	intel_engine_print_breadcrumbs(engine, m);
1545 1546
}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1557
	struct intel_engine_execlists *execlists = &engine->execlists;
1558
	unsigned long flags;
1559
	int err = 0;
1560

1561
	if (!intel_engine_supports_stats(engine))
1562 1563
		return -ENODEV;

1564 1565
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1566 1567 1568 1569 1570 1571

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1572
	if (engine->stats.enabled++ == 0) {
1573 1574
		struct i915_request * const *port;
		struct i915_request *rq;
1575

1576
		engine->stats.enabled_at = ktime_get();
1577 1578

		/* XXX submission method oblivious? */
1579
		for (port = execlists->active; (rq = *port); port++)
1580
			engine->stats.active++;
1581 1582 1583

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1584
			if (!intel_context_inflight_count(rq->context))
1585
				engine->stats.active++;
1586 1587 1588 1589 1590
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1591

1592
unlock:
1593 1594
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1595

1596
	return err;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1622
	unsigned int seq;
1623 1624
	ktime_t total;

1625 1626 1627 1628
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1643
	if (!intel_engine_supports_stats(engine))
1644 1645
		return;

1646
	write_seqlock_irqsave(&engine->stats.lock, flags);
1647 1648 1649 1650 1651
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1652
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1653 1654
}

1655 1656
static bool match_ring(struct i915_request *rq)
{
1657
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1678
	lockdep_assert_held(&engine->active.lock);
1679
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1680 1681 1682 1683
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1684
			continue;
1685 1686 1687

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1688
			continue;
1689 1690 1691 1692 1693 1694 1695 1696

		active = request;
		break;
	}

	return active;
}

1697
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1698
#include "mock_engine.c"
1699
#include "selftest_engine.c"
1700
#include "selftest_engine_cs.c"
1701
#endif