compression.c 40.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
C
Chris Mason 已提交
21 22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

62
static int btrfs_decompress_bio(struct compressed_bio *cb);
63

64
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
65 66
				      unsigned long disk_size)
{
67
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
68

69
	return sizeof(struct compressed_bio) +
70
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
71 72
}

73
static int check_compressed_csum(struct btrfs_inode *inode,
74 75 76
				 struct compressed_bio *cb,
				 u64 disk_start)
{
77
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
78
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
80 81 82 83
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
84
	u8 csum[BTRFS_CSUM_SIZE];
85
	u8 *cb_sum = cb->sums;
86

87
	if (inode->flags & BTRFS_INODE_NODATASUM)
88 89
		return 0;

90 91
	shash->tfm = fs_info->csum_shash;

92 93 94
	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];

95
		crypto_shash_init(shash);
96
		kaddr = kmap_atomic(page);
97
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
98
		kunmap_atomic(kaddr);
99
		crypto_shash_final(shash, (u8 *)&csum);
100

101
		if (memcmp(&csum, cb_sum, csum_size)) {
102
			btrfs_print_data_csum_error(inode, disk_start,
103
					csum, cb_sum, cb->mirror_num);
104 105 106
			ret = -EIO;
			goto fail;
		}
107
		cb_sum += csum_size;
108 109 110 111 112 113 114

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
115 116 117 118 119 120 121 122 123 124
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
125
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
126 127 128 129 130
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
131
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
132
	int ret = 0;
C
Chris Mason 已提交
133

134
	if (bio->bi_status)
C
Chris Mason 已提交
135 136 137 138 139
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
140
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
141 142
		goto out;

143 144 145 146 147 148 149 150
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

151 152 153 154 155 156 157
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

158
	inode = cb->inode;
159
	ret = check_compressed_csum(BTRFS_I(inode), cb,
160
				    (u64)bio->bi_iter.bi_sector << 9);
161 162 163
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
164 165 166
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
167 168
	ret = btrfs_decompress_bio(cb);

169
csum_failed:
C
Chris Mason 已提交
170 171 172 173 174 175 176 177
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
178
		put_page(page);
C
Chris Mason 已提交
179 180 181
	}

	/* do io completion on the original bio */
182
	if (cb->errors) {
C
Chris Mason 已提交
183
		bio_io_error(cb->orig_bio);
184
	} else {
185
		struct bio_vec *bvec;
186
		struct bvec_iter_all iter_all;
187 188 189 190 191

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
192
		ASSERT(!bio_flagged(bio, BIO_CLONED));
193
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
194
			SetPageChecked(bvec->bv_page);
195

196
		bio_endio(cb->orig_bio);
197
	}
C
Chris Mason 已提交
198 199 200 201 202 203 204 205 206 207 208 209

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
210 211
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
212
{
213 214
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
215 216 217 218 219
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

220 221 222
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
223
	while (nr_pages > 0) {
C
Chris Mason 已提交
224
		ret = find_get_pages_contig(inode->i_mapping, index,
225 226
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
227 228 229 230 231 232
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
233 234
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
235
			end_page_writeback(pages[i]);
236
			put_page(pages[i]);
C
Chris Mason 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
252
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
253 254 255 256 257 258
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

259
	if (bio->bi_status)
C
Chris Mason 已提交
260 261 262 263 264
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
265
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
266 267 268 269 270 271
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
272
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
273
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
274
			cb->start, cb->start + cb->len - 1,
275
			bio->bi_status == BLK_STS_OK);
C
Chris Mason 已提交
276
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
277

278
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
279 280 281 282 283 284 285 286 287 288
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
289
		put_page(page);
C
Chris Mason 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
308
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
309 310 311
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
312 313
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
314
{
315
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
316 317 318
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
319
	int pg_index = 0;
C
Chris Mason 已提交
320 321 322
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
323
	blk_status_t ret;
324
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
325

326
	WARN_ON(!PAGE_ALIGNED(start));
327
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
328
	if (!cb)
329
		return BLK_STS_RESOURCE;
330
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
331 332 333 334
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
335
	cb->mirror_num = 0;
C
Chris Mason 已提交
336 337 338 339 340
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

341
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
342

343
	bio = btrfs_bio_alloc(bdev, first_byte);
344
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
345 346
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
347
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
348 349 350

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
351
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
352 353
		int submit = 0;

354
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
355
		page->mapping = inode->i_mapping;
356
		if (bio->bi_iter.bi_size)
357 358
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
359

C
Chris Mason 已提交
360
		page->mapping = NULL;
361
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
362
		    PAGE_SIZE) {
363 364 365 366 367 368
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
369
			refcount_inc(&cb->pending_bios);
370 371
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
372
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
373

374
			if (!skip_sum) {
375
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
376
				BUG_ON(ret); /* -ENOMEM */
377
			}
378

379
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
380
			if (ret) {
381
				bio->bi_status = ret;
382 383
				bio_endio(bio);
			}
C
Chris Mason 已提交
384

385
			bio = btrfs_bio_alloc(bdev, first_byte);
386
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
387 388
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
389
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
390
		}
391
		if (bytes_left < PAGE_SIZE) {
392
			btrfs_info(fs_info,
393
					"bytes left %lu compress len %lu nr %lu",
394 395
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
396 397
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
398
		cond_resched();
C
Chris Mason 已提交
399 400
	}

401
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
402
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
403

404
	if (!skip_sum) {
405
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
406
		BUG_ON(ret); /* -ENOMEM */
407
	}
408

409
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
410
	if (ret) {
411
		bio->bi_status = ret;
412 413
		bio_endio(bio);
	}
C
Chris Mason 已提交
414 415 416 417

	return 0;
}

418 419
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
420
	struct bio_vec *last = bio_last_bvec_all(bio);
421 422 423 424

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

425 426 427 428 429
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
430
	unsigned long pg_index;
431 432 433 434 435 436 437 438 439 440 441 442
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

443
	last_offset = bio_end_offset(cb->orig_bio);
444 445 446 447 448 449
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

450
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
451

C
Chris Mason 已提交
452
	while (last_offset < compressed_end) {
453
		pg_index = last_offset >> PAGE_SHIFT;
454

455
		if (pg_index > end_index)
456 457
			break;

458
		page = xa_load(&mapping->i_pages, pg_index);
459
		if (page && !xa_is_value(page)) {
460 461 462 463 464 465
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

466 467
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
468 469 470
		if (!page)
			break;

471
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
472
			put_page(page);
473 474 475
			goto next;
		}

476
		end = last_offset + PAGE_SIZE - 1;
477 478 479 480 481 482
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
483
		lock_extent(tree, last_offset, end);
484
		read_lock(&em_tree->lock);
485
		em = lookup_extent_mapping(em_tree, last_offset,
486
					   PAGE_SIZE);
487
		read_unlock(&em_tree->lock);
488 489

		if (!em || last_offset < em->start ||
490
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
491
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
492
			free_extent_map(em);
493
			unlock_extent(tree, last_offset, end);
494
			unlock_page(page);
495
			put_page(page);
496 497 498 499 500 501
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
502
			size_t zero_offset = offset_in_page(isize);
503 504 505

			if (zero_offset) {
				int zeros;
506
				zeros = PAGE_SIZE - zero_offset;
507
				userpage = kmap_atomic(page);
508 509
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
510
				kunmap_atomic(userpage);
511 512 513 514
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
515
				   PAGE_SIZE, 0);
516

517
		if (ret == PAGE_SIZE) {
518
			nr_pages++;
519
			put_page(page);
520
		} else {
521
			unlock_extent(tree, last_offset, end);
522
			unlock_page(page);
523
			put_page(page);
524 525 526
			break;
		}
next:
527
		last_offset += PAGE_SIZE;
528 529 530 531
	}
	return 0;
}

C
Chris Mason 已提交
532 533 534 535 536
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
537
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
538 539 540 541 542
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
543
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
544 545
				 int mirror_num, unsigned long bio_flags)
{
546
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
547 548 549 550
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
551
	unsigned long pg_index;
C
Chris Mason 已提交
552 553 554
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
555
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
556 557
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
558
	struct extent_map *em;
559
	blk_status_t ret = BLK_STS_RESOURCE;
560
	int faili = 0;
561 562
	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
	u8 *sums;
C
Chris Mason 已提交
563 564 565 566

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
567
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
568
	em = lookup_extent_mapping(em_tree,
569
				   page_offset(bio_first_page_all(bio)),
570
				   PAGE_SIZE);
571
	read_unlock(&em_tree->lock);
572
	if (!em)
573
		return BLK_STS_IOERR;
C
Chris Mason 已提交
574

575
	compressed_len = em->block_len;
576
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
577 578 579
	if (!cb)
		goto out;

580
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
581 582
	cb->errors = 0;
	cb->inode = inode;
583
	cb->mirror_num = mirror_num;
584
	sums = cb->sums;
C
Chris Mason 已提交
585

586
	cb->start = em->orig_start;
587 588
	em_len = em->len;
	em_start = em->start;
589

C
Chris Mason 已提交
590
	free_extent_map(em);
591
	em = NULL;
C
Chris Mason 已提交
592

C
Christoph Hellwig 已提交
593
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
594
	cb->compressed_len = compressed_len;
595
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
596 597
	cb->orig_bio = bio;

598
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
599
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
600
				       GFP_NOFS);
601 602 603
	if (!cb->compressed_pages)
		goto fail1;

604
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
605

606 607
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
608
							      __GFP_HIGHMEM);
609 610
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
611
			ret = BLK_STS_RESOURCE;
612
			goto fail2;
613
		}
C
Chris Mason 已提交
614
	}
615
	faili = nr_pages - 1;
C
Chris Mason 已提交
616 617
	cb->nr_pages = nr_pages;

618
	add_ra_bio_pages(inode, em_start + em_len, cb);
619 620

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
621
	cb->len = bio->bi_iter.bi_size;
622

623
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
624
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
625 626
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
627
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
628

629
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630 631
		int submit = 0;

632
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
633
		page->mapping = inode->i_mapping;
634
		page->index = em_start >> PAGE_SHIFT;
635

636
		if (comp_bio->bi_iter.bi_size)
637 638
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
639

C
Chris Mason 已提交
640
		page->mapping = NULL;
641
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
642
		    PAGE_SIZE) {
643 644
			unsigned int nr_sectors;

645 646
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
647
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
648

649 650 651 652 653 654
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
655
			refcount_inc(&cb->pending_bios);
656

657
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
658
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
659
							    sums);
660
				BUG_ON(ret); /* -ENOMEM */
661
			}
662 663 664 665

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
			sums += csum_size * nr_sectors;
666

667
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
668
			if (ret) {
669
				comp_bio->bi_status = ret;
670 671
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
672

673
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
674
			comp_bio->bi_opf = REQ_OP_READ;
675 676 677
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

678
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
679
		}
680
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
681 682
	}

683
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
684
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
685

686
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
687
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
688
		BUG_ON(ret); /* -ENOMEM */
689
	}
690

691
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
692
	if (ret) {
693
		comp_bio->bi_status = ret;
694 695
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
696 697

	return 0;
698 699

fail2:
700 701 702 703
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
704 705 706 707 708 709 710

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
711
}
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
748 749

struct heuristic_ws {
750 751
	/* Partial copy of input data */
	u8 *sample;
752
	u32 sample_size;
753 754
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
755 756
	/* Sorting buffer */
	struct bucket_item *bucket_b;
757 758 759
	struct list_head list;
};

760 761 762 763 764 765 766 767 768 769 770 771
static struct workspace_manager heuristic_wsm;

static void heuristic_init_workspace_manager(void)
{
	btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
}

static void heuristic_cleanup_workspace_manager(void)
{
	btrfs_cleanup_workspace_manager(&heuristic_wsm);
}

772
static struct list_head *heuristic_get_workspace(unsigned int level)
773
{
774
	return btrfs_get_workspace(&heuristic_wsm, level);
775 776 777 778 779 780 781
}

static void heuristic_put_workspace(struct list_head *ws)
{
	btrfs_put_workspace(&heuristic_wsm, ws);
}

782 783 784 785 786 787
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

788 789
	kvfree(workspace->sample);
	kfree(workspace->bucket);
790
	kfree(workspace->bucket_b);
791 792 793
	kfree(workspace);
}

794
static struct list_head *alloc_heuristic_ws(unsigned int level)
795 796 797 798 799 800 801
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

802 803 804 805 806 807 808
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
809

810 811 812 813
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

814
	INIT_LIST_HEAD(&ws->list);
815
	return &ws->list;
816 817 818
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
819 820
}

821
const struct btrfs_compress_op btrfs_heuristic_compress = {
822 823 824 825
	.init_workspace_manager = heuristic_init_workspace_manager,
	.cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
	.get_workspace = heuristic_get_workspace,
	.put_workspace = heuristic_put_workspace,
826 827 828 829
	.alloc_workspace = alloc_heuristic_ws,
	.free_workspace = free_heuristic_ws,
};

830
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
831 832
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
833
	&btrfs_zlib_compress,
L
Li Zefan 已提交
834
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
835
	&btrfs_zstd_compress,
836 837
};

838 839
void btrfs_init_workspace_manager(struct workspace_manager *wsm,
				  const struct btrfs_compress_op *ops)
840
{
841
	struct list_head *workspace;
842

843
	wsm->ops = ops;
844

845 846 847 848
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
849

850 851 852 853
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
854
	workspace = wsm->ops->alloc_workspace(0);
855 856 857 858
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
859 860 861
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
862 863 864
	}
}

865
void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
866 867 868 869 870 871 872 873
{
	struct list_head *ws;

	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
		wsman->ops->free_workspace(ws);
		atomic_dec(&wsman->total_ws);
874 875 876 877
	}
}

/*
878 879 880 881
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
882
 */
883 884
struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
				      unsigned int level)
885 886 887
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
888
	unsigned nofs_flag;
889 890 891 892 893 894
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

895 896 897 898 899
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
900 901

again:
902 903 904
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
905
		list_del(workspace);
906
		(*free_ws)--;
907
		spin_unlock(ws_lock);
908 909 910
		return workspace;

	}
911
	if (atomic_read(total_ws) > cpus) {
912 913
		DEFINE_WAIT(wait);

914 915
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
916
		if (atomic_read(total_ws) > cpus && !*free_ws)
917
			schedule();
918
		finish_wait(ws_wait, &wait);
919 920
		goto again;
	}
921
	atomic_inc(total_ws);
922
	spin_unlock(ws_lock);
923

924 925 926 927 928 929
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
930
	workspace = wsm->ops->alloc_workspace(level);
931 932
	memalloc_nofs_restore(nofs_flag);

933
	if (IS_ERR(workspace)) {
934
		atomic_dec(total_ws);
935
		wake_up(ws_wait);
936 937 938 939 940 941

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
942 943 944 945
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
946
		 */
947 948 949 950 951 952
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
953
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
954 955
			}
		}
956
		goto again;
957 958 959 960
	}
	return workspace;
}

961
static struct list_head *get_workspace(int type, int level)
962
{
963
	return btrfs_compress_op[type]->get_workspace(level);
964 965
}

966 967 968 969
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
970
void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
971
{
972 973 974 975 976 977
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

978 979 980 981 982
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
983 984

	spin_lock(ws_lock);
985
	if (*free_ws <= num_online_cpus()) {
986
		list_add(ws, idle_ws);
987
		(*free_ws)++;
988
		spin_unlock(ws_lock);
989 990
		goto wake;
	}
991
	spin_unlock(ws_lock);
992

993
	wsm->ops->free_workspace(ws);
994
	atomic_dec(total_ws);
995
wake:
996
	cond_wake_up(ws_wait);
997 998
}

999 1000
static void put_workspace(int type, struct list_head *ws)
{
1001
	return btrfs_compress_op[type]->put_workspace(ws);
1002 1003
}

1004
/*
1005 1006
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1007
 *
1008 1009 1010 1011 1012
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1013 1014
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1015
 *
1016 1017
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1018 1019 1020
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1021 1022
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1023
 *
1024
 * @max_out tells us the max number of bytes that we're allowed to
1025 1026
 * stuff into pages
 */
1027
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1028
			 u64 start, struct page **pages,
1029 1030
			 unsigned long *out_pages,
			 unsigned long *total_in,
1031
			 unsigned long *total_out)
1032
{
1033
	int type = btrfs_compress_type(type_level);
1034
	int level = btrfs_compress_level(type_level);
1035 1036 1037
	struct list_head *workspace;
	int ret;

1038
	level = btrfs_compress_op[type]->set_level(level);
1039
	workspace = get_workspace(type, level);
1040
	ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1041
						      start, pages,
1042
						      out_pages,
1043
						      total_in, total_out);
1044
	put_workspace(type, workspace);
1045 1046 1047 1048 1049 1050 1051 1052
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1053
 * orig_bio contains the pages from the file that we want to decompress into
1054 1055 1056 1057 1058 1059 1060 1061
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1062
static int btrfs_decompress_bio(struct compressed_bio *cb)
1063 1064 1065
{
	struct list_head *workspace;
	int ret;
1066
	int type = cb->compress_type;
1067

1068
	workspace = get_workspace(type, 0);
1069
	ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1070
	put_workspace(type, workspace);
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1086
	workspace = get_workspace(type, 0);
1087
	ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1088 1089
						  dest_page, start_byte,
						  srclen, destlen);
1090
	put_workspace(type, workspace);
1091

1092 1093 1094
	return ret;
}

1095 1096 1097 1098 1099
void __init btrfs_init_compress(void)
{
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1100
		btrfs_compress_op[i]->init_workspace_manager();
1101 1102
}

1103
void __cold btrfs_exit_compress(void)
1104
{
1105 1106 1107
	int i;

	for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1108
		btrfs_compress_op[i]->cleanup_workspace_manager();
1109
}
1110 1111 1112 1113 1114 1115 1116 1117

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1118
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1119
			      unsigned long total_out, u64 disk_start,
1120
			      struct bio *bio)
1121 1122 1123 1124
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1125
	unsigned long prev_start_byte;
1126 1127 1128
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1129
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1130 1131 1132 1133 1134

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1135
	start_byte = page_offset(bvec.bv_page) - disk_start;
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1155 1156
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1157
		bytes = min(bytes, working_bytes);
1158 1159 1160

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1161
		kunmap_atomic(kaddr);
1162
		flush_dcache_page(bvec.bv_page);
1163 1164 1165 1166 1167 1168

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1169 1170 1171 1172
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1173
		prev_start_byte = start_byte;
1174
		start_byte = page_offset(bvec.bv_page) - disk_start;
1175

1176
		/*
1177 1178 1179 1180
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1181
		 */
1182 1183 1184 1185 1186 1187 1188
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1201 1202 1203 1204 1205
		}
	}

	return 1;
}
1206

1207 1208 1209
/*
 * Shannon Entropy calculation
 *
1210
 * Pure byte distribution analysis fails to determine compressibility of data.
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1274
 * Use 16 u32 counters for calculating new position in buf array
1275 1276 1277 1278 1279 1280
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1281
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1282
		       int num)
1283
{
1284 1285 1286 1287 1288 1289 1290 1291
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1292

1293 1294 1295 1296
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1297
	max_num = array[0].count;
1298
	for (i = 1; i < num; i++) {
1299
		buf_num = array[i].count;
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1312
			buf_num = array[i].count;
1313 1314 1315 1316 1317 1318 1319 1320
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1321
			buf_num = array[i].count;
1322 1323 1324
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1325
			array_buf[new_addr] = array[i];
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1339
			buf_num = array_buf[i].count;
1340 1341 1342 1343 1344 1345 1346 1347
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1348
			buf_num = array_buf[i].count;
1349 1350 1351
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1352
			array[new_addr] = array_buf[i];
1353 1354 1355 1356
		}

		shift += RADIX_BASE;
	}
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1386
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1442 1443 1444 1445 1446 1447 1448 1449
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1519
	struct list_head *ws_list = get_workspace(0, 0);
1520
	struct heuristic_ws *ws;
1521 1522
	u32 i;
	u8 byte;
1523
	int ret = 0;
1524

1525 1526
	ws = list_entry(ws_list, struct heuristic_ws, list);

1527 1528
	heuristic_collect_sample(inode, start, end, ws);

1529 1530 1531 1532 1533
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1534 1535 1536 1537 1538
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1539 1540
	}

1541 1542 1543 1544 1545 1546
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1587
out:
1588
	put_workspace(0, ws_list);
1589 1590
	return ret;
}
1591

1592 1593 1594 1595 1596
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1597
{
1598 1599 1600 1601
	unsigned int level = 0;
	int ret;

	if (!type)
1602 1603
		return 0;

1604 1605 1606 1607 1608 1609 1610
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

	level = btrfs_compress_op[type]->set_level(level);
1611

1612
	return level;
1613
}