intel_lrc.c 69.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233
static int intel_lr_context_pin(struct i915_gem_context *ctx,
234
				struct intel_engine_cs *engine);
235 236 237 238
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
239

240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242
 * @dev_priv: i915 device private
243 244 245
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
246
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 248 249
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
250
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251
{
252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 257
		return 1;

258
	if (INTEL_GEN(dev_priv) >= 9)
259 260
		return 1;

261 262 263
	if (enable_execlists == 0)
		return 0;

264 265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_i915_private *dev_priv = engine->i915;
276

277
	engine->disable_lite_restore_wa =
278
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279
		(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	if (IS_GEN8(dev_priv))
283 284
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285 286 287 288 289 290 291

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 293
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 295
}

296
/**
297 298 299
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
300
 * @engine: Engine the descriptor will be used with
301
 *
302 303 304 305 306
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
307 308 309 310 311 312 313
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
314
 */
315
static void
316
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	struct intel_context *ce = &ctx->engine[engine->id];
320
	u64 desc;
321

322
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323

324 325
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
326
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327
								/* bits 12-31 */
328
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ce->lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340 341
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
342
{
343 344 345 346 347 348
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
349

350
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 352
}

353 354 355 356 357 358 359 360 361
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

362
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363
{
364
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
366
	u32 *reg_state = ce->lrc_reg_state;
367

C
Chris Wilson 已提交
368
	reg_state[CTX_RING_TAIL+1] = rq->tail;
369

370 371 372 373 374 375 376
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
377 378

	return ce->lrc_desc;
379 380
}

381
static void execlists_submit_ports(struct intel_engine_cs *engine)
382
{
383 384
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
385 386 387 388
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

389 390 391 392 393 394 395 396 397 398 399 400
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
401 402 403
	} else {
		desc[1] = 0;
	}
404
	GEM_BUG_ON(desc[0] == desc[1]);
405 406 407 408 409 410 411 412 413 414

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

415
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
416
{
417 418 419
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
420

421 422 423 424 425
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
426

427 428
	if (ctx_single_port_submission(prev))
		return false;
429

430
	return true;
431 432
}

433
static void execlists_dequeue(struct intel_engine_cs *engine)
434
{
435
	struct drm_i915_gem_request *last;
436
	struct execlist_port *port = engine->execlist_port;
437
	unsigned long flags;
438
	struct rb_node *rb;
439 440 441 442 443 444
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
445
		 * as we resubmit the request. See gen8_emit_breadcrumb()
446 447 448 449
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
450

451
	GEM_BUG_ON(port[1].request);
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
472
	 */
473

474
	spin_lock_irqsave(&engine->timeline->lock, flags);
475 476 477 478 479
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

480 481 482
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
483
		 *
484 485 486 487
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
488
		 */
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
510

511 512 513 514 515
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

516 517 518 519 520 521 522 523 524 525
		/* We keep the previous context alive until we retire the
		 * following request. This ensures that any the context object
		 * is still pinned for any residual writes the HW makes into it
		 * on the context switch into the next object following the
		 * breadcrumb. Otherwise, we may retire the context too early.
		 */
		cursor->previous_context = engine->last_context;
		engine->last_context = cursor->ctx;

		__i915_gem_request_submit(cursor);
526 527 528 529 530
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
531
		engine->execlist_first = rb;
532
	}
533
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
534

535 536
	if (submit)
		execlists_submit_ports(engine);
537 538
}

539
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
540
{
541
	return !engine->execlist_port[0].request;
542 543
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

566
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
567
{
568
	int port;
B
Ben Widawsky 已提交
569

570 571 572
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
573

574
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
575 576
}

577
/*
578 579 580
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
581
static void intel_lrc_irq_handler(unsigned long data)
582
{
583
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
584
	struct execlist_port *port = engine->execlist_port;
585
	struct drm_i915_private *dev_priv = engine->i915;
586

587
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
588

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
620

621 622
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
623 624
		}

625 626 627
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
628 629
	}

630 631
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
632

633
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

662
static void execlists_submit_request(struct drm_i915_gem_request *request)
663
{
664
	struct intel_engine_cs *engine = request->engine;
665
	unsigned long flags;
666

667 668
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
669

670 671
	if (insert_request(&request->priotree, &engine->execlist_queue))
		engine->execlist_first = &request->priotree.node;
672 673
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
674

675
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
676 677
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
697
	static DEFINE_MUTEX(lock);
698 699 700 701 702 703 704 705
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

706 707
	/* Need global lock to use the temporary link inside i915_dependency */
	mutex_lock(&lock);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

		p = list_next_entry(dep, dfs_link);
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

774 775
	mutex_unlock(&lock);

776 777 778
	/* XXX Do we need to preempt to make room for us and our deps? */
}

779
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
780
{
781
	struct intel_engine_cs *engine = request->engine;
782
	struct intel_context *ce = &request->ctx->engine[engine->id];
783
	int ret;
784

785 786 787 788
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
789
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
790

791
	if (!ce->state) {
792 793 794 795 796
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

797
	request->ring = ce->ring;
798

799 800 801 802
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;

803 804 805 806 807 808
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
809
		ret = i915_guc_wq_reserve(request);
810
		if (ret)
811
			goto err_unpin;
812 813
	}

814 815
	ret = intel_ring_begin(request, 0);
	if (ret)
816
		goto err_unreserve;
817

818
	if (!ce->initialised) {
819 820
		ret = engine->init_context(request);
		if (ret)
821
			goto err_unreserve;
822

823
		ce->initialised = true;
824 825 826 827 828 829 830 831 832
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

833
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
834 835
	return 0;

836 837 838
err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
839
err_unpin:
840
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
841
	return ret;
842 843
}

844
static int intel_lr_context_pin(struct i915_gem_context *ctx,
845
				struct intel_engine_cs *engine)
846
{
847
	struct intel_context *ce = &ctx->engine[engine->id];
848
	void *vaddr;
849
	int ret;
850

851
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
852

853
	if (ce->pin_count++)
854 855
		return 0;

856 857
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
858
	if (ret)
859
		goto err;
860

861
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
862 863
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
864
		goto unpin_vma;
865 866
	}

867
	ret = intel_ring_pin(ce->ring);
868
	if (ret)
869
		goto unpin_map;
870

871
	intel_lr_context_descriptor_update(ctx, engine);
872

873 874
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
875
		i915_ggtt_offset(ce->ring->vma);
876

C
Chris Wilson 已提交
877
	ce->state->obj->mm.dirty = true;
878

879
	/* Invalidate GuC TLB. */
880 881
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
882
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
883
	}
884

885
	i915_gem_context_get(ctx);
886
	return 0;
887

888
unpin_map:
889 890 891
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
892
err:
893
	ce->pin_count = 0;
894 895 896
	return ret;
}

897
void intel_lr_context_unpin(struct i915_gem_context *ctx,
898
			    struct intel_engine_cs *engine)
899
{
900
	struct intel_context *ce = &ctx->engine[engine->id];
901

902
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
903
	GEM_BUG_ON(ce->pin_count == 0);
904

905
	if (--ce->pin_count)
906
		return;
907

908
	intel_ring_unpin(ce->ring);
909

910 911
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
912

913
	i915_gem_context_put(ctx);
914 915
}

916
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
917 918
{
	int ret, i;
919
	struct intel_ring *ring = req->ring;
920
	struct i915_workarounds *w = &req->i915->workarounds;
921

922
	if (w->count == 0)
923 924
		return 0;

925
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
926 927 928
	if (ret)
		return ret;

929
	ret = intel_ring_begin(req, w->count * 2 + 2);
930 931 932
	if (ret)
		return ret;

933
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
934
	for (i = 0; i < w->count; i++) {
935 936
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
937
	}
938
	intel_ring_emit(ring, MI_NOOP);
939

940
	intel_ring_advance(ring);
941

942
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
943 944 945 946 947 948
	if (ret)
		return ret;

	return 0;
}

949
#define wa_ctx_emit(batch, index, cmd)					\
950
	do {								\
951 952
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
953 954
			return -ENOSPC;					\
		}							\
955
		batch[__index] = (cmd);					\
956 957
	} while (0)

V
Ville Syrjälä 已提交
958
#define wa_ctx_emit_reg(batch, index, reg) \
959
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
977
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
978
						uint32_t *batch,
979 980
						uint32_t index)
{
D
Dave Airlie 已提交
981
	struct drm_i915_private *dev_priv = engine->i915;
982 983
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

984
	/*
985
	 * WaDisableLSQCROPERFforOCL:kbl
986 987 988 989
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
990
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
991 992
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

993
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
994
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
995
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
996
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
997 998 999
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1000
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1011
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1012
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1013
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1014
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1015
	wa_ctx_emit(batch, index, 0);
1016 1017 1018 1019

	return index;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1039 1040 1041 1042 1043 1044
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1045
 *
1046 1047
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1048
 *
1049 1050 1051 1052
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1053
 */
1054
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1055
				    struct i915_wa_ctx_bb *wa_ctx,
1056
				    uint32_t *batch,
1057 1058
				    uint32_t *offset)
{
1059
	uint32_t scratch_addr;
1060 1061
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1062
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1063
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1064

1065
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1066
	if (IS_BROADWELL(engine->i915)) {
1067
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1068 1069 1070
		if (rc < 0)
			return rc;
		index = rc;
1071 1072
	}

1073 1074
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1075
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1086

1087 1088
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1089
		wa_ctx_emit(batch, index, MI_NOOP);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1100 1101 1102
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1103
 *
1104
 *  The number of DWORDS written are returned using this field.
1105 1106 1107 1108
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1109
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1110
			       struct i915_wa_ctx_bb *wa_ctx,
1111
			       uint32_t *batch,
1112 1113 1114 1115
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1116
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1117
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1118

1119
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1120 1121 1122 1123

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1124
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1125
				    struct i915_wa_ctx_bb *wa_ctx,
1126
				    uint32_t *batch,
1127 1128
				    uint32_t *offset)
{
1129
	int ret;
D
Dave Airlie 已提交
1130
	struct drm_i915_private *dev_priv = engine->i915;
1131 1132
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1133 1134
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1135
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1136

1137
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1138
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1139 1140 1141 1142
	if (ret < 0)
		return ret;
	index = ret;

1143 1144 1145 1146 1147 1148 1149
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1150 1151
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1152
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1153
		u32 scratch_addr =
1154
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1191 1192 1193 1194 1195 1196 1197
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1198
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1199
			       struct i915_wa_ctx_bb *wa_ctx,
1200
			       uint32_t *batch,
1201 1202 1203 1204
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1205 1206
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1207
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1208
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1209 1210 1211 1212 1213
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1214
	/* WaClearTdlStateAckDirtyBits:bxt */
1215
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1233 1234
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1235 1236
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1237 1238 1239 1240 1241
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1242
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1243
{
1244 1245 1246
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1247

1248 1249 1250
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1251

1252 1253 1254 1255
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1256 1257
	}

1258 1259 1260 1261 1262
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1263
	return 0;
1264 1265 1266 1267

err:
	i915_gem_object_put(obj);
	return err;
1268 1269
}

1270
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1271
{
1272
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1273 1274
}

1275
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1276
{
1277
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1278 1279 1280
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1281
	int ret;
1282

1283
	WARN_ON(engine->id != RCS);
1284

1285
	/* update this when WA for higher Gen are added */
1286
	if (INTEL_GEN(engine->i915) > 9) {
1287
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1288
			  INTEL_GEN(engine->i915));
1289
		return 0;
1290
	}
1291

1292
	/* some WA perform writes to scratch page, ensure it is valid */
1293
	if (!engine->scratch) {
1294
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1295 1296 1297
		return -EINVAL;
	}

1298
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1299 1300 1301 1302 1303
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1304
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1305 1306 1307
	batch = kmap_atomic(page);
	offset = 0;

1308
	if (IS_GEN8(engine->i915)) {
1309
		ret = gen8_init_indirectctx_bb(engine,
1310 1311 1312 1313 1314 1315
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1316
		ret = gen8_init_perctx_bb(engine,
1317 1318 1319 1320 1321
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1322
	} else if (IS_GEN9(engine->i915)) {
1323
		ret = gen9_init_indirectctx_bb(engine,
1324 1325 1326 1327 1328 1329
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1330
		ret = gen9_init_perctx_bb(engine,
1331 1332 1333 1334 1335
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1336 1337 1338 1339 1340
	}

out:
	kunmap_atomic(batch);
	if (ret)
1341
		lrc_destroy_wa_ctx_obj(engine);
1342 1343 1344 1345

	return ret;
}

1346 1347
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1348
	struct drm_i915_private *dev_priv = engine->i915;
1349 1350

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1351
		   engine->status_page.ggtt_offset);
1352 1353 1354
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1355
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1356
{
1357
	struct drm_i915_private *dev_priv = engine->i915;
1358 1359 1360 1361 1362
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1363

1364
	lrc_init_hws(engine);
1365

1366
	intel_engine_reset_breadcrumbs(engine);
1367

1368
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1369

1370
	I915_WRITE(RING_MODE_GEN7(engine),
1371 1372
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1373

1374
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1375

1376
	intel_engine_init_hangcheck(engine);
1377

1378 1379 1380 1381
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1382
		execlists_submit_ports(engine);
1383
	}
1384 1385

	return 0;
1386 1387
}

1388
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1389
{
1390
	struct drm_i915_private *dev_priv = engine->i915;
1391 1392
	int ret;

1393
	ret = gen8_init_common_ring(engine);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1407
	return init_workarounds_ring(engine);
1408 1409
}

1410
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1411 1412 1413
{
	int ret;

1414
	ret = gen8_init_common_ring(engine);
1415 1416 1417
	if (ret)
		return ret;

1418
	return init_workarounds_ring(engine);
1419 1420
}

1421 1422 1423 1424 1425 1426 1427
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1438
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1439 1440
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1441
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1459 1460 1461

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1462 1463
}

1464 1465 1466
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1467
	struct intel_ring *ring = req->ring;
1468
	struct intel_engine_cs *engine = req->engine;
1469 1470 1471
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1472
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1473 1474 1475
	if (ret)
		return ret;

1476
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1477 1478 1479
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1480 1481 1482 1483
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1484 1485
	}

1486 1487
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1488 1489 1490 1491

	return 0;
}

1492
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1493 1494
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1495
{
1496
	struct intel_ring *ring = req->ring;
1497
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1498 1499
	int ret;

1500 1501 1502 1503
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1504 1505
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1506
	if (req->ctx->ppgtt &&
1507
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1508
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1509
		    !intel_vgpu_active(req->i915)) {
1510 1511 1512 1513
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1514

1515
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1516 1517
	}

1518
	ret = intel_ring_begin(req, 4);
1519 1520 1521 1522
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1523 1524 1525 1526 1527 1528 1529 1530
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1531 1532 1533 1534

	return 0;
}

1535
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1536
{
1537
	struct drm_i915_private *dev_priv = engine->i915;
1538 1539 1540
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1541 1542
}

1543
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1544
{
1545
	struct drm_i915_private *dev_priv = engine->i915;
1546
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1547 1548
}

1549
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1550
{
1551 1552
	struct intel_ring *ring = request->ring;
	u32 cmd;
1553 1554
	int ret;

1555
	ret = intel_ring_begin(request, 4);
1556 1557 1558 1559 1560
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1561 1562 1563 1564 1565 1566 1567
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1568
	if (mode & EMIT_INVALIDATE) {
1569
		cmd |= MI_INVALIDATE_TLB;
1570
		if (request->engine->id == VCS)
1571
			cmd |= MI_INVALIDATE_BSD;
1572 1573
	}

1574 1575 1576 1577 1578 1579 1580
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1581 1582 1583 1584

	return 0;
}

1585
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1586
				  u32 mode)
1587
{
1588
	struct intel_ring *ring = request->ring;
1589
	struct intel_engine_cs *engine = request->engine;
1590 1591
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1592
	bool vf_flush_wa = false, dc_flush_wa = false;
1593 1594
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1595
	int len;
1596 1597 1598

	flags |= PIPE_CONTROL_CS_STALL;

1599
	if (mode & EMIT_FLUSH) {
1600 1601
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1602
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1603
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1604 1605
	}

1606
	if (mode & EMIT_INVALIDATE) {
1607 1608 1609 1610 1611 1612 1613 1614 1615
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1616 1617 1618 1619
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1620
		if (IS_GEN9(request->i915))
1621
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1622 1623 1624 1625

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1626
	}
1627

M
Mika Kuoppala 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1637 1638 1639
	if (ret)
		return ret;

1640
	if (vf_flush_wa) {
1641 1642 1643 1644 1645 1646
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1647 1648
	}

M
Mika Kuoppala 已提交
1649
	if (dc_flush_wa) {
1650 1651 1652 1653 1654 1655
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1656 1657
	}

1658 1659 1660 1661 1662 1663
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1664 1665

	if (dc_flush_wa) {
1666 1667 1668 1669 1670 1671
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1672 1673
	}

1674
	intel_ring_advance(ring);
1675 1676 1677 1678

	return 0;
}

1679
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1691
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1692 1693
}

1694 1695 1696 1697 1698
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1699
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1700
{
C
Chris Wilson 已提交
1701 1702 1703 1704
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1705

C
Chris Wilson 已提交
1706 1707 1708
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1709 1710
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1711

C
Chris Wilson 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1721
}
1722

1723 1724
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1725 1726
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1727
{
1728 1729 1730
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1731 1732 1733 1734
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1735 1736 1737 1738 1739 1740 1741
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1742
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1743 1744 1745 1746 1747 1748
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1749 1750
}

1751 1752
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1753
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1754 1755 1756
{
	int ret;

1757
	ret = intel_logical_ring_workarounds_emit(req);
1758 1759 1760
	if (ret)
		return ret;

1761 1762 1763 1764 1765 1766 1767 1768
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1769
	return i915_gem_render_state_emit(req);
1770 1771
}

1772 1773
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1774
 * @engine: Engine Command Streamer.
1775
 */
1776
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1777
{
1778
	struct drm_i915_private *dev_priv;
1779

1780 1781 1782 1783 1784 1785 1786
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1787
	dev_priv = engine->i915;
1788

1789 1790
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1791
	}
1792

1793 1794
	if (engine->cleanup)
		engine->cleanup(engine);
1795

1796
	intel_engine_cleanup_common(engine);
1797

1798 1799 1800
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1801
	}
1802
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1803

1804
	lrc_destroy_wa_ctx_obj(engine);
1805
	engine->i915 = NULL;
1806 1807
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1808 1809
}

1810 1811 1812
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1813
	enum intel_engine_id id;
1814

1815
	for_each_engine(engine, dev_priv, id) {
1816
		engine->submit_request = execlists_submit_request;
1817 1818
		engine->schedule = execlists_schedule;
	}
1819 1820
}

1821
static void
1822
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1823 1824
{
	/* Default vfuncs which can be overriden by each engine. */
1825
	engine->init_hw = gen8_init_common_ring;
1826
	engine->reset_hw = reset_common_ring;
1827
	engine->emit_flush = gen8_emit_flush;
1828
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1829
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1830
	engine->submit_request = execlists_submit_request;
1831
	engine->schedule = execlists_schedule;
1832

1833 1834
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1835
	engine->emit_bb_start = gen8_emit_bb_start;
1836
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1837
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1838 1839
}

1840
static inline void
1841
logical_ring_default_irqs(struct intel_engine_cs *engine)
1842
{
1843
	unsigned shift = engine->irq_shift;
1844 1845
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1846 1847
}

1848
static int
1849
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1850
{
1851
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1852
	void *hws;
1853 1854

	/* The HWSP is part of the default context object in LRC mode. */
1855
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1856 1857
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1858 1859

	engine->status_page.page_addr = hws + hws_offset;
1860
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1861
	engine->status_page.vma = vma;
1862 1863

	return 0;
1864 1865
}

1866 1867 1868 1869 1870 1871
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1872 1873
	intel_engine_setup_common(engine);

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1899 1900 1901 1902 1903 1904
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1905
	ret = intel_engine_init_common(engine);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1935
int logical_render_ring_init(struct intel_engine_cs *engine)
1936 1937 1938 1939
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1940 1941
	logical_ring_setup(engine);

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1952
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1953
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1954

1955
	ret = intel_engine_create_scratch(engine, 4096);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1978
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1979 1980 1981 1982
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1983 1984
}

1985
static u32
1986
make_rpcs(struct drm_i915_private *dev_priv)
1987 1988 1989 1990 1991 1992 1993
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1994
	if (INTEL_GEN(dev_priv) < 9)
1995 1996 1997 1998 1999 2000 2001 2002
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2003
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2004
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2005
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2006 2007 2008 2009
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2010
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2011
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2012
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2013 2014 2015 2016
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2017 2018
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2019
			GEN8_RPCS_EU_MIN_SHIFT;
2020
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2021 2022 2023 2024 2025 2026 2027
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2028
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2029 2030 2031
{
	u32 indirect_ctx_offset;

2032
	switch (INTEL_GEN(engine->i915)) {
2033
	default:
2034
		MISSING_CASE(INTEL_GEN(engine->i915));
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2049 2050 2051 2052
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2053
{
2054 2055
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2056 2057 2058 2059 2060 2061

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2062
	reg_state[CTX_LRI_HEADER_0] =
2063 2064 2065
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2066 2067
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2068
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2069
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2070 2071 2072 2073 2074 2075 2076 2077
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2078
		       RING_CTL_SIZE(ring->size) | RING_VALID);
2079 2080 2081 2082 2083 2084
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2085
		       RING_BB_PPGTT);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2099
		if (engine->wa_ctx.vma) {
2100
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2101
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2102 2103 2104 2105 2106 2107

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2108
				intel_lr_indirect_ctx_offset(engine) << 6;
2109 2110 2111 2112 2113

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2114
	}
2115
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2116 2117
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2118
	/* PDP values well be assigned later if needed */
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2148
		execlists_update_context_pdps(ppgtt, reg_state);
2149 2150
	}

2151
	if (engine->id == RCS) {
2152
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2153
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2154
			       make_rpcs(dev_priv));
2155
	}
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2179
	ctx_obj->mm.dirty = true;
2180 2181 2182 2183 2184 2185

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2186

2187
	i915_gem_object_unpin_map(ctx_obj);
2188 2189 2190 2191

	return 0;
}

2192 2193
/**
 * intel_lr_context_size() - return the size of the context for an engine
2194
 * @engine: which engine to find the context size for
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2206
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2207 2208 2209
{
	int ret = 0;

2210
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2211

2212
	switch (engine->id) {
2213
	case RCS:
2214
		if (INTEL_GEN(engine->i915) >= 9)
2215 2216 2217
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2228 2229
}

2230
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2231
					    struct intel_engine_cs *engine)
2232
{
2233
	struct drm_i915_gem_object *ctx_obj;
2234
	struct intel_context *ce = &ctx->engine[engine->id];
2235
	struct i915_vma *vma;
2236
	uint32_t context_size;
2237
	struct intel_ring *ring;
2238 2239
	int ret;

2240
	WARN_ON(ce->state);
2241

2242
	context_size = round_up(intel_lr_context_size(engine), 4096);
2243

2244 2245 2246
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2247
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2248
	if (IS_ERR(ctx_obj)) {
2249
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2250
		return PTR_ERR(ctx_obj);
2251 2252
	}

2253 2254 2255 2256 2257 2258
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2259
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2260 2261
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2262
		goto error_deref_obj;
2263 2264
	}

2265
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2266 2267
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2268
		goto error_ring_free;
2269 2270
	}

2271
	ce->ring = ring;
2272
	ce->state = vma;
2273
	ce->initialised = engine->init_context == NULL;
2274 2275

	return 0;
2276

2277
error_ring_free:
2278
	intel_ring_free(ring);
2279
error_deref_obj:
2280
	i915_gem_object_put(ctx_obj);
2281
	return ret;
2282
}
2283

2284
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2285
{
2286
	struct intel_engine_cs *engine;
2287
	struct i915_gem_context *ctx;
2288
	enum intel_engine_id id;
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2301
		for_each_engine(engine, dev_priv, id) {
2302 2303
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2304

2305 2306
			if (!ce->state)
				continue;
2307

2308 2309 2310 2311
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2312

2313 2314 2315
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2316

C
Chris Wilson 已提交
2317
			ce->state->obj->mm.dirty = true;
2318
			i915_gem_object_unpin_map(ce->state->obj);
2319

2320 2321 2322 2323
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2324 2325
	}
}