intel_lrc.c 65.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233
static int intel_lr_context_pin(struct i915_gem_context *ctx,
234
				struct intel_engine_cs *engine);
235 236 237 238
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
239

240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242
 * @dev_priv: i915 device private
243 244 245
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
246
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 248 249
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
250
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251
{
252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 257
		return 1;

258
	if (INTEL_GEN(dev_priv) >= 9)
259 260
		return 1;

261 262 263
	if (enable_execlists == 0)
		return 0;

264 265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_i915_private *dev_priv = engine->i915;
276

277
	engine->disable_lite_restore_wa =
278
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279
		(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	if (IS_GEN8(dev_priv))
283 284
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 286 287 288 289 290 291

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 293
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 295
}

296
/**
297 298 299
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
300
 * @engine: Engine the descriptor will be used with
301
 *
302 303 304 305 306
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
307 308 309 310 311 312 313
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
314
 */
315
static void
316
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	struct intel_context *ce = &ctx->engine[engine->id];
320
	u64 desc;
321

322
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323

324 325
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327
								/* bits 12-31 */
328
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ce->lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340 341
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
342
{
343 344 345 346 347 348
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
349

350
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 352
}

353 354 355 356 357 358 359 360 361
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

362
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366
	u32 *reg_state = ce->lrc_reg_state;
367

C
Chris Wilson 已提交
368
	reg_state[CTX_RING_TAIL+1] = rq->tail;
369

370 371 372 373 374 375 376
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
377 378

	return ce->lrc_desc;
379 380
}

381
static void execlists_submit_ports(struct intel_engine_cs *engine)
382
{
383 384
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
385 386 387 388
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

389 390 391 392 393 394 395 396 397 398 399 400
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
401 402 403
	} else {
		desc[1] = 0;
	}
404
	GEM_BUG_ON(desc[0] == desc[1]);
405 406 407 408 409 410 411 412 413 414

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417 418 419
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433
static void execlists_dequeue(struct intel_engine_cs *engine)
434
{
435 436 437 438 439 440 441 442
	struct drm_i915_gem_request *cursor, *last;
	struct execlist_port *port = engine->execlist_port;
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443
		 * as we resubmit the request. See gen8_emit_breadcrumb()
444 445 446 447
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
448

449
	GEM_BUG_ON(port[1].request);
450

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
470
	 */
471

472 473 474 475 476
	spin_lock(&engine->execlist_lock);
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
477
		 *
478 479 480 481
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
482
		 */
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
		last = cursor;
		submit = true;
	}
	if (submit) {
		/* Decouple all the requests submitted from the queue */
		engine->execlist_queue.next = &cursor->execlist_link;
		cursor->execlist_link.prev = &engine->execlist_queue;

		i915_gem_request_assign(&port->request, last);
513
	}
514
	spin_unlock(&engine->execlist_lock);
515

516 517
	if (submit)
		execlists_submit_ports(engine);
518 519
}

520
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
521
{
522
	return !engine->execlist_port[0].request;
523 524
}

525
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
526
{
527
	int port;
B
Ben Widawsky 已提交
528

529 530 531
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
532

533
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
534 535
}

536
/*
537 538 539
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
540
static void intel_lrc_irq_handler(unsigned long data)
541
{
542
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
543
	struct execlist_port *port = engine->execlist_port;
544
	struct drm_i915_private *dev_priv = engine->i915;
545

546
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
579

580 581
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
582 583
		}

584 585 586
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
587 588
	}

589 590
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
591

592
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
593 594
}

595
static void execlists_submit_request(struct drm_i915_gem_request *request)
596
{
597
	struct intel_engine_cs *engine = request->engine;
598
	unsigned long flags;
599

600
	spin_lock_irqsave(&engine->execlist_lock, flags);
601

C
Chris Wilson 已提交
602 603 604 605 606 607 608 609 610
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;

611
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
612 613
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
614

615
	spin_unlock_irqrestore(&engine->execlist_lock, flags);
616 617
}

618
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
619
{
620
	struct intel_engine_cs *engine = request->engine;
621
	struct intel_context *ce = &request->ctx->engine[engine->id];
622
	int ret;
623

624 625 626 627
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
628
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
629

630
	if (!ce->state) {
631 632 633 634 635
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

636
	request->ring = ce->ring;
637

638 639 640 641
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;

642 643 644 645 646 647
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
648
		ret = i915_guc_wq_reserve(request);
649
		if (ret)
650
			goto err_unpin;
651 652
	}

653 654
	ret = intel_ring_begin(request, 0);
	if (ret)
655
		goto err_unreserve;
656

657
	if (!ce->initialised) {
658 659
		ret = engine->init_context(request);
		if (ret)
660
			goto err_unreserve;
661

662
		ce->initialised = true;
663 664 665 666 667 668 669 670 671
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

672
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
673 674
	return 0;

675 676 677
err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
678
err_unpin:
679
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
680
	return ret;
681 682
}

683
static int intel_lr_context_pin(struct i915_gem_context *ctx,
684
				struct intel_engine_cs *engine)
685
{
686
	struct intel_context *ce = &ctx->engine[engine->id];
687
	void *vaddr;
688
	int ret;
689

690
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
691

692
	if (ce->pin_count++)
693 694
		return 0;

695 696
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
697
	if (ret)
698
		goto err;
699

700
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
701 702
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
703
		goto unpin_vma;
704 705
	}

706
	ret = intel_ring_pin(ce->ring);
707
	if (ret)
708
		goto unpin_map;
709

710
	intel_lr_context_descriptor_update(ctx, engine);
711

712 713
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
714
		i915_ggtt_offset(ce->ring->vma);
715

C
Chris Wilson 已提交
716
	ce->state->obj->mm.dirty = true;
717

718
	/* Invalidate GuC TLB. */
719 720
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
721
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
722
	}
723

724
	i915_gem_context_get(ctx);
725
	return 0;
726

727
unpin_map:
728 729 730
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
731
err:
732
	ce->pin_count = 0;
733 734 735
	return ret;
}

736
void intel_lr_context_unpin(struct i915_gem_context *ctx,
737
			    struct intel_engine_cs *engine)
738
{
739
	struct intel_context *ce = &ctx->engine[engine->id];
740

741
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
742
	GEM_BUG_ON(ce->pin_count == 0);
743

744
	if (--ce->pin_count)
745
		return;
746

747
	intel_ring_unpin(ce->ring);
748

749 750
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
751

752
	i915_gem_context_put(ctx);
753 754
}

755
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
756 757
{
	int ret, i;
758
	struct intel_ring *ring = req->ring;
759
	struct i915_workarounds *w = &req->i915->workarounds;
760

761
	if (w->count == 0)
762 763
		return 0;

764
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
765 766 767
	if (ret)
		return ret;

768
	ret = intel_ring_begin(req, w->count * 2 + 2);
769 770 771
	if (ret)
		return ret;

772
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
773
	for (i = 0; i < w->count; i++) {
774 775
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
776
	}
777
	intel_ring_emit(ring, MI_NOOP);
778

779
	intel_ring_advance(ring);
780

781
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
782 783 784 785 786 787
	if (ret)
		return ret;

	return 0;
}

788
#define wa_ctx_emit(batch, index, cmd)					\
789
	do {								\
790 791
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
792 793
			return -ENOSPC;					\
		}							\
794
		batch[__index] = (cmd);					\
795 796
	} while (0)

V
Ville Syrjälä 已提交
797
#define wa_ctx_emit_reg(batch, index, reg) \
798
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
816
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
817
						uint32_t *batch,
818 819
						uint32_t index)
{
D
Dave Airlie 已提交
820
	struct drm_i915_private *dev_priv = engine->i915;
821 822
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

823
	/*
824
	 * WaDisableLSQCROPERFforOCL:kbl
825 826 827 828
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
829
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
830 831
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

832
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
833
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
834
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
835
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
836 837 838
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
839
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
840 841 842 843 844 845 846 847 848 849
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

850
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
851
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
852
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
853
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
854
	wa_ctx_emit(batch, index, 0);
855 856 857 858

	return index;
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

878 879 880 881 882 883
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
884
 *
885 886
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
887
 *
888 889 890 891
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
892
 */
893
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
894
				    struct i915_wa_ctx_bb *wa_ctx,
895
				    uint32_t *batch,
896 897
				    uint32_t *offset)
{
898
	uint32_t scratch_addr;
899 900
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

901
	/* WaDisableCtxRestoreArbitration:bdw,chv */
902
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
903

904
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
905
	if (IS_BROADWELL(engine->i915)) {
906
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
907 908 909
		if (rc < 0)
			return rc;
		index = rc;
910 911
	}

912 913
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
914
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
915

916 917 918 919 920 921 922 923 924
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
925

926 927
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
928
		wa_ctx_emit(batch, index, MI_NOOP);
929 930 931 932 933 934 935 936 937 938

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

939 940 941
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
942
 *
943
 *  The number of DWORDS written are returned using this field.
944 945 946 947
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
948
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
949
			       struct i915_wa_ctx_bb *wa_ctx,
950
			       uint32_t *batch,
951 952 953 954
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

955
	/* WaDisableCtxRestoreArbitration:bdw,chv */
956
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
957

958
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
959 960 961 962

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

963
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
964
				    struct i915_wa_ctx_bb *wa_ctx,
965
				    uint32_t *batch,
966 967
				    uint32_t *offset)
{
968
	int ret;
D
Dave Airlie 已提交
969
	struct drm_i915_private *dev_priv = engine->i915;
970 971
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

972 973
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
974
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
975

976
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
977
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
978 979 980 981
	if (ret < 0)
		return ret;
	index = ret;

982 983 984 985 986 987 988
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

989 990
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
991
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
992
		u32 scratch_addr =
993
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
994 995 996 997 998 999 1000 1001 1002 1003 1004

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1030 1031 1032 1033 1034 1035 1036
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1037
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1038
			       struct i915_wa_ctx_bb *wa_ctx,
1039
			       uint32_t *batch,
1040 1041 1042 1043
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1044 1045
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1046
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1047
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1048 1049 1050 1051 1052
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1053
	/* WaClearTdlStateAckDirtyBits:bxt */
1054
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1072 1073
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1074 1075
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1076 1077 1078 1079 1080
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1081
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1082
{
1083 1084 1085
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1086

1087 1088 1089
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1090

1091 1092 1093 1094
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1095 1096
	}

1097 1098 1099 1100 1101
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1102
	return 0;
1103 1104 1105 1106

err:
	i915_gem_object_put(obj);
	return err;
1107 1108
}

1109
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1110
{
1111
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1112 1113
}

1114
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1115
{
1116
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1117 1118 1119
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1120
	int ret;
1121

1122
	WARN_ON(engine->id != RCS);
1123

1124
	/* update this when WA for higher Gen are added */
1125
	if (INTEL_GEN(engine->i915) > 9) {
1126
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1127
			  INTEL_GEN(engine->i915));
1128
		return 0;
1129
	}
1130

1131
	/* some WA perform writes to scratch page, ensure it is valid */
1132
	if (!engine->scratch) {
1133
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1134 1135 1136
		return -EINVAL;
	}

1137
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1138 1139 1140 1141 1142
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1143
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1144 1145 1146
	batch = kmap_atomic(page);
	offset = 0;

1147
	if (IS_GEN8(engine->i915)) {
1148
		ret = gen8_init_indirectctx_bb(engine,
1149 1150 1151 1152 1153 1154
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1155
		ret = gen8_init_perctx_bb(engine,
1156 1157 1158 1159 1160
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1161
	} else if (IS_GEN9(engine->i915)) {
1162
		ret = gen9_init_indirectctx_bb(engine,
1163 1164 1165 1166 1167 1168
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1169
		ret = gen9_init_perctx_bb(engine,
1170 1171 1172 1173 1174
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1175 1176 1177 1178 1179
	}

out:
	kunmap_atomic(batch);
	if (ret)
1180
		lrc_destroy_wa_ctx_obj(engine);
1181 1182 1183 1184

	return ret;
}

1185 1186
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1187
	struct drm_i915_private *dev_priv = engine->i915;
1188 1189

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1190
		   engine->status_page.ggtt_offset);
1191 1192 1193
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1194
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1195
{
1196
	struct drm_i915_private *dev_priv = engine->i915;
1197 1198 1199 1200 1201
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1202

1203
	lrc_init_hws(engine);
1204

1205
	intel_engine_reset_breadcrumbs(engine);
1206

1207
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1208

1209
	I915_WRITE(RING_MODE_GEN7(engine),
1210 1211
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1212

1213
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1214

1215
	intel_engine_init_hangcheck(engine);
1216

1217 1218 1219 1220
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1221
		execlists_submit_ports(engine);
1222
	}
1223 1224

	return 0;
1225 1226
}

1227
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1228
{
1229
	struct drm_i915_private *dev_priv = engine->i915;
1230 1231
	int ret;

1232
	ret = gen8_init_common_ring(engine);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1246
	return init_workarounds_ring(engine);
1247 1248
}

1249
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1250 1251 1252
{
	int ret;

1253
	ret = gen8_init_common_ring(engine);
1254 1255 1256
	if (ret)
		return ret;

1257
	return init_workarounds_ring(engine);
1258 1259
}

1260 1261 1262 1263 1264 1265 1266
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1277
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1278 1279
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1280
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1298 1299 1300

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1301 1302
}

1303 1304 1305
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1306
	struct intel_ring *ring = req->ring;
1307
	struct intel_engine_cs *engine = req->engine;
1308 1309 1310
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1311
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1312 1313 1314
	if (ret)
		return ret;

1315
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1316 1317 1318
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1319 1320 1321 1322
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1323 1324
	}

1325 1326
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1327 1328 1329 1330

	return 0;
}

1331
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1332 1333
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1334
{
1335
	struct intel_ring *ring = req->ring;
1336
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1337 1338
	int ret;

1339 1340 1341 1342
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1343 1344
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1345
	if (req->ctx->ppgtt &&
1346
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1347
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1348
		    !intel_vgpu_active(req->i915)) {
1349 1350 1351 1352
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1353

1354
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1355 1356
	}

1357
	ret = intel_ring_begin(req, 4);
1358 1359 1360 1361
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1362 1363 1364 1365 1366 1367 1368 1369
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1370 1371 1372 1373

	return 0;
}

1374
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1375
{
1376
	struct drm_i915_private *dev_priv = engine->i915;
1377 1378 1379
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1380 1381
}

1382
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1383
{
1384
	struct drm_i915_private *dev_priv = engine->i915;
1385
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1386 1387
}

1388
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1389
{
1390 1391
	struct intel_ring *ring = request->ring;
	u32 cmd;
1392 1393
	int ret;

1394
	ret = intel_ring_begin(request, 4);
1395 1396 1397 1398 1399
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1400 1401 1402 1403 1404 1405 1406
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1407
	if (mode & EMIT_INVALIDATE) {
1408
		cmd |= MI_INVALIDATE_TLB;
1409
		if (request->engine->id == VCS)
1410
			cmd |= MI_INVALIDATE_BSD;
1411 1412
	}

1413 1414 1415 1416 1417 1418 1419
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1420 1421 1422 1423

	return 0;
}

1424
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1425
				  u32 mode)
1426
{
1427
	struct intel_ring *ring = request->ring;
1428
	struct intel_engine_cs *engine = request->engine;
1429 1430
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1431
	bool vf_flush_wa = false, dc_flush_wa = false;
1432 1433
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1434
	int len;
1435 1436 1437

	flags |= PIPE_CONTROL_CS_STALL;

1438
	if (mode & EMIT_FLUSH) {
1439 1440
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1441
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1442
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1443 1444
	}

1445
	if (mode & EMIT_INVALIDATE) {
1446 1447 1448 1449 1450 1451 1452 1453 1454
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1455 1456 1457 1458
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1459
		if (IS_GEN9(request->i915))
1460
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1461 1462 1463 1464

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1465
	}
1466

M
Mika Kuoppala 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1476 1477 1478
	if (ret)
		return ret;

1479
	if (vf_flush_wa) {
1480 1481 1482 1483 1484 1485
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1486 1487
	}

M
Mika Kuoppala 已提交
1488
	if (dc_flush_wa) {
1489 1490 1491 1492 1493 1494
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1495 1496
	}

1497 1498 1499 1500 1501 1502
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1503 1504

	if (dc_flush_wa) {
1505 1506 1507 1508 1509 1510
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1511 1512
	}

1513
	intel_ring_advance(ring);
1514 1515 1516 1517

	return 0;
}

1518
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1530
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1531 1532
}

1533 1534 1535 1536 1537
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1538
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1539
{
C
Chris Wilson 已提交
1540 1541 1542 1543
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1544

C
Chris Wilson 已提交
1545 1546 1547
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1548 1549
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1550

C
Chris Wilson 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1560
}
1561

1562 1563
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1564 1565
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1566
{
1567 1568 1569
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1570 1571 1572 1573
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1574 1575 1576 1577 1578 1579 1580
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1581
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1582 1583 1584 1585 1586 1587
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1588 1589
}

1590 1591
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1592
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1593 1594 1595
{
	int ret;

1596
	ret = intel_logical_ring_workarounds_emit(req);
1597 1598 1599
	if (ret)
		return ret;

1600 1601 1602 1603 1604 1605 1606 1607
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1608
	return i915_gem_render_state_emit(req);
1609 1610
}

1611 1612
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1613
 * @engine: Engine Command Streamer.
1614
 */
1615
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1616
{
1617
	struct drm_i915_private *dev_priv;
1618

1619 1620 1621 1622 1623 1624 1625
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1626
	dev_priv = engine->i915;
1627

1628 1629
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1630
	}
1631

1632 1633
	if (engine->cleanup)
		engine->cleanup(engine);
1634

1635
	intel_engine_cleanup_common(engine);
1636

1637 1638 1639
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1640
	}
1641
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1642

1643
	lrc_destroy_wa_ctx_obj(engine);
1644
	engine->i915 = NULL;
1645 1646
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1647 1648
}

1649 1650 1651
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1652
	enum intel_engine_id id;
1653

1654
	for_each_engine(engine, dev_priv, id)
1655
		engine->submit_request = execlists_submit_request;
1656 1657
}

1658
static void
1659
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1660 1661
{
	/* Default vfuncs which can be overriden by each engine. */
1662
	engine->init_hw = gen8_init_common_ring;
1663
	engine->reset_hw = reset_common_ring;
1664
	engine->emit_flush = gen8_emit_flush;
1665
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1666
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1667
	engine->submit_request = execlists_submit_request;
1668

1669 1670
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1671
	engine->emit_bb_start = gen8_emit_bb_start;
1672
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1673
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1674 1675
}

1676
static inline void
1677
logical_ring_default_irqs(struct intel_engine_cs *engine)
1678
{
1679
	unsigned shift = engine->irq_shift;
1680 1681
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1682 1683
}

1684
static int
1685
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1686
{
1687
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1688
	void *hws;
1689 1690

	/* The HWSP is part of the default context object in LRC mode. */
1691
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1692 1693
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1694 1695

	engine->status_page.page_addr = hws + hws_offset;
1696
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1697
	engine->status_page.vma = vma;
1698 1699

	return 0;
1700 1701
}

1702 1703 1704 1705 1706 1707
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1708 1709
	intel_engine_setup_common(engine);

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1735 1736 1737 1738 1739 1740
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1741
	ret = intel_engine_init_common(engine);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1771
int logical_render_ring_init(struct intel_engine_cs *engine)
1772 1773 1774 1775
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1776 1777
	logical_ring_setup(engine);

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1788
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1789
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1790

1791
	ret = intel_engine_create_scratch(engine, 4096);
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1814
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1815 1816 1817 1818
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1819 1820
}

1821
static u32
1822
make_rpcs(struct drm_i915_private *dev_priv)
1823 1824 1825 1826 1827 1828 1829
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1830
	if (INTEL_GEN(dev_priv) < 9)
1831 1832 1833 1834 1835 1836 1837 1838
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1839
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1840
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1841
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1842 1843 1844 1845
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1846
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1847
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1848
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1849 1850 1851 1852
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1853 1854
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1855
			GEN8_RPCS_EU_MIN_SHIFT;
1856
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1857 1858 1859 1860 1861 1862 1863
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1864
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1865 1866 1867
{
	u32 indirect_ctx_offset;

1868
	switch (INTEL_GEN(engine->i915)) {
1869
	default:
1870
		MISSING_CASE(INTEL_GEN(engine->i915));
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1885 1886 1887 1888
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1889
{
1890 1891
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1892 1893 1894 1895 1896 1897

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1898
	reg_state[CTX_LRI_HEADER_0] =
1899 1900 1901
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1902 1903
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1904
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1905
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1906 1907 1908 1909 1910 1911 1912 1913
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1914
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1915 1916 1917 1918 1919 1920
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1921
		       RING_BB_PPGTT);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1935
		if (engine->wa_ctx.vma) {
1936
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1937
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1938 1939 1940 1941 1942 1943

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1944
				intel_lr_indirect_ctx_offset(engine) << 6;
1945 1946 1947 1948 1949

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1950
	}
1951
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1952 1953
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1954
	/* PDP values well be assigned later if needed */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
1984
		execlists_update_context_pdps(ppgtt, reg_state);
1985 1986
	}

1987
	if (engine->id == RCS) {
1988
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1989
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1990
			       make_rpcs(dev_priv));
1991
	}
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2015
	ctx_obj->mm.dirty = true;
2016 2017 2018 2019 2020 2021

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2022

2023
	i915_gem_object_unpin_map(ctx_obj);
2024 2025 2026 2027

	return 0;
}

2028 2029
/**
 * intel_lr_context_size() - return the size of the context for an engine
2030
 * @engine: which engine to find the context size for
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2042
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2043 2044 2045
{
	int ret = 0;

2046
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2047

2048
	switch (engine->id) {
2049
	case RCS:
2050
		if (INTEL_GEN(engine->i915) >= 9)
2051 2052 2053
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2064 2065
}

2066
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2067
					    struct intel_engine_cs *engine)
2068
{
2069
	struct drm_i915_gem_object *ctx_obj;
2070
	struct intel_context *ce = &ctx->engine[engine->id];
2071
	struct i915_vma *vma;
2072
	uint32_t context_size;
2073
	struct intel_ring *ring;
2074 2075
	int ret;

2076
	WARN_ON(ce->state);
2077

2078
	context_size = round_up(intel_lr_context_size(engine), 4096);
2079

2080 2081 2082
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2083
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2084
	if (IS_ERR(ctx_obj)) {
2085
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2086
		return PTR_ERR(ctx_obj);
2087 2088
	}

2089 2090 2091 2092 2093 2094
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2095
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2096 2097
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2098
		goto error_deref_obj;
2099 2100
	}

2101
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2102 2103
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2104
		goto error_ring_free;
2105 2106
	}

2107
	ce->ring = ring;
2108
	ce->state = vma;
2109
	ce->initialised = engine->init_context == NULL;
2110 2111

	return 0;
2112

2113
error_ring_free:
2114
	intel_ring_free(ring);
2115
error_deref_obj:
2116
	i915_gem_object_put(ctx_obj);
2117
	return ret;
2118
}
2119

2120
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2121
{
2122
	struct intel_engine_cs *engine;
2123
	struct i915_gem_context *ctx;
2124
	enum intel_engine_id id;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2137
		for_each_engine(engine, dev_priv, id) {
2138 2139
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2140

2141 2142
			if (!ce->state)
				continue;
2143

2144 2145 2146 2147
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2148

2149 2150 2151
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2152

C
Chris Wilson 已提交
2153
			ce->state->obj->mm.dirty = true;
2154
			i915_gem_object_unpin_map(ce->state->obj);
2155

2156 2157 2158 2159
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2160 2161
	}
}