i915_gem_gtt.c 105.3 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38 39
#include "display/intel_frontbuffer.h"

40
#include "i915_drv.h"
41
#include "i915_scatterlist.h"
42
#include "i915_trace.h"
43
#include "i915_vgpu.h"
44 45
#include "intel_drv.h"

46
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
84 85 86
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

109 110 111
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

112
static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
113
{
114 115
	struct intel_uncore *uncore = &i915->uncore;

116 117
	/*
	 * Note that as an uncached mmio write, this will flush the
118 119
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
120
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
121 122
}

123
static void guc_ggtt_invalidate(struct drm_i915_private *i915)
124
{
125 126 127 128
	struct intel_uncore *uncore = &i915->uncore;

	gen6_ggtt_invalidate(i915);
	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
129 130
}

131
static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
132 133 134 135 136 137 138 139 140
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

141 142 143
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
144
{
145
	u32 pte_flags;
146 147 148 149 150 151 152 153
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
154

155
	/* Applicable to VLV, and gen8+ */
156
	pte_flags = 0;
157
	if (i915_gem_object_is_readonly(vma->obj))
158 159
		pte_flags |= PTE_READ_ONLY;

160
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
161 162

	return 0;
163 164 165 166
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
167
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
168
}
169

170 171 172 173 174 175
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

176 177
	vma->page_sizes = vma->obj->mm.page_sizes;

178 179 180 181 182 183 184 185 186 187 188 189
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
190 191

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
192 193
}

194 195 196
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
197
{
198 199 200 201
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
202 203 204

	switch (level) {
	case I915_CACHE_NONE:
205
		pte |= PPAT_UNCACHED;
206 207
		break;
	case I915_CACHE_WT:
208
		pte |= PPAT_DISPLAY_ELLC;
209 210
		break;
	default:
211
		pte |= PPAT_CACHED;
212 213 214
		break;
	}

B
Ben Widawsky 已提交
215 216 217
	return pte;
}

218 219
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
220
{
221
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
222 223
	pde |= addr;
	if (level != I915_CACHE_NONE)
224
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
225
	else
226
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
227 228 229
	return pde;
}

230 231 232
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

233 234 235
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
236
{
237
	gen6_pte_t pte = GEN6_PTE_VALID;
238
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
239 240

	switch (level) {
241 242 243 244 245 246 247 248
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
249
		MISSING_CASE(level);
250 251 252 253 254
	}

	return pte;
}

255 256 257
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
258
{
259
	gen6_pte_t pte = GEN6_PTE_VALID;
260 261 262 263 264
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
265 266 267 268 269
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
270
		pte |= GEN6_PTE_UNCACHED;
271 272
		break;
	default:
273
		MISSING_CASE(level);
274 275
	}

276 277 278
	return pte;
}

279 280 281
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
282
{
283
	gen6_pte_t pte = GEN6_PTE_VALID;
284 285
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

286 287
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
288 289 290 291 292 293 294

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

295 296 297
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
298
{
299
	gen6_pte_t pte = GEN6_PTE_VALID;
300
	pte |= HSW_PTE_ADDR_ENCODE(addr);
301 302

	if (level != I915_CACHE_NONE)
303
		pte |= HSW_WB_LLC_AGE3;
304 305 306 307

	return pte;
}

308 309 310
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
311
{
312
	gen6_pte_t pte = GEN6_PTE_VALID;
313 314
	pte |= HSW_PTE_ADDR_ENCODE(addr);

315 316 317 318
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
319
		pte |= HSW_WT_ELLC_LLC_AGE3;
320 321
		break;
	default:
322
		pte |= HSW_WB_ELLC_LLC_AGE3;
323 324
		break;
	}
325 326 327 328

	return pte;
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
349
	unsigned int nr;
350 351 352

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

353
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
354 355 356 357 358 359 360 361 362 363
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

364
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
365
{
366 367
	struct pagevec stack;
	struct page *page;
368

369 370
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
371

372 373 374
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
375 376 377 378 379

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
380 381 382
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
383

384
	/*
385
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
386 387 388 389 390 391
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
392
	pagevec_init(&stack);
393 394
	do {
		struct page *page;
395

396 397 398 399
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

400 401
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
402

403 404
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
405

406
		/* Merge spare WC pages to the global stash */
407 408
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
409

410 411 412
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
413
	}
414

415 416 417 418 419 420 421
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
422 423
}

424 425
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
426
{
427 428
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
429

430
	lockdep_assert_held(&vm->free_pages.lock);
431
	GEM_BUG_ON(!pagevec_count(pvec));
432

433
	if (vm->pt_kmap_wc) {
434 435
		/*
		 * When we use WC, first fill up the global stash and then
436 437
		 * only if full immediately free the overflow.
		 */
438
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
439

440 441 442 443 444 445 446 447
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
448

449 450 451 452 453 454 455 456 457 458
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
459
		set_pages_array_wb(pvec->pages, pvec->nr);
460 461

		spin_lock(&vm->free_pages.lock);
462 463 464
	}

	__pagevec_release(pvec);
465 466 467 468
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
469 470 471 472 473 474 475 476
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
477
	spin_lock(&vm->free_pages.lock);
478
	while (!pagevec_space(&vm->free_pages.pvec))
479
		vm_free_pages_release(vm, false);
480 481
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
482 483 484
	spin_unlock(&vm->free_pages.lock);
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);

	mutex_destroy(&vm->mutex);
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
{
	struct list_head *phases[] = {
		&vm->bound_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	mutex_lock(&vm->i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
			i915_vma_destroy(vma);
	}
	mutex_unlock(&vm->i915->drm.struct_mutex);
}

static void __i915_vm_release(struct work_struct *work)
{
	struct i915_address_space *vm =
		container_of(work, struct i915_address_space, rcu.work);

	ppgtt_destroy_vma(vm);

	GEM_BUG_ON(!list_empty(&vm->bound_list));
	GEM_BUG_ON(!list_empty(&vm->unbound_list));

	vm->cleanup(vm);
	i915_address_space_fini(vm);

	kfree(vm);
}

void i915_vm_release(struct kref *kref)
{
	struct i915_address_space *vm =
		container_of(kref, struct i915_address_space, ref);

	GEM_BUG_ON(i915_is_ggtt(vm));
	trace_i915_ppgtt_release(vm);

	vm->closed = true;
	queue_rcu_work(vm->i915->wq, &vm->rcu);
}

544
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
545
{
546
	kref_init(&vm->ref);
547
	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
548

549 550 551 552 553 554
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
555
	lockdep_set_subclass(&vm->mutex, subclass);
556
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
557

558 559 560 561 562 563 564
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
565
	INIT_LIST_HEAD(&vm->bound_list);
566 567
}

568 569 570 571
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
572
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
573 574
	if (unlikely(!p->page))
		return -ENOMEM;
575

576 577 578
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
579
				      DMA_ATTR_SKIP_CPU_SYNC |
580
				      DMA_ATTR_NO_WARN);
581 582 583
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
584
	}
585 586

	return 0;
587 588
}

589
static int setup_page_dma(struct i915_address_space *vm,
590
			  struct i915_page_dma *p)
591
{
592
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
593 594
}

595
static void cleanup_page_dma(struct i915_address_space *vm,
596
			     struct i915_page_dma *p)
597
{
598 599
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
600 601
}

602
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
603

604 605
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
606 607
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
608

609 610 611
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
612
{
613
	u64 * const vaddr = kmap_atomic(p->page);
614

615
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
616

617
	kunmap_atomic(vaddr);
618 619
}

620 621 622
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
623
{
624
	fill_page_dma(vm, p, (u64)v << 32 | v);
625 626
}

627
static int
628
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
629
{
630
	unsigned long size;
631

632 633 634 635 636 637 638
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
639 640 641
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
642
	 */
643
	size = I915_GTT_PAGE_SIZE_4K;
644
	if (i915_vm_is_4lvl(vm) &&
645
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
646 647
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
648
	}
649 650 651 652 653 654
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
655

656
		page = alloc_pages(gfp, order);
657
		if (unlikely(!page))
658
			goto skip;
659

660 661 662
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
663
					  DMA_ATTR_SKIP_CPU_SYNC |
664
					  DMA_ATTR_NO_WARN);
665 666
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
667

668 669
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
670

671 672
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
673
		vm->scratch_order = order;
674 675 676 677 678 679 680 681 682 683 684 685 686
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
687 688
}

689
static void cleanup_scratch_page(struct i915_address_space *vm)
690
{
691
	struct i915_page_dma *p = &vm->scratch_page;
692
	int order = vm->scratch_order;
693

694
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
695
		       PCI_DMA_BIDIRECTIONAL);
696
	__free_pages(p->page, order);
697 698
}

699
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
700
{
701
	struct i915_page_table *pt;
702

703
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
704
	if (unlikely(!pt))
705 706
		return ERR_PTR(-ENOMEM);

707 708 709 710
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
711

712 713
	atomic_set(&pt->used, 0);

714 715 716
	return pt;
}

717
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
718
{
719
	cleanup_px(vm, pt);
720 721 722 723 724 725
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
726
	fill_px(vm, pt, vm->scratch_pte);
727 728
}

729
static void gen6_initialize_pt(struct i915_address_space *vm,
730 731
			       struct i915_page_table *pt)
{
732
	fill32_px(vm, pt, vm->scratch_pte);
733 734
}

735
static struct i915_page_directory *__alloc_pd(void)
736
{
737
	struct i915_page_directory *pd;
738

739
	pd = kmalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

	if (unlikely(!pd))
		return NULL;

	memset(&pd->base, 0, sizeof(pd->base));
	atomic_set(&pd->used, 0);
	spin_lock_init(&pd->lock);

	/* for safety */
	pd->entry[0] = NULL;

	return pd;
}

static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
{
	struct i915_page_directory *pd;

	pd = __alloc_pd();
759
	if (unlikely(!pd))
760 761
		return ERR_PTR(-ENOMEM);

762 763 764 765
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
766

767 768 769
	return pd;
}

770 771 772 773 774
static inline bool pd_has_phys_page(const struct i915_page_directory * const pd)
{
	return pd->base.page;
}

775
static void free_pd(struct i915_address_space *vm,
776
		    struct i915_page_directory *pd)
777
{
778 779 780
	if (likely(pd_has_phys_page(pd)))
		cleanup_px(vm, pd);

781
	kfree(pd);
782 783
}

784 785 786
static void init_pd_with_page(struct i915_address_space *vm,
			      struct i915_page_directory * const pd,
			      struct i915_page_table *pt)
787
{
788 789
	fill_px(vm, pd, gen8_pde_encode(px_dma(pt), I915_CACHE_LLC));
	memset_p(pd->entry, pt, 512);
790 791
}

M
Mika Kuoppala 已提交
792 793 794
static void init_pd(struct i915_address_space *vm,
		    struct i915_page_directory * const pd,
		    struct i915_page_directory * const to)
795
{
796 797
	GEM_DEBUG_BUG_ON(!pd_has_phys_page(pd));

M
Mika Kuoppala 已提交
798 799
	fill_px(vm, pd, gen8_pdpe_encode(px_dma(to), I915_CACHE_LLC));
	memset_p(pd->entry, to, 512);
800 801
}

802 803
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
804 805 806 807
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
808
static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
809
{
810
	ppgtt->pd_dirty_engines = ALL_ENGINES;
811 812
}

813 814 815
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
816
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
817
				struct i915_page_table *pt,
818
				u64 start, u64 length)
819
{
820
	unsigned int num_entries = gen8_pte_count(start, length);
821
	gen8_pte_t *vaddr;
822

823
	vaddr = kmap_atomic_px(pt);
824
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
825
	kunmap_atomic(vaddr);
826

827 828
	GEM_BUG_ON(num_entries > atomic_read(&pt->used));
	return !atomic_sub_return(num_entries, &pt->used);
829
}
830

831 832 833 834 835 836 837 838 839 840 841 842
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

843
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
844
				struct i915_page_directory *pd,
845
				u64 start, u64 length)
846 847
{
	struct i915_page_table *pt;
848
	u32 pde;
849 850

	gen8_for_each_pde(pt, pd, start, length, pde) {
851 852
		bool free = false;

853 854
		GEM_BUG_ON(pt == vm->scratch_pt);

855 856
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
857

858
		spin_lock(&pd->lock);
859
		if (!atomic_read(&pt->used)) {
860
			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
861
			pd->entry[pde] = vm->scratch_pt;
862

863 864
			GEM_BUG_ON(!atomic_read(&pd->used));
			atomic_dec(&pd->used);
865 866 867 868 869
			free = true;
		}
		spin_unlock(&pd->lock);
		if (free)
			free_pt(vm, pt);
870 871
	}

872
	return !atomic_read(&pd->used);
873
}
874

875
static void gen8_ppgtt_set_pdpe(struct i915_page_directory *pdp,
876 877 878 879 880
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

881
	if (!pd_has_phys_page(pdp))
882 883 884 885 886
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
887
}
888

889 890 891 892
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
893
				 struct i915_page_directory * const pdp,
894
				 u64 start, u64 length)
895 896
{
	struct i915_page_directory *pd;
897
	unsigned int pdpe;
898

899
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
900 901
		bool free = false;

902 903
		GEM_BUG_ON(pd == vm->scratch_pd);

904 905
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
906

907
		spin_lock(&pdp->lock);
908
		if (!atomic_read(&pd->used)) {
909
			gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
910
			pdp->entry[pdpe] = vm->scratch_pd;
911

912 913
			GEM_BUG_ON(!atomic_read(&pdp->used));
			atomic_dec(&pdp->used);
914 915 916 917 918
			free = true;
		}
		spin_unlock(&pdp->lock);
		if (free)
			free_pd(vm, pd);
919
	}
920

921
	return !atomic_read(&pdp->used);
922
}
923

924 925 926
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
927
	gen8_ppgtt_clear_pdp(vm, i915_vm_to_ppgtt(vm)->pd, start, length);
928 929
}

930 931
static void gen8_ppgtt_set_pml4e(struct i915_page_directory *pml4,
				 struct i915_page_directory *pdp,
932 933 934 935 936 937 938 939 940
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

941 942 943 944
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
945 946
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
947
{
948
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
949 950
	struct i915_page_directory * const pml4 = ppgtt->pd;
	struct i915_page_directory *pdp;
951
	unsigned int pml4e;
952

953
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
954

955
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
956
		bool free = false;
957 958
		GEM_BUG_ON(pdp == vm->scratch_pdp);

959 960
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
961

962
		spin_lock(&pml4->lock);
963
		if (!atomic_read(&pdp->used)) {
964
			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
965
			pml4->entry[pml4e] = vm->scratch_pdp;
966 967 968 969
			free = true;
		}
		spin_unlock(&pml4->lock);
		if (free)
970
			free_pd(vm, pdp);
971 972 973
	}
}

974
static inline struct sgt_dma {
975 976
	struct scatterlist *sg;
	dma_addr_t dma, max;
977 978 979 980 981
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1000
static __always_inline bool
1001
gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt,
1002
			      struct i915_page_directory *pdp,
1003
			      struct sgt_dma *iter,
1004
			      struct gen8_insert_pte *idx,
1005 1006
			      enum i915_cache_level cache_level,
			      u32 flags)
1007
{
1008
	struct i915_page_directory *pd;
1009
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1010 1011
	gen8_pte_t *vaddr;
	bool ret;
1012

1013
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1014 1015
	pd = i915_pd_entry(pdp, idx->pdpe);
	vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
1016
	do {
1017 1018
		vaddr[idx->pte] = pte_encode | iter->dma;

1019
		iter->dma += I915_GTT_PAGE_SIZE;
1020 1021 1022 1023 1024 1025
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1026

1027 1028
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1029
		}
1030

1031 1032 1033 1034 1035 1036
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1037
				/* Limited by sg length for 3lvl */
1038 1039
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1040
					ret = true;
1041
					break;
1042 1043
				}

1044
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1045
				pd = pdp->entry[idx->pdpe];
1046
			}
1047

1048
			kunmap_atomic(vaddr);
1049
			vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
1050
		}
1051
	} while (1);
1052
	kunmap_atomic(vaddr);
1053

1054
	return ret;
1055 1056
}

1057
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1058
				   struct i915_vma *vma,
1059
				   enum i915_cache_level cache_level,
1060
				   u32 flags)
1061
{
1062
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1063
	struct sgt_dma iter = sgt_dma(vma);
1064
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1065

1066
	gen8_ppgtt_insert_pte_entries(ppgtt, ppgtt->pd, &iter, &idx,
1067
				      cache_level, flags);
1068 1069

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1070
}
1071

1072
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1073
					   struct i915_page_directory *pml4,
1074
					   struct sgt_dma *iter,
1075 1076
					   enum i915_cache_level cache_level,
					   u32 flags)
1077
{
1078
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1079 1080 1081 1082 1083
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
1084 1085 1086
		struct i915_page_directory *pdp =
			i915_pdp_entry(pml4, idx.pml4e);
		struct i915_page_directory *pd = i915_pd_entry(pdp, idx.pdpe);
1087
		unsigned int page_size;
1088
		bool maybe_64K = false;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
1104
			struct i915_page_table *pt = i915_pt_entry(pd, idx.pde);
1105 1106 1107 1108 1109

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1110 1111 1112 1113
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1114
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1115 1116
				maybe_64K = true;

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1136 1137 1138
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1139
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1140 1141
					maybe_64K = false;

1142 1143 1144 1145 1146 1147
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1164
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1178
				encode = vma->vm->scratch_pte;
1179 1180
				vaddr = kmap_atomic_px(i915_pt_entry(pd,
								     idx.pde));
M
Matthew Auld 已提交
1181 1182 1183 1184 1185 1186

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1187
		}
1188 1189

		vma->page_sizes.gtt |= page_size;
1190 1191 1192
	} while (iter->sg);
}

1193
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1194
				   struct i915_vma *vma,
1195
				   enum i915_cache_level cache_level,
1196
				   u32 flags)
1197
{
1198
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1199
	struct sgt_dma iter = sgt_dma(vma);
1200
	struct i915_page_directory * const pml4 = ppgtt->pd;
1201

1202
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1203
		gen8_ppgtt_insert_huge_entries(vma, pml4, &iter, cache_level,
1204
					       flags);
1205 1206 1207
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

1208 1209
		while (gen8_ppgtt_insert_pte_entries(ppgtt,
						     i915_pdp_entry(pml4, idx.pml4e++),
1210 1211
						     &iter, &idx, cache_level,
						     flags))
1212
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1213 1214

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1215
	}
1216 1217
}

1218
static void gen8_free_page_tables(struct i915_address_space *vm,
1219
				  struct i915_page_directory *pd)
1220 1221 1222
{
	int i;

1223
	for (i = 0; i < I915_PDES; i++) {
1224 1225
		if (pd->entry[i] != vm->scratch_pt)
			free_pt(vm, pd->entry[i]);
1226
	}
B
Ben Widawsky 已提交
1227 1228
}

1229 1230
static int gen8_init_scratch(struct i915_address_space *vm)
{
1231
	int ret;
1232

1233 1234 1235 1236 1237 1238
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
1239 1240
	    vm->i915->kernel_context->vm) {
		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1241 1242 1243

		GEM_BUG_ON(!clone->has_read_only);

1244
		vm->scratch_order = clone->scratch_order;
1245 1246 1247 1248 1249 1250 1251
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1252
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1253 1254
	if (ret)
		return ret;
1255

1256 1257 1258
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1259
				vm->has_read_only);
1260

1261
	vm->scratch_pt = alloc_pt(vm);
1262
	if (IS_ERR(vm->scratch_pt)) {
1263 1264
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1265 1266
	}

1267
	vm->scratch_pd = alloc_pd(vm);
1268
	if (IS_ERR(vm->scratch_pd)) {
1269 1270
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1271 1272
	}

1273
	if (i915_vm_is_4lvl(vm)) {
1274
		vm->scratch_pdp = alloc_pd(vm);
1275
		if (IS_ERR(vm->scratch_pdp)) {
1276 1277
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1278 1279 1280
		}
	}

1281
	gen8_initialize_pt(vm, vm->scratch_pt);
1282
	init_pd_with_page(vm, vm->scratch_pd, vm->scratch_pt);
1283
	if (i915_vm_is_4lvl(vm))
M
Mika Kuoppala 已提交
1284
		init_pd(vm, vm->scratch_pdp, vm->scratch_pd);
1285 1286

	return 0;
1287 1288

free_pd:
1289
	free_pd(vm, vm->scratch_pd);
1290
free_pt:
1291
	free_pt(vm, vm->scratch_pt);
1292
free_scratch_page:
1293
	cleanup_scratch_page(vm);
1294 1295

	return ret;
1296 1297
}

1298
static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
1299
{
1300
	struct i915_address_space *vm = &ppgtt->vm;
1301
	struct drm_i915_private *dev_priv = vm->i915;
1302 1303 1304
	enum vgt_g2v_type msg;
	int i;

1305
	if (i915_vm_is_4lvl(vm)) {
1306
		const u64 daddr = px_dma(ppgtt->pd);
1307

1308 1309
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1310 1311 1312 1313

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1314
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1315
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1316

1317 1318
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1330 1331
static void gen8_free_scratch(struct i915_address_space *vm)
{
1332 1333 1334
	if (!vm->scratch_page.daddr)
		return;

1335
	if (i915_vm_is_4lvl(vm))
1336
		free_pd(vm, vm->scratch_pdp);
1337 1338 1339
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1340 1341
}

1342
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1343
				    struct i915_page_directory *pdp)
1344
{
1345
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1346 1347
	int i;

1348
	for (i = 0; i < pdpes; i++) {
1349
		if (pdp->entry[i] == vm->scratch_pd)
1350 1351
			continue;

1352 1353
		gen8_free_page_tables(vm, pdp->entry[i]);
		free_pd(vm, pdp->entry[i]);
1354
	}
1355

1356
	free_pd(vm, pdp);
1357 1358
}

1359
static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt)
1360
{
1361
	struct i915_page_directory * const pml4 = ppgtt->pd;
1362 1363
	int i;

1364
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1365 1366 1367
		struct i915_page_directory *pdp = i915_pdp_entry(pml4, i);

		if (pdp == ppgtt->vm.scratch_pdp)
1368 1369
			continue;

1370
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, pdp);
1371 1372
	}

1373
	free_pd(&ppgtt->vm, pml4);
1374 1375 1376 1377
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1378
	struct drm_i915_private *i915 = vm->i915;
1379
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1380

1381
	if (intel_vgpu_active(i915))
1382 1383
		gen8_ppgtt_notify_vgt(ppgtt, false);

1384
	if (i915_vm_is_4lvl(vm))
1385
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1386
	else
1387
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pd);
1388

1389
	gen8_free_scratch(vm);
1390 1391
}

1392 1393 1394
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1395
{
1396
	struct i915_page_table *pt, *alloc = NULL;
1397
	u64 from = start;
1398
	unsigned int pde;
1399
	int ret = 0;
1400

1401
	spin_lock(&pd->lock);
1402
	gen8_for_each_pde(pt, pd, start, length, pde) {
1403
		const int count = gen8_pte_count(start, length);
1404

1405
		if (pt == vm->scratch_pt) {
1406
			spin_unlock(&pd->lock);
1407

1408 1409 1410 1411 1412
			pt = fetch_and_zero(&alloc);
			if (!pt)
				pt = alloc_pt(vm);
			if (IS_ERR(pt)) {
				ret = PTR_ERR(pt);
1413
				goto unwind;
1414
			}
1415

1416
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1417
				gen8_initialize_pt(vm, pt);
1418

1419 1420
			spin_lock(&pd->lock);
			if (pd->entry[pde] == vm->scratch_pt) {
1421
				gen8_ppgtt_set_pde(vm, pd, pt, pde);
1422
				pd->entry[pde] = pt;
1423
				atomic_inc(&pd->used);
1424
			} else {
1425 1426
				alloc = pt;
				pt = pd->entry[pde];
1427
			}
1428
		}
1429

1430
		atomic_add(count, &pt->used);
1431
	}
1432
	spin_unlock(&pd->lock);
1433
	goto out;
1434

1435 1436
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1437 1438 1439 1440
out:
	if (alloc)
		free_pt(vm, alloc);
	return ret;
1441 1442
}

1443
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1444
				struct i915_page_directory *pdp,
1445
				u64 start, u64 length)
1446
{
1447
	struct i915_page_directory *pd, *alloc = NULL;
1448 1449
	u64 from = start;
	unsigned int pdpe;
1450
	int ret = 0;
1451

1452
	spin_lock(&pdp->lock);
1453
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1454
		if (pd == vm->scratch_pd) {
1455
			spin_unlock(&pdp->lock);
1456

1457 1458 1459 1460 1461
			pd = fetch_and_zero(&alloc);
			if (!pd)
				pd = alloc_pd(vm);
			if (IS_ERR(pd)) {
				ret = PTR_ERR(pd);
1462
				goto unwind;
1463
			}
1464

1465
			init_pd_with_page(vm, pd, vm->scratch_pt);
1466

1467 1468
			spin_lock(&pdp->lock);
			if (pdp->entry[pdpe] == vm->scratch_pd) {
1469
				gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1470
				pdp->entry[pdpe] = pd;
1471
				atomic_inc(&pdp->used);
1472
			} else {
1473 1474
				alloc = pd;
				pd = pdp->entry[pdpe];
1475
			}
1476
		}
1477
		atomic_inc(&pd->used);
1478
		spin_unlock(&pdp->lock);
1479 1480

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1481 1482
		if (unlikely(ret))
			goto unwind_pd;
1483 1484

		spin_lock(&pdp->lock);
1485
		atomic_dec(&pd->used);
1486
	}
1487
	spin_unlock(&pdp->lock);
1488
	goto out;
1489

1490
unwind_pd:
1491
	spin_lock(&pdp->lock);
1492
	if (atomic_dec_and_test(&pd->used)) {
1493
		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1494 1495
		GEM_BUG_ON(!atomic_read(&pdp->used));
		atomic_dec(&pdp->used);
1496 1497
		free_pd(vm, pd);
	}
1498
	spin_unlock(&pdp->lock);
1499 1500
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1501 1502 1503 1504
out:
	if (alloc)
		free_pd(vm, alloc);
	return ret;
1505 1506
}

1507 1508
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1509
{
1510
	return gen8_ppgtt_alloc_pdp(vm,
1511
				    i915_vm_to_ppgtt(vm)->pd, start, length);
1512
}
1513

1514 1515 1516
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
1517
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1518
	struct i915_page_directory * const pml4 = ppgtt->pd;
1519
	struct i915_page_directory *pdp, *alloc = NULL;
1520
	u64 from = start;
1521
	int ret = 0;
1522
	u32 pml4e;
1523

1524
	spin_lock(&pml4->lock);
1525
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1526 1527 1528
		if (pdp == vm->scratch_pdp) {
			spin_unlock(&pml4->lock);

1529 1530 1531 1532 1533
			pdp = fetch_and_zero(&alloc);
			if (!pdp)
				pdp = alloc_pd(vm);
			if (IS_ERR(pdp)) {
				ret = PTR_ERR(pdp);
1534
				goto unwind;
1535
			}
1536

M
Mika Kuoppala 已提交
1537
			init_pd(vm, pdp, vm->scratch_pd);
1538

1539 1540
			spin_lock(&pml4->lock);
			if (pml4->entry[pml4e] == vm->scratch_pdp) {
1541
				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1542
				pml4->entry[pml4e] = pdp;
1543
			} else {
1544 1545
				alloc = pdp;
				pdp = pml4->entry[pml4e];
1546
			}
1547
		}
1548
		atomic_inc(&pdp->used);
1549
		spin_unlock(&pml4->lock);
1550

1551
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1552 1553
		if (unlikely(ret))
			goto unwind_pdp;
1554 1555

		spin_lock(&pml4->lock);
1556
		atomic_dec(&pdp->used);
1557
	}
1558
	spin_unlock(&pml4->lock);
1559
	goto out;
1560

1561
unwind_pdp:
1562
	spin_lock(&pml4->lock);
1563
	if (atomic_dec_and_test(&pdp->used)) {
1564
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1565
		free_pd(vm, pdp);
1566
	}
1567
	spin_unlock(&pml4->lock);
1568 1569
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1570 1571 1572 1573
out:
	if (alloc)
		free_pd(vm, alloc);
	return ret;
1574 1575
}

1576
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1577
{
1578
	struct i915_address_space *vm = &ppgtt->vm;
1579
	struct i915_page_directory *pdp = ppgtt->pd;
1580
	struct i915_page_directory *pd;
1581
	u64 start = 0, length = ppgtt->vm.total;
1582 1583
	u64 from = start;
	unsigned int pdpe;
1584

1585 1586 1587 1588
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1589

1590
		init_pd_with_page(vm, pd, vm->scratch_pt);
1591
		gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1592 1593

		atomic_inc(&pdp->used);
1594
	}
1595

1596 1597
	atomic_inc(&pdp->used); /* never remove */

1598
	return 0;
1599

1600 1601 1602
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1603
		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1604 1605
		free_pd(vm, pd);
	}
1606
	atomic_set(&pdp->used, 0);
1607
	return -ENOMEM;
1608 1609
}

1610
static void ppgtt_init(struct drm_i915_private *i915,
1611
		       struct i915_ppgtt *ppgtt)
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
{
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1625
/*
1626 1627 1628 1629
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1630
 *
1631
 */
1632
static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1633
{
1634
	struct i915_ppgtt *ppgtt;
1635 1636 1637 1638 1639 1640
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1641
	ppgtt_init(i915, ppgtt);
1642

1643 1644 1645 1646 1647 1648 1649
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1650

1651 1652 1653
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1654
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1655
		ppgtt->vm.pt_kmap_wc = true;
1656

1657 1658 1659
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1660

1661 1662 1663 1664
	ppgtt->pd = __alloc_pd();
	if (!ppgtt->pd) {
		err = -ENOMEM;
		goto err_free_scratch;
1665
	}
1666

1667
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1668 1669 1670 1671
		err = setup_px(&ppgtt->vm, ppgtt->pd);
		if (err)
			goto err_free_pdp;

M
Mika Kuoppala 已提交
1672
		init_pd(&ppgtt->vm, ppgtt->pd, ppgtt->vm.scratch_pdp);
1673

1674 1675 1676
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1677
	} else {
M
Mika Kuoppala 已提交
1678 1679 1680 1681 1682 1683
		/*
		 * We don't need to setup dma for top level pdp, only
		 * for entries. So point entries to scratch.
		 */
		memset_p(ppgtt->pd->entry, ppgtt->vm.scratch_pd,
			 GEN8_3LVL_PDPES);
1684

1685 1686
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
1687
			if (err)
1688
				goto err_free_pdp;
1689
		}
1690

1691 1692 1693
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1694
	}
1695

1696
	if (intel_vgpu_active(i915))
1697 1698
		gen8_ppgtt_notify_vgt(ppgtt, true);

1699
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1700

1701
	return ppgtt;
1702

1703 1704 1705
err_free_pdp:
	free_pd(&ppgtt->vm, ppgtt->pd);
err_free_scratch:
1706
	gen8_free_scratch(&ppgtt->vm);
1707 1708 1709
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1710 1711
}

1712
/* Write pde (index) from the page directory @pd to the page table @pt */
1713
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
C
Chris Wilson 已提交
1714 1715
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1716
{
1717
	/* Caller needs to make sure the write completes if necessary */
1718 1719
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1720
}
B
Ben Widawsky 已提交
1721

1722
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1723
{
1724
	struct intel_engine_cs *engine;
1725
	u32 ecochk, ecobits;
1726
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1727

1728 1729
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1730

1731
	ecochk = I915_READ(GAM_ECOCHK);
1732
	if (IS_HASWELL(dev_priv)) {
1733 1734 1735 1736 1737 1738
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1739

1740
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1741
		/* GFX_MODE is per-ring on gen7+ */
1742 1743 1744
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1745
	}
1746
}
B
Ben Widawsky 已提交
1747

1748
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1749
{
1750
	u32 ecochk, gab_ctl, ecobits;
1751

1752 1753 1754
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1755

1756 1757 1758 1759 1760 1761
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1762 1763
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1764 1765
}

1766
/* PPGTT support for Sandybdrige/Gen6 and later */
1767
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1768
				   u64 start, u64 length)
1769
{
1770 1771 1772
	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1773 1774
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1775
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1776

1777
	while (num_entries) {
1778 1779
		struct i915_page_table * const pt =
			i915_pt_entry(ppgtt->base.pd, pde++);
1780
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1781
		gen6_pte_t *vaddr;
1782

1783 1784 1785 1786
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

1787 1788
		GEM_BUG_ON(count > atomic_read(&pt->used));
		if (!atomic_sub_return(count, &pt->used))
1789
			ppgtt->scan_for_unused_pt = true;
1790

1791 1792
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1793 1794 1795 1796
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1797

1798
		vaddr = kmap_atomic_px(pt);
1799
		memset32(vaddr + pte, scratch_pte, count);
1800
		kunmap_atomic(vaddr);
1801

1802
		pte = 0;
1803
	}
1804 1805
}

1806
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1807
				      struct i915_vma *vma,
1808 1809
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1810
{
1811
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1812
	struct i915_page_directory * const pd = ppgtt->pd;
1813
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1814 1815
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1816
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1817
	struct sgt_dma iter = sgt_dma(vma);
1818 1819
	gen6_pte_t *vaddr;

1820
	GEM_BUG_ON(i915_pt_entry(pd, act_pt) == vm->scratch_pt);
1821

1822
	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1823 1824
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1825

1826
		iter.dma += I915_GTT_PAGE_SIZE;
1827 1828 1829 1830
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1831

1832 1833 1834
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1835

1836
		if (++act_pte == GEN6_PTES) {
1837
			kunmap_atomic(vaddr);
1838
			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1839
			act_pte = 0;
D
Daniel Vetter 已提交
1840
		}
1841
	} while (1);
1842
	kunmap_atomic(vaddr);
1843 1844

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1845 1846
}

1847
static int gen6_alloc_va_range(struct i915_address_space *vm,
1848
			       u64 start, u64 length)
1849
{
1850
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1851
	struct i915_page_directory * const pd = ppgtt->base.pd;
1852
	struct i915_page_table *pt, *alloc = NULL;
1853
	intel_wakeref_t wakeref;
1854 1855 1856
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1857
	int ret = 0;
1858

1859
	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1860

1861 1862
	spin_lock(&pd->lock);
	gen6_for_each_pde(pt, pd, start, length, pde) {
1863 1864
		const unsigned int count = gen6_pte_count(start, length);

1865
		if (pt == vm->scratch_pt) {
1866
			spin_unlock(&pd->lock);
1867

1868 1869 1870 1871 1872
			pt = fetch_and_zero(&alloc);
			if (!pt)
				pt = alloc_pt(vm);
			if (IS_ERR(pt)) {
				ret = PTR_ERR(pt);
1873
				goto unwind_out;
1874
			}
1875

1876
			gen6_initialize_pt(vm, pt);
1877

1878 1879 1880
			spin_lock(&pd->lock);
			if (pd->entry[pde] == vm->scratch_pt) {
				pd->entry[pde] = pt;
1881 1882 1883 1884 1885 1886
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
1887 1888
				alloc = pt;
				pt = pd->entry[pde];
1889
			}
1890
		}
1891

1892
		atomic_add(count, &pt->used);
1893
	}
1894
	spin_unlock(&pd->lock);
1895

1896
	if (flush) {
1897
		mark_tlbs_dirty(&ppgtt->base);
1898
		gen6_ggtt_invalidate(vm->i915);
1899 1900
	}

1901
	goto out;
1902 1903

unwind_out:
1904
	gen6_ppgtt_clear_range(vm, from, start - from);
1905 1906 1907 1908 1909
out:
	if (alloc)
		free_pt(vm, alloc);
	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
	return ret;
1910 1911
}

1912
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1913
{
1914
	struct i915_address_space * const vm = &ppgtt->base.vm;
1915
	struct i915_page_directory * const pd = ppgtt->base.pd;
1916 1917
	struct i915_page_table *unused;
	u32 pde;
1918
	int ret;
1919

1920
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1921 1922
	if (ret)
		return ret;
1923

1924 1925 1926
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1927

1928
	vm->scratch_pt = alloc_pt(vm);
1929
	if (IS_ERR(vm->scratch_pt)) {
1930
		cleanup_scratch_page(vm);
1931 1932 1933
		return PTR_ERR(vm->scratch_pt);
	}

1934
	gen6_initialize_pt(vm, vm->scratch_pt);
1935 1936 1937

	gen6_for_all_pdes(unused, pd, pde)
		pd->entry[pde] = vm->scratch_pt;
1938 1939 1940 1941

	return 0;
}

1942
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1943
{
1944 1945
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1946 1947
}

1948
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1949
{
1950
	struct i915_page_directory * const pd = ppgtt->base.pd;
1951
	struct i915_page_table *pt;
1952
	u32 pde;
1953

1954
	gen6_for_all_pdes(pt, pd, pde)
1955 1956 1957 1958 1959 1960
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
1961
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1962
	struct drm_i915_private *i915 = vm->i915;
1963

1964
	/* FIXME remove the struct_mutex to bring the locking under control */
1965 1966 1967
	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(ppgtt->vma);
	mutex_unlock(&i915->drm.struct_mutex);
1968 1969 1970

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1971
	kfree(ppgtt->base.pd);
1972 1973
}

1974
static int pd_vma_set_pages(struct i915_vma *vma)
1975
{
1976 1977 1978
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1979

1980 1981 1982
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1983

1984 1985 1986 1987 1988 1989 1990 1991
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1992
	struct gen6_ppgtt *ppgtt = vma->private;
1993
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1994 1995
	struct i915_page_table *pt;
	unsigned int pde;
1996

1997
	ppgtt->base.pd->base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1998
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1999

2000
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
2001
		gen6_write_pde(ppgtt, pde, pt);
2002

2003 2004
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2005

2006
	return 0;
2007
}
2008

2009
static void pd_vma_unbind(struct i915_vma *vma)
2010
{
2011
	struct gen6_ppgtt *ppgtt = vma->private;
2012
	struct i915_page_directory * const pd = ppgtt->base.pd;
2013 2014 2015 2016 2017 2018 2019 2020
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
2021 2022
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
		if (atomic_read(&pt->used) || pt == scratch_pt)
2023 2024 2025
			continue;

		free_pt(&ppgtt->base.vm, pt);
2026
		pd->entry[pde] = scratch_pt;
2027 2028 2029
	}

	ppgtt->scan_for_unused_pt = false;
2030 2031 2032 2033 2034 2035 2036 2037 2038
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

2039
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
2040 2041 2042 2043 2044 2045 2046 2047
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

2048
	vma = i915_vma_alloc();
2049 2050 2051
	if (!vma)
		return ERR_PTR(-ENOMEM);

2052
	i915_active_init(i915, &vma->active, NULL);
2053
	INIT_ACTIVE_REQUEST(&vma->last_fence);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
2065
	INIT_LIST_HEAD(&vma->closed_link);
2066 2067

	mutex_lock(&vma->vm->mutex);
2068
	list_add(&vma->vm_link, &vma->vm->unbound_list);
2069
	mutex_unlock(&vma->vm->mutex);
2070 2071 2072

	return vma;
}
2073

2074
int gen6_ppgtt_pin(struct i915_ppgtt *base)
2075
{
2076
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2077
	int err;
2078

2079 2080
	GEM_BUG_ON(ppgtt->base.vm.closed);

2081 2082 2083 2084 2085 2086 2087 2088 2089
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2090 2091 2092 2093 2094
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2106 2107
}

2108
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
2109
{
2110
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2111 2112 2113 2114 2115 2116 2117 2118

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2119
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
2120
{
2121
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2122 2123 2124 2125 2126 2127 2128 2129

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2130
static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2131
{
2132
	struct i915_ggtt * const ggtt = &i915->ggtt;
2133
	struct gen6_ppgtt *ppgtt;
2134 2135 2136 2137 2138 2139
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2140
	ppgtt_init(i915, &ppgtt->base);
2141

2142
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2143 2144 2145
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2146

2147 2148
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2149 2150 2151
	ppgtt->base.pd = __alloc_pd();
	if (!ppgtt->base.pd) {
		err = -ENOMEM;
2152
		goto err_free;
2153 2154
	}

2155
	err = gen6_ppgtt_init_scratch(ppgtt);
2156
	if (err)
2157
		goto err_pd;
2158

2159 2160 2161
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2162
		goto err_scratch;
2163
	}
2164

2165
	return &ppgtt->base;
2166

2167 2168
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2169 2170
err_pd:
	kfree(ppgtt->base.pd);
2171 2172 2173
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2174
}
2175

2176
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2177 2178 2179 2180 2181
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2182
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2183
	if (IS_BROADWELL(dev_priv))
2184
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2185
	else if (IS_CHERRYVIEW(dev_priv))
2186
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2187
	else if (IS_GEN9_LP(dev_priv))
2188
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2189 2190
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2208 2209
}

2210
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2211
{
2212
	gtt_write_workarounds(dev_priv);
2213

2214
	if (IS_GEN(dev_priv, 6))
2215
		gen6_ppgtt_enable(dev_priv);
2216
	else if (IS_GEN(dev_priv, 7))
2217
		gen7_ppgtt_enable(dev_priv);
2218

2219 2220
	return 0;
}
2221

2222 2223
static struct i915_ppgtt *
__ppgtt_create(struct drm_i915_private *i915)
2224 2225 2226 2227 2228 2229 2230
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2231
struct i915_ppgtt *
2232
i915_ppgtt_create(struct drm_i915_private *i915)
2233
{
2234
	struct i915_ppgtt *ppgtt;
2235

2236
	ppgtt = __ppgtt_create(i915);
2237 2238
	if (IS_ERR(ppgtt))
		return ppgtt;
2239

2240
	trace_i915_ppgtt_create(&ppgtt->vm);
2241

2242 2243 2244
	return ppgtt;
}

2245 2246 2247
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2248
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2249 2250 2251 2252
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2253
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2254 2255
}

2256
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2257
{
2258
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2259 2260 2261 2262

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2263
	if (INTEL_GEN(dev_priv) < 6)
2264 2265
		return;

2266
	i915_check_and_clear_faults(dev_priv);
2267

2268
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2269

2270
	i915_ggtt_invalidate(dev_priv);
2271 2272
}

2273 2274
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2275
{
2276
	do {
2277 2278 2279 2280
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2281 2282
			return 0;

2283 2284
		/*
		 * If the DMA remap fails, one cause can be that we have
2285 2286 2287 2288 2289 2290 2291
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2292
				 obj->base.size >> PAGE_SHIFT, NULL,
2293
				 I915_SHRINK_BOUND |
2294
				 I915_SHRINK_UNBOUND));
2295

2296
	return -ENOSPC;
2297 2298
}

2299
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2300 2301 2302 2303
{
	writeq(pte, addr);
}

2304 2305
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2306
				  u64 offset,
2307 2308 2309
				  enum i915_cache_level level,
				  u32 unused)
{
2310
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2311
	gen8_pte_t __iomem *pte =
2312
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2313

2314
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2315

2316
	ggtt->invalidate(vm->i915);
2317 2318
}

B
Ben Widawsky 已提交
2319
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2320
				     struct i915_vma *vma,
2321
				     enum i915_cache_level level,
2322
				     u32 flags)
B
Ben Widawsky 已提交
2323
{
2324
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2325 2326
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2327
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2328
	dma_addr_t addr;
2329

2330 2331 2332 2333
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2334

2335
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2336
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2337
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2338
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2339

2340 2341 2342
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2343
	 */
2344
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2345 2346
}

2347 2348
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2349
				  u64 offset,
2350 2351 2352
				  enum i915_cache_level level,
				  u32 flags)
{
2353
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2354
	gen6_pte_t __iomem *pte =
2355
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2356

2357
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2358

2359
	ggtt->invalidate(vm->i915);
2360 2361
}

2362 2363 2364 2365 2366 2367
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2368
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2369
				     struct i915_vma *vma,
2370 2371
				     enum i915_cache_level level,
				     u32 flags)
2372
{
2373
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2374
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2375
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2376
	struct sgt_iter iter;
2377
	dma_addr_t addr;
2378
	for_each_sgt_dma(addr, iter, vma->pages)
2379
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2380

2381 2382 2383
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2384
	 */
2385
	ggtt->invalidate(vm->i915);
2386 2387
}

2388
static void nop_clear_range(struct i915_address_space *vm,
2389
			    u64 start, u64 length)
2390 2391 2392
{
}

B
Ben Widawsky 已提交
2393
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2394
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2395
{
2396
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2397 2398
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2399
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2400
	gen8_pte_t __iomem *gtt_base =
2401 2402
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2458
	struct i915_vma *vma;
2459
	enum i915_cache_level level;
2460
	u32 flags;
2461 2462 2463 2464 2465 2466
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2467
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2468 2469 2470 2471 2472 2473
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2474
					     struct i915_vma *vma,
2475
					     enum i915_cache_level level,
2476
					     u32 flags)
2477
{
2478
	struct insert_entries arg = { vm, vma, level, flags };
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2508
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2509
				  u64 start, u64 length)
2510
{
2511
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2512 2513
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2514
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2515 2516
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2517 2518 2519 2520 2521 2522 2523
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2524
	scratch_pte = vm->scratch_pte;
2525

2526 2527 2528 2529
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2530 2531
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2532
				  u64 offset,
2533 2534 2535 2536 2537 2538 2539 2540 2541
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2542
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2543
				     struct i915_vma *vma,
2544 2545
				     enum i915_cache_level cache_level,
				     u32 unused)
2546 2547 2548 2549
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2550 2551
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2552 2553
}

2554
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2555
				  u64 start, u64 length)
2556
{
2557
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2558 2559
}

2560 2561 2562
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2563
{
2564
	struct drm_i915_private *i915 = vma->vm->i915;
2565
	struct drm_i915_gem_object *obj = vma->obj;
2566
	intel_wakeref_t wakeref;
2567
	u32 pte_flags;
2568

2569
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2570
	pte_flags = 0;
2571
	if (i915_gem_object_is_readonly(obj))
2572 2573
		pte_flags |= PTE_READ_ONLY;

2574
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2575
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2576

2577 2578
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2579 2580 2581 2582 2583
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2584
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2585 2586 2587 2588

	return 0;
}

2589 2590 2591
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2592
	intel_wakeref_t wakeref;
2593

2594
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2595
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2596 2597
}

2598 2599 2600
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2601
{
2602
	struct drm_i915_private *i915 = vma->vm->i915;
2603
	u32 pte_flags;
2604
	int ret;
2605

2606
	/* Currently applicable only to VLV */
2607
	pte_flags = 0;
2608
	if (i915_gem_object_is_readonly(vma->obj))
2609
		pte_flags |= PTE_READ_ONLY;
2610

2611
	if (flags & I915_VMA_LOCAL_BIND) {
2612
		struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2613

2614
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2615 2616 2617
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2618
			if (ret)
2619
				return ret;
2620 2621
		}

2622 2623
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2624 2625
	}

2626
	if (flags & I915_VMA_GLOBAL_BIND) {
2627 2628
		intel_wakeref_t wakeref;

2629
		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2630 2631 2632
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2633
	}
2634

2635
	return 0;
2636 2637
}

2638
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2639
{
2640
	struct drm_i915_private *i915 = vma->vm->i915;
2641

2642
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2643
		struct i915_address_space *vm = vma->vm;
2644 2645
		intel_wakeref_t wakeref;

2646
		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2647
			vm->clear_range(vm, vma->node.start, vma->size);
2648
	}
2649

2650
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2651
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2652 2653 2654

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2655 2656
}

2657 2658
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2659
{
D
David Weinehall 已提交
2660 2661
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2662
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2663

2664
	if (unlikely(ggtt->do_idle_maps)) {
2665
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2666 2667 2668 2669 2670
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2671

2672
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2673
}
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2685 2686
	vma->page_sizes = vma->obj->mm.page_sizes;

2687 2688 2689
	return 0;
}

C
Chris Wilson 已提交
2690
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2691
				  unsigned long color,
2692 2693
				  u64 *start,
				  u64 *end)
2694
{
2695
	if (node->allocated && node->color != color)
2696
		*start += I915_GTT_PAGE_SIZE;
2697

2698 2699 2700 2701 2702
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2703
	node = list_next_entry(node, node_list);
2704
	if (node->color != color)
2705
		*end -= I915_GTT_PAGE_SIZE;
2706
}
B
Ben Widawsky 已提交
2707

2708
static int init_aliasing_ppgtt(struct drm_i915_private *i915)
2709 2710
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2711
	struct i915_ppgtt *ppgtt;
2712 2713
	int err;

2714
	ppgtt = i915_ppgtt_create(i915);
2715 2716
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2717

2718
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2719 2720 2721 2722
		err = -ENODEV;
		goto err_ppgtt;
	}

2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2732 2733

	i915->mm.aliasing_ppgtt = ppgtt;
2734

2735 2736
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2737

2738 2739
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2740

2741 2742 2743
	return 0;

err_ppgtt:
2744
	i915_vm_put(&ppgtt->vm);
2745 2746 2747
	return err;
}

2748
static void fini_aliasing_ppgtt(struct drm_i915_private *i915)
2749 2750
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2751
	struct i915_ppgtt *ppgtt;
2752 2753 2754 2755 2756

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2757
	i915_vm_put(&ppgtt->vm);
2758

2759 2760
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2761 2762
}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
{
	u64 size;
	int ret;

	if (!USES_GUC(ggtt->vm.i915))
		return 0;

	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
	size = ggtt->vm.total - GUC_GGTT_TOP;

	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
				   PIN_NOEVICT);
	if (ret)
		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");

	return ret;
}

static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
{
	if (drm_mm_node_allocated(&ggtt->uc_fw))
		drm_mm_remove_node(&ggtt->uc_fw);
}

2789
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2790
{
2791 2792 2793 2794 2795 2796 2797 2798 2799
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2800
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2801
	unsigned long hole_start, hole_end;
2802
	struct drm_mm_node *entry;
2803
	int ret;
2804

2805 2806 2807 2808 2809 2810 2811
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2812
			       intel_wopcm_guc_size(&dev_priv->wopcm));
2813

2814 2815 2816
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2817

2818
	/* Reserve a mappable slot for our lockless error capture */
2819
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2820 2821 2822
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2823 2824 2825
	if (ret)
		return ret;

2826 2827 2828 2829 2830 2831 2832 2833
	/*
	 * The upper portion of the GuC address space has a sizeable hole
	 * (several MB) that is inaccessible by GuC. Reserve this range within
	 * GGTT as it can comfortably hold GuC/HuC firmware images.
	 */
	ret = ggtt_reserve_guc_top(ggtt);
	if (ret)
		goto err_reserve;
2834

2835
	/* Clear any non-preallocated blocks */
2836
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2837 2838
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2839 2840
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2841 2842 2843
	}

	/* And finally clear the reserved guard page */
2844
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2845

2846
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2847
		ret = init_aliasing_ppgtt(dev_priv);
2848
		if (ret)
2849
			goto err_appgtt;
2850 2851
	}

2852
	return 0;
2853

2854
err_appgtt:
2855
	ggtt_release_guc_top(ggtt);
2856
err_reserve:
2857 2858
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2859 2860
}

2861 2862
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2863
 * @dev_priv: i915 device
2864
 */
2865
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2866
{
2867
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2868
	struct i915_vma *vma, *vn;
2869
	struct pagevec *pvec;
2870

2871
	ggtt->vm.closed = true;
2872 2873

	mutex_lock(&dev_priv->drm.struct_mutex);
2874
	fini_aliasing_ppgtt(dev_priv);
2875

2876
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2877
		WARN_ON(i915_vma_unbind(vma));
2878

2879 2880 2881
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2882
	ggtt_release_guc_top(ggtt);
2883

2884
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2885
		intel_vgt_deballoon(dev_priv);
2886
		i915_address_space_fini(&ggtt->vm);
2887 2888
	}

2889
	ggtt->vm.cleanup(&ggtt->vm);
2890

2891
	pvec = &dev_priv->mm.wc_stash.pvec;
2892 2893 2894 2895 2896
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2897
	mutex_unlock(&dev_priv->drm.struct_mutex);
2898 2899

	arch_phys_wc_del(ggtt->mtrr);
2900
	io_mapping_fini(&ggtt->iomap);
2901

2902
	i915_gem_cleanup_stolen(dev_priv);
2903
}
2904

2905
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2906 2907 2908 2909 2910 2911
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2912
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2913 2914 2915 2916 2917
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2918 2919

#ifdef CONFIG_X86_32
2920
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2921 2922 2923 2924
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2925 2926 2927
	return bdw_gmch_ctl << 20;
}

2928
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2939
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2940
{
2941
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2942
	struct pci_dev *pdev = dev_priv->drm.pdev;
2943
	phys_addr_t phys_addr;
2944
	int ret;
B
Ben Widawsky 已提交
2945 2946

	/* For Modern GENs the PTEs and register space are split in the BAR */
2947
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2948

I
Imre Deak 已提交
2949
	/*
2950 2951 2952
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2953 2954 2955
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2956
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2957
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2958
	else
2959
		ggtt->gsm = ioremap_wc(phys_addr, size);
2960
	if (!ggtt->gsm) {
2961
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2962 2963 2964
		return -ENOMEM;
	}

2965
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2966
	if (ret) {
B
Ben Widawsky 已提交
2967 2968
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2969
		iounmap(ggtt->gsm);
2970
		return ret;
B
Ben Widawsky 已提交
2971 2972
	}

2973 2974 2975 2976
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2977
	return 0;
B
Ben Widawsky 已提交
2978 2979
}

2980 2981
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2982
{
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3026
	struct intel_ppat_entry *entry = NULL;
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3049
		if (!entry)
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3126
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3164 3165
}

B
Ben Widawsky 已提交
3166 3167 3168
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3169
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3170
{
3171 3172 3173 3174
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3175

3176
	if (!HAS_PPGTT(ppat->i915)) {
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3190 3191 3192
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3193

3194 3195 3196 3197 3198 3199 3200 3201
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3202 3203
}

3204
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3205
{
3206 3207 3208 3209
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3210 3211 3212 3213 3214 3215 3216

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3228 3229
	 */

3230 3231 3232 3233 3234 3235 3236 3237
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3238 3239
}

3240 3241 3242 3243 3244
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3245
	cleanup_scratch_page(vm);
3246 3247
}

3248 3249
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3250 3251 3252 3253 3254
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3255
	if (INTEL_GEN(dev_priv) >= 10)
3256
		cnl_setup_private_ppat(ppat);
3257
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3258
		chv_setup_private_ppat(ppat);
3259
	else
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3271 3272
}

3273
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3274
{
3275
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3276
	struct pci_dev *pdev = dev_priv->drm.pdev;
3277
	unsigned int size;
B
Ben Widawsky 已提交
3278
	u16 snb_gmch_ctl;
3279
	int err;
B
Ben Widawsky 已提交
3280 3281

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3282 3283 3284 3285
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3286

3287 3288 3289 3290 3291
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3292

3293
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3294
	if (IS_CHERRYVIEW(dev_priv))
3295
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3296
	else
3297
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3298

3299
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3300 3301 3302
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3303
	if (intel_scanout_needs_vtd_wa(dev_priv))
3304
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3305

3306
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3307

3308
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3309 3310
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3311 3312 3313 3314
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3315 3316 3317 3318 3319

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3320 3321
	}

3322 3323
	ggtt->invalidate = gen6_ggtt_invalidate;

3324 3325 3326 3327 3328
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3329 3330
	ggtt->vm.pte_encode = gen8_pte_encode;

3331 3332
	setup_private_pat(dev_priv);

3333
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3334 3335
}

3336
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3337
{
3338
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3339
	struct pci_dev *pdev = dev_priv->drm.pdev;
3340
	unsigned int size;
3341
	u16 snb_gmch_ctl;
3342
	int err;
3343

3344 3345 3346 3347
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3348

3349 3350
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3351
	 */
3352
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3353
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3354
		return -ENXIO;
3355 3356
	}

3357 3358 3359 3360 3361
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3362
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3363

3364
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3365
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3366

3367 3368 3369
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3370 3371 3372
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3373

3374 3375
	ggtt->invalidate = gen6_ggtt_invalidate;

3376
	if (HAS_EDRAM(dev_priv))
3377
		ggtt->vm.pte_encode = iris_pte_encode;
3378
	else if (IS_HASWELL(dev_priv))
3379
		ggtt->vm.pte_encode = hsw_pte_encode;
3380
	else if (IS_VALLEYVIEW(dev_priv))
3381
		ggtt->vm.pte_encode = byt_pte_encode;
3382
	else if (INTEL_GEN(dev_priv) >= 7)
3383
		ggtt->vm.pte_encode = ivb_pte_encode;
3384
	else
3385
		ggtt->vm.pte_encode = snb_pte_encode;
3386

3387 3388 3389 3390 3391
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3392
	return ggtt_probe_common(ggtt, size);
3393 3394
}

3395
static void i915_gmch_remove(struct i915_address_space *vm)
3396
{
3397
	intel_gmch_remove();
3398
}
3399

3400
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3401
{
3402
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3403
	phys_addr_t gmadr_base;
3404 3405
	int ret;

3406
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3407 3408 3409 3410 3411
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3412
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3413

3414 3415 3416 3417
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3418
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3419 3420 3421 3422
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3423

3424 3425
	ggtt->invalidate = gmch_ggtt_invalidate;

3426 3427 3428 3429 3430
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3431
	if (unlikely(ggtt->do_idle_maps))
3432 3433
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3434 3435 3436
	return 0;
}

3437
/**
3438
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3439
 * @dev_priv: i915 device
3440
 */
3441
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3442
{
3443
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3444 3445
	int ret;

3446 3447
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3448

3449 3450 3451 3452 3453 3454
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3455
	if (ret)
3456 3457
		return ret;

3458
	if ((ggtt->vm.total - 1) >> 32) {
3459
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3460
			  " of address space! Found %lldM!\n",
3461 3462 3463 3464
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3465 3466
	}

3467
	if (ggtt->mappable_end > ggtt->vm.total) {
3468
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3469
			  " aperture=%pa, total=%llx\n",
3470 3471
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3472 3473
	}

3474
	/* GMADR is the PCI mmio aperture into the global GTT. */
3475
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3476
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3477
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3478
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3479
	if (intel_vtd_active())
3480
		DRM_INFO("VT-d active for gfx access\n");
3481 3482

	return 0;
3483 3484 3485 3486
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3487
 * @dev_priv: i915 device
3488
 */
3489
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3490 3491 3492 3493
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3494 3495
	stash_init(&dev_priv->mm.wc_stash);

3496 3497 3498 3499
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3500
	 */
C
Chris Wilson 已提交
3501
	mutex_lock(&dev_priv->drm.struct_mutex);
3502
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3503

3504 3505
	ggtt->vm.is_ggtt = true;

3506 3507 3508
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3509
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3510
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3511
	mutex_unlock(&dev_priv->drm.struct_mutex);
3512

3513 3514
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3515
				dev_priv->ggtt.mappable_end)) {
3516 3517 3518 3519
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3520
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3521

3522 3523
	i915_ggtt_init_fences(ggtt);

3524 3525 3526 3527
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3528
	ret = i915_gem_init_stolen(dev_priv);
3529 3530 3531 3532
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3533 3534

out_gtt_cleanup:
3535
	ggtt->vm.cleanup(&ggtt->vm);
3536
	return ret;
3537
}
3538

3539
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3540
{
3541
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3542 3543 3544 3545 3546
		return -EIO;

	return 0;
}

3547 3548
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3549 3550
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3551
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3552 3553

	i915_ggtt_invalidate(i915);
3554 3555 3556 3557
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3558 3559 3560 3561
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3562 3563 3564 3565
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3566 3567

	i915_ggtt_invalidate(i915);
3568 3569
}

3570
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3571
{
3572
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3573
	struct i915_vma *vma, *vn;
3574

3575
	i915_check_and_clear_faults(dev_priv);
3576

3577 3578
	mutex_lock(&ggtt->vm.mutex);

3579
	/* First fill our portion of the GTT with scratch pages */
3580 3581
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3582 3583

	/* clflush objects bound into the GGTT and rebind them. */
3584
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3585
		struct drm_i915_gem_object *obj = vma->obj;
3586

3587 3588
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3589

3590 3591
		mutex_unlock(&ggtt->vm.mutex);

3592
		if (!i915_vma_unbind(vma))
3593
			goto lock;
3594

3595 3596 3597
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3598 3599
		if (obj) {
			i915_gem_object_lock(obj);
3600
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3601 3602
			i915_gem_object_unlock(obj);
		}
3603 3604 3605

lock:
		mutex_lock(&ggtt->vm.mutex);
3606
	}
3607

3608
	ggtt->vm.closed = false;
3609
	i915_ggtt_invalidate(dev_priv);
3610

3611 3612
	mutex_unlock(&ggtt->vm.mutex);

3613
	if (INTEL_GEN(dev_priv) >= 8) {
3614
		struct intel_ppat *ppat = &dev_priv->ppat;
3615

3616 3617
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3618 3619 3620 3621
		return;
	}
}

3622
static struct scatterlist *
3623
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3624
	     unsigned int width, unsigned int height,
3625
	     unsigned int stride,
3626
	     struct sg_table *st, struct scatterlist *sg)
3627 3628 3629 3630 3631
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3632
		src_idx = stride * (height - 1) + column + offset;
3633 3634 3635 3636 3637 3638
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3639
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3640 3641
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3642
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3643
			sg = sg_next(sg);
3644
			src_idx -= stride;
3645 3646
		}
	}
3647 3648

	return sg;
3649 3650
}

3651 3652 3653
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3654
{
3655
	unsigned int size = intel_rotation_info_size(rot_info);
3656
	struct sg_table *st;
3657
	struct scatterlist *sg;
3658
	int ret = -ENOMEM;
3659
	int i;
3660 3661 3662 3663 3664 3665

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3666
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3667 3668 3669
	if (ret)
		goto err_sg_alloc;

3670 3671 3672
	st->nents = 0;
	sg = st->sgl;

3673
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3674
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3675 3676
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3677 3678
	}

3679 3680 3681 3682 3683 3684
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3685 3686
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3687

3688 3689
	return ERR_PTR(ret);
}
3690

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3774
static noinline struct sg_table *
3775 3776 3777 3778
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3779
	struct scatterlist *sg, *iter;
3780
	unsigned int count = view->partial.size;
3781
	unsigned int offset;
3782 3783 3784 3785 3786 3787
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3788
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3789 3790 3791
	if (ret)
		goto err_sg_alloc;

3792
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3793 3794
	GEM_BUG_ON(!iter);

3795 3796
	sg = st->sgl;
	st->nents = 0;
3797 3798
	do {
		unsigned int len;
3799

3800 3801 3802 3803 3804 3805
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3806 3807

		st->nents++;
3808 3809 3810
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3811 3812
			i915_sg_trim(st); /* Drop any unused tail entries. */

3813 3814
			return st;
		}
3815

3816 3817 3818 3819
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3820 3821 3822 3823 3824 3825 3826

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3827
static int
3828
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3829
{
3830
	int ret;
3831

3832 3833 3834 3835 3836 3837 3838
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3839
	switch (vma->ggtt_view.type) {
3840 3841 3842
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3843 3844
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3845 3846
		return 0;

3847
	case I915_GGTT_VIEW_ROTATED:
3848
		vma->pages =
3849 3850 3851
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3852 3853 3854 3855 3856
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3857
	case I915_GGTT_VIEW_PARTIAL:
3858
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3859 3860
		break;
	}
3861

3862
	ret = 0;
3863
	if (IS_ERR(vma->pages)) {
3864 3865
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3866 3867
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3868
	}
3869
	return ret;
3870 3871
}

3872 3873
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3908
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3909
	GEM_BUG_ON(drm_mm_node_allocated(node));
3910 3911 3912 3913 3914 3915 3916 3917 3918

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3919 3920 3921
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3922 3923 3924 3925 3926 3927 3928
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3954 3955
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3956 3957 3958 3959 3960 3961 3962 3963 3964
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3965
 *         must be #I915_GTT_PAGE_SIZE aligned
3966 3967 3968
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3969 3970 3971 3972 3973 3974
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3975 3976
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3993
	enum drm_mm_insert_mode mode;
3994
	u64 offset;
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4005
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4006
	GEM_BUG_ON(drm_mm_node_allocated(node));
4007 4008 4009 4010 4011 4012 4013

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4014 4015
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4016
		mode = DRM_MM_INSERT_HIGHEST;
4017 4018
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4030 4031 4032
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4033 4034 4035
	if (err != -ENOSPC)
		return err;

4036 4037 4038 4039 4040 4041 4042 4043 4044
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4045 4046 4047
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4077 4078 4079 4080 4081
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4082 4083 4084
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4085
}
4086 4087 4088

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4089
#include "selftests/i915_gem_gtt.c"
4090
#endif