compression.c 39.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
C
Chris Mason 已提交
20 21 22 23 24 25 26 27 28 29
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

45
static int btrfs_decompress_bio(struct compressed_bio *cb);
46

47
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 49
				      unsigned long disk_size)
{
50
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51

52
	return sizeof(struct compressed_bio) +
53
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 55
}

56
static int check_compressed_csum(struct btrfs_inode *inode,
57 58 59 60 61 62 63 64 65 66
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

67
	if (inode->flags & BTRFS_INODE_NODATASUM)
68 69 70 71 72 73
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

74
		kaddr = kmap_atomic(page);
75
		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76
		btrfs_csum_final(csum, (u8 *)&csum);
77
		kunmap_atomic(kaddr);
78 79

		if (csum != *cb_sum) {
80
			btrfs_print_data_csum_error(inode, disk_start, csum,
81
					*cb_sum, cb->mirror_num);
82 83 84 85 86 87 88 89 90 91 92
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
93 94 95 96 97 98 99 100 101 102
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
103
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
104 105 106 107 108
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
109
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110
	int ret = 0;
C
Chris Mason 已提交
111

112
	if (bio->bi_status)
C
Chris Mason 已提交
113 114 115 116 117
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
118
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
119 120
		goto out;

121 122 123 124 125 126 127 128
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

129 130 131 132 133 134 135
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

136
	inode = cb->inode;
137
	ret = check_compressed_csum(BTRFS_I(inode), cb,
138
				    (u64)bio->bi_iter.bi_sector << 9);
139 140 141
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
142 143 144
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
145 146
	ret = btrfs_decompress_bio(cb);

147
csum_failed:
C
Chris Mason 已提交
148 149 150 151 152 153 154 155
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
156
		put_page(page);
C
Chris Mason 已提交
157 158 159
	}

	/* do io completion on the original bio */
160
	if (cb->errors) {
C
Chris Mason 已提交
161
		bio_io_error(cb->orig_bio);
162
	} else {
163 164
		int i;
		struct bio_vec *bvec;
165
		struct bvec_iter_all iter_all;
166 167 168 169 170

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
171
		ASSERT(!bio_flagged(bio, BIO_CLONED));
172
		bio_for_each_segment_all(bvec, cb->orig_bio, i, iter_all)
173
			SetPageChecked(bvec->bv_page);
174

175
		bio_endio(cb->orig_bio);
176
	}
C
Chris Mason 已提交
177 178 179 180 181 182 183 184 185 186 187 188

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
189 190
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
191
{
192 193
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
194 195 196 197 198
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

199 200 201
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
202
	while (nr_pages > 0) {
C
Chris Mason 已提交
203
		ret = find_get_pages_contig(inode->i_mapping, index,
204 205
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
206 207 208 209 210 211
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
212 213
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
214
			end_page_writeback(pages[i]);
215
			put_page(pages[i]);
C
Chris Mason 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
231
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
232 233 234 235 236 237
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

238
	if (bio->bi_status)
C
Chris Mason 已提交
239 240 241 242 243
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
244
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
245 246 247 248 249 250
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
251
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
252
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
253
			cb->start, cb->start + cb->len - 1,
254
			bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
C
Chris Mason 已提交
255
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
256

257
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
258 259 260 261 262 263 264 265 266 267
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
268
		put_page(page);
C
Chris Mason 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
287
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
288 289 290
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
291 292
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
293
{
294
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
295 296 297
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
298
	int pg_index = 0;
C
Chris Mason 已提交
299 300 301
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
302
	blk_status_t ret;
303
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
304

305
	WARN_ON(!PAGE_ALIGNED(start));
306
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
307
	if (!cb)
308
		return BLK_STS_RESOURCE;
309
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
310 311 312 313
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
314
	cb->mirror_num = 0;
C
Chris Mason 已提交
315 316 317 318 319
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

320
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
321

322
	bio = btrfs_bio_alloc(bdev, first_byte);
323
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
324 325
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
326
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
327 328 329

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
330
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
331 332
		int submit = 0;

333
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
334
		page->mapping = inode->i_mapping;
335
		if (bio->bi_iter.bi_size)
336 337
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
338

C
Chris Mason 已提交
339
		page->mapping = NULL;
340
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
341
		    PAGE_SIZE) {
342 343 344 345 346 347
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
348
			refcount_inc(&cb->pending_bios);
349 350
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
351
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
352

353
			if (!skip_sum) {
354
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
355
				BUG_ON(ret); /* -ENOMEM */
356
			}
357

358
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
359
			if (ret) {
360
				bio->bi_status = ret;
361 362
				bio_endio(bio);
			}
C
Chris Mason 已提交
363

364
			bio = btrfs_bio_alloc(bdev, first_byte);
365
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
366 367
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
368
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
369
		}
370
		if (bytes_left < PAGE_SIZE) {
371
			btrfs_info(fs_info,
372
					"bytes left %lu compress len %lu nr %lu",
373 374
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
375 376
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
377
		cond_resched();
C
Chris Mason 已提交
378 379
	}

380
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
381
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
382

383
	if (!skip_sum) {
384
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
385
		BUG_ON(ret); /* -ENOMEM */
386
	}
387

388
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
389
	if (ret) {
390
		bio->bi_status = ret;
391 392
		bio_endio(bio);
	}
C
Chris Mason 已提交
393 394 395 396

	return 0;
}

397 398
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
399
	struct bio_vec *last = bio_last_bvec_all(bio);
400 401 402 403

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

404 405 406 407 408
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
409
	unsigned long pg_index;
410 411 412 413 414 415 416 417 418 419 420 421
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

422
	last_offset = bio_end_offset(cb->orig_bio);
423 424 425 426 427 428
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

429
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
430

C
Chris Mason 已提交
431
	while (last_offset < compressed_end) {
432
		pg_index = last_offset >> PAGE_SHIFT;
433

434
		if (pg_index > end_index)
435 436
			break;

437
		page = xa_load(&mapping->i_pages, pg_index);
438
		if (page && !xa_is_value(page)) {
439 440 441 442 443 444
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

445 446
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
447 448 449
		if (!page)
			break;

450
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
451
			put_page(page);
452 453 454
			goto next;
		}

455
		end = last_offset + PAGE_SIZE - 1;
456 457 458 459 460 461
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
462
		lock_extent(tree, last_offset, end);
463
		read_lock(&em_tree->lock);
464
		em = lookup_extent_mapping(em_tree, last_offset,
465
					   PAGE_SIZE);
466
		read_unlock(&em_tree->lock);
467 468

		if (!em || last_offset < em->start ||
469
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
470
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
471
			free_extent_map(em);
472
			unlock_extent(tree, last_offset, end);
473
			unlock_page(page);
474
			put_page(page);
475 476 477 478 479 480
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
481
			size_t zero_offset = offset_in_page(isize);
482 483 484

			if (zero_offset) {
				int zeros;
485
				zeros = PAGE_SIZE - zero_offset;
486
				userpage = kmap_atomic(page);
487 488
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
489
				kunmap_atomic(userpage);
490 491 492 493
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
494
				   PAGE_SIZE, 0);
495

496
		if (ret == PAGE_SIZE) {
497
			nr_pages++;
498
			put_page(page);
499
		} else {
500
			unlock_extent(tree, last_offset, end);
501
			unlock_page(page);
502
			put_page(page);
503 504 505
			break;
		}
next:
506
		last_offset += PAGE_SIZE;
507 508 509 510
	}
	return 0;
}

C
Chris Mason 已提交
511 512 513 514 515
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
516
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
517 518 519 520 521
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
522
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
523 524
				 int mirror_num, unsigned long bio_flags)
{
525
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
526 527 528 529
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
530
	unsigned long pg_index;
C
Chris Mason 已提交
531 532 533
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
534
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
535 536
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
537
	struct extent_map *em;
538
	blk_status_t ret = BLK_STS_RESOURCE;
539
	int faili = 0;
540
	u32 *sums;
C
Chris Mason 已提交
541 542 543 544

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
545
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
546
	em = lookup_extent_mapping(em_tree,
547
				   page_offset(bio_first_page_all(bio)),
548
				   PAGE_SIZE);
549
	read_unlock(&em_tree->lock);
550
	if (!em)
551
		return BLK_STS_IOERR;
C
Chris Mason 已提交
552

553
	compressed_len = em->block_len;
554
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
555 556 557
	if (!cb)
		goto out;

558
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
559 560
	cb->errors = 0;
	cb->inode = inode;
561 562
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
563

564
	cb->start = em->orig_start;
565 566
	em_len = em->len;
	em_start = em->start;
567

C
Chris Mason 已提交
568
	free_extent_map(em);
569
	em = NULL;
C
Chris Mason 已提交
570

C
Christoph Hellwig 已提交
571
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
572
	cb->compressed_len = compressed_len;
573
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
574 575
	cb->orig_bio = bio;

576
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
577
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
578
				       GFP_NOFS);
579 580 581
	if (!cb->compressed_pages)
		goto fail1;

582
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
583

584 585
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
586
							      __GFP_HIGHMEM);
587 588
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
589
			ret = BLK_STS_RESOURCE;
590
			goto fail2;
591
		}
C
Chris Mason 已提交
592
	}
593
	faili = nr_pages - 1;
C
Chris Mason 已提交
594 595
	cb->nr_pages = nr_pages;

596
	add_ra_bio_pages(inode, em_start + em_len, cb);
597 598

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
599
	cb->len = bio->bi_iter.bi_size;
600

601
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
602
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
603 604
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
605
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
606

607
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
608 609
		int submit = 0;

610
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
611
		page->mapping = inode->i_mapping;
612
		page->index = em_start >> PAGE_SHIFT;
613

614
		if (comp_bio->bi_iter.bi_size)
615 616
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
617

C
Chris Mason 已提交
618
		page->mapping = NULL;
619
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
620
		    PAGE_SIZE) {
621 622
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
623
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
624

625 626 627 628 629 630
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
631
			refcount_inc(&cb->pending_bios);
632

633
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
634 635
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
							    sums);
636
				BUG_ON(ret); /* -ENOMEM */
637
			}
638
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
639
					     fs_info->sectorsize);
640

641
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
642
			if (ret) {
643
				comp_bio->bi_status = ret;
644 645
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
646

647
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
648
			comp_bio->bi_opf = REQ_OP_READ;
649 650 651
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

652
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
653
		}
654
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
655 656
	}

657
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
658
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
659

660
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
661
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
662
		BUG_ON(ret); /* -ENOMEM */
663
	}
664

665
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
666
	if (ret) {
667
		comp_bio->bi_status = ret;
668 669
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
670 671

	return 0;
672 673

fail2:
674 675 676 677
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
678 679 680 681 682 683 684

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
685
}
686

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
722 723

struct heuristic_ws {
724 725
	/* Partial copy of input data */
	u8 *sample;
726
	u32 sample_size;
727 728
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
729 730
	/* Sorting buffer */
	struct bucket_item *bucket_b;
731 732 733
	struct list_head list;
};

734 735 736 737 738 739 740 741 742 743 744 745
static struct workspace_manager heuristic_wsm;

static void heuristic_init_workspace_manager(void)
{
	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
}

static void heuristic_cleanup_workspace_manager(void)
{
	btrfs_cleanup_workspace_manager(&heuristic_wsm);
}

746
static struct list_head *heuristic_get_workspace(unsigned int level)
747
{
748
	return btrfs_get_workspace(&heuristic_wsm, level);
749 750 751 752 753 754 755
}

static void heuristic_put_workspace(struct list_head *ws)
{
	btrfs_put_workspace(&heuristic_wsm, ws);
}

756 757 758 759 760 761
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

762 763
	kvfree(workspace->sample);
	kfree(workspace->bucket);
764
	kfree(workspace->bucket_b);
765 766 767
	kfree(workspace);
}

768
static struct list_head *alloc_heuristic_ws(unsigned int level)
769 770 771 772 773 774 775
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

776 777 778 779 780 781 782
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
783

784 785 786 787
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

788
	INIT_LIST_HEAD(&ws->list);
789
	return &ws->list;
790 791 792
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
793 794
}

795
const struct btrfs_compress_op btrfs_heuristic_compress = {
796 797 798 799
	.init_workspace_manager = heuristic_init_workspace_manager,
	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
	.get_workspace = heuristic_get_workspace,
	.put_workspace = heuristic_put_workspace,
800 801 802 803
	.alloc_workspace = alloc_heuristic_ws,
	.free_workspace = free_heuristic_ws,
};

804
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
805 806
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
807
	&btrfs_zlib_compress,
L
Li Zefan 已提交
808
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
809
	&btrfs_zstd_compress,
810 811
};

812 813
void btrfs_init_workspace_manager(struct workspace_manager *wsm,
				  const struct btrfs_compress_op *ops)
814
{
815
	struct list_head *workspace;
816

817
	wsm->ops = ops;
818

819 820 821 822
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
823

824 825 826 827
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
828
	workspace = wsm->ops->alloc_workspace(0);
829 830 831 832
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
833 834 835
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
836 837 838
	}
}

839
void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
840 841 842 843 844 845 846 847
{
	struct list_head *ws;

	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
		wsman->ops->free_workspace(ws);
		atomic_dec(&wsman->total_ws);
848 849 850 851
	}
}

/*
852 853 854 855
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
856
 */
857 858
struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
				      unsigned int level)
859 860 861
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
862
	unsigned nofs_flag;
863 864 865 866 867 868
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

869 870 871 872 873
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
874 875

again:
876 877 878
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
879
		list_del(workspace);
880
		(*free_ws)--;
881
		spin_unlock(ws_lock);
882 883 884
		return workspace;

	}
885
	if (atomic_read(total_ws) > cpus) {
886 887
		DEFINE_WAIT(wait);

888 889
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
890
		if (atomic_read(total_ws) > cpus && !*free_ws)
891
			schedule();
892
		finish_wait(ws_wait, &wait);
893 894
		goto again;
	}
895
	atomic_inc(total_ws);
896
	spin_unlock(ws_lock);
897

898 899 900 901 902 903
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
904
	workspace = wsm->ops->alloc_workspace(level);
905 906
	memalloc_nofs_restore(nofs_flag);

907
	if (IS_ERR(workspace)) {
908
		atomic_dec(total_ws);
909
		wake_up(ws_wait);
910 911 912 913 914 915

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
916 917 918 919
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
920
		 */
921 922 923 924 925 926
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
927
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
928 929
			}
		}
930
		goto again;
931 932 933 934
	}
	return workspace;
}

935
static struct list_head *get_workspace(int type, int level)
936
{
937
	return btrfs_compress_op[type]->get_workspace(level);
938 939
}

940 941 942 943
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
944
void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
945
{
946 947 948 949 950 951
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

952 953 954 955 956
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
957 958

	spin_lock(ws_lock);
959
	if (*free_ws <= num_online_cpus()) {
960
		list_add(ws, idle_ws);
961
		(*free_ws)++;
962
		spin_unlock(ws_lock);
963 964
		goto wake;
	}
965
	spin_unlock(ws_lock);
966

967
	wsm->ops->free_workspace(ws);
968
	atomic_dec(total_ws);
969
wake:
970
	cond_wake_up(ws_wait);
971 972
}

973 974
static void put_workspace(int type, struct list_head *ws)
{
975
	return btrfs_compress_op[type]->put_workspace(ws);
976 977
}

978
/*
979 980
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
981
 *
982 983 984 985 986
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
987 988
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
989
 *
990 991
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
992 993 994
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
995 996
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
997
 *
998
 * @max_out tells us the max number of bytes that we're allowed to
999 1000
 * stuff into pages
 */
1001
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1002
			 u64 start, struct page **pages,
1003 1004
			 unsigned long *out_pages,
			 unsigned long *total_in,
1005
			 unsigned long *total_out)
1006
{
1007
	int type = btrfs_compress_type(type_level);
1008
	int level = btrfs_compress_level(type_level);
1009 1010 1011
	struct list_head *workspace;
	int ret;

1012
	workspace = get_workspace(type, level);
1013
	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1014
						      start, pages,
1015
						      out_pages,
1016
						      total_in, total_out);
1017
	put_workspace(type, workspace);
1018 1019 1020 1021 1022 1023 1024 1025
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1026
 * orig_bio contains the pages from the file that we want to decompress into
1027 1028 1029 1030 1031 1032 1033 1034
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1035
static int btrfs_decompress_bio(struct compressed_bio *cb)
1036 1037 1038
{
	struct list_head *workspace;
	int ret;
1039
	int type = cb->compress_type;
1040

1041
	workspace = get_workspace(type, 0);
1042
	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1043
	put_workspace(type, workspace);
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1059
	workspace = get_workspace(type, 0);
1060
	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1061 1062
						  dest_page, start_byte,
						  srclen, destlen);
1063
	put_workspace(type, workspace);
1064

1065 1066 1067
	return ret;
}

1068 1069 1070 1071 1072
void __init btrfs_init_compress(void)
{
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1073
		btrfs_compress_op[i]->init_workspace_manager();
1074 1075
}

1076
void __cold btrfs_exit_compress(void)
1077
{
1078 1079 1080
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1081
		btrfs_compress_op[i]->cleanup_workspace_manager();
1082
}
1083 1084 1085 1086 1087 1088 1089 1090

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1091
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1092
			      unsigned long total_out, u64 disk_start,
1093
			      struct bio *bio)
1094 1095 1096 1097
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1098
	unsigned long prev_start_byte;
1099 1100 1101
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1102
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1103 1104 1105 1106 1107

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1108
	start_byte = page_offset(bvec.bv_page) - disk_start;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1128 1129
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1130
		bytes = min(bytes, working_bytes);
1131 1132 1133

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1134
		kunmap_atomic(kaddr);
1135
		flush_dcache_page(bvec.bv_page);
1136 1137 1138 1139 1140 1141

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1142 1143 1144 1145
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1146
		prev_start_byte = start_byte;
1147
		start_byte = page_offset(bvec.bv_page) - disk_start;
1148

1149
		/*
1150 1151 1152 1153
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1154
		 */
1155 1156 1157 1158 1159 1160 1161
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1174 1175 1176 1177 1178
		}
	}

	return 1;
}
1179

1180 1181 1182
/*
 * Shannon Entropy calculation
 *
1183
 * Pure byte distribution analysis fails to determine compressibility of data.
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1247
 * Use 16 u32 counters for calculating new position in buf array
1248 1249 1250 1251 1252 1253
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1254
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1255
		       int num)
1256
{
1257 1258 1259 1260 1261 1262 1263 1264
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1265

1266 1267 1268 1269
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1270
	max_num = array[0].count;
1271
	for (i = 1; i < num; i++) {
1272
		buf_num = array[i].count;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1285
			buf_num = array[i].count;
1286 1287 1288 1289 1290 1291 1292 1293
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1294
			buf_num = array[i].count;
1295 1296 1297
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1298
			array_buf[new_addr] = array[i];
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1312
			buf_num = array_buf[i].count;
1313 1314 1315 1316 1317 1318 1319 1320
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1321
			buf_num = array_buf[i].count;
1322 1323 1324
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1325
			array[new_addr] = array_buf[i];
1326 1327 1328 1329
		}

		shift += RADIX_BASE;
	}
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1359
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1415 1416 1417 1418 1419 1420 1421 1422
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1492
	struct list_head *ws_list = get_workspace(0, 0);
1493
	struct heuristic_ws *ws;
1494 1495
	u32 i;
	u8 byte;
1496
	int ret = 0;
1497

1498 1499
	ws = list_entry(ws_list, struct heuristic_ws, list);

1500 1501
	heuristic_collect_sample(inode, start, end, ws);

1502 1503 1504 1505 1506
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1507 1508 1509 1510 1511
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1512 1513
	}

1514 1515 1516 1517 1518 1519
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1560
out:
1561
	put_workspace(0, ws_list);
1562 1563
	return ret;
}
1564

1565 1566 1567 1568 1569
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1570
{
1571 1572 1573 1574
	unsigned int level = 0;
	int ret;

	if (!type)
1575 1576
		return 0;

1577 1578 1579 1580 1581 1582 1583
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

	level = btrfs_compress_op[type]->set_level(level);
1584

1585
	return level;
1586
}