intel_lrc.c 69.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233
static int intel_lr_context_pin(struct i915_gem_context *ctx,
234
				struct intel_engine_cs *engine);
235 236 237 238
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
239

240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242
 * @dev_priv: i915 device private
243 244 245
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
246
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 248 249
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
250
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251
{
252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 257
		return 1;

258
	if (INTEL_GEN(dev_priv) >= 9)
259 260
		return 1;

261 262 263
	if (enable_execlists == 0)
		return 0;

264 265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_i915_private *dev_priv = engine->i915;
276

277
	engine->disable_lite_restore_wa =
278
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279
		(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	if (IS_GEN8(dev_priv))
283 284
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 286 287 288 289 290 291

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 293
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 295
}

296
/**
297 298 299
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
300
 * @engine: Engine the descriptor will be used with
301
 *
302 303 304 305 306
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
307 308 309 310 311 312 313
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
314
 */
315
static void
316
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	struct intel_context *ce = &ctx->engine[engine->id];
320
	u64 desc;
321

322
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323

324 325
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327
								/* bits 12-31 */
328
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ce->lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340 341
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
342
{
343 344 345 346 347 348
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
349

350
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 352
}

353 354 355 356 357 358 359 360 361
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

362
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366
	u32 *reg_state = ce->lrc_reg_state;
367

C
Chris Wilson 已提交
368
	reg_state[CTX_RING_TAIL+1] = rq->tail;
369

370 371 372 373 374 375 376
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
377 378

	return ce->lrc_desc;
379 380
}

381
static void execlists_submit_ports(struct intel_engine_cs *engine)
382
{
383 384
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
385 386 387 388
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

389 390 391 392 393 394 395 396 397 398 399 400
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
401 402 403
	} else {
		desc[1] = 0;
	}
404
	GEM_BUG_ON(desc[0] == desc[1]);
405 406 407 408 409 410 411 412 413 414

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417 418 419
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433
static void execlists_dequeue(struct intel_engine_cs *engine)
434
{
435
	struct drm_i915_gem_request *last;
436
	struct execlist_port *port = engine->execlist_port;
437
	unsigned long flags;
438
	struct rb_node *rb;
439 440 441 442 443 444
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
445
		 * as we resubmit the request. See gen8_emit_breadcrumb()
446 447 448 449
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
450

451
	GEM_BUG_ON(port[1].request);
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
472
	 */
473

474
	spin_lock_irqsave(&engine->timeline->lock, flags);
475 476 477 478 479
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

480 481 482
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
483
		 *
484 485 486 487
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
488
		 */
489 490 491 492 493 494 495 496 497 498 499 500 501
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
502 503
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
504 505 506 507 508 509 510
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
511

512 513 514 515 516
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

517 518 519 520 521 522 523 524 525 526
		/* We keep the previous context alive until we retire the
		 * following request. This ensures that any the context object
		 * is still pinned for any residual writes the HW makes into it
		 * on the context switch into the next object following the
		 * breadcrumb. Otherwise, we may retire the context too early.
		 */
		cursor->previous_context = engine->last_context;
		engine->last_context = cursor->ctx;

		__i915_gem_request_submit(cursor);
527 528 529 530 531
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
532
		engine->execlist_first = rb;
533
	}
534
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
535

536 537
	if (submit)
		execlists_submit_ports(engine);
538 539
}

540
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
541
{
542
	return !engine->execlist_port[0].request;
543 544
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

567
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
568
{
569
	int port;
B
Ben Widawsky 已提交
570

571 572 573
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
574

575
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
576 577
}

578
/*
579 580 581
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
582
static void intel_lrc_irq_handler(unsigned long data)
583
{
584
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
585
	struct execlist_port *port = engine->execlist_port;
586
	struct drm_i915_private *dev_priv = engine->i915;
587

588
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
621

622 623
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
624 625
		}

626 627 628
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
629 630
	}

631 632
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
633

634
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
635 636
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

663
static void execlists_submit_request(struct drm_i915_gem_request *request)
664
{
665
	struct intel_engine_cs *engine = request->engine;
666
	unsigned long flags;
667

668 669
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
670

671 672
	if (insert_request(&request->priotree, &engine->execlist_queue))
		engine->execlist_first = &request->priotree.node;
673 674
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
675

676
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
677 678
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

706 707
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

736
		list_safe_reset_next(dep, p, dfs_link);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

777
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
778
{
779
	struct intel_engine_cs *engine = request->engine;
780
	struct intel_context *ce = &request->ctx->engine[engine->id];
781
	int ret;
782

783 784 785 786
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
787
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
788

789
	if (!ce->state) {
790 791 792 793 794
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

795
	request->ring = ce->ring;
796

797 798 799 800
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;

801 802 803 804 805 806
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
807
		ret = i915_guc_wq_reserve(request);
808
		if (ret)
809
			goto err_unpin;
810 811
	}

812 813
	ret = intel_ring_begin(request, 0);
	if (ret)
814
		goto err_unreserve;
815

816
	if (!ce->initialised) {
817 818
		ret = engine->init_context(request);
		if (ret)
819
			goto err_unreserve;
820

821
		ce->initialised = true;
822 823 824 825 826 827 828 829 830
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

831
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
832 833
	return 0;

834 835 836
err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
837
err_unpin:
838
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
839
	return ret;
840 841
}

842
static int intel_lr_context_pin(struct i915_gem_context *ctx,
843
				struct intel_engine_cs *engine)
844
{
845
	struct intel_context *ce = &ctx->engine[engine->id];
846
	void *vaddr;
847
	int ret;
848

849
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
850

851
	if (ce->pin_count++)
852 853
		return 0;

854 855
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
856
	if (ret)
857
		goto err;
858

859
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
860 861
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
862
		goto unpin_vma;
863 864
	}

865
	ret = intel_ring_pin(ce->ring);
866
	if (ret)
867
		goto unpin_map;
868

869
	intel_lr_context_descriptor_update(ctx, engine);
870

871 872
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
873
		i915_ggtt_offset(ce->ring->vma);
874

C
Chris Wilson 已提交
875
	ce->state->obj->mm.dirty = true;
876

877
	/* Invalidate GuC TLB. */
878 879
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
880
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
881
	}
882

883
	i915_gem_context_get(ctx);
884
	return 0;
885

886
unpin_map:
887 888 889
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
890
err:
891
	ce->pin_count = 0;
892 893 894
	return ret;
}

895
void intel_lr_context_unpin(struct i915_gem_context *ctx,
896
			    struct intel_engine_cs *engine)
897
{
898
	struct intel_context *ce = &ctx->engine[engine->id];
899

900
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
901
	GEM_BUG_ON(ce->pin_count == 0);
902

903
	if (--ce->pin_count)
904
		return;
905

906
	intel_ring_unpin(ce->ring);
907

908 909
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
910

911
	i915_gem_context_put(ctx);
912 913
}

914
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
915 916
{
	int ret, i;
917
	struct intel_ring *ring = req->ring;
918
	struct i915_workarounds *w = &req->i915->workarounds;
919

920
	if (w->count == 0)
921 922
		return 0;

923
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
924 925 926
	if (ret)
		return ret;

927
	ret = intel_ring_begin(req, w->count * 2 + 2);
928 929 930
	if (ret)
		return ret;

931
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
932
	for (i = 0; i < w->count; i++) {
933 934
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
935
	}
936
	intel_ring_emit(ring, MI_NOOP);
937

938
	intel_ring_advance(ring);
939

940
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
941 942 943 944 945 946
	if (ret)
		return ret;

	return 0;
}

947
#define wa_ctx_emit(batch, index, cmd)					\
948
	do {								\
949 950
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
951 952
			return -ENOSPC;					\
		}							\
953
		batch[__index] = (cmd);					\
954 955
	} while (0)

V
Ville Syrjälä 已提交
956
#define wa_ctx_emit_reg(batch, index, reg) \
957
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
975
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
976
						uint32_t *batch,
977 978
						uint32_t index)
{
D
Dave Airlie 已提交
979
	struct drm_i915_private *dev_priv = engine->i915;
980 981
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

982
	/*
983
	 * WaDisableLSQCROPERFforOCL:kbl
984 985 986 987
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
988
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
989 990
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

991
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
992
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
993
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
994
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
995 996 997
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
998
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1009
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1010
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1011
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1012
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1013
	wa_ctx_emit(batch, index, 0);
1014 1015 1016 1017

	return index;
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1037 1038 1039 1040 1041 1042
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1043
 *
1044 1045
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1046
 *
1047 1048 1049 1050
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1051
 */
1052
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1053
				    struct i915_wa_ctx_bb *wa_ctx,
1054
				    uint32_t *batch,
1055 1056
				    uint32_t *offset)
{
1057
	uint32_t scratch_addr;
1058 1059
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1060
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1061
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1062

1063
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1064
	if (IS_BROADWELL(engine->i915)) {
1065
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1066 1067 1068
		if (rc < 0)
			return rc;
		index = rc;
1069 1070
	}

1071 1072
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1073
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1084

1085 1086
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1087
		wa_ctx_emit(batch, index, MI_NOOP);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1098 1099 1100
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1101
 *
1102
 *  The number of DWORDS written are returned using this field.
1103 1104 1105 1106
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1107
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1108
			       struct i915_wa_ctx_bb *wa_ctx,
1109
			       uint32_t *batch,
1110 1111 1112 1113
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1114
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1115
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1116

1117
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1118 1119 1120 1121

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1122
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1123
				    struct i915_wa_ctx_bb *wa_ctx,
1124
				    uint32_t *batch,
1125 1126
				    uint32_t *offset)
{
1127
	int ret;
D
Dave Airlie 已提交
1128
	struct drm_i915_private *dev_priv = engine->i915;
1129 1130
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1131 1132
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1133
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1134

1135
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1136
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1137 1138 1139 1140
	if (ret < 0)
		return ret;
	index = ret;

1141 1142 1143 1144 1145 1146 1147
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1148 1149
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1150
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1151
		u32 scratch_addr =
1152
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1189 1190 1191 1192 1193 1194 1195
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1196
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1197
			       struct i915_wa_ctx_bb *wa_ctx,
1198
			       uint32_t *batch,
1199 1200 1201 1202
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1203 1204
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1205
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1206
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1207 1208 1209 1210 1211
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1212
	/* WaClearTdlStateAckDirtyBits:bxt */
1213
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1231 1232
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1233 1234
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1235 1236 1237 1238 1239
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1240
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1241
{
1242 1243 1244
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1245

1246
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1247 1248
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1249

1250 1251 1252 1253
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1254 1255
	}

1256 1257 1258 1259 1260
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1261
	return 0;
1262 1263 1264 1265

err:
	i915_gem_object_put(obj);
	return err;
1266 1267
}

1268
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1269
{
1270
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1271 1272
}

1273
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1274
{
1275
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1276 1277 1278
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1279
	int ret;
1280

1281
	WARN_ON(engine->id != RCS);
1282

1283
	/* update this when WA for higher Gen are added */
1284
	if (INTEL_GEN(engine->i915) > 9) {
1285
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1286
			  INTEL_GEN(engine->i915));
1287
		return 0;
1288
	}
1289

1290
	/* some WA perform writes to scratch page, ensure it is valid */
1291
	if (!engine->scratch) {
1292
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1293 1294 1295
		return -EINVAL;
	}

1296
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1297 1298 1299 1300 1301
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1302
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1303 1304 1305
	batch = kmap_atomic(page);
	offset = 0;

1306
	if (IS_GEN8(engine->i915)) {
1307
		ret = gen8_init_indirectctx_bb(engine,
1308 1309 1310 1311 1312 1313
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1314
		ret = gen8_init_perctx_bb(engine,
1315 1316 1317 1318 1319
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1320
	} else if (IS_GEN9(engine->i915)) {
1321
		ret = gen9_init_indirectctx_bb(engine,
1322 1323 1324 1325 1326 1327
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1328
		ret = gen9_init_perctx_bb(engine,
1329 1330 1331 1332 1333
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1334 1335 1336 1337 1338
	}

out:
	kunmap_atomic(batch);
	if (ret)
1339
		lrc_destroy_wa_ctx_obj(engine);
1340 1341 1342 1343

	return ret;
}

1344 1345
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1346
	struct drm_i915_private *dev_priv = engine->i915;
1347 1348

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1349
		   engine->status_page.ggtt_offset);
1350 1351 1352
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1353
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1354
{
1355
	struct drm_i915_private *dev_priv = engine->i915;
1356 1357 1358 1359 1360
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1361

1362
	lrc_init_hws(engine);
1363

1364
	intel_engine_reset_breadcrumbs(engine);
1365

1366
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1367

1368
	I915_WRITE(RING_MODE_GEN7(engine),
1369 1370
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1371

1372
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1373

1374
	intel_engine_init_hangcheck(engine);
1375

1376 1377 1378 1379
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1380
		execlists_submit_ports(engine);
1381
	}
1382 1383

	return 0;
1384 1385
}

1386
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1387
{
1388
	struct drm_i915_private *dev_priv = engine->i915;
1389 1390
	int ret;

1391
	ret = gen8_init_common_ring(engine);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1405
	return init_workarounds_ring(engine);
1406 1407
}

1408
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1409 1410 1411
{
	int ret;

1412
	ret = gen8_init_common_ring(engine);
1413 1414 1415
	if (ret)
		return ret;

1416
	return init_workarounds_ring(engine);
1417 1418
}

1419 1420 1421 1422 1423 1424 1425
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1436
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1437 1438
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1439
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1457 1458 1459

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1460 1461
}

1462 1463 1464
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1465
	struct intel_ring *ring = req->ring;
1466
	struct intel_engine_cs *engine = req->engine;
1467 1468 1469
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1470
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1471 1472 1473
	if (ret)
		return ret;

1474
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1475 1476 1477
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1478 1479 1480 1481
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1482 1483
	}

1484 1485
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1486 1487 1488 1489

	return 0;
}

1490
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1491 1492
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1493
{
1494
	struct intel_ring *ring = req->ring;
1495
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1496 1497
	int ret;

1498 1499 1500 1501
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1502 1503
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1504
	if (req->ctx->ppgtt &&
1505
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1506
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1507
		    !intel_vgpu_active(req->i915)) {
1508 1509 1510 1511
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1512

1513
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1514 1515
	}

1516
	ret = intel_ring_begin(req, 4);
1517 1518 1519 1520
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1521 1522 1523 1524 1525 1526 1527 1528
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1529 1530 1531 1532

	return 0;
}

1533
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1534
{
1535
	struct drm_i915_private *dev_priv = engine->i915;
1536 1537 1538
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1539 1540
}

1541
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1542
{
1543
	struct drm_i915_private *dev_priv = engine->i915;
1544
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1545 1546
}

1547
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1548
{
1549 1550
	struct intel_ring *ring = request->ring;
	u32 cmd;
1551 1552
	int ret;

1553
	ret = intel_ring_begin(request, 4);
1554 1555 1556 1557 1558
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1559 1560 1561 1562 1563 1564 1565
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1566
	if (mode & EMIT_INVALIDATE) {
1567
		cmd |= MI_INVALIDATE_TLB;
1568
		if (request->engine->id == VCS)
1569
			cmd |= MI_INVALIDATE_BSD;
1570 1571
	}

1572 1573 1574 1575 1576 1577 1578
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1579 1580 1581 1582

	return 0;
}

1583
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1584
				  u32 mode)
1585
{
1586
	struct intel_ring *ring = request->ring;
1587
	struct intel_engine_cs *engine = request->engine;
1588 1589
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1590
	bool vf_flush_wa = false, dc_flush_wa = false;
1591 1592
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1593
	int len;
1594 1595 1596

	flags |= PIPE_CONTROL_CS_STALL;

1597
	if (mode & EMIT_FLUSH) {
1598 1599
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1600
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1601
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1602 1603
	}

1604
	if (mode & EMIT_INVALIDATE) {
1605 1606 1607 1608 1609 1610 1611 1612 1613
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1614 1615 1616 1617
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1618
		if (IS_GEN9(request->i915))
1619
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1620 1621 1622 1623

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1624
	}
1625

M
Mika Kuoppala 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1635 1636 1637
	if (ret)
		return ret;

1638
	if (vf_flush_wa) {
1639 1640 1641 1642 1643 1644
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1645 1646
	}

M
Mika Kuoppala 已提交
1647
	if (dc_flush_wa) {
1648 1649 1650 1651 1652 1653
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1654 1655
	}

1656 1657 1658 1659 1660 1661
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1662 1663

	if (dc_flush_wa) {
1664 1665 1666 1667 1668 1669
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1670 1671
	}

1672
	intel_ring_advance(ring);
1673 1674 1675 1676

	return 0;
}

1677
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1689
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1690 1691
}

1692 1693 1694 1695 1696
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1697
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1698
{
C
Chris Wilson 已提交
1699 1700 1701 1702
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1703

C
Chris Wilson 已提交
1704 1705 1706
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1707 1708
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1709

C
Chris Wilson 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1719
}
1720

1721 1722
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1723 1724
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1725
{
1726 1727 1728
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1729 1730 1731 1732
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1733 1734 1735 1736 1737 1738 1739
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1740
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1741 1742 1743 1744 1745 1746
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1747 1748
}

1749 1750
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1751
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1752 1753 1754
{
	int ret;

1755
	ret = intel_logical_ring_workarounds_emit(req);
1756 1757 1758
	if (ret)
		return ret;

1759 1760 1761 1762 1763 1764 1765 1766
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1767
	return i915_gem_render_state_emit(req);
1768 1769
}

1770 1771
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1772
 * @engine: Engine Command Streamer.
1773
 */
1774
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1775
{
1776
	struct drm_i915_private *dev_priv;
1777

1778 1779 1780 1781 1782 1783 1784
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1785
	dev_priv = engine->i915;
1786

1787 1788
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1789
	}
1790

1791 1792
	if (engine->cleanup)
		engine->cleanup(engine);
1793

1794
	intel_engine_cleanup_common(engine);
1795

1796 1797 1798
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1799
	}
1800
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1801

1802
	lrc_destroy_wa_ctx_obj(engine);
1803
	engine->i915 = NULL;
1804 1805
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1806 1807
}

1808 1809 1810
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1811
	enum intel_engine_id id;
1812

1813
	for_each_engine(engine, dev_priv, id) {
1814
		engine->submit_request = execlists_submit_request;
1815 1816
		engine->schedule = execlists_schedule;
	}
1817 1818
}

1819
static void
1820
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1821 1822
{
	/* Default vfuncs which can be overriden by each engine. */
1823
	engine->init_hw = gen8_init_common_ring;
1824
	engine->reset_hw = reset_common_ring;
1825
	engine->emit_flush = gen8_emit_flush;
1826
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1827
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1828
	engine->submit_request = execlists_submit_request;
1829
	engine->schedule = execlists_schedule;
1830

1831 1832
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1833
	engine->emit_bb_start = gen8_emit_bb_start;
1834
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1835
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1836 1837
}

1838
static inline void
1839
logical_ring_default_irqs(struct intel_engine_cs *engine)
1840
{
1841
	unsigned shift = engine->irq_shift;
1842 1843
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1844 1845
}

1846
static int
1847
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1848
{
1849
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1850
	void *hws;
1851 1852

	/* The HWSP is part of the default context object in LRC mode. */
1853
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1854 1855
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1856 1857

	engine->status_page.page_addr = hws + hws_offset;
1858
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1859
	engine->status_page.vma = vma;
1860 1861

	return 0;
1862 1863
}

1864 1865 1866 1867 1868 1869
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1870 1871
	intel_engine_setup_common(engine);

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1897 1898 1899 1900 1901 1902
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1903
	ret = intel_engine_init_common(engine);
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1933
int logical_render_ring_init(struct intel_engine_cs *engine)
1934 1935 1936 1937
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1938 1939
	logical_ring_setup(engine);

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1950
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1951
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1952

1953
	ret = intel_engine_create_scratch(engine, 4096);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1968
	return logical_ring_init(engine);
1969 1970
}

1971
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1972 1973 1974 1975
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1976 1977
}

1978
static u32
1979
make_rpcs(struct drm_i915_private *dev_priv)
1980 1981 1982 1983 1984 1985 1986
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1987
	if (INTEL_GEN(dev_priv) < 9)
1988 1989 1990 1991 1992 1993 1994 1995
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1996
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1997
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1998
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1999 2000 2001 2002
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2003
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2004
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2005
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2006 2007 2008 2009
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2010 2011
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2012
			GEN8_RPCS_EU_MIN_SHIFT;
2013
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2014 2015 2016 2017 2018 2019 2020
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2021
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2022 2023 2024
{
	u32 indirect_ctx_offset;

2025
	switch (INTEL_GEN(engine->i915)) {
2026
	default:
2027
		MISSING_CASE(INTEL_GEN(engine->i915));
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2042 2043 2044 2045
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2046
{
2047 2048
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2049 2050 2051 2052 2053 2054

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2055
	reg_state[CTX_LRI_HEADER_0] =
2056 2057 2058
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2059 2060
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2061
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2062
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2063 2064 2065 2066 2067 2068 2069 2070
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2071
		       RING_CTL_SIZE(ring->size) | RING_VALID);
2072 2073 2074 2075 2076 2077
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2078
		       RING_BB_PPGTT);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2092
		if (engine->wa_ctx.vma) {
2093
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2094
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2095 2096 2097 2098 2099 2100

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2101
				intel_lr_indirect_ctx_offset(engine) << 6;
2102 2103 2104 2105 2106

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2107
	}
2108
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2109 2110
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2111
	/* PDP values well be assigned later if needed */
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2141
		execlists_update_context_pdps(ppgtt, reg_state);
2142 2143
	}

2144
	if (engine->id == RCS) {
2145
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2146
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2147
			       make_rpcs(dev_priv));
2148
	}
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2172
	ctx_obj->mm.dirty = true;
2173 2174 2175 2176 2177 2178

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2179

2180
	i915_gem_object_unpin_map(ctx_obj);
2181 2182 2183 2184

	return 0;
}

2185 2186
/**
 * intel_lr_context_size() - return the size of the context for an engine
2187
 * @engine: which engine to find the context size for
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2199
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2200 2201 2202
{
	int ret = 0;

2203
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2204

2205
	switch (engine->id) {
2206
	case RCS:
2207
		if (INTEL_GEN(engine->i915) >= 9)
2208 2209 2210
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2221 2222
}

2223
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2224
					    struct intel_engine_cs *engine)
2225
{
2226
	struct drm_i915_gem_object *ctx_obj;
2227
	struct intel_context *ce = &ctx->engine[engine->id];
2228
	struct i915_vma *vma;
2229
	uint32_t context_size;
2230
	struct intel_ring *ring;
2231 2232
	int ret;

2233
	WARN_ON(ce->state);
2234

2235
	context_size = round_up(intel_lr_context_size(engine), 4096);
2236

2237 2238 2239
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2240
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2241
	if (IS_ERR(ctx_obj)) {
2242
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2243
		return PTR_ERR(ctx_obj);
2244 2245
	}

2246 2247 2248 2249 2250 2251
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2252
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2253 2254
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2255
		goto error_deref_obj;
2256 2257
	}

2258
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2259 2260
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2261
		goto error_ring_free;
2262 2263
	}

2264
	ce->ring = ring;
2265
	ce->state = vma;
2266
	ce->initialised = engine->init_context == NULL;
2267 2268

	return 0;
2269

2270
error_ring_free:
2271
	intel_ring_free(ring);
2272
error_deref_obj:
2273
	i915_gem_object_put(ctx_obj);
2274
	return ret;
2275
}
2276

2277
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2278
{
2279
	struct intel_engine_cs *engine;
2280
	struct i915_gem_context *ctx;
2281
	enum intel_engine_id id;
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2294
		for_each_engine(engine, dev_priv, id) {
2295 2296
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2297

2298 2299
			if (!ce->state)
				continue;
2300

2301 2302 2303 2304
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2305

2306 2307 2308
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2309

C
Chris Wilson 已提交
2310
			ce->state->obj->mm.dirty = true;
2311
			i915_gem_object_unpin_map(ce->state->obj);
2312

2313 2314 2315 2316
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2317 2318
	}
}