intel_lrc.c 81.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227 228
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
229

230 231
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
232 233
static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
					   struct drm_i915_gem_object *default_ctx_obj);
234

235

236 237 238 239 240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
242
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
243 244 245
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
246 247
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
248 249
	WARN_ON(i915.enable_ppgtt == -1);

250 251 252 253 254 255
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

256 257 258
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
264 265 266 267
		return 1;

	return 0;
}
268

269
static void
270
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271
{
272
	struct drm_device *dev = engine->dev;
273

274
	if (IS_GEN8(dev) || IS_GEN9(dev))
275
		engine->idle_lite_restore_wa = ~0;
276

277
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279
					(engine->id == VCS || engine->id == VCS2);
280

281 282
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283 284
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
285 286
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 288 289 290 291 292 293

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 295
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 297
}

298
/**
299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
301
 *
302 303
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
304
 *
305 306 307 308 309 310 311 312 313 314
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
315
 */
316 317
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
318
				   struct intel_engine_cs *engine)
319
{
320
	uint64_t lrca, desc;
321

322
	lrca = ctx->engine[engine->id].lrc_vma->node.start +
323
	       LRC_PPHWSP_PN * PAGE_SIZE;
324

325
	desc = engine->ctx_desc_template;			   /* bits  0-11 */
326 327
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
328

329
	ctx->engine[engine->id].lrc_desc = desc;
330 331
}

332
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
333
				     struct intel_engine_cs *engine)
334
{
335
	return ctx->engine[engine->id].lrc_desc;
336
}
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
355
			   struct intel_engine_cs *engine)
356
{
357
	return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
358 359
}

360 361
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
362
{
363

364
	struct intel_engine_cs *engine = rq0->engine;
365
	struct drm_device *dev = engine->dev;
366
	struct drm_i915_private *dev_priv = dev->dev_private;
367
	uint64_t desc[2];
368

369
	if (rq1) {
370
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
371 372 373 374
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
375

376
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
377
	rq0->elsp_submitted++;
378

379
	/* You must always write both descriptors in the order below. */
380 381
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
382

383
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
384
	/* The context is automatically loaded after the following */
385
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
386

387
	/* ELSP is a wo register, use another nearby reg for posting */
388
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
389 390
}

391 392 393 394 395 396 397 398 399 400
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
401
{
402
	struct intel_engine_cs *engine = rq->engine;
403
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
404
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
405

406
	reg_state[CTX_RING_TAIL+1] = rq->tail;
407

408 409 410 411 412 413 414
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
415 416
}

417 418
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
419
{
420 421
	struct drm_i915_private *dev_priv = rq0->i915;

422
	execlists_update_context(rq0);
423

424
	if (rq1)
425
		execlists_update_context(rq1);
426

427
	spin_lock_irq(&dev_priv->uncore.lock);
428 429
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);

430
	execlists_elsp_write(rq0, rq1);
431 432

	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
433
	spin_unlock_irq(&dev_priv->uncore.lock);
434 435
}

436
static void execlists_context_unqueue(struct intel_engine_cs *engine)
437
{
438
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
439
	struct drm_i915_gem_request *cursor, *tmp;
440

441
	assert_spin_locked(&engine->execlist_lock);
442

443 444 445 446
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
447
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
448

449
	/* Try to read in pairs */
450
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
451 452 453
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
454
		} else if (req0->ctx == cursor->ctx) {
455 456
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
457
			cursor->elsp_submitted = req0->elsp_submitted;
458
			list_move_tail(&req0->execlist_link,
459
				       &engine->execlist_retired_req_list);
460 461 462
			req0 = cursor;
		} else {
			req1 = cursor;
463
			WARN_ON(req1->elsp_submitted);
464 465 466 467
			break;
		}
	}

468 469 470
	if (unlikely(!req0))
		return;

471
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
472
		/*
473 474 475 476 477 478
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
479
		 */
480
		struct intel_ringbuffer *ringbuf;
481

482
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
483 484
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
485 486
	}

487
	execlists_submit_requests(req0, req1);
488 489
}

490
static unsigned int
491
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
492
{
493
	struct drm_i915_gem_request *head_req;
494

495
	assert_spin_locked(&engine->execlist_lock);
496

497
	head_req = list_first_entry_or_null(&engine->execlist_queue,
498
					    struct drm_i915_gem_request,
499 500
					    execlist_link);

501 502
	if (!head_req)
		return 0;
503

504
	if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
505 506 507 508 509 510 511 512
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
513
		       &engine->execlist_retired_req_list);
514

515
	return 1;
516 517
}

518
static u32
519
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
520
		   u32 *context_id)
B
Ben Widawsky 已提交
521
{
522
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
523
	u32 status;
B
Ben Widawsky 已提交
524

525 526
	read_pointer %= GEN8_CSB_ENTRIES;

527
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
528 529 530

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
531

532
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
533 534 535
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
536 537
}

538
/**
539
 * intel_lrc_irq_handler() - handle Context Switch interrupts
540
 * @engine: Engine Command Streamer to handle.
541 542 543 544
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
545
static void intel_lrc_irq_handler(unsigned long data)
546
{
547
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
548
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
549
	u32 status_pointer;
550
	unsigned int read_pointer, write_pointer;
551 552
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
553 554
	unsigned int submit_contexts = 0;

555
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
556

557
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
558

559
	read_pointer = engine->next_context_status_buffer;
560
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
561
	if (read_pointer > write_pointer)
562
		write_pointer += GEN8_CSB_ENTRIES;
563 564

	while (read_pointer < write_pointer) {
565 566 567 568 569 570
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
571

572 573 574 575 576 577 578 579
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

580
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
581 582 583 584 585 586 587

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
588 589 590 591 592
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

593
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
594 595
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
596
				execlists_check_remove_request(engine, csb[i][1]);
597 598
	}

599
	if (submit_contexts) {
600
		if (!engine->disable_lite_restore_wa ||
601 602
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
603
	}
604

605
	spin_unlock(&engine->execlist_lock);
606 607 608

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
609 610
}

611
static void execlists_context_queue(struct drm_i915_gem_request *request)
612
{
613
	struct intel_engine_cs *engine = request->engine;
614
	struct drm_i915_gem_request *cursor;
615
	int num_elements = 0;
616

617
	if (request->ctx != request->i915->kernel_context)
618
		intel_lr_context_pin(request->ctx, engine);
619

620 621
	i915_gem_request_reference(request);

622
	spin_lock_bh(&engine->execlist_lock);
623

624
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
625 626 627 628
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
629
		struct drm_i915_gem_request *tail_req;
630

631
		tail_req = list_last_entry(&engine->execlist_queue,
632
					   struct drm_i915_gem_request,
633 634
					   execlist_link);

635
		if (request->ctx == tail_req->ctx) {
636
			WARN(tail_req->elsp_submitted != 0,
637
				"More than 2 already-submitted reqs queued\n");
638
			list_move_tail(&tail_req->execlist_link,
639
				       &engine->execlist_retired_req_list);
640 641 642
		}
	}

643
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
644
	if (num_elements == 0)
645
		execlists_context_unqueue(engine);
646

647
	spin_unlock_bh(&engine->execlist_lock);
648 649
}

650
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
651
{
652
	struct intel_engine_cs *engine = req->engine;
653 654 655 656
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
657
	if (engine->gpu_caches_dirty)
658 659
		flush_domains = I915_GEM_GPU_DOMAINS;

660
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
661 662 663
	if (ret)
		return ret;

664
	engine->gpu_caches_dirty = false;
665 666 667
	return 0;
}

668
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
669 670
				 struct list_head *vmas)
{
671
	const unsigned other_rings = ~intel_engine_flag(req->engine);
672 673 674 675 676 677 678 679
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

680
		if (obj->active & other_rings) {
681
			ret = i915_gem_object_sync(obj, req->engine, &req);
682 683 684
			if (ret)
				return ret;
		}
685 686 687 688 689 690 691 692 693 694 695 696 697

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
698
	return logical_ring_invalidate_all_caches(req);
699 700
}

701
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
702
{
D
Dave Gordon 已提交
703
	int ret = 0;
704

705
	request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
706

707 708 709 710 711 712 713 714 715 716 717 718 719
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
720
	if (request->ctx != request->i915->kernel_context)
721
		ret = intel_lr_context_pin(request->ctx, request->engine);
D
Dave Gordon 已提交
722 723

	return ret;
724 725
}

726
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
727
				       int bytes)
728
{
729
	struct intel_ringbuffer *ringbuf = req->ringbuf;
730
	struct intel_engine_cs *engine = req->engine;
731
	struct drm_i915_gem_request *target;
732 733
	unsigned space;
	int ret;
734 735 736 737

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

738 739 740
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

741
	list_for_each_entry(target, &engine->request_list, list) {
742 743 744 745 746
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
747
		if (target->ringbuf != ringbuf)
748 749 750
			continue;

		/* Would completion of this request free enough space? */
751
		space = __intel_ring_space(target->postfix, ringbuf->tail,
752 753
					   ringbuf->size);
		if (space >= bytes)
754 755 756
			break;
	}

757
	if (WARN_ON(&target->list == &engine->request_list))
758 759
		return -ENOSPC;

760
	ret = i915_wait_request(target);
761 762 763
	if (ret)
		return ret;

764 765
	ringbuf->space = space;
	return 0;
766 767 768 769
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
770
 * @request: Request to advance the logical ringbuffer of.
771 772 773 774 775 776
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
777
static int
778
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
779
{
780
	struct intel_ringbuffer *ringbuf = request->ringbuf;
781
	struct drm_i915_private *dev_priv = request->i915;
782
	struct intel_engine_cs *engine = request->engine;
783

784 785
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
786

787 788 789 790 791 792 793 794 795
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
796

797
	if (intel_engine_stopped(engine))
798
		return 0;
799

800 801 802 803 804 805 806 807 808 809 810
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
		if (request->ctx != request->i915->kernel_context) {
			intel_lr_context_pin(request->ctx, engine);
			engine->last_context = request->ctx;
		} else {
			engine->last_context = NULL;
		}
	}

811 812 813 814
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
815 816

	return 0;
817 818
}

819
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
820 821 822 823 824 825 826 827 828 829 830 831 832
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

833
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
834
{
835
	struct intel_ringbuffer *ringbuf = req->ringbuf;
836 837 838 839
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
840

841 842 843 844
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
845

846 847 848 849 850 851 852 853 854 855 856
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
857 858 859
			 * falls off the end. So don't need an immediate wrap
			 * and only need to effectively wait for the reserved
			 * size space from the start of ringbuffer.
860 861 862 863 864
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
865
		}
866 867
	}

868 869
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
870 871
		if (unlikely(ret))
			return ret;
872 873 874

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
875 876 877 878 879 880 881 882
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
883
 * @req: The request to start some new work for
884 885 886 887 888 889 890 891 892
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
893
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
894
{
895
	struct drm_i915_private *dev_priv;
896 897
	int ret;

898
	WARN_ON(req == NULL);
899
	dev_priv = req->i915;
900

901 902 903 904 905
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

906
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
907 908 909
	if (ret)
		return ret;

910
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
911 912 913
	return 0;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

929 930 931 932 933 934 935 936 937 938
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
939
 * @dispatch_flags: translated execbuffer call flags.
940 941 942 943 944 945
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
946
int intel_execlists_submission(struct i915_execbuffer_params *params,
947
			       struct drm_i915_gem_execbuffer2 *args,
948
			       struct list_head *vmas)
949
{
950
	struct drm_device       *dev = params->dev;
951
	struct intel_engine_cs *engine = params->engine;
952
	struct drm_i915_private *dev_priv = dev->dev_private;
953
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
954
	u64 exec_start;
955 956 957 958 959 960 961 962 963 964
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
965
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

990
	ret = execlists_move_to_gpu(params->request, vmas);
991 992 993
	if (ret)
		return ret;

994
	if (engine == &dev_priv->engine[RCS] &&
995
	    instp_mode != dev_priv->relative_constants_mode) {
996
		ret = intel_logical_ring_begin(params->request, 4);
997 998 999 1000 1001
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1002
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
1003 1004 1005 1006 1007 1008
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

1009 1010 1011
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

1012
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1013 1014 1015
	if (ret)
		return ret;

1016
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1017

1018
	i915_gem_execbuffer_move_to_active(vmas, params->request);
1019
	i915_gem_execbuffer_retire_commands(params);
1020

1021 1022 1023
	return 0;
}

1024
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1025
{
1026
	struct drm_i915_gem_request *req, *tmp;
1027 1028
	struct list_head retired_list;

1029 1030
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
1031 1032 1033
		return;

	INIT_LIST_HEAD(&retired_list);
1034
	spin_lock_bh(&engine->execlist_lock);
1035
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1036
	spin_unlock_bh(&engine->execlist_lock);
1037 1038

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1039 1040
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
1041
				ctx->engine[engine->id].state;
1042

1043
		if (ctx_obj && (ctx != req->i915->kernel_context))
1044
			intel_lr_context_unpin(ctx, engine);
1045

1046
		list_del(&req->execlist_link);
1047
		i915_gem_request_unreference(req);
1048 1049 1050
	}
}

1051
void intel_logical_ring_stop(struct intel_engine_cs *engine)
1052
{
1053
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1054 1055
	int ret;

1056
	if (!intel_engine_initialized(engine))
1057 1058
		return;

1059
	ret = intel_engine_idle(engine);
1060
	if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1061
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1062
			  engine->name, ret);
1063 1064

	/* TODO: Is this correct with Execlists enabled? */
1065 1066 1067
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1068 1069
		return;
	}
1070
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1071 1072
}

1073
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1074
{
1075
	struct intel_engine_cs *engine = req->engine;
1076 1077
	int ret;

1078
	if (!engine->gpu_caches_dirty)
1079 1080
		return 0;

1081
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1082 1083 1084
	if (ret)
		return ret;

1085
	engine->gpu_caches_dirty = false;
1086 1087 1088
	return 0;
}

1089
static int intel_lr_context_do_pin(struct intel_context *ctx,
1090
				   struct intel_engine_cs *engine)
1091
{
1092
	struct drm_device *dev = engine->dev;
1093
	struct drm_i915_private *dev_priv = dev->dev_private;
1094 1095
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1096
	struct page *lrc_state_page;
1097
	uint32_t *lrc_reg_state;
1098
	int ret;
1099

1100
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1101

1102 1103 1104 1105
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1106

1107 1108 1109 1110 1111 1112
	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
	if (WARN_ON(!lrc_state_page)) {
		ret = -ENODEV;
		goto unpin_ctx_obj;
	}

1113
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1114 1115
	if (ret)
		goto unpin_ctx_obj;
1116

1117 1118
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
1119 1120
	lrc_reg_state = kmap(lrc_state_page);
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1121
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1122
	ctx_obj->dirty = true;
1123

1124 1125 1126
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1127

1128 1129 1130 1131
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1132 1133 1134 1135

	return ret;
}

1136 1137
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
1138 1139 1140
{
	int ret = 0;

1141 1142
	if (ctx->engine[engine->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ctx, engine);
1143 1144
		if (ret)
			goto reset_pin_count;
1145 1146

		i915_gem_context_reference(ctx);
1147 1148 1149
	}
	return ret;

1150
reset_pin_count:
1151
	ctx->engine[engine->id].pin_count = 0;
1152 1153 1154
	return ret;
}

1155 1156
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1157
{
1158
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1159

1160
	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1161 1162 1163
	if (--ctx->engine[engine->id].pin_count == 0) {
		kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1164
		i915_gem_object_ggtt_unpin(ctx_obj);
1165 1166 1167
		ctx->engine[engine->id].lrc_vma = NULL;
		ctx->engine[engine->id].lrc_desc = 0;
		ctx->engine[engine->id].lrc_reg_state = NULL;
1168 1169

		i915_gem_context_unreference(ctx);
1170 1171 1172
	}
}

1173
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1174 1175
{
	int ret, i;
1176
	struct intel_engine_cs *engine = req->engine;
1177
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1178
	struct drm_device *dev = engine->dev;
1179 1180 1181
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1182
	if (w->count == 0)
1183 1184
		return 0;

1185
	engine->gpu_caches_dirty = true;
1186
	ret = logical_ring_flush_all_caches(req);
1187 1188 1189
	if (ret)
		return ret;

1190
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1191 1192 1193 1194 1195
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1196
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1197 1198 1199 1200 1201 1202
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1203
	engine->gpu_caches_dirty = true;
1204
	ret = logical_ring_flush_all_caches(req);
1205 1206 1207 1208 1209 1210
	if (ret)
		return ret;

	return 0;
}

1211
#define wa_ctx_emit(batch, index, cmd)					\
1212
	do {								\
1213 1214
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1215 1216
			return -ENOSPC;					\
		}							\
1217
		batch[__index] = (cmd);					\
1218 1219
	} while (0)

V
Ville Syrjälä 已提交
1220
#define wa_ctx_emit_reg(batch, index, reg) \
1221
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1239
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1240 1241 1242 1243 1244
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1245 1246 1247 1248 1249 1250
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1251
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1252 1253
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1254
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1255
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1256
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1257
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1258 1259 1260
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1261
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1272
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1273
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1274
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1275
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1276
	wa_ctx_emit(batch, index, 0);
1277 1278 1279 1280

	return index;
}

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1319
 *
1320 1321 1322 1323 1324 1325 1326 1327
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1328
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1329 1330 1331 1332
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1333
	uint32_t scratch_addr;
1334 1335
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1336
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1337
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1338

1339
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1340 1341
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1342 1343 1344
		if (rc < 0)
			return rc;
		index = rc;
1345 1346
	}

1347 1348
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1349
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1360

1361 1362
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1363
		wa_ctx_emit(batch, index, MI_NOOP);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1381
 * @batch: page in which WA are loaded
1382 1383 1384 1385 1386 1387 1388 1389 1390
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1391
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1392 1393 1394 1395 1396 1397
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1398
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1399
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1400

1401
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1402 1403 1404 1405

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1406
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1407 1408 1409 1410
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1411
	int ret;
1412
	struct drm_device *dev = engine->dev;
1413 1414
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1415
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1416
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1417
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1418
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1419

1420
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1421
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1422 1423 1424 1425
	if (ret < 0)
		return ret;
	index = ret;

1426 1427 1428 1429 1430 1431 1432
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1433
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1434 1435 1436 1437
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1438
	struct drm_device *dev = engine->dev;
1439 1440
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1441
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1442
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1443
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1444
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1445
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1446 1447 1448 1449 1450
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1470
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1471
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1472
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1473 1474
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1475 1476 1477 1478 1479
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1480
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1481 1482 1483
{
	int ret;

1484 1485 1486
	engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
						   PAGE_ALIGN(size));
	if (!engine->wa_ctx.obj) {
1487 1488 1489 1490
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

1491
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1492 1493 1494
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1495
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1496 1497 1498 1499 1500 1501
		return ret;
	}

	return 0;
}

1502
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1503
{
1504 1505 1506 1507
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1508 1509 1510
	}
}

1511
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1512 1513 1514 1515 1516
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1517
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1518

1519
	WARN_ON(engine->id != RCS);
1520

1521
	/* update this when WA for higher Gen are added */
1522
	if (INTEL_INFO(engine->dev)->gen > 9) {
1523
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1524
			  INTEL_INFO(engine->dev)->gen);
1525
		return 0;
1526
	}
1527

1528
	/* some WA perform writes to scratch page, ensure it is valid */
1529 1530
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1531 1532 1533
		return -EINVAL;
	}

1534
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1535 1536 1537 1538 1539
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1540
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1541 1542 1543
	batch = kmap_atomic(page);
	offset = 0;

1544 1545
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1546 1547 1548 1549 1550 1551
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1552
		ret = gen8_init_perctx_bb(engine,
1553 1554 1555 1556 1557
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1558 1559
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1560 1561 1562 1563 1564 1565
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1566
		ret = gen9_init_perctx_bb(engine,
1567 1568 1569 1570 1571
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1572 1573 1574 1575 1576
	}

out:
	kunmap_atomic(batch);
	if (ret)
1577
		lrc_destroy_wa_ctx_obj(engine);
1578 1579 1580 1581

	return ret;
}

1582
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1583
{
1584
	struct drm_device *dev = engine->dev;
1585
	struct drm_i915_private *dev_priv = dev->dev_private;
1586
	unsigned int next_context_status_buffer_hw;
1587

1588 1589
	lrc_setup_hardware_status_page(engine,
				       dev_priv->kernel_context->engine[engine->id].state);
1590

1591 1592 1593
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1594

1595
	I915_WRITE(RING_MODE_GEN7(engine),
1596 1597
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1598
	POSTING_READ(RING_MODE_GEN7(engine));
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1609 1610
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1611
	 */
1612
	next_context_status_buffer_hw =
1613
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1614 1615 1616 1617 1618 1619 1620 1621 1622

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1623 1624
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1625

1626
	intel_engine_init_hangcheck(engine);
1627 1628 1629 1630

	return 0;
}

1631
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1632
{
1633
	struct drm_device *dev = engine->dev;
1634 1635 1636
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1637
	ret = gen8_init_common_ring(engine);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1651
	return init_workarounds_ring(engine);
1652 1653
}

1654
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1655 1656 1657
{
	int ret;

1658
	ret = gen8_init_common_ring(engine);
1659 1660 1661
	if (ret)
		return ret;

1662
	return init_workarounds_ring(engine);
1663 1664
}

1665 1666 1667
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1668
	struct intel_engine_cs *engine = req->engine;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1681 1682
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1683
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1684 1685
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1686 1687 1688 1689 1690 1691 1692 1693 1694
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1695
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1696
			      u64 offset, unsigned dispatch_flags)
1697
{
1698
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1699
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1700 1701
	int ret;

1702 1703 1704 1705
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1706 1707
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1708
	if (req->ctx->ppgtt &&
1709
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1710 1711
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1712 1713 1714 1715
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1716

1717
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1718 1719
	}

1720
	ret = intel_logical_ring_begin(req, 4);
1721 1722 1723 1724
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1725 1726 1727 1728
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1729 1730 1731 1732 1733 1734 1735 1736
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1737
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1738
{
1739
	struct drm_device *dev = engine->dev;
1740 1741 1742
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1743
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1744 1745 1746
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1747 1748 1749 1750
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1751 1752 1753 1754 1755 1756
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1757
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1758
{
1759
	struct drm_device *dev = engine->dev;
1760 1761 1762 1763
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1764 1765 1766
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1767 1768 1769 1770
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1771
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1772 1773 1774
			   u32 invalidate_domains,
			   u32 unused)
{
1775
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1776
	struct intel_engine_cs *engine = ringbuf->engine;
1777
	struct drm_device *dev = engine->dev;
1778 1779 1780 1781
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1782
	ret = intel_logical_ring_begin(request, 4);
1783 1784 1785 1786 1787
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1788 1789 1790 1791 1792 1793 1794 1795 1796
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1797
		if (engine == &dev_priv->engine[VCS])
1798
			cmd |= MI_INVALIDATE_BSD;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1812
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1813 1814 1815
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1816
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1817
	struct intel_engine_cs *engine = ringbuf->engine;
1818
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1819
	bool vf_flush_wa = false;
1820 1821 1822 1823 1824 1825 1826 1827
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1828
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1829
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1842 1843 1844 1845
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1846
		if (IS_GEN9(engine->dev))
1847 1848
			vf_flush_wa = true;
	}
1849

1850
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1851 1852 1853
	if (ret)
		return ret;

1854 1855 1856 1857 1858 1859 1860 1861 1862
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1874
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1875
{
1876
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1877 1878
}

1879
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1880
{
1881
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1882 1883
}

1884
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1896
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1897 1898
}

1899
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1900
{
1901
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1902 1903

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1904
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1905 1906
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1919
static int gen8_emit_request(struct drm_i915_gem_request *request)
1920
{
1921
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1922 1923
	int ret;

1924
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1925 1926 1927
	if (ret)
		return ret;

1928 1929
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1930 1931

	intel_logical_ring_emit(ringbuf,
1932 1933
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1934
				hws_seqno_address(request->engine) |
1935
				MI_FLUSH_DW_USE_GTT);
1936
	intel_logical_ring_emit(ringbuf, 0);
1937
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1938 1939
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1940 1941
	return intel_logical_ring_advance_and_submit(request);
}
1942

1943 1944 1945 1946
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
	if (ret)
		return ret;

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1961
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1962 1963 1964 1965
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	return intel_logical_ring_advance_and_submit(request);
1966 1967
}

1968
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1969 1970 1971 1972
{
	struct render_state so;
	int ret;

1973
	ret = i915_gem_render_state_prepare(req->engine, &so);
1974 1975 1976 1977 1978 1979
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1980
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1981
				       I915_DISPATCH_SECURE);
1982 1983 1984
	if (ret)
		goto out;

1985
	ret = req->engine->emit_bb_start(req,
1986 1987 1988 1989 1990
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1991
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1992 1993 1994 1995 1996 1997

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1998
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1999 2000 2001
{
	int ret;

2002
	ret = intel_logical_ring_workarounds_emit(req);
2003 2004 2005
	if (ret)
		return ret;

2006 2007 2008 2009 2010 2011 2012 2013
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2014
	return intel_lr_context_render_state_init(req);
2015 2016
}

2017 2018 2019 2020 2021 2022
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
2023
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2024
{
2025
	struct drm_i915_private *dev_priv;
2026

2027
	if (!intel_engine_initialized(engine))
2028 2029
		return;

2030 2031 2032 2033 2034 2035 2036
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

2037
	dev_priv = engine->dev->dev_private;
2038

2039 2040 2041
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2042
	}
2043

2044 2045
	if (engine->cleanup)
		engine->cleanup(engine);
2046

2047 2048
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2049

2050 2051 2052
	if (engine->status_page.obj) {
		kunmap(sg_page(engine->status_page.obj->pages->sgl));
		engine->status_page.obj = NULL;
2053
	}
2054

2055 2056 2057
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
2058

2059 2060
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
2061 2062
}

2063 2064
static void
logical_ring_default_vfuncs(struct drm_device *dev,
2065
			    struct intel_engine_cs *engine)
2066 2067
{
	/* Default vfuncs which can be overriden by each engine. */
2068 2069 2070 2071 2072 2073
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
2074 2075
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
2076
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2077
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2078
		engine->set_seqno = bxt_a_set_seqno;
2079 2080 2081
	}
}

2082
static inline void
2083
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2084
{
2085 2086
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2087 2088
}

2089
static int
2090
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2091
{
2092
	struct intel_context *dctx = to_i915(dev)->kernel_context;
2093 2094 2095
	int ret;

	/* Intentionally left blank. */
2096
	engine->buffer = NULL;
2097

2098 2099 2100 2101 2102
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
2103

2104 2105 2106 2107
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
2108

2109 2110 2111
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

2112
	logical_ring_init_platform_invariants(engine);
2113

2114
	ret = i915_cmd_parser_init_ring(engine);
2115
	if (ret)
2116
		goto error;
2117

2118
	ret = intel_lr_context_deferred_alloc(dctx, engine);
2119
	if (ret)
2120
		goto error;
2121 2122

	/* As this is the default context, always pin it */
2123
	ret = intel_lr_context_do_pin(dctx, engine);
2124 2125 2126
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
2127
			engine->name, ret);
2128
		goto error;
2129
	}
2130

2131 2132 2133
	return 0;

error:
2134
	intel_logical_ring_cleanup(engine);
2135
	return ret;
2136 2137 2138 2139 2140
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2141
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2142
	int ret;
2143

2144 2145 2146 2147 2148
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2149

2150
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2151
	if (HAS_L3_DPF(dev))
2152
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2153

2154
	logical_ring_default_vfuncs(dev, engine);
2155 2156

	/* Override some for render ring. */
2157
	if (INTEL_INFO(dev)->gen >= 9)
2158
		engine->init_hw = gen9_init_render_ring;
2159
	else
2160 2161 2162 2163 2164
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2165

2166
	engine->dev = dev;
2167

2168
	ret = intel_init_pipe_control(engine);
2169 2170 2171
	if (ret)
		return ret;

2172
	ret = intel_init_workaround_bb(engine);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2183
	ret = logical_ring_init(dev, engine);
2184
	if (ret) {
2185
		lrc_destroy_wa_ctx_obj(engine);
2186
	}
2187 2188

	return ret;
2189 2190 2191 2192 2193
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2194
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2195

2196 2197 2198 2199 2200
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2201

2202 2203
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2204

2205
	return logical_ring_init(dev, engine);
2206 2207 2208 2209 2210
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2211
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2212

2213 2214 2215 2216 2217
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2218

2219 2220
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2221

2222
	return logical_ring_init(dev, engine);
2223 2224 2225 2226 2227
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2228
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2229

2230 2231 2232 2233 2234
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2235

2236 2237
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2238

2239
	return logical_ring_init(dev, engine);
2240 2241 2242 2243 2244
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2245
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2246

2247 2248 2249 2250 2251
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2252

2253 2254
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2255

2256
	return logical_ring_init(dev, engine);
2257 2258
}

2259 2260 2261 2262 2263
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2264
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2265 2266 2267 2268
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2305
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2306
cleanup_blt_ring:
2307
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2308
cleanup_bsd_ring:
2309
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2310
cleanup_render_ring:
2311
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2312 2313 2314 2315

	return ret;
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2359
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2360 2361 2362
{
	u32 indirect_ctx_offset;

2363
	switch (INTEL_INFO(engine->dev)->gen) {
2364
	default:
2365
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2380 2381
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2382 2383
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2384
{
2385
	struct drm_device *dev = engine->dev;
2386
	struct drm_i915_private *dev_priv = dev->dev_private;
2387
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2388 2389 2390 2391
	struct page *page;
	uint32_t *reg_state;
	int ret;

2392 2393 2394
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2411
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2412 2413 2414 2415 2416 2417 2418
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2419
	reg_state[CTX_LRI_HEADER_0] =
2420 2421 2422
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2423 2424
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2425 2426
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2427 2428 2429 2430
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2431 2432 2433
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2434 2435 2436 2437
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2438
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2439 2440 2441 2442 2443 2444
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2445
		       RING_BB_PPGTT);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2461 2462 2463 2464 2465 2466 2467
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2468
				intel_lr_indirect_ctx_offset(engine) << 6;
2469 2470 2471 2472 2473

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2474
	}
2475
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2476 2477
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2478
	/* PDP values well be assigned later if needed */
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2495

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2508
		execlists_update_context_pdps(ppgtt, reg_state);
2509 2510
	}

2511
	if (engine->id == RCS) {
2512
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2513 2514
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2515 2516 2517 2518 2519 2520 2521 2522
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2523 2524 2525 2526 2527 2528 2529 2530
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2531 2532
void intel_lr_context_free(struct intel_context *ctx)
{
2533 2534
	int i;

2535
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2536
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2537
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2538

D
Dave Gordon 已提交
2539 2540
		if (!ctx_obj)
			continue;
2541

D
Dave Gordon 已提交
2542 2543 2544
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2545
		}
D
Dave Gordon 已提交
2546 2547 2548 2549

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2550 2551 2552
	}
}

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2567
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2568 2569 2570
{
	int ret = 0;

2571
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2572

2573
	switch (engine->id) {
2574
	case RCS:
2575
		if (INTEL_INFO(engine->dev)->gen >= 9)
2576 2577 2578
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2589 2590
}

2591 2592
static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
					   struct drm_i915_gem_object *default_ctx_obj)
2593
{
2594
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2595
	struct page *page;
2596

2597
	/* The HWSP is part of the default context object in LRC mode. */
2598
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2599 2600
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2601 2602
	engine->status_page.page_addr = kmap(page);
	engine->status_page.obj = default_ctx_obj;
2603

2604 2605 2606
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
			(u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2607 2608
}

2609
/**
2610
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2611 2612 2613 2614 2615 2616 2617 2618 2619
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2620
 * Return: non-zero on error.
2621
 */
2622 2623

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2624
				    struct intel_engine_cs *engine)
2625
{
2626
	struct drm_device *dev = engine->dev;
2627 2628
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2629
	struct intel_ringbuffer *ringbuf;
2630 2631
	int ret;

2632
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2633
	WARN_ON(ctx->engine[engine->id].state);
2634

2635
	context_size = round_up(intel_lr_context_size(engine), 4096);
2636

2637 2638 2639
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2640
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2641 2642 2643
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2644 2645
	}

2646
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2647 2648
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2649
		goto error_deref_obj;
2650 2651
	}

2652
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2653 2654
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2655
		goto error_ringbuf;
2656 2657
	}

2658 2659
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2660

2661
	if (ctx != ctx->i915->kernel_context && engine->init_context) {
2662
		struct drm_i915_gem_request *req;
2663

2664
		req = i915_gem_request_alloc(engine, ctx);
2665 2666 2667
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2668
			goto error_ringbuf;
2669 2670
		}

2671
		ret = engine->init_context(req);
2672 2673 2674 2675 2676 2677 2678
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2679
	}
2680
	return 0;
2681

2682 2683
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2684
error_deref_obj:
2685
	drm_gem_object_unreference(&ctx_obj->base);
2686 2687
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2688
	return ret;
2689
}
2690 2691 2692 2693 2694

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2695
	struct intel_engine_cs *engine;
2696

2697
	for_each_engine(engine, dev_priv) {
2698
		struct drm_i915_gem_object *ctx_obj =
2699
				ctx->engine[engine->id].state;
2700
		struct intel_ringbuffer *ringbuf =
2701
				ctx->engine[engine->id].ringbuf;
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2712
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}