scrub.c 107.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10 11 12 13
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
14
#include "transaction.h"
15
#include "backref.h"
16
#include "extent_io.h"
17
#include "dev-replace.h"
18
#include "check-integrity.h"
19
#include "rcu-string.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
A
Arne Jansen 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

35
struct scrub_block;
36
struct scrub_ctx;
A
Arne Jansen 已提交
37

38 39 40 41 42 43 44 45 46
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
47 48 49 50 51 52

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
53
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
54

55
struct scrub_recover {
56
	refcount_t		refs;
57 58 59 60
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
61
struct scrub_page {
62 63
	struct scrub_block	*sblock;
	struct page		*page;
64
	struct btrfs_device	*dev;
65
	struct list_head	list;
A
Arne Jansen 已提交
66 67
	u64			flags;  /* extent flags */
	u64			generation;
68 69
	u64			logical;
	u64			physical;
70
	u64			physical_for_dev_replace;
71
	atomic_t		refs;
72 73 74 75 76
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
77
	u8			csum[BTRFS_CSUM_SIZE];
78 79

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
80 81 82 83
};

struct scrub_bio {
	int			index;
84
	struct scrub_ctx	*sctx;
85
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
86
	struct bio		*bio;
87
	blk_status_t		status;
A
Arne Jansen 已提交
88 89
	u64			logical;
	u64			physical;
90 91 92 93 94
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
95
	int			page_count;
A
Arne Jansen 已提交
96 97 98 99
	int			next_free;
	struct btrfs_work	work;
};

100
struct scrub_block {
101
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
102 103
	int			page_count;
	atomic_t		outstanding_pages;
104
	refcount_t		refs; /* free mem on transition to zero */
105
	struct scrub_ctx	*sctx;
106
	struct scrub_parity	*sparity;
107 108 109 110
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
111
		unsigned int	generation_error:1; /* also sets header_error */
112 113 114 115

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
116
	};
117
	struct btrfs_work	work;
118 119
};

120 121 122 123 124 125 126 127 128 129 130 131
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

132
	u64			stripe_len;
133

134
	refcount_t		refs;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

153
struct scrub_ctx {
154
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
155
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
156 157
	int			first_free;
	int			curr;
158 159
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
160 161 162 163 164
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
165
	int			readonly;
166
	int			pages_per_rd_bio;
167 168

	int			is_dev_replace;
169 170 171 172 173

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
174
	bool                    flush_all_writes;
175

A
Arne Jansen 已提交
176 177 178 179 180
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
181 182 183 184 185 186 187 188

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
189
	refcount_t              refs;
A
Arne Jansen 已提交
190 191
};

192 193 194 195
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
196
	u64			physical;
197 198 199 200
	u64			logical;
	struct btrfs_device	*dev;
};

201 202 203 204 205 206 207
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

208 209
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
210
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
211
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
212
				     struct scrub_block *sblocks_for_recheck);
213
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
214 215
				struct scrub_block *sblock,
				int retry_failed_mirror);
216
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
217
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
218
					     struct scrub_block *sblock_good);
219 220 221
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
222 223 224
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
225 226 227 228 229
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
230 231
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
232 233
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
234 235
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
236
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
237
		       u64 physical, struct btrfs_device *dev, u64 flags,
238 239
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
240
static void scrub_bio_end_io(struct bio *bio);
241 242
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
243 244 245 246 247 248 249 250
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
251
static void scrub_wr_bio_end_io(struct bio *bio);
252
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
253
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
256

257 258 259 260 261
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
262

263 264
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
265
	refcount_inc(&sctx->refs);
266 267 268 269 270 271 272
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
273
	scrub_put_ctx(sctx);
274 275
}

276
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
277 278 279 280 281 282 283 284 285
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

286
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
287 288 289
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
290
}
291

292 293
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
294 295 296 297 298 299 300 301
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

302 303 304 305 306 307
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

327
	lockdep_assert_held(&locks_root->lock);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

343 344 345
	/*
	 * Insert new lock.
	 */
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

371
	lockdep_assert_held(&locks_root->lock);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

526
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
527
{
528
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
529
		struct btrfs_ordered_sum *sum;
530
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
531 532 533 534 535 536
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

537
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
538 539 540
{
	int i;

541
	if (!sctx)
A
Arne Jansen 已提交
542 543
		return;

544
	/* this can happen when scrub is cancelled */
545 546
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
547 548

		for (i = 0; i < sbio->page_count; i++) {
549
			WARN_ON(!sbio->pagev[i]->page);
550 551 552 553 554
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

555
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
556
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
557 558 559 560 561 562

		if (!sbio)
			break;
		kfree(sbio);
	}

563
	kfree(sctx->wr_curr_bio);
564 565
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
566 567
}

568 569
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
570
	if (refcount_dec_and_test(&sctx->refs))
571 572 573
		scrub_free_ctx(sctx);
}

574 575
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
576
{
577
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
578 579
	int		i;

580
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
581
	if (!sctx)
A
Arne Jansen 已提交
582
		goto nomem;
583
	refcount_set(&sctx->refs, 1);
584
	sctx->is_dev_replace = is_dev_replace;
585
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
586
	sctx->curr = -1;
587
	sctx->fs_info = fs_info;
588
	INIT_LIST_HEAD(&sctx->csum_list);
589
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
590 591
		struct scrub_bio *sbio;

592
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
593 594
		if (!sbio)
			goto nomem;
595
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
596 597

		sbio->index = i;
598
		sbio->sctx = sctx;
599
		sbio->page_count = 0;
600 601
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
602

603
		if (i != SCRUB_BIOS_PER_SCTX - 1)
604
			sctx->bios[i]->next_free = i + 1;
605
		else
606 607 608
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
609 610
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
611 612 613 614 615 616
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
617

618 619 620
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
621
	if (is_dev_replace) {
622
		WARN_ON(!fs_info->dev_replace.tgtdev);
623
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
624
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
625
		sctx->flush_all_writes = false;
626
	}
627

628
	return sctx;
A
Arne Jansen 已提交
629 630

nomem:
631
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
632 633 634
	return ERR_PTR(-ENOMEM);
}

635 636
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
637 638 639 640 641
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
642
	unsigned nofs_flag;
643 644
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
645
	struct scrub_warning *swarn = warn_ctx;
646
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
647 648 649
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
650
	struct btrfs_key key;
651 652 653 654 655 656 657 658 659 660

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

661 662 663
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
664 665 666 667 668
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
669 670 671 672 673 674 675 676 677 678 679 680
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

681 682 683 684 685 686
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
687
	ipath = init_ipath(4096, local_root, swarn->path);
688
	memalloc_nofs_restore(nofs_flag);
689 690 691 692 693
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
694 695 696 697 698 699 700 701 702 703
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
704
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
705
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
706 707
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
708
				  swarn->physical,
J
Jeff Mahoney 已提交
709 710 711
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
712 713 714 715 716

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
717
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
718
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
719 720
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
721
			  swarn->physical,
J
Jeff Mahoney 已提交
722
			  root, inum, offset, ret);
723 724 725 726 727

	free_ipath(ipath);
	return 0;
}

728
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
729
{
730 731
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
732 733 734 735 736
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
737 738 739
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
740
	u64 ref_root;
741
	u32 item_size;
742
	u8 ref_level = 0;
743
	int ret;
744

745
	WARN_ON(sblock->page_count < 1);
746
	dev = sblock->pagev[0]->dev;
747
	fs_info = sblock->sctx->fs_info;
748

749
	path = btrfs_alloc_path();
750 751
	if (!path)
		return;
752

D
David Sterba 已提交
753
	swarn.physical = sblock->pagev[0]->physical;
754
	swarn.logical = sblock->pagev[0]->logical;
755
	swarn.errstr = errstr;
756
	swarn.dev = NULL;
757

758 759
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
760 761 762
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
763
	extent_item_pos = swarn.logical - found_key.objectid;
764 765 766 767 768 769
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

770
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
771
		do {
772 773 774
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
775
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
776
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
777
				errstr, swarn.logical,
778
				rcu_str_deref(dev->name),
D
David Sterba 已提交
779
				swarn.physical,
780 781 782 783
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
784
		btrfs_release_path(path);
785
	} else {
786
		btrfs_release_path(path);
787
		swarn.path = path;
788
		swarn.dev = dev;
789 790
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
791
					scrub_print_warning_inode, &swarn, false);
792 793 794 795 796 797
	}

out:
	btrfs_free_path(path);
}

798 799
static inline void scrub_get_recover(struct scrub_recover *recover)
{
800
	refcount_inc(&recover->refs);
801 802
}

803 804
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
805
{
806
	if (refcount_dec_and_test(&recover->refs)) {
807
		btrfs_bio_counter_dec(fs_info);
808
		btrfs_put_bbio(recover->bbio);
809 810 811 812
		kfree(recover);
	}
}

A
Arne Jansen 已提交
813
/*
814 815 816 817 818 819
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
820
 */
821
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
822
{
823
	struct scrub_ctx *sctx = sblock_to_check->sctx;
824
	struct btrfs_device *dev;
825 826 827 828 829 830 831 832 833 834 835
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
836
	bool full_stripe_locked;
837
	unsigned int nofs_flag;
838
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
839 840 841
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
842
	fs_info = sctx->fs_info;
843 844 845 846 847 848 849 850 851 852 853
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
854 855 856 857
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
858
			BTRFS_EXTENT_FLAG_DATA);
859 860
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
861

862 863 864 865 866 867 868 869 870 871
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
872 873 874 875 876 877 878 879 880
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
881
		memalloc_nofs_restore(nofs_flag);
882 883 884 885 886 887 888 889 890
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

920
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
921
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
922
	if (!sblocks_for_recheck) {
923 924 925 926 927
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
928
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929
		goto out;
A
Arne Jansen 已提交
930 931
	}

932
	/* setup the context, map the logical blocks and alloc the pages */
933
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
934
	if (ret) {
935 936 937 938
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
939
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
940 941 942 943
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
944

945
	/* build and submit the bios for the failed mirror, check checksums */
946
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
947

948 949 950 951 952 953 954 955 956 957
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
958 959
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
960
		sblock_to_check->data_corrected = 1;
961
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
962

963 964
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
965
		goto out;
A
Arne Jansen 已提交
966 967
	}

968
	if (!sblock_bad->no_io_error_seen) {
969 970 971
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
972 973
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
974
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975
	} else if (sblock_bad->checksum_error) {
976 977 978
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
979 980
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
981
		btrfs_dev_stat_inc_and_print(dev,
982
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
983
	} else if (sblock_bad->header_error) {
984 985 986
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
987 988 989
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
990
		if (sblock_bad->generation_error)
991
			btrfs_dev_stat_inc_and_print(dev,
992 993
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
994
			btrfs_dev_stat_inc_and_print(dev,
995
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
996
	}
A
Arne Jansen 已提交
997

998 999 1000 1001
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1002

1003 1004
	/*
	 * now build and submit the bios for the other mirrors, check
1005 1006
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1018
	for (mirror_index = 0; ;mirror_index++) {
1019
		struct scrub_block *sblock_other;
1020

1021 1022
		if (mirror_index == failed_mirror_index)
			continue;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1046 1047

		/* build and submit the bios, check checksums */
1048
		scrub_recheck_block(fs_info, sblock_other, 0);
1049 1050

		if (!sblock_other->header_error &&
1051 1052
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1053 1054
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1055
				goto corrected_error;
1056 1057
			} else {
				ret = scrub_repair_block_from_good_copy(
1058 1059 1060
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1061
			}
1062 1063
		}
	}
A
Arne Jansen 已提交
1064

1065 1066
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1067 1068 1069

	/*
	 * In case of I/O errors in the area that is supposed to be
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1082
	 * the final checksum succeeds. But this would be a rare
1083 1084 1085 1086 1087 1088 1089 1090
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1091
	 */
1092
	success = 1;
1093 1094
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1095
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1096
		struct scrub_block *sblock_other = NULL;
1097

1098 1099
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1100
			continue;
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1113 1114 1115 1116 1117 1118 1119 1120 1121
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1122 1123
				}
			}
1124 1125
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1126
		}
A
Arne Jansen 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1141
				atomic64_inc(
1142
					&fs_info->dev_replace.num_write_errors);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1153
		}
A
Arne Jansen 已提交
1154 1155
	}

1156
	if (success && !sctx->is_dev_replace) {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1167
			scrub_recheck_block(fs_info, sblock_bad, 1);
1168
			if (!sblock_bad->header_error &&
1169 1170 1171 1172 1173 1174 1175
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1176 1177
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1178
			sblock_to_check->data_corrected = 1;
1179
			spin_unlock(&sctx->stat_lock);
1180 1181
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1182
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1183
		}
1184 1185
	} else {
did_not_correct_error:
1186 1187 1188
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1189 1190
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1191
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1192
	}
A
Arne Jansen 已提交
1193

1194 1195 1196 1197 1198 1199
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1200
			struct scrub_recover *recover;
1201 1202
			int page_index;

1203 1204 1205
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1206 1207
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1208
					scrub_put_recover(fs_info, recover);
1209 1210 1211
					sblock->pagev[page_index]->recover =
									NULL;
				}
1212 1213
				scrub_page_put(sblock->pagev[page_index]);
			}
1214 1215 1216
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1217

1218
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219
	memalloc_nofs_restore(nofs_flag);
1220 1221
	if (ret < 0)
		return ret;
1222 1223
	return 0;
}
A
Arne Jansen 已提交
1224

1225
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226
{
Z
Zhao Lei 已提交
1227 1228 1229 1230 1231
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1232 1233 1234
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1235 1236
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1237 1238 1239 1240 1241 1242 1243
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1244
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1265
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1266 1267
				     struct scrub_block *sblocks_for_recheck)
{
1268
	struct scrub_ctx *sctx = original_sblock->sctx;
1269
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1270 1271
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1272 1273 1274
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1275 1276 1277 1278 1279 1280
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1281
	int page_index = 0;
1282
	int mirror_index;
1283
	int nmirrors;
1284 1285 1286
	int ret;

	/*
1287
	 * note: the two members refs and outstanding_pages
1288 1289 1290 1291 1292
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1293 1294 1295
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1296

1297 1298 1299 1300
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1301
		btrfs_bio_counter_inc_blocked(fs_info);
1302
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1303
				logical, &mapped_length, &bbio);
1304
		if (ret || !bbio || mapped_length < sublen) {
1305
			btrfs_put_bbio(bbio);
1306
			btrfs_bio_counter_dec(fs_info);
1307 1308
			return -EIO;
		}
A
Arne Jansen 已提交
1309

1310 1311
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1312
			btrfs_put_bbio(bbio);
1313
			btrfs_bio_counter_dec(fs_info);
1314 1315 1316
			return -ENOMEM;
		}

1317
		refcount_set(&recover->refs, 1);
1318 1319 1320
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1321
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322

1323
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1324

1325
		for (mirror_index = 0; mirror_index < nmirrors;
1326 1327 1328 1329 1330
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1331
			sblock->sctx = sctx;
1332

1333 1334 1335
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1336 1337 1338
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1339
				scrub_put_recover(fs_info, recover);
1340 1341
				return -ENOMEM;
			}
1342 1343
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1344 1345 1346
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1347
			page->logical = logical;
1348 1349 1350 1351 1352
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1353

Z
Zhao Lei 已提交
1354 1355 1356
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1357
						      mapped_length,
1358 1359
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1360 1361 1362 1363 1364 1365 1366
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1367 1368 1369 1370
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1371 1372
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1373
			sblock->page_count++;
1374 1375 1376
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1377 1378 1379

			scrub_get_recover(recover);
			page->recover = recover;
1380
		}
1381
		scrub_put_recover(fs_info, recover);
1382 1383 1384 1385 1386 1387
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1388 1389
}

1390
static void scrub_bio_wait_endio(struct bio *bio)
1391
{
1392
	complete(bio->bi_private);
1393 1394 1395 1396 1397 1398
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1399
	DECLARE_COMPLETION_ONSTACK(done);
1400
	int ret;
1401
	int mirror_num;
1402 1403 1404 1405 1406

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1407
	mirror_num = page->sblock->pagev[0]->mirror_num;
1408
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1409
				    page->recover->map_length,
1410
				    mirror_num, 0);
1411 1412 1413
	if (ret)
		return ret;

1414 1415
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1416 1417
}

L
Liu Bo 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1457 1458 1459 1460 1461 1462 1463
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1464
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1465 1466
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1467
{
1468
	int page_num;
I
Ilya Dryomov 已提交
1469

1470
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1471

L
Liu Bo 已提交
1472 1473 1474 1475
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1476 1477
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1478
		struct scrub_page *page = sblock->pagev[page_num];
1479

1480
		if (page->dev->bdev == NULL) {
1481 1482 1483 1484 1485
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1486
		WARN_ON(!page->page);
1487
		bio = btrfs_io_bio_alloc(1);
1488
		bio_set_dev(bio, page->dev->bdev);
1489

1490
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1491 1492
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1493

L
Liu Bo 已提交
1494 1495 1496
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1497
		}
1498

1499 1500
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1501

1502
	if (sblock->no_io_error_seen)
1503
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1504 1505
}

M
Miao Xie 已提交
1506 1507 1508 1509 1510 1511
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1512
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1513 1514 1515
	return !ret;
}

1516
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1517
{
1518 1519 1520
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1521

1522 1523 1524 1525
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1526 1527
}

1528
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1529
					     struct scrub_block *sblock_good)
1530 1531 1532
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1533

1534 1535
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1536

1537 1538
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1539
							   page_num, 1);
1540 1541
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1542
	}
1543 1544 1545 1546 1547 1548 1549 1550

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1551 1552
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1553
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554

1555 1556
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1557 1558 1559 1560 1561
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1562
		if (!page_bad->dev->bdev) {
1563
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1564
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1565 1566 1567
			return -EIO;
		}

1568
		bio = btrfs_io_bio_alloc(1);
1569
		bio_set_dev(bio, page_bad->dev->bdev);
1570
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
D
David Sterba 已提交
1571
		bio->bi_opf = REQ_OP_WRITE;
1572 1573 1574 1575 1576

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1577
		}
1578

1579
		if (btrfsic_submit_bio_wait(bio)) {
1580 1581
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1582
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583 1584 1585
			bio_put(bio);
			return -EIO;
		}
1586
		bio_put(bio);
A
Arne Jansen 已提交
1587 1588
	}

1589 1590 1591
	return 0;
}

1592 1593
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1594
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1595 1596
	int page_num;

1597 1598 1599 1600 1601 1602 1603
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1604 1605 1606 1607 1608
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1609
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1622
		clear_page(mapped_buffer);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1635
	mutex_lock(&sctx->wr_lock);
1636
again:
1637 1638
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1639
					      GFP_KERNEL);
1640 1641
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1642 1643
			return -ENOMEM;
		}
1644 1645
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1646
	}
1647
	sbio = sctx->wr_curr_bio;
1648 1649 1650 1651 1652
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1653
		sbio->dev = sctx->wr_tgtdev;
1654 1655
		bio = sbio->bio;
		if (!bio) {
1656
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1657 1658 1659 1660 1661
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1662
		bio_set_dev(bio, sbio->dev->bdev);
1663
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1664
		bio->bi_opf = REQ_OP_WRITE;
1665
		sbio->status = 0;
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1679
			mutex_unlock(&sctx->wr_lock);
1680 1681 1682 1683 1684 1685 1686 1687 1688
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1689
	if (sbio->page_count == sctx->pages_per_wr_bio)
1690
		scrub_wr_submit(sctx);
1691
	mutex_unlock(&sctx->wr_lock);
1692 1693 1694 1695 1696 1697 1698 1699

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1700
	if (!sctx->wr_curr_bio)
1701 1702
		return;

1703 1704
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1705
	WARN_ON(!sbio->bio->bi_disk);
1706 1707 1708 1709 1710
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1711
	btrfsic_submit_bio(sbio->bio);
1712 1713
}

1714
static void scrub_wr_bio_end_io(struct bio *bio)
1715 1716
{
	struct scrub_bio *sbio = bio->bi_private;
1717
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1718

1719
	sbio->status = bio->bi_status;
1720 1721
	sbio->bio = bio;

1722 1723
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1724
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1725 1726 1727 1728 1729 1730 1731 1732 1733
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1734
	if (sbio->status) {
1735
		struct btrfs_dev_replace *dev_replace =
1736
			&sbio->sctx->fs_info->dev_replace;
1737 1738 1739 1740 1741

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1742
			atomic64_inc(&dev_replace->num_write_errors);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1755 1756 1757 1758
{
	u64 flags;
	int ret;

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1771 1772
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1784 1785

	return ret;
A
Arne Jansen 已提交
1786 1787
}

1788
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1789
{
1790
	struct scrub_ctx *sctx = sblock->sctx;
1791 1792
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1793
	u8 csum[BTRFS_CSUM_SIZE];
1794 1795 1796 1797 1798
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
	u64 len;
	int index;
A
Arne Jansen 已提交
1799

1800
	BUG_ON(sblock->page_count < 1);
1801
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1802 1803
		return 0;

1804 1805 1806
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1807 1808
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1809
	buffer = kmap_atomic(page);
1810

1811
	len = sctx->fs_info->sectorsize;
1812 1813 1814 1815
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1816
		crypto_shash_update(shash, buffer, l);
1817
		kunmap_atomic(buffer);
1818 1819 1820 1821 1822
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1823 1824
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1825
		buffer = kmap_atomic(page);
1826 1827
	}

1828
	crypto_shash_final(shash, csum);
1829
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1830
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1831

1832
	return sblock->checksum_error;
A
Arne Jansen 已提交
1833 1834
}

1835
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1836
{
1837
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1838
	struct btrfs_header *h;
1839
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1840
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1841 1842 1843 1844 1845 1846 1847 1848 1849
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
	u64 len;
	int index;

1850 1851 1852
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1853
	BUG_ON(sblock->page_count < 1);
1854
	page = sblock->pagev[0]->page;
1855
	mapped_buffer = kmap_atomic(page);
1856
	h = (struct btrfs_header *)mapped_buffer;
1857
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1858 1859 1860 1861 1862 1863

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1864
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1865
		sblock->header_error = 1;
A
Arne Jansen 已提交
1866

1867 1868 1869 1870
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1871

M
Miao Xie 已提交
1872
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1873
		sblock->header_error = 1;
A
Arne Jansen 已提交
1874 1875 1876

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1877
		sblock->header_error = 1;
A
Arne Jansen 已提交
1878

1879
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1880 1881 1882 1883 1884 1885
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1886
		crypto_shash_update(shash, p, l);
1887
		kunmap_atomic(mapped_buffer);
1888 1889 1890 1891 1892
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1893 1894
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1895
		mapped_buffer = kmap_atomic(page);
1896 1897 1898 1899
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1900
	crypto_shash_final(shash, calculated_csum);
1901
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1902
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1903

1904
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1905 1906
}

1907
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1908 1909
{
	struct btrfs_super_block *s;
1910
	struct scrub_ctx *sctx = sblock->sctx;
1911 1912
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1913 1914 1915 1916 1917 1918
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
1919 1920
	int fail_gen = 0;
	int fail_cor = 0;
1921 1922
	u64 len;
	int index;
A
Arne Jansen 已提交
1923

1924 1925 1926
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1927
	BUG_ON(sblock->page_count < 1);
1928
	page = sblock->pagev[0]->page;
1929
	mapped_buffer = kmap_atomic(page);
1930
	s = (struct btrfs_super_block *)mapped_buffer;
1931
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1932

1933
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1934
		++fail_cor;
A
Arne Jansen 已提交
1935

1936
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1937
		++fail_gen;
A
Arne Jansen 已提交
1938

M
Miao Xie 已提交
1939
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1940
		++fail_cor;
A
Arne Jansen 已提交
1941

1942 1943 1944 1945 1946 1947 1948
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1949
		crypto_shash_update(shash, p, l);
1950
		kunmap_atomic(mapped_buffer);
1951 1952 1953 1954 1955
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1956 1957
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1958
		mapped_buffer = kmap_atomic(page);
1959 1960 1961 1962
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1963
	crypto_shash_final(shash, calculated_csum);
1964
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1965
		++fail_cor;
A
Arne Jansen 已提交
1966

1967
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1968 1969 1970 1971 1972
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1973 1974 1975
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1976
		if (fail_cor)
1977
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1978 1979
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1980
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1981
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1982 1983
	}

1984
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1985 1986
}

1987 1988
static void scrub_block_get(struct scrub_block *sblock)
{
1989
	refcount_inc(&sblock->refs);
1990 1991 1992 1993
}

static void scrub_block_put(struct scrub_block *sblock)
{
1994
	if (refcount_dec_and_test(&sblock->refs)) {
1995 1996
		int i;

1997 1998 1999
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2000
		for (i = 0; i < sblock->page_count; i++)
2001
			scrub_page_put(sblock->pagev[i]);
2002 2003 2004 2005
		kfree(sblock);
	}
}

2006 2007
static void scrub_page_get(struct scrub_page *spage)
{
2008
	atomic_inc(&spage->refs);
2009 2010 2011 2012
}

static void scrub_page_put(struct scrub_page *spage)
{
2013
	if (atomic_dec_and_test(&spage->refs)) {
2014 2015 2016 2017 2018 2019
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2020
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2021 2022 2023
{
	struct scrub_bio *sbio;

2024
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2025
		return;
A
Arne Jansen 已提交
2026

2027 2028
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2029
	scrub_pending_bio_inc(sctx);
2030
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2031 2032
}

2033 2034
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2035
{
2036
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2037
	struct scrub_bio *sbio;
2038
	int ret;
A
Arne Jansen 已提交
2039 2040 2041 2042 2043

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2044 2045 2046 2047 2048 2049 2050 2051
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2052
		} else {
2053 2054
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2055 2056
		}
	}
2057
	sbio = sctx->bios[sctx->curr];
2058
	if (sbio->page_count == 0) {
2059 2060
		struct bio *bio;

2061 2062
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2063
		sbio->dev = spage->dev;
2064 2065
		bio = sbio->bio;
		if (!bio) {
2066
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2067 2068
			sbio->bio = bio;
		}
2069 2070 2071

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2072
		bio_set_dev(bio, sbio->dev->bdev);
2073
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2074
		bio->bi_opf = REQ_OP_READ;
2075
		sbio->status = 0;
2076 2077 2078
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2079 2080
		   spage->logical ||
		   sbio->dev != spage->dev) {
2081
		scrub_submit(sctx);
A
Arne Jansen 已提交
2082 2083
		goto again;
	}
2084

2085 2086 2087 2088 2089 2090 2091 2092
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2093
		scrub_submit(sctx);
2094 2095 2096
		goto again;
	}

2097
	scrub_block_get(sblock); /* one for the page added to the bio */
2098 2099
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2100
	if (sbio->page_count == sctx->pages_per_rd_bio)
2101
		scrub_submit(sctx);
2102 2103 2104 2105

	return 0;
}

2106
static void scrub_missing_raid56_end_io(struct bio *bio)
2107 2108
{
	struct scrub_block *sblock = bio->bi_private;
2109
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2110

2111
	if (bio->bi_status)
2112 2113
		sblock->no_io_error_seen = 0;

2114 2115
	bio_put(bio);

2116 2117 2118 2119 2120 2121 2122
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2123
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2124 2125 2126 2127 2128 2129
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2130
	if (sblock->no_io_error_seen)
2131
		scrub_recheck_block_checksum(sblock);
2132 2133 2134 2135 2136

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2137
		btrfs_err_rl_in_rcu(fs_info,
2138
			"IO error rebuilding logical %llu for dev %s",
2139 2140 2141 2142 2143
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2144
		btrfs_err_rl_in_rcu(fs_info,
2145
			"failed to rebuild valid logical %llu for dev %s",
2146 2147 2148 2149 2150 2151 2152
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

2153
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2154
		mutex_lock(&sctx->wr_lock);
2155
		scrub_wr_submit(sctx);
2156
		mutex_unlock(&sctx->wr_lock);
2157 2158 2159 2160 2161 2162 2163 2164
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2165
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2166 2167
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2168
	struct btrfs_bio *bbio = NULL;
2169 2170 2171 2172 2173
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2174
	btrfs_bio_counter_inc_blocked(fs_info);
2175
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2176
			&length, &bbio);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2191
	bio = btrfs_io_bio_alloc(0);
2192 2193 2194 2195
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2196
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2216
	btrfs_bio_counter_dec(fs_info);
2217 2218 2219 2220 2221 2222
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2223
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2224
		       u64 physical, struct btrfs_device *dev, u64 flags,
2225 2226
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2227 2228 2229 2230
{
	struct scrub_block *sblock;
	int index;

2231
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2232
	if (!sblock) {
2233 2234 2235
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2236
		return -ENOMEM;
A
Arne Jansen 已提交
2237
	}
2238

2239 2240
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2241
	refcount_set(&sblock->refs, 1);
2242
	sblock->sctx = sctx;
2243 2244 2245
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2246
		struct scrub_page *spage;
2247 2248
		u64 l = min_t(u64, len, PAGE_SIZE);

2249
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2250 2251
		if (!spage) {
leave_nomem:
2252 2253 2254
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2255
			scrub_block_put(sblock);
2256 2257
			return -ENOMEM;
		}
2258 2259 2260
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2261
		spage->sblock = sblock;
2262
		spage->dev = dev;
2263 2264 2265 2266
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2267
		spage->physical_for_dev_replace = physical_for_dev_replace;
2268 2269 2270
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2271
			memcpy(spage->csum, csum, sctx->csum_size);
2272 2273 2274 2275
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2276
		spage->page = alloc_page(GFP_KERNEL);
2277 2278
		if (!spage->page)
			goto leave_nomem;
2279 2280 2281
		len -= l;
		logical += l;
		physical += l;
2282
		physical_for_dev_replace += l;
2283 2284
	}

2285
	WARN_ON(sblock->page_count == 0);
2286
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2287 2288 2289 2290 2291 2292 2293 2294 2295
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2296

2297 2298 2299 2300 2301
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2302
		}
A
Arne Jansen 已提交
2303

2304 2305 2306
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2307

2308 2309
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2310 2311 2312
	return 0;
}

2313
static void scrub_bio_end_io(struct bio *bio)
2314 2315
{
	struct scrub_bio *sbio = bio->bi_private;
2316
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2317

2318
	sbio->status = bio->bi_status;
2319 2320
	sbio->bio = bio;

2321
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2322 2323 2324 2325 2326
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2327
	struct scrub_ctx *sctx = sbio->sctx;
2328 2329
	int i;

2330
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2331
	if (sbio->status) {
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2352 2353 2354 2355
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2356

2357
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2358
		mutex_lock(&sctx->wr_lock);
2359
		scrub_wr_submit(sctx);
2360
		mutex_unlock(&sctx->wr_lock);
2361 2362
	}

2363
	scrub_pending_bio_dec(sctx);
2364 2365
}

2366 2367 2368 2369
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2370
	u64 offset;
2371 2372
	u64 nsectors64;
	u32 nsectors;
2373
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2374 2375 2376 2377 2378 2379 2380

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2381 2382
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2383 2384 2385 2386
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2409 2410
static void scrub_block_complete(struct scrub_block *sblock)
{
2411 2412
	int corrupted = 0;

2413
	if (!sblock->no_io_error_seen) {
2414
		corrupted = 1;
2415
		scrub_handle_errored_block(sblock);
2416 2417 2418 2419 2420 2421
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2422 2423
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2424 2425
			scrub_write_block_to_dev_replace(sblock);
	}
2426 2427 2428 2429 2430 2431 2432 2433 2434

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2435 2436
}

2437
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2438 2439
{
	struct btrfs_ordered_sum *sum = NULL;
2440
	unsigned long index;
A
Arne Jansen 已提交
2441 2442
	unsigned long num_sectors;

2443 2444
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2445 2446 2447 2448 2449 2450
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2451
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2452 2453 2454 2455 2456 2457 2458
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2459 2460 2461
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2462
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2463
	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2464
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2465 2466 2467
		list_del(&sum->list);
		kfree(sum);
	}
2468
	return 1;
A
Arne Jansen 已提交
2469 2470 2471
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2472 2473
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2474
			u64 physical, struct btrfs_device *dev, u64 flags,
2475
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2476 2477 2478
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2479 2480 2481
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2482 2483 2484 2485
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2486 2487 2488 2489
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2490
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2491 2492 2493 2494
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2495 2496 2497 2498
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2499
	} else {
2500
		blocksize = sctx->fs_info->sectorsize;
2501
		WARN_ON(1);
2502
	}
A
Arne Jansen 已提交
2503 2504

	while (len) {
2505
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2506 2507 2508 2509
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2510
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2511
			if (have_csum == 0)
2512
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2513
		}
2514
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2515 2516
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2517 2518 2519 2520 2521
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2522
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2523 2524 2525 2526
	}
	return 0;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2536
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2546
	refcount_set(&sblock->refs, 1);
2547 2548 2549 2550 2551 2552 2553 2554 2555
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2556
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2586
		spage->page = alloc_page(GFP_KERNEL);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2621
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2622 2623 2624 2625
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2626
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2627
		blocksize = sparity->stripe_len;
2628
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2629
		blocksize = sparity->stripe_len;
2630
	} else {
2631
		blocksize = sctx->fs_info->sectorsize;
2632 2633 2634 2635 2636 2637 2638 2639 2640
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2641
			have_csum = scrub_find_csum(sctx, logical, csum);
2642 2643 2644 2645 2646 2647 2648 2649
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2650
skip:
2651 2652 2653 2654 2655 2656 2657
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2658 2659 2660 2661 2662 2663 2664 2665
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2666 2667
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2668 2669 2670 2671 2672
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2673 2674
	u32 stripe_index;
	u32 rot;
2675
	const int data_stripes = nr_data_stripes(map);
2676

2677
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2678 2679 2680
	if (stripe_start)
		*stripe_start = last_offset;

2681
	*offset = last_offset;
2682
	for (i = 0; i < data_stripes; i++) {
2683 2684
		*offset = last_offset + i * map->stripe_len;

2685
		stripe_nr = div64_u64(*offset, map->stripe_len);
2686
		stripe_nr = div_u64(stripe_nr, data_stripes);
2687 2688

		/* Work out the disk rotation on this stripe-set */
2689
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2690 2691
		/* calculate which stripe this data locates */
		rot += i;
2692
		stripe_index = rot % map->num_stripes;
2693 2694 2695 2696 2697 2698 2699 2700 2701
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2734
static void scrub_parity_bio_endio(struct bio *bio)
2735 2736
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2737
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2738

2739
	if (bio->bi_status)
2740 2741 2742 2743
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2744 2745 2746

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
2747
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2748 2749 2750 2751 2752
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2753
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2764
	length = sparity->logic_end - sparity->logic_start;
2765 2766

	btrfs_bio_counter_inc_blocked(fs_info);
2767
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2768
			       &length, &bbio);
2769
	if (ret || !bbio || !bbio->raid_map)
2770 2771
		goto bbio_out;

2772
	bio = btrfs_io_bio_alloc(0);
2773 2774 2775 2776
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2777
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2778
					      length, sparity->scrub_dev,
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2791
	btrfs_bio_counter_dec(fs_info);
2792
	btrfs_put_bbio(bbio);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2804
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2805 2806 2807 2808
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2809
	refcount_inc(&sparity->refs);
2810 2811 2812 2813
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2814
	if (!refcount_dec_and_test(&sparity->refs))
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2827
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2828 2829 2830
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2831
	struct btrfs_bio *bbio = NULL;
2832 2833 2834 2835 2836 2837 2838 2839 2840
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2841
	u64 mapped_length;
2842 2843 2844 2845 2846 2847 2848
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2849
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2866
	refcount_set(&sparity->refs, 1);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2915 2916 2917 2918
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2919
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2920
				bytes = fs_info->nodesize;
2921 2922 2923 2924 2925 2926
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2927
			if (key.objectid >= logic_end) {
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2940 2941 2942 2943
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2944 2945
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2946
					  key.objectid, logic_start);
2947 2948 2949
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2969
			mapped_length = extent_len;
2970
			bbio = NULL;
2971 2972 2973
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3000 3001 3002

			scrub_free_csums(sctx);

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3034
						logic_end - logic_start);
3035 3036
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3037
	mutex_lock(&sctx->wr_lock);
3038
	scrub_wr_submit(sctx);
3039
	mutex_unlock(&sctx->wr_lock);
3040 3041 3042 3043 3044

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3045
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3046 3047
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3048
					   int num, u64 base, u64 length)
A
Arne Jansen 已提交
3049
{
3050
	struct btrfs_path *path, *ppath;
3051
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3052 3053 3054
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3055
	struct blk_plug plug;
A
Arne Jansen 已提交
3056 3057 3058 3059 3060 3061 3062
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3063
	u64 logic_end;
3064
	u64 physical_end;
A
Arne Jansen 已提交
3065
	u64 generation;
3066
	int mirror_num;
A
Arne Jansen 已提交
3067 3068
	struct reada_control *reada1;
	struct reada_control *reada2;
3069
	struct btrfs_key key;
A
Arne Jansen 已提交
3070
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3071 3072
	u64 increment = map->stripe_len;
	u64 offset;
3073 3074 3075
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3076 3077
	u64 stripe_logical;
	u64 stripe_end;
3078 3079
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3080
	int stop_loop = 0;
D
David Woodhouse 已提交
3081

3082
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3083
	offset = 0;
3084
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3085 3086 3087
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3088
		mirror_num = 1;
A
Arne Jansen 已提交
3089 3090 3091 3092
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3093
		mirror_num = num % map->sub_stripes + 1;
3094
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3095
		increment = map->stripe_len;
3096
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3097 3098
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3099
		mirror_num = num % map->num_stripes + 1;
3100
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3101
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3102 3103
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3104 3105
	} else {
		increment = map->stripe_len;
3106
		mirror_num = 1;
A
Arne Jansen 已提交
3107 3108 3109 3110 3111 3112
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3113 3114
	ppath = btrfs_alloc_path();
	if (!ppath) {
3115
		btrfs_free_path(path);
3116 3117 3118
		return -ENOMEM;
	}

3119 3120 3121 3122 3123
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3124 3125 3126
	path->search_commit_root = 1;
	path->skip_locking = 1;

3127 3128
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3129
	/*
A
Arne Jansen 已提交
3130 3131 3132
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3133 3134
	 */
	logical = base + offset;
3135
	physical_end = physical + nstripes * map->stripe_len;
3136
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3137
		get_raid56_logic_offset(physical_end, num,
3138
					map, &logic_end, NULL);
3139 3140 3141 3142
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3143
	wait_event(sctx->list_wait,
3144
		   atomic_read(&sctx->bios_in_flight) == 0);
3145
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3146 3147

	/* FIXME it might be better to start readahead at commit root */
3148 3149 3150
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3151
	key_end.objectid = logic_end;
3152 3153
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3154
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3155

3156 3157 3158
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3159 3160
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3161
	key_end.offset = logic_end;
3162
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3163 3164 3165 3166 3167 3168

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3169 3170 3171 3172 3173

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3174
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3175 3176 3177 3178 3179

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3180
	while (physical < physical_end) {
A
Arne Jansen 已提交
3181 3182 3183 3184
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3185
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3186 3187 3188 3189 3190 3191 3192 3193
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3194
			sctx->flush_all_writes = true;
3195
			scrub_submit(sctx);
3196
			mutex_lock(&sctx->wr_lock);
3197
			scrub_wr_submit(sctx);
3198
			mutex_unlock(&sctx->wr_lock);
3199
			wait_event(sctx->list_wait,
3200
				   atomic_read(&sctx->bios_in_flight) == 0);
3201
			sctx->flush_all_writes = false;
3202
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3203 3204
		}

3205 3206 3207 3208 3209 3210
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3211
				/* it is parity strip */
3212
				stripe_logical += base;
3213
				stripe_end = stripe_logical + increment;
3214 3215 3216 3217 3218 3219 3220 3221 3222
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3223 3224 3225 3226
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3227
		key.objectid = logical;
L
Liu Bo 已提交
3228
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3229 3230 3231 3232

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3233

3234
		if (ret > 0) {
3235
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3236 3237
			if (ret < 0)
				goto out;
3238 3239 3240 3241 3242 3243 3244 3245 3246
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3247 3248
		}

L
Liu Bo 已提交
3249
		stop_loop = 0;
A
Arne Jansen 已提交
3250
		while (1) {
3251 3252
			u64 bytes;

A
Arne Jansen 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3262
				stop_loop = 1;
A
Arne Jansen 已提交
3263 3264 3265 3266
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3267 3268 3269 3270
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3271
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3272
				bytes = fs_info->nodesize;
3273 3274 3275 3276
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3277 3278
				goto next;

L
Liu Bo 已提交
3279 3280 3281 3282 3283 3284
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3285 3286 3287 3288 3289 3290

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3291 3292 3293 3294
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3295
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3296
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3297
				       key.objectid, logical);
3298 3299 3300
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3301 3302 3303
				goto next;
			}

L
Liu Bo 已提交
3304 3305 3306 3307
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3308 3309 3310
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3311 3312 3313
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3314
			}
L
Liu Bo 已提交
3315
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3316
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3317 3318
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3319 3320
			}

L
Liu Bo 已提交
3321
			extent_physical = extent_logical - logical + physical;
3322 3323
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3324
			if (sctx->is_dev_replace)
3325 3326 3327 3328
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3329

3330 3331 3332 3333 3334
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3335 3336 3337
			if (ret)
				goto out;

L
Liu Bo 已提交
3338
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3339 3340
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3341
					   extent_logical - logical + physical);
3342 3343 3344

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3345 3346 3347
			if (ret)
				goto out;

L
Liu Bo 已提交
3348 3349
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3350
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3351 3352 3353 3354
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3365
								increment;
3366 3367 3368 3369 3370 3371 3372 3373
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3374 3375 3376 3377
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3378 3379 3380 3381 3382
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3383
				if (physical >= physical_end) {
L
Liu Bo 已提交
3384 3385 3386 3387
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3388 3389 3390
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3391
		btrfs_release_path(path);
3392
skip:
A
Arne Jansen 已提交
3393 3394
		logical += increment;
		physical += map->stripe_len;
3395
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3396 3397 3398 3399 3400
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3401
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3402 3403
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3404
	}
3405
out:
A
Arne Jansen 已提交
3406
	/* push queued extents */
3407
	scrub_submit(sctx);
3408
	mutex_lock(&sctx->wr_lock);
3409
	scrub_wr_submit(sctx);
3410
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3411

3412
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3413
	btrfs_free_path(path);
3414
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3415 3416 3417
	return ret < 0 ? ret : 0;
}

3418
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3419 3420
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3421
					  u64 dev_offset,
3422
					  struct btrfs_block_group_cache *cache)
A
Arne Jansen 已提交
3423
{
3424
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3425
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3426 3427 3428
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3429
	int ret = 0;
A
Arne Jansen 已提交
3430

3431 3432 3433
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3447

3448
	map = em->map_lookup;
A
Arne Jansen 已提交
3449 3450 3451 3452 3453 3454 3455
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3456
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3457
		    map->stripes[i].physical == dev_offset) {
3458
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3459
					   chunk_offset, length);
A
Arne Jansen 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3471
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3472
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3473 3474 3475
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3476 3477
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3478 3479
	u64 length;
	u64 chunk_offset;
3480
	int ret = 0;
3481
	int ro_set;
A
Arne Jansen 已提交
3482 3483 3484 3485 3486
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3487
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3488 3489 3490 3491 3492

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3493
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3494 3495 3496
	path->search_commit_root = 1;
	path->skip_locking = 1;

3497
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3498 3499 3500 3501 3502 3503
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3504 3505 3506 3507 3508
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3509 3510 3511 3512
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3513
					break;
3514 3515 3516
				}
			} else {
				ret = 0;
3517 3518
			}
		}
A
Arne Jansen 已提交
3519 3520 3521 3522 3523 3524

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3525
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3526 3527
			break;

3528
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3540 3541
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3542 3543 3544 3545 3546 3547 3548 3549

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3550 3551 3552 3553 3554 3555

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3556 3557 3558 3559 3560 3561 3562 3563 3564
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3565
		ret = btrfs_inc_block_group_ro(cache);
3566
		if (!ret && sctx->is_dev_replace) {
3567 3568
			/*
			 * If we are doing a device replace wait for any tasks
3569
			 * that started delalloc right before we set the block
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
3587
			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3588 3589 3590 3591 3592 3593 3594 3595 3596
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3597
					ret = btrfs_commit_transaction(trans);
3598 3599 3600 3601 3602 3603 3604
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3605
		scrub_pause_off(fs_info);
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3619
			btrfs_warn(fs_info,
3620
				   "failed setting block group ro: %d", ret);
3621 3622 3623 3624
			btrfs_put_block_group(cache);
			break;
		}

3625
		down_write(&fs_info->dev_replace.rwsem);
3626 3627 3628
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3629 3630
		up_write(&dev_replace->rwsem);

3631
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3632
				  found_key.offset, cache);
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3644
		sctx->flush_all_writes = true;
3645
		scrub_submit(sctx);
3646
		mutex_lock(&sctx->wr_lock);
3647
		scrub_wr_submit(sctx);
3648
		mutex_unlock(&sctx->wr_lock);
3649 3650 3651

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3652 3653

		scrub_pause_on(fs_info);
3654 3655 3656 3657 3658 3659

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3660 3661
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3662
		sctx->flush_all_writes = false;
3663

3664
		scrub_pause_off(fs_info);
3665

3666
		down_write(&fs_info->dev_replace.rwsem);
3667 3668
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3669
		up_write(&fs_info->dev_replace.rwsem);
3670

3671
		if (ro_set)
3672
			btrfs_dec_block_group_ro(cache);
3673

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
3685
			btrfs_mark_bg_unused(cache);
3686 3687 3688 3689
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3690 3691 3692
		btrfs_put_block_group(cache);
		if (ret)
			break;
3693
		if (sctx->is_dev_replace &&
3694
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3695 3696 3697 3698 3699 3700 3701
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3702
skip:
A
Arne Jansen 已提交
3703
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3704
		btrfs_release_path(path);
A
Arne Jansen 已提交
3705 3706 3707
	}

	btrfs_free_path(path);
3708

3709
	return ret;
A
Arne Jansen 已提交
3710 3711
}

3712 3713
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3714 3715 3716 3717 3718
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3719
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3720

3721
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3722 3723
		return -EIO;

3724
	/* Seed devices of a new filesystem has their own generation. */
3725
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3726 3727
		gen = scrub_dev->generation;
	else
3728
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3729 3730 3731

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3732 3733
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3734 3735
			break;

3736
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3737
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3738
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3739 3740 3741
		if (ret)
			return ret;
	}
3742
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3743 3744 3745 3746 3747 3748 3749

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3750 3751
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3752
{
3753
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3754
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3755

3756 3757
	lockdep_assert_held(&fs_info->scrub_lock);

3758
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3759
		ASSERT(fs_info->scrub_workers == NULL);
3760 3761
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
3762 3763 3764
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3765
		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3766
		fs_info->scrub_wr_completion_workers =
3767
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3768
					      max_active, 2);
3769 3770 3771
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3772
		ASSERT(fs_info->scrub_parity_workers == NULL);
3773
		fs_info->scrub_parity_workers =
3774
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3775
					      max_active, 2);
3776 3777
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
3778 3779 3780 3781

		refcount_set(&fs_info->scrub_workers_refcnt, 1);
	} else {
		refcount_inc(&fs_info->scrub_workers_refcnt);
A
Arne Jansen 已提交
3782
	}
3783 3784 3785 3786 3787 3788 3789 3790
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3791 3792
}

3793 3794
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3795
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3796
{
3797
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3798 3799
	int ret;
	struct btrfs_device *dev;
3800
	unsigned int nofs_flag;
3801 3802 3803
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
A
Arne Jansen 已提交
3804

3805
	if (btrfs_fs_closing(fs_info))
3806
		return -EAGAIN;
A
Arne Jansen 已提交
3807

3808
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3809 3810 3811 3812 3813
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3814 3815
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3816 3817
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3818 3819 3820
		return -EINVAL;
	}

3821
	if (fs_info->sectorsize != PAGE_SIZE) {
3822
		/* not supported for data w/o checksums */
3823
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3824
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3825
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3826 3827 3828
		return -EINVAL;
	}

3829
	if (fs_info->nodesize >
3830
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3831
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3832 3833 3834 3835
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3836 3837
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3838
		       fs_info->nodesize,
3839
		       SCRUB_MAX_PAGES_PER_BLOCK,
3840
		       fs_info->sectorsize,
3841 3842 3843 3844
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

3845 3846 3847 3848
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3849

3850
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3851
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3852 3853
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3854
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855 3856
		ret = -ENODEV;
		goto out_free_ctx;
A
Arne Jansen 已提交
3857 3858
	}

3859 3860
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3861
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3862 3863
		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
				rcu_str_deref(dev->name));
3864 3865
		ret = -EROFS;
		goto out_free_ctx;
3866 3867
	}

3868
	mutex_lock(&fs_info->scrub_lock);
3869
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3870
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3871
		mutex_unlock(&fs_info->scrub_lock);
3872
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3873 3874
		ret = -EIO;
		goto out_free_ctx;
A
Arne Jansen 已提交
3875 3876
	}

3877
	down_read(&fs_info->dev_replace.rwsem);
3878
	if (dev->scrub_ctx ||
3879 3880
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3881
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
3882
		mutex_unlock(&fs_info->scrub_lock);
3883
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3884 3885
		ret = -EINPROGRESS;
		goto out_free_ctx;
A
Arne Jansen 已提交
3886
	}
3887
	up_read(&fs_info->dev_replace.rwsem);
3888 3889 3890 3891 3892

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893
		goto out_free_ctx;
3894 3895
	}

3896
	sctx->readonly = readonly;
3897
	dev->scrub_ctx = sctx;
3898
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3899

3900 3901 3902 3903
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3904
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3905 3906 3907
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
3918
	if (!is_dev_replace) {
3919
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3920 3921 3922 3923
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3924
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3925
		ret = scrub_supers(sctx, dev);
3926
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3927
	}
A
Arne Jansen 已提交
3928 3929

	if (!ret)
3930
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3931
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
3932

3933
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3934 3935 3936
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3937
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3938

A
Arne Jansen 已提交
3939
	if (progress)
3940
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3941

3942 3943 3944 3945
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
3946
	mutex_lock(&fs_info->scrub_lock);
3947
	dev->scrub_ctx = NULL;
3948
	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3949 3950 3951
		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;
3952 3953 3954 3955

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
3956
	}
A
Arne Jansen 已提交
3957 3958
	mutex_unlock(&fs_info->scrub_lock);

3959 3960 3961
	btrfs_destroy_workqueue(scrub_workers);
	btrfs_destroy_workqueue(scrub_wr_comp);
	btrfs_destroy_workqueue(scrub_parity);
3962
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3963

3964 3965 3966 3967 3968
	return ret;

out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
3969 3970 3971
	return ret;
}

3972
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3987
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3988 3989 3990 3991 3992
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3993
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4014
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4015
{
4016
	struct btrfs_fs_info *fs_info = dev->fs_info;
4017
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4018 4019

	mutex_lock(&fs_info->scrub_lock);
4020
	sctx = dev->scrub_ctx;
4021
	if (!sctx) {
A
Arne Jansen 已提交
4022 4023 4024
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4025
	atomic_inc(&sctx->cancel_req);
4026
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4027 4028
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4029
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4030 4031 4032 4033 4034 4035
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4036

4037
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4038 4039 4040
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4041
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4042

4043
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4044
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
A
Arne Jansen 已提交
4045
	if (dev)
4046
		sctx = dev->scrub_ctx;
4047 4048
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4049
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4050

4051
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4052
}
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4065
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4066 4067 4068
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4069
		btrfs_put_bbio(bbio);
4070 4071 4072 4073 4074 4075
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4076
	btrfs_put_bbio(bbio);
4077
}