arm-smmu.c 60.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
27
 *	- Extended Stream ID (16 bit)
28 29 30 31
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

32 33
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
34
#include <linux/atomic.h>
35
#include <linux/delay.h>
36
#include <linux/dma-iommu.h>
37 38 39 40
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
41
#include <linux/io-64-nonatomic-hi-lo.h>
42
#include <linux/iommu.h>
43
#include <linux/iopoll.h>
44 45
#include <linux/module.h>
#include <linux/of.h>
46
#include <linux/of_address.h>
47
#include <linux/of_device.h>
48
#include <linux/of_iommu.h>
49
#include <linux/pci.h>
50 51 52 53 54 55
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

56
#include "io-pgtable.h"
57 58 59 60 61
#include "arm-smmu-regs.h"

#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)
62
#define ARM_MMU500_ACR_S2CRB_TLBEN	(1 << 10)
63 64 65 66
#define ARM_MMU500_ACR_SMTNMB_TLBEN	(1 << 8)

#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */
#define TLB_SPIN_COUNT			10
67 68 69 70 71 72

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
73
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
74

75 76 77 78 79 80 81 82 83 84
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

85 86 87 88 89
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
90
#ifdef CONFIG_64BIT
91
#define smmu_write_atomic_lq		writeq_relaxed
92
#else
93
#define smmu_write_atomic_lq		writel_relaxed
94 95
#endif

96
/* Translation context bank */
97
#define ARM_SMMU_CB(smmu, n)	((smmu)->cb_base + ((n) << (smmu)->pgshift))
98

99 100 101
#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

102
static int force_stage;
103
module_param(force_stage, int, S_IRUGO);
104 105
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
106 107 108 109
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
110

111
enum arm_smmu_arch_version {
112 113
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
114 115 116
	ARM_SMMU_V2,
};

117 118
enum arm_smmu_implementation {
	GENERIC_SMMU,
119
	ARM_MMU500,
120
	CAVIUM_SMMUV2,
121 122
};

123
struct arm_smmu_s2cr {
124 125
	struct iommu_group		*group;
	int				count;
126 127 128 129 130 131 132 133 134
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

135 136 137
struct arm_smmu_smr {
	u16				mask;
	u16				id;
138
	bool				valid;
139 140
};

141 142 143 144 145 146 147
struct arm_smmu_cb {
	u64				ttbr[2];
	u32				tcr[2];
	u32				mair[2];
	struct arm_smmu_cfg		*cfg;
};

148
struct arm_smmu_master_cfg {
149
	struct arm_smmu_device		*smmu;
150
	s16				smendx[];
151
};
152
#define INVALID_SMENDX			-1
153 154
#define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
#define fwspec_smmu(fw)  (__fwspec_cfg(fw)->smmu)
155 156
#define fwspec_smendx(fw, i) \
	(i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
157
#define for_each_cfg_sme(fw, i, idx) \
158
	for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
159 160 161 162 163

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
164
	void __iomem			*cb_base;
165
	unsigned long			pgshift;
166 167 168 169 170 171

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
172
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
173
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
174 175 176 177 178
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
179
#define ARM_SMMU_FEAT_EXIDS		(1 << 12)
180
	u32				features;
181 182 183

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
184
	enum arm_smmu_arch_version	version;
185
	enum arm_smmu_implementation	model;
186 187 188 189

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
190
	struct arm_smmu_cb		*cbs;
191 192 193
	atomic_t			irptndx;

	u32				num_mapping_groups;
194 195
	u16				streamid_mask;
	u16				smr_mask_mask;
196
	struct arm_smmu_smr		*smrs;
197
	struct arm_smmu_s2cr		*s2crs;
198
	struct mutex			stream_map_mutex;
199

200 201 202
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
203
	unsigned long			pgsize_bitmap;
204 205 206 207 208

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

209
	u32				cavium_id_base; /* Specific to Cavium */
210

211 212
	spinlock_t			global_sync_lock;

213 214
	/* IOMMU core code handle */
	struct iommu_device		iommu;
215 216
};

217 218 219 220 221
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
222 223 224 225 226
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
227 228 229 230
	union {
		u16			asid;
		u16			vmid;
	};
231
	u32				cbar;
232
	enum arm_smmu_context_fmt	fmt;
233
};
234
#define INVALID_IRPTNDX			0xff
235

236 237 238 239
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
240
	ARM_SMMU_DOMAIN_BYPASS,
241 242
};

243
struct arm_smmu_domain {
244
	struct arm_smmu_device		*smmu;
245
	struct io_pgtable_ops		*pgtbl_ops;
246
	const struct iommu_gather_ops	*tlb_ops;
247
	struct arm_smmu_cfg		cfg;
248
	enum arm_smmu_domain_stage	stage;
249
	struct mutex			init_mutex; /* Protects smmu pointer */
250
	spinlock_t			cb_lock; /* Serialises ATS1* ops and TLB syncs */
251
	struct iommu_domain		domain;
252 253
};

254 255 256 257 258
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

259 260
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

261 262
static bool using_legacy_binding, using_generic_binding;

263
static struct arm_smmu_option_prop arm_smmu_options[] = {
264 265 266 267
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

268 269 270 271 272
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

273 274 275
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
276

277 278 279 280 281 282 283 284 285 286
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

287
static struct device_node *dev_get_dev_node(struct device *dev)
288 289 290
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
291

292 293
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
294
		return of_node_get(bus->bridge->parent->of_node);
295 296
	}

297
	return of_node_get(dev->of_node);
298 299
}

300
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
301
{
302 303
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
304 305
}

306
static int __find_legacy_master_phandle(struct device *dev, void *data)
307
{
308 309 310 311 312 313 314 315 316 317 318 319
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
320 321
}

322
static struct platform_driver arm_smmu_driver;
323
static struct iommu_ops arm_smmu_ops;
324

325 326
static int arm_smmu_register_legacy_master(struct device *dev,
					   struct arm_smmu_device **smmu)
327
{
328
	struct device *smmu_dev;
329 330 331
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
332
	u32 *sids;
333 334
	__be32 pci_sid;
	int err;
335

336 337 338 339 340
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
341

342
	it.node = np;
343 344
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
345
	smmu_dev = data;
346 347 348 349 350
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
351

352 353 354 355 356 357 358
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
359

360 361 362 363
	err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
				&arm_smmu_ops);
	if (err)
		return err;
364

365 366 367
	sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
	if (!sids)
		return -ENOMEM;
368

369 370 371 372 373
	*smmu = dev_get_drvdata(smmu_dev);
	of_phandle_iterator_args(&it, sids, it.cur_count);
	err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
	kfree(sids);
	return err;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
395 396
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu,
				void __iomem *sync, void __iomem *status)
397
{
398
	unsigned int spin_cnt, delay;
399

400
	writel_relaxed(0, sync);
401 402 403 404 405
	for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
		for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
			if (!(readl_relaxed(status) & sTLBGSTATUS_GSACTIVE))
				return;
			cpu_relax();
406
		}
407
		udelay(delay);
408
	}
409 410
	dev_err_ratelimited(smmu->dev,
			    "TLB sync timed out -- SMMU may be deadlocked\n");
411 412
}

413 414 415
static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
{
	void __iomem *base = ARM_SMMU_GR0(smmu);
416
	unsigned long flags;
417

418
	spin_lock_irqsave(&smmu->global_sync_lock, flags);
419 420
	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_GR0_sTLBGSYNC,
			    base + ARM_SMMU_GR0_sTLBGSTATUS);
421
	spin_unlock_irqrestore(&smmu->global_sync_lock, flags);
422 423 424
}

static void arm_smmu_tlb_sync_context(void *cookie)
425 426
{
	struct arm_smmu_domain *smmu_domain = cookie;
427 428
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx);
429
	unsigned long flags;
430

431
	spin_lock_irqsave(&smmu_domain->cb_lock, flags);
432 433
	__arm_smmu_tlb_sync(smmu, base + ARM_SMMU_CB_TLBSYNC,
			    base + ARM_SMMU_CB_TLBSTATUS);
434
	spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
435 436
}

437
static void arm_smmu_tlb_sync_vmid(void *cookie)
438 439
{
	struct arm_smmu_domain *smmu_domain = cookie;
440 441

	arm_smmu_tlb_sync_global(smmu_domain->smmu);
442 443
}

444
static void arm_smmu_tlb_inv_context_s1(void *cookie)
445
{
446
	struct arm_smmu_domain *smmu_domain = cookie;
447
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
448
	void __iomem *base = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
449

450 451 452
	writel_relaxed(cfg->asid, base + ARM_SMMU_CB_S1_TLBIASID);
	arm_smmu_tlb_sync_context(cookie);
}
453

454 455 456 457 458
static void arm_smmu_tlb_inv_context_s2(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	void __iomem *base = ARM_SMMU_GR0(smmu);
459

460 461
	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
	arm_smmu_tlb_sync_global(smmu);
462 463 464
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
465
					  size_t granule, bool leaf, void *cookie)
466 467 468 469
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
470
	void __iomem *reg = ARM_SMMU_CB(smmu_domain->smmu, cfg->cbndx);
471

472 473 474
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
		wmb();

475 476 477
	if (stage1) {
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

478
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
479
			iova &= ~12UL;
480
			iova |= cfg->asid;
481 482 483 484
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
485 486
		} else {
			iova >>= 12;
487
			iova |= (u64)cfg->asid << 48;
488 489 490 491
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
492
		}
493
	} else {
494 495
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
496 497
		iova >>= 12;
		do {
498
			smmu_write_atomic_lq(iova, reg);
499 500
			iova += granule >> 12;
		} while (size -= granule);
501 502 503
	}
}

504 505 506 507 508 509 510 511 512 513 514 515
/*
 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears
 * almost negligible, but the benefit of getting the first one in as far ahead
 * of the sync as possible is significant, hence we don't just make this a
 * no-op and set .tlb_sync to arm_smmu_inv_context_s2() as you might think.
 */
static void arm_smmu_tlb_inv_vmid_nosync(unsigned long iova, size_t size,
					 size_t granule, bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	void __iomem *base = ARM_SMMU_GR0(smmu_domain->smmu);

516 517 518
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
		wmb();

519 520 521 522 523
	writel_relaxed(smmu_domain->cfg.vmid, base + ARM_SMMU_GR0_TLBIVMID);
}

static const struct iommu_gather_ops arm_smmu_s1_tlb_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s1,
524
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
525 526 527 528 529
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v2 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
530
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
531 532 533 534 535 536 537
	.tlb_sync	= arm_smmu_tlb_sync_context,
};

static const struct iommu_gather_ops arm_smmu_s2_tlb_ops_v1 = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context_s2,
	.tlb_add_flush	= arm_smmu_tlb_inv_vmid_nosync,
	.tlb_sync	= arm_smmu_tlb_sync_vmid,
538 539
};

540 541
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
542
	u32 fsr, fsynr;
543 544
	unsigned long iova;
	struct iommu_domain *domain = dev;
545
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
546 547
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
548 549
	void __iomem *cb_base;

550
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
551 552 553 554 555 556
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
557
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
558

559 560 561
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
562

563 564
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
565 566 567 568 569 570
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
571
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
572 573 574 575 576 577

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

578 579 580
	if (!gfsr)
		return IRQ_NONE;

581 582 583 584 585 586 587
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
588
	return IRQ_HANDLED;
589 590
}

591 592
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
593
{
594
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	struct arm_smmu_cb *cb = &smmu_domain->smmu->cbs[cfg->cbndx];
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;

	cb->cfg = cfg;

	/* TTBCR */
	if (stage1) {
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			cb->tcr[0] = pgtbl_cfg->arm_v7s_cfg.tcr;
		} else {
			cb->tcr[0] = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			cb->tcr[1] = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			cb->tcr[1] |= TTBCR2_SEP_UPSTREAM;
			if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
				cb->tcr[1] |= TTBCR2_AS;
		}
	} else {
		cb->tcr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	}

	/* TTBRs */
	if (stage1) {
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			cb->ttbr[0] = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			cb->ttbr[1] = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
		} else {
			cb->ttbr[0] = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			cb->ttbr[0] |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
			cb->ttbr[1] = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			cb->ttbr[1] |= (u64)cfg->asid << TTBRn_ASID_SHIFT;
		}
	} else {
		cb->ttbr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	}

	/* MAIRs (stage-1 only) */
	if (stage1) {
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			cb->mair[0] = pgtbl_cfg->arm_v7s_cfg.prrr;
			cb->mair[1] = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			cb->mair[0] = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			cb->mair[1] = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
	}
}

static void arm_smmu_write_context_bank(struct arm_smmu_device *smmu, int idx)
{
	u32 reg;
	bool stage1;
	struct arm_smmu_cb *cb = &smmu->cbs[idx];
	struct arm_smmu_cfg *cfg = cb->cfg;
648
	void __iomem *cb_base, *gr1_base;
649

650 651 652 653 654 655 656 657
	cb_base = ARM_SMMU_CB(smmu, idx);

	/* Unassigned context banks only need disabling */
	if (!cfg) {
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		return;
	}

658
	gr1_base = ARM_SMMU_GR1(smmu);
659
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
660

661
	/* CBA2R */
662
	if (smmu->version > ARM_SMMU_V1) {
663 664 665 666
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
667 668
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
669
			reg |= cfg->vmid << CBA2R_VMID_SHIFT;
670

671
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(idx));
672 673
	}

674
	/* CBAR */
675
	reg = cfg->cbar;
676
	if (smmu->version < ARM_SMMU_V2)
677
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
678

679 680 681 682 683 684 685
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
686 687
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
688
		reg |= cfg->vmid << CBAR_VMID_SHIFT;
689
	}
690
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(idx));
691

692 693 694 695 696
	/*
	 * TTBCR
	 * We must write this before the TTBRs, since it determines the
	 * access behaviour of some fields (in particular, ASID[15:8]).
	 */
697 698 699
	if (stage1 && smmu->version > ARM_SMMU_V1)
		writel_relaxed(cb->tcr[1], cb_base + ARM_SMMU_CB_TTBCR2);
	writel_relaxed(cb->tcr[0], cb_base + ARM_SMMU_CB_TTBCR);
700

701
	/* TTBRs */
702 703 704 705
	if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
		writel_relaxed(cfg->asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		writel_relaxed(cb->ttbr[0], cb_base + ARM_SMMU_CB_TTBR0);
		writel_relaxed(cb->ttbr[1], cb_base + ARM_SMMU_CB_TTBR1);
706
	} else {
707 708 709
		writeq_relaxed(cb->ttbr[0], cb_base + ARM_SMMU_CB_TTBR0);
		if (stage1)
			writeq_relaxed(cb->ttbr[1], cb_base + ARM_SMMU_CB_TTBR1);
710
	}
711

712
	/* MAIRs (stage-1 only) */
713
	if (stage1) {
714 715
		writel_relaxed(cb->mair[0], cb_base + ARM_SMMU_CB_S1_MAIR0);
		writel_relaxed(cb->mair[1], cb_base + ARM_SMMU_CB_S1_MAIR1);
716 717 718
	}

	/* SCTLR */
719
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
720 721
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
722 723 724
	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
		reg |= SCTLR_E;

725
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
726 727 728
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
729
					struct arm_smmu_device *smmu)
730
{
731
	int irq, start, ret = 0;
732 733 734 735
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
736
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
737
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
738

739
	mutex_lock(&smmu_domain->init_mutex);
740 741 742
	if (smmu_domain->smmu)
		goto out_unlock;

743 744 745 746 747 748
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

772 773 774 775 776 777 778 779 780 781
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
782 783 784 785 786
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
787 788 789 790 791 792 793 794 795 796 797
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

798 799 800 801
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
802 803
		ias = smmu->va_size;
		oas = smmu->ipa_size;
804
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
805
			fmt = ARM_64_LPAE_S1;
806
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
807
			fmt = ARM_32_LPAE_S1;
808 809
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
810 811 812 813
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
814
		}
815
		smmu_domain->tlb_ops = &arm_smmu_s1_tlb_ops;
816 817
		break;
	case ARM_SMMU_DOMAIN_NESTED:
818 819 820 821
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
822
	case ARM_SMMU_DOMAIN_S2:
823 824
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
825 826
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
827
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
828
			fmt = ARM_64_LPAE_S2;
829
		} else {
830
			fmt = ARM_32_LPAE_S2;
831 832 833
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
834
		if (smmu->version == ARM_SMMU_V2)
835
			smmu_domain->tlb_ops = &arm_smmu_s2_tlb_ops_v2;
836
		else
837
			smmu_domain->tlb_ops = &arm_smmu_s2_tlb_ops_v1;
838 839 840 841
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
842 843 844
	}
	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
845
	if (ret < 0)
846
		goto out_unlock;
847

848
	cfg->cbndx = ret;
849
	if (smmu->version < ARM_SMMU_V2) {
850 851
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
852
	} else {
853
		cfg->irptndx = cfg->cbndx;
854 855
	}

856 857 858 859 860
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
		cfg->vmid = cfg->cbndx + 1 + smmu->cavium_id_base;
	else
		cfg->asid = cfg->cbndx + smmu->cavium_id_base;

861
	pgtbl_cfg = (struct io_pgtable_cfg) {
862
		.pgsize_bitmap	= smmu->pgsize_bitmap,
863 864
		.ias		= ias,
		.oas		= oas,
865
		.tlb		= smmu_domain->tlb_ops,
866
		.iommu_dev	= smmu->dev,
867 868
	};

869 870 871
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
		pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;

872 873 874 875 876 877 878
	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

879 880
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
881 882
	domain->geometry.aperture_end = (1UL << ias) - 1;
	domain->geometry.force_aperture = true;
883

884 885
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
886
	arm_smmu_write_context_bank(smmu, cfg->cbndx);
887 888 889 890 891

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
892
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
893 894
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
895
	if (ret < 0) {
896
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
897 898
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
899 900
	}

901 902 903 904
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
905
	return 0;
906

907 908
out_clear_smmu:
	smmu_domain->smmu = NULL;
909
out_unlock:
910
	mutex_unlock(&smmu_domain->init_mutex);
911 912 913 914 915
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
916
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
917 918
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
919 920
	int irq;

921
	if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY)
922 923
		return;

924 925 926 927
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
928 929
	smmu->cbs[cfg->cbndx].cfg = NULL;
	arm_smmu_write_context_bank(smmu, cfg->cbndx);
930

931 932
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
933
		devm_free_irq(smmu->dev, irq, domain);
934 935
	}

936
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
937
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
938 939
}

940
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
941 942 943
{
	struct arm_smmu_domain *smmu_domain;

944 945 946
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
947
		return NULL;
948 949 950 951 952 953 954
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
955
		return NULL;
956

957 958
	if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
	    iommu_get_dma_cookie(&smmu_domain->domain))) {
959 960 961 962
		kfree(smmu_domain);
		return NULL;
	}

963
	mutex_init(&smmu_domain->init_mutex);
964
	spin_lock_init(&smmu_domain->cb_lock);
965 966

	return &smmu_domain->domain;
967 968
}

969
static void arm_smmu_domain_free(struct iommu_domain *domain)
970
{
971
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
972 973 974 975 976

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
977
	iommu_put_dma_cookie(domain);
978 979 980 981
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

982 983 984
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
985
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
986

987
	if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
988 989 990 991
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

992 993 994 995 996 997 998
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

999 1000 1001
	if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
	    smmu->smrs[idx].valid)
		reg |= S2CR_EXIDVALID;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/*
 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
 * should be called after sCR0 is written.
 */
static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 smr;

	if (!smmu->smrs)
		return;

	/*
	 * SMR.ID bits may not be preserved if the corresponding MASK
	 * bits are set, so check each one separately. We can reject
	 * masters later if they try to claim IDs outside these masks.
	 */
	smr = smmu->streamid_mask << SMR_ID_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->streamid_mask = smr >> SMR_ID_SHIFT;

	smr = smmu->streamid_mask << SMR_MASK_SHIFT;
	writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
	smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
	smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
}

1040
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1041 1042
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1043
	int i, free_idx = -ENOSPC;
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1058 1059
			continue;
		}
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
1096 1097
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1098 1099 1100 1101 1102 1103 1104
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
1105
	for_each_cfg_sme(fwspec, i, idx) {
1106 1107 1108
		u16 sid = fwspec->ids[i];
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;

1109 1110 1111
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1112 1113
		}

1114
		ret = arm_smmu_find_sme(smmu, sid, mask);
1115 1116 1117 1118 1119
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
1120 1121
			smrs[idx].id = sid;
			smrs[idx].mask = mask;
1122 1123 1124 1125
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1126 1127
	}

1128 1129 1130 1131 1132 1133 1134 1135
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1136

1137
	/* It worked! Now, poke the actual hardware */
1138
	for_each_cfg_sme(fwspec, i, idx) {
1139 1140 1141
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1142

1143
	mutex_unlock(&smmu->stream_map_mutex);
1144 1145
	return 0;

1146
out_err:
1147
	while (i--) {
1148
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1149 1150
		cfg->smendx[i] = INVALID_SMENDX;
	}
1151 1152
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1153 1154
}

1155
static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1156
{
1157 1158
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
	struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1159
	int i, idx;
1160

1161
	mutex_lock(&smmu->stream_map_mutex);
1162
	for_each_cfg_sme(fwspec, i, idx) {
1163 1164
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1165
		cfg->smendx[i] = INVALID_SMENDX;
1166
	}
1167
	mutex_unlock(&smmu->stream_map_mutex);
1168 1169 1170
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1171
				      struct iommu_fwspec *fwspec)
1172
{
1173
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1174 1175
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	u8 cbndx = smmu_domain->cfg.cbndx;
1176
	enum arm_smmu_s2cr_type type;
1177
	int i, idx;
1178

1179 1180 1181 1182 1183
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS)
		type = S2CR_TYPE_BYPASS;
	else
		type = S2CR_TYPE_TRANS;

1184
	for_each_cfg_sme(fwspec, i, idx) {
1185
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1186
			continue;
1187

1188
		s2cr[idx].type = type;
1189
		s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1190 1191
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1192
	}
1193
	return 0;
1194 1195
}

1196 1197
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1198
	int ret;
1199 1200
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu;
1201
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1202

1203
	if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1204 1205 1206 1207
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	/*
	 * FIXME: The arch/arm DMA API code tries to attach devices to its own
	 * domains between of_xlate() and add_device() - we have no way to cope
	 * with that, so until ARM gets converted to rely on groups and default
	 * domains, just say no (but more politely than by dereferencing NULL).
	 * This should be at least a WARN_ON once that's sorted.
	 */
	if (!fwspec->iommu_priv)
		return -ENODEV;

1218
	smmu = fwspec_smmu(fwspec);
1219
	/* Ensure that the domain is finalised */
1220
	ret = arm_smmu_init_domain_context(domain, smmu);
1221
	if (ret < 0)
1222 1223
		return ret;

1224
	/*
1225 1226
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1227
	 */
1228
	if (smmu_domain->smmu != smmu) {
1229 1230
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1231
			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1232
		return -EINVAL;
1233 1234 1235
	}

	/* Looks ok, so add the device to the domain */
1236
	return arm_smmu_domain_add_master(smmu_domain, fwspec);
1237 1238 1239
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1240
			phys_addr_t paddr, size_t size, int prot)
1241
{
1242
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1243

1244
	if (!ops)
1245 1246
		return -ENODEV;

1247
	return ops->map(ops, iova, paddr, size, prot);
1248 1249 1250 1251 1252
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1253
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1254

1255 1256 1257
	if (!ops)
		return 0;

1258
	return ops->unmap(ops, iova, size);
1259 1260
}

1261 1262 1263 1264 1265 1266 1267 1268
static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->tlb_ops)
		smmu_domain->tlb_ops->tlb_sync(smmu_domain);
}

1269 1270 1271
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1272
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1273 1274 1275 1276 1277 1278 1279
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1280
	unsigned long va, flags;
1281

1282
	cb_base = ARM_SMMU_CB(smmu, cfg->cbndx);
1283

1284
	spin_lock_irqsave(&smmu_domain->cb_lock, flags);
1285 1286 1287
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1288 1289
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1290
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1291 1292 1293

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
1294
		spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1295
		dev_err(dev,
1296
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1297 1298 1299 1300
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1301
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1302
	spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1303 1304 1305 1306 1307 1308 1309 1310 1311
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1312
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1313
					dma_addr_t iova)
1314
{
1315
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1316
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1317

1318 1319 1320
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

1321
	if (!ops)
1322
		return 0;
1323

1324
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1325 1326
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
		return arm_smmu_iova_to_phys_hard(domain, iova);
1327

1328
	return ops->iova_to_phys(ops, iova);
1329 1330
}

1331
static bool arm_smmu_capable(enum iommu_cap cap)
1332
{
1333 1334
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1335 1336 1337 1338 1339
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1340 1341
	case IOMMU_CAP_NOEXEC:
		return true;
1342
	default:
1343
		return false;
1344
	}
1345 1346
}

1347 1348
static int arm_smmu_match_node(struct device *dev, void *data)
{
1349
	return dev->fwnode == data;
1350 1351
}

1352 1353
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1354 1355
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1356
						fwnode, arm_smmu_match_node);
1357 1358 1359 1360
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

1361
static int arm_smmu_add_device(struct device *dev)
1362
{
1363
	struct arm_smmu_device *smmu;
1364
	struct arm_smmu_master_cfg *cfg;
1365
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1366
	int i, ret;
1367

1368 1369
	if (using_legacy_binding) {
		ret = arm_smmu_register_legacy_master(dev, &smmu);
1370 1371 1372 1373 1374 1375 1376

		/*
		 * If dev->iommu_fwspec is initally NULL, arm_smmu_register_legacy_master()
		 * will allocate/initialise a new one. Thus we need to update fwspec for
		 * later use.
		 */
		fwspec = dev->iommu_fwspec;
1377 1378
		if (ret)
			goto out_free;
1379
	} else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1380
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1381 1382 1383
	} else {
		return -ENODEV;
	}
1384

1385
	ret = -EINVAL;
1386 1387
	for (i = 0; i < fwspec->num_ids; i++) {
		u16 sid = fwspec->ids[i];
1388
		u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1389

1390
		if (sid & ~smmu->streamid_mask) {
1391
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1392 1393 1394 1395 1396
				sid, smmu->streamid_mask);
			goto out_free;
		}
		if (mask & ~smmu->smr_mask_mask) {
			dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
P
Peng Fan 已提交
1397
				mask, smmu->smr_mask_mask);
1398 1399
			goto out_free;
		}
1400
	}
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	ret = -ENOMEM;
	cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
		      GFP_KERNEL);
	if (!cfg)
		goto out_free;

	cfg->smmu = smmu;
	fwspec->iommu_priv = cfg;
	while (i--)
		cfg->smendx[i] = INVALID_SMENDX;

1413
	ret = arm_smmu_master_alloc_smes(dev);
1414
	if (ret)
1415
		goto out_cfg_free;
1416

1417 1418
	iommu_device_link(&smmu->iommu, dev);

1419
	return 0;
1420

1421 1422
out_cfg_free:
	kfree(cfg);
1423
out_free:
1424
	iommu_fwspec_free(dev);
1425
	return ret;
1426 1427
}

1428 1429
static void arm_smmu_remove_device(struct device *dev)
{
1430
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1431 1432 1433
	struct arm_smmu_master_cfg *cfg;
	struct arm_smmu_device *smmu;

1434

1435
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1436
		return;
1437

1438 1439 1440 1441
	cfg  = fwspec->iommu_priv;
	smmu = cfg->smmu;

	iommu_device_unlink(&smmu->iommu, dev);
1442
	arm_smmu_master_free_smes(fwspec);
1443
	iommu_group_remove_device(dev);
1444 1445
	kfree(fwspec->iommu_priv);
	iommu_fwspec_free(dev);
1446 1447
}

1448 1449
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1450 1451
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1452 1453 1454
	struct iommu_group *group = NULL;
	int i, idx;

1455
	for_each_cfg_sme(fwspec, i, idx) {
1456 1457 1458 1459 1460 1461 1462 1463
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
1464
		return iommu_group_ref_get(group);
1465 1466 1467 1468 1469 1470 1471 1472 1473

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1474 1475 1476
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1477
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1478

1479 1480 1481
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1494
	int ret = 0;
1495
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1496

1497 1498 1499
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

1500 1501
	mutex_lock(&smmu_domain->init_mutex);

1502 1503
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1504 1505 1506 1507 1508
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1509 1510 1511 1512 1513
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1514
		break;
1515
	default:
1516
		ret = -ENODEV;
1517
	}
1518 1519 1520 1521

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1522 1523
}

1524 1525
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
1526
	u32 mask, fwid = 0;
1527 1528 1529 1530 1531 1532

	if (args->args_count > 0)
		fwid |= (u16)args->args[0];

	if (args->args_count > 1)
		fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1533 1534
	else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
		fwid |= (u16)mask << SMR_MASK_SHIFT;
1535 1536 1537 1538

	return iommu_fwspec_add_ids(dev, &fwid, 1);
}

1539 1540 1541 1542 1543 1544 1545
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1546
					 prot, IOMMU_RESV_SW_MSI);
1547 1548 1549 1550
	if (!region)
		return;

	list_add_tail(&region->list, head);
1551 1552

	iommu_dma_get_resv_regions(dev, head);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

1564
static struct iommu_ops arm_smmu_ops = {
1565
	.capable		= arm_smmu_capable,
1566 1567
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1568 1569 1570
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1571 1572
	.flush_iotlb_all	= arm_smmu_iotlb_sync,
	.iotlb_sync		= arm_smmu_iotlb_sync,
1573 1574 1575
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1576
	.device_group		= arm_smmu_device_group,
1577 1578
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1579
	.of_xlate		= arm_smmu_of_xlate,
1580 1581
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
1582
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1583 1584 1585 1586 1587
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1588
	int i;
1589
	u32 reg, major;
1590

1591 1592 1593
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1594

1595 1596 1597 1598
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1599 1600
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1601

1602 1603 1604 1605 1606 1607 1608 1609
	if (smmu->model == ARM_MMU500) {
		/*
		 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
		 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
		 * bit is only present in MMU-500r2 onwards.
		 */
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
		major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1610
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1611 1612 1613 1614 1615 1616
		if (major >= 2)
			reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		/*
		 * Allow unmatched Stream IDs to allocate bypass
		 * TLB entries for reduced latency.
		 */
1617
		reg |= ARM_MMU500_ACR_SMTNMB_TLBEN | ARM_MMU500_ACR_S2CRB_TLBEN;
1618 1619 1620
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1621 1622
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
1623 1624 1625
		void __iomem *cb_base = ARM_SMMU_CB(smmu, i);

		arm_smmu_write_context_bank(smmu, i);
1626
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1627 1628 1629 1630 1631 1632 1633 1634 1635
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1636
	}
1637

1638 1639 1640 1641
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1642
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1643

1644
	/* Enable fault reporting */
1645
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1646 1647

	/* Disable TLB broadcasting. */
1648
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1649

1650 1651 1652 1653 1654 1655
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1656 1657

	/* Disable forced broadcasting */
1658
	reg &= ~sCR0_FB;
1659 1660

	/* Don't upgrade barriers */
1661
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1662

1663 1664 1665
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1666 1667 1668
	if (smmu->features & ARM_SMMU_FEAT_EXIDS)
		reg |= sCR0_EXIDENABLE;

1669
	/* Push the button */
1670
	arm_smmu_tlb_sync_global(smmu);
1671
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1698
	bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1699
	int i;
1700 1701

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1702 1703
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1704 1705 1706

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1707 1708 1709 1710 1711 1712 1713

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1730
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1731 1732 1733 1734
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1735 1736
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1737 1738 1739 1740
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1741 1742
	/*
	 * In order for DMA API calls to work properly, we must defer to what
1743
	 * the FW says about coherency, regardless of what the hardware claims.
1744 1745 1746 1747
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_reg = !!(id & ID0_CTTW);
1748
	if (cttw_fw || cttw_reg)
1749
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
1750 1751
			   cttw_fw ? "" : "non-");
	if (cttw_fw != cttw_reg)
1752
		dev_notice(smmu->dev,
1753
			   "\t(IDR0.CTTW overridden by FW configuration)\n");
1754

1755
	/* Max. number of entries we have for stream matching/indexing */
1756 1757 1758 1759 1760 1761
	if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
		smmu->features |= ARM_SMMU_FEAT_EXIDS;
		size = 1 << 16;
	} else {
		size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	}
1762
	smmu->streamid_mask = size - 1;
1763 1764
	if (id & ID0_SMS) {
		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1765 1766
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1767 1768 1769 1770 1771
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1772 1773 1774 1775 1776 1777
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1778
		dev_notice(smmu->dev,
1779
			   "\tstream matching with %lu register groups", size);
1780
	}
1781 1782 1783 1784 1785 1786 1787 1788
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1789
	smmu->num_mapping_groups = size;
1790
	mutex_init(&smmu->stream_map_mutex);
1791
	spin_lock_init(&smmu->global_sync_lock);
1792

1793 1794 1795 1796 1797 1798
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1799 1800
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1801
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1802

1803
	/* Check for size mismatch of SMMU address space from mapped region */
1804
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1805 1806
	size <<= smmu->pgshift;
	if (smmu->cb_base != gr0_base + size)
1807
		dev_warn(smmu->dev,
1808 1809
			"SMMU address space size (0x%lx) differs from mapped region size (0x%tx)!\n",
			size * 2, (smmu->cb_base - gr0_base) * 2);
1810

1811
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1812 1813 1814 1815 1816 1817 1818
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
1829
		dev_notice(smmu->dev, "\tenabling workaround for Cavium erratum 27704\n");
1830
	}
1831 1832 1833 1834
	smmu->cbs = devm_kcalloc(smmu->dev, smmu->num_context_banks,
				 sizeof(*smmu->cbs), GFP_KERNEL);
	if (!smmu->cbs)
		return -ENOMEM;
1835 1836 1837 1838

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1839
	smmu->ipa_size = size;
1840

1841
	/* The output mask is also applied for bypass */
1842
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1843
	smmu->pa_size = size;
1844

1845 1846 1847
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1848 1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1857
	if (smmu->version < ARM_SMMU_V2) {
1858
		smmu->va_size = smmu->ipa_size;
1859 1860
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1861 1862
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1863 1864
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1865
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1866
		if (id & ID2_PTFS_16K)
1867
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1868
		if (id & ID2_PTFS_64K)
1869
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1870 1871
	}

1872 1873
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1874
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1875 1876
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1877
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1878
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1879
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1880
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1881 1882 1883 1884 1885 1886 1887 1888
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1889

1890

1891 1892
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1893
			   smmu->va_size, smmu->ipa_size);
1894 1895 1896

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1897
			   smmu->ipa_size, smmu->pa_size);
1898

1899 1900 1901
	return 0;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1912
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1913
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1914
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1915

1916
static const struct of_device_id arm_smmu_of_match[] = {
1917 1918 1919
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1920
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1921
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1922
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1923 1924 1925 1926
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
#ifdef CONFIG_ACPI
static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
{
	int ret = 0;

	switch (model) {
	case ACPI_IORT_SMMU_V1:
	case ACPI_IORT_SMMU_CORELINK_MMU400:
		smmu->version = ARM_SMMU_V1;
		smmu->model = GENERIC_SMMU;
		break;
1938 1939 1940 1941
	case ACPI_IORT_SMMU_CORELINK_MMU401:
		smmu->version = ARM_SMMU_V1_64K;
		smmu->model = GENERIC_SMMU;
		break;
1942 1943 1944 1945 1946 1947 1948 1949
	case ACPI_IORT_SMMU_V2:
		smmu->version = ARM_SMMU_V2;
		smmu->model = GENERIC_SMMU;
		break;
	case ACPI_IORT_SMMU_CORELINK_MMU500:
		smmu->version = ARM_SMMU_V2;
		smmu->model = ARM_MMU500;
		break;
1950 1951 1952 1953
	case ACPI_IORT_SMMU_CAVIUM_THUNDERX:
		smmu->version = ARM_SMMU_V2;
		smmu->model = CAVIUM_SMMUV2;
		break;
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	default:
		ret = -ENODEV;
	}

	return ret;
}

static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node =
		*(struct acpi_iort_node **)dev_get_platdata(dev);
	struct acpi_iort_smmu *iort_smmu;
	int ret;

	/* Retrieve SMMU1/2 specific data */
	iort_smmu = (struct acpi_iort_smmu *)node->node_data;

	ret = acpi_smmu_get_data(iort_smmu->model, smmu);
	if (ret < 0)
		return ret;

	/* Ignore the configuration access interrupt */
	smmu->num_global_irqs = 1;

	if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

1993 1994
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
1995
{
1996
	const struct arm_smmu_match_data *data;
1997
	struct device *dev = &pdev->dev;
1998 1999
	bool legacy_binding;

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	data = of_device_get_match_data(dev);
	smmu->version = data->version;
	smmu->model = data->model;

	parse_driver_options(smmu);

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
	if (legacy_binding && !using_generic_binding) {
		if (!using_legacy_binding)
			pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
		using_legacy_binding = true;
	} else if (!legacy_binding && !using_legacy_binding) {
		using_generic_binding = true;
	} else {
		dev_err(dev, "not probing due to mismatched DT properties\n");
		return -ENODEV;
	}
2023

2024 2025 2026 2027 2028 2029
	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;

	return 0;
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static void arm_smmu_bus_init(void)
{
	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type))
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
#ifdef CONFIG_ARM_AMBA
	if (!iommu_present(&amba_bustype))
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
#endif
#ifdef CONFIG_PCI
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
	}
#endif
}

2047 2048 2049
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	struct resource *res;
2050
	resource_size_t ioaddr;
2051 2052 2053 2054
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;

2055 2056 2057 2058 2059 2060 2061
	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

2062 2063 2064 2065 2066
	if (dev->of_node)
		err = arm_smmu_device_dt_probe(pdev, smmu);
	else
		err = arm_smmu_device_acpi_probe(pdev, smmu);

2067 2068
	if (err)
		return err;
2069

2070
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2071
	ioaddr = res->start;
2072 2073 2074
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
2075
	smmu->cb_base = smmu->base + resource_size(res) / 2;
2076 2077 2078 2079 2080 2081 2082 2083

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

2084 2085 2086 2087
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
2088 2089
	}

2090
	smmu->irqs = devm_kcalloc(dev, num_irqs, sizeof(*smmu->irqs),
2091 2092 2093 2094 2095 2096 2097 2098
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
2099

2100 2101 2102 2103 2104 2105 2106
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

2107 2108 2109 2110
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	if (smmu->version == ARM_SMMU_V2) {
		if (smmu->num_context_banks > smmu->num_context_irqs) {
			dev_err(dev,
			      "found only %d context irq(s) but %d required\n",
			      smmu->num_context_irqs, smmu->num_context_banks);
			return -ENODEV;
		}

		/* Ignore superfluous interrupts */
		smmu->num_context_irqs = smmu->num_context_banks;
2121 2122 2123
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
2124 2125 2126 2127 2128
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
2129 2130 2131
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
2132
			return err;
2133 2134 2135
		}
	}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
				     "smmu.%pa", &ioaddr);
	if (err) {
		dev_err(dev, "Failed to register iommu in sysfs\n");
		return err;
	}

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	err = iommu_device_register(&smmu->iommu);
	if (err) {
		dev_err(dev, "Failed to register iommu\n");
		return err;
	}

2152
	platform_set_drvdata(pdev, smmu);
2153
	arm_smmu_device_reset(smmu);
2154
	arm_smmu_test_smr_masks(smmu);
2155

2156 2157 2158 2159 2160 2161 2162 2163
	/*
	 * For ACPI and generic DT bindings, an SMMU will be probed before
	 * any device which might need it, so we want the bus ops in place
	 * ready to handle default domain setup as soon as any SMMU exists.
	 */
	if (!using_legacy_binding)
		arm_smmu_bus_init();

2164 2165 2166
	return 0;
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
/*
 * With the legacy DT binding in play, though, we have no guarantees about
 * probe order, but then we're also not doing default domains, so we can
 * delay setting bus ops until we're sure every possible SMMU is ready,
 * and that way ensure that no add_device() calls get missed.
 */
static int arm_smmu_legacy_bus_init(void)
{
	if (using_legacy_binding)
		arm_smmu_bus_init();
2177 2178
	return 0;
}
2179
device_initcall_sync(arm_smmu_legacy_bus_init);
2180 2181 2182

static int arm_smmu_device_remove(struct platform_device *pdev)
{
2183
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2184 2185 2186 2187

	if (!smmu)
		return -ENODEV;

2188
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2189
		dev_err(&pdev->dev, "removing device with active domains!\n");
2190 2191

	/* Turn the thing off */
2192
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2193 2194 2195
	return 0;
}

2196 2197 2198 2199 2200
static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
static int __maybe_unused arm_smmu_pm_resume(struct device *dev)
{
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);

	arm_smmu_device_reset(smmu);
	return 0;
}

static SIMPLE_DEV_PM_OPS(arm_smmu_pm_ops, NULL, arm_smmu_pm_resume);

2211 2212 2213 2214
static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
2215
		.pm		= &arm_smmu_pm_ops,
2216
	},
2217
	.probe	= arm_smmu_device_probe,
2218
	.remove	= arm_smmu_device_remove,
2219
	.shutdown = arm_smmu_device_shutdown,
2220
};
2221 2222
module_platform_driver(arm_smmu_driver);

2223 2224 2225
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");