arm-smmu.c 54.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

31
#include <linux/atomic.h>
32
#include <linux/delay.h>
33
#include <linux/dma-iommu.h>
34 35 36 37
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
38
#include <linux/io-64-nonatomic-hi-lo.h>
39
#include <linux/iommu.h>
40
#include <linux/iopoll.h>
41 42
#include <linux/module.h>
#include <linux/of.h>
43
#include <linux/of_address.h>
44
#include <linux/of_device.h>
45
#include <linux/pci.h>
46 47 48 49 50 51
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

52
#include "io-pgtable.h"
53 54

/* Maximum number of stream IDs assigned to a single device */
55
#define MAX_MASTER_STREAMIDS		128
56 57 58 59 60 61

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
62
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
63

64 65 66 67 68 69 70 71 72 73
/*
 * SMMU global address space with conditional offset to access secure
 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 * nsGFSYNR0: 0x450)
 */
#define ARM_SMMU_GR0_NS(smmu)						\
	((smmu)->base +							\
		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
			? 0x400 : 0))

74 75 76 77 78
/*
 * Some 64-bit registers only make sense to write atomically, but in such
 * cases all the data relevant to AArch32 formats lies within the lower word,
 * therefore this actually makes more sense than it might first appear.
 */
79
#ifdef CONFIG_64BIT
80
#define smmu_write_atomic_lq		writeq_relaxed
81
#else
82
#define smmu_write_atomic_lq		writel_relaxed
83 84
#endif

85 86 87 88 89 90 91 92 93 94 95
/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
96
#define sCR0_VMID16EN			(1 << 31)
97 98 99
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

100 101 102
/* Auxiliary Configuration register */
#define ARM_SMMU_GR0_sACR		0x10

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
121
#define ID0_ATOSNS			(1 << 26)
122 123
#define ID0_PTFS_NO_AARCH32		(1 << 25)
#define ID0_PTFS_NO_AARCH32S		(1 << 24)
124 125 126
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
127 128
#define ID0_NUMSIDB_SHIFT		9
#define ID0_NUMSIDB_MASK		0xf
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)
149
#define ID2_VMID16			(1 << 15)
150

151 152
#define ID7_MAJOR_SHIFT			4
#define ID7_MAJOR_MASK			0xf
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

/* Global TLB invalidation */
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_ID_SHIFT			0

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
174 175 176 177 178
enum arm_smmu_s2cr_type {
	S2CR_TYPE_TRANS,
	S2CR_TYPE_BYPASS,
	S2CR_TYPE_FAULT,
};
179

180
#define S2CR_PRIVCFG_SHIFT		24
181 182 183 184 185 186 187
#define S2CR_PRIVCFG_MASK		0x3
enum arm_smmu_s2cr_privcfg {
	S2CR_PRIVCFG_DEFAULT,
	S2CR_PRIVCFG_DIPAN,
	S2CR_PRIVCFG_UNPRIV,
	S2CR_PRIVCFG_PRIV,
};
188

189 190 191 192
/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
193 194 195
#define CBAR_S1_BPSHCFG_SHIFT		8
#define CBAR_S1_BPSHCFG_MASK		3
#define CBAR_S1_BPSHCFG_NSH		3
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)
211 212
#define CBA2R_VMID_SHIFT		16
#define CBA2R_VMID_MASK			0xffff
213 214 215

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
216
#define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
217 218

#define ARM_SMMU_CB_SCTLR		0x0
219
#define ARM_SMMU_CB_ACTLR		0x4
220 221
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
222 223
#define ARM_SMMU_CB_TTBR0		0x20
#define ARM_SMMU_CB_TTBR1		0x28
224
#define ARM_SMMU_CB_TTBCR		0x30
225
#define ARM_SMMU_CB_CONTEXTIDR		0x34
226
#define ARM_SMMU_CB_S1_MAIR0		0x38
227
#define ARM_SMMU_CB_S1_MAIR1		0x3c
228
#define ARM_SMMU_CB_PAR			0x50
229
#define ARM_SMMU_CB_FSR			0x58
230
#define ARM_SMMU_CB_FAR			0x60
231
#define ARM_SMMU_CB_FSYNR0		0x68
232
#define ARM_SMMU_CB_S1_TLBIVA		0x600
233
#define ARM_SMMU_CB_S1_TLBIASID		0x610
234 235 236
#define ARM_SMMU_CB_S1_TLBIVAL		0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
237
#define ARM_SMMU_CB_ATS1PR		0x800
238
#define ARM_SMMU_CB_ATSR		0x8f0
239 240 241 242 243 244 245 246 247 248

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)

249 250
#define ARM_MMU500_ACTLR_CPRE		(1 << 1)

251 252
#define ARM_MMU500_ACR_CACHE_LOCK	(1 << 26)

253 254 255 256
#define CB_PAR_F			(1 << 0)

#define ATSR_ACTIVE			(1 << 0)

257 258 259 260
#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR2_SEP_SHIFT		15
261
#define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
262

263
#define TTBRn_ASID_SHIFT		48
264 265 266 267 268 269 270 271 272 273 274 275

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

276 277 278
#define FSR_IGN				(FSR_AFF | FSR_ASF | \
					 FSR_TLBMCF | FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
279
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
280 281 282

#define FSYNR0_WNR			(1 << 4)

283
static int force_stage;
284
module_param(force_stage, int, S_IRUGO);
285 286
MODULE_PARM_DESC(force_stage,
	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
287 288 289 290
static bool disable_bypass;
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
291

292
enum arm_smmu_arch_version {
293 294
	ARM_SMMU_V1,
	ARM_SMMU_V1_64K,
295 296 297
	ARM_SMMU_V2,
};

298 299
enum arm_smmu_implementation {
	GENERIC_SMMU,
300
	ARM_MMU500,
301
	CAVIUM_SMMUV2,
302 303
};

304
struct arm_smmu_s2cr {
305 306
	struct iommu_group		*group;
	int				count;
307 308 309 310 311 312 313 314 315
	enum arm_smmu_s2cr_type		type;
	enum arm_smmu_s2cr_privcfg	privcfg;
	u8				cbndx;
};

#define s2cr_init_val (struct arm_smmu_s2cr){				\
	.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS,	\
}

316 317 318
struct arm_smmu_smr {
	u16				mask;
	u16				id;
319
	bool				valid;
320 321
};

322
struct arm_smmu_master_cfg {
323
	struct arm_smmu_device		*smmu;
324 325
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];
326
	s16				smendx[MAX_MASTER_STREAMIDS];
327
};
328
#define INVALID_SMENDX			-1
329 330
#define for_each_cfg_sme(cfg, i, idx) \
	for (i = 0; idx = cfg->smendx[i], i < cfg->num_streamids; ++i)
331 332 333 334 335 336

struct arm_smmu_device {
	struct device			*dev;

	void __iomem			*base;
	unsigned long			size;
337
	unsigned long			pgshift;
338 339 340 341 342 343

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
344
#define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
345
#define ARM_SMMU_FEAT_VMID16		(1 << 6)
346 347 348 349 350
#define ARM_SMMU_FEAT_FMT_AARCH64_4K	(1 << 7)
#define ARM_SMMU_FEAT_FMT_AARCH64_16K	(1 << 8)
#define ARM_SMMU_FEAT_FMT_AARCH64_64K	(1 << 9)
#define ARM_SMMU_FEAT_FMT_AARCH32_L	(1 << 10)
#define ARM_SMMU_FEAT_FMT_AARCH32_S	(1 << 11)
351
	u32				features;
352 353 354

#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
	u32				options;
355
	enum arm_smmu_arch_version	version;
356
	enum arm_smmu_implementation	model;
357 358 359 360 361 362 363

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
364 365
	u16				streamid_mask;
	u16				smr_mask_mask;
366
	struct arm_smmu_smr		*smrs;
367
	struct arm_smmu_s2cr		*s2crs;
368
	struct mutex			stream_map_mutex;
369

370 371 372
	unsigned long			va_size;
	unsigned long			ipa_size;
	unsigned long			pa_size;
373
	unsigned long			pgsize_bitmap;
374 375 376 377 378

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

379
	u32				cavium_id_base; /* Specific to Cavium */
380 381
};

382 383 384 385 386
enum arm_smmu_context_fmt {
	ARM_SMMU_CTX_FMT_NONE,
	ARM_SMMU_CTX_FMT_AARCH64,
	ARM_SMMU_CTX_FMT_AARCH32_L,
	ARM_SMMU_CTX_FMT_AARCH32_S,
387 388 389 390 391 392
};

struct arm_smmu_cfg {
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
393
	enum arm_smmu_context_fmt	fmt;
394
};
395
#define INVALID_IRPTNDX			0xff
396

397 398
#define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
#define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
399

400 401 402 403 404 405
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
};

406
struct arm_smmu_domain {
407
	struct arm_smmu_device		*smmu;
408 409
	struct io_pgtable_ops		*pgtbl_ops;
	spinlock_t			pgtbl_lock;
410
	struct arm_smmu_cfg		cfg;
411
	enum arm_smmu_domain_stage	stage;
412
	struct mutex			init_mutex; /* Protects smmu pointer */
413
	struct iommu_domain		domain;
414 415
};

416 417 418 419 420
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

421 422
static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);

423
static struct arm_smmu_option_prop arm_smmu_options[] = {
424 425 426 427
	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
	{ 0, NULL},
};

428 429 430 431 432
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

433 434 435
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;
436

437 438 439 440 441 442 443 444 445 446
	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

447
static struct device_node *dev_get_dev_node(struct device *dev)
448 449 450
{
	if (dev_is_pci(dev)) {
		struct pci_bus *bus = to_pci_dev(dev)->bus;
451

452 453
		while (!pci_is_root_bus(bus))
			bus = bus->parent;
454
		return of_node_get(bus->bridge->parent->of_node);
455 456
	}

457
	return of_node_get(dev->of_node);
458 459
}

460
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
461
{
462 463
	*((__be32 *)data) = cpu_to_be32(alias);
	return 0; /* Continue walking */
464 465
}

466
static int __find_legacy_master_phandle(struct device *dev, void *data)
467
{
468 469 470 471 472 473 474 475 476 477 478 479
	struct of_phandle_iterator *it = *(void **)data;
	struct device_node *np = it->node;
	int err;

	of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
			    "#stream-id-cells", 0)
		if (it->node == np) {
			*(void **)data = dev;
			return 1;
		}
	it->node = np;
	return err == -ENOENT ? 0 : err;
480 481
}

482 483
static struct platform_driver arm_smmu_driver;

484
static int arm_smmu_register_legacy_master(struct device *dev)
485
{
486 487 488 489 490 491 492
	struct arm_smmu_device *smmu;
	struct arm_smmu_master_cfg *cfg;
	struct device_node *np;
	struct of_phandle_iterator it;
	void *data = &it;
	__be32 pci_sid;
	int err;
493

494 495 496 497 498
	np = dev_get_dev_node(dev);
	if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
		of_node_put(np);
		return -ENODEV;
	}
499

500
	it.node = np;
501 502
	err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
				     __find_legacy_master_phandle);
503 504 505 506 507
	of_node_put(np);
	if (err == 0)
		return -ENODEV;
	if (err < 0)
		return err;
508

509 510
	smmu = dev_get_drvdata(data);

511 512
	if (it.cur_count > MAX_MASTER_STREAMIDS) {
		dev_err(smmu->dev,
513
			"reached maximum number (%d) of stream IDs for master device %s\n",
514
			MAX_MASTER_STREAMIDS, dev_name(dev));
515 516
		return -ENOSPC;
	}
517 518 519 520 521 522 523
	if (dev_is_pci(dev)) {
		/* "mmu-masters" assumes Stream ID == Requester ID */
		pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
				       &pci_sid);
		it.cur = &pci_sid;
		it.cur_count = 1;
	}
524

525 526
	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
	if (!cfg)
527 528
		return -ENOMEM;

529 530
	cfg->smmu = smmu;
	dev->archdata.iommu = cfg;
531

532 533
	while (it.cur_count--)
		cfg->streamids[cfg->num_streamids++] = be32_to_cpup(it.cur++);
534

535
	return 0;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
557
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

575 576 577 578 579 580 581
static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
582
{
583
	struct arm_smmu_domain *smmu_domain = cookie;
584 585
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
586
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
587
	void __iomem *base;
588 589 590

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
591
		writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
592
			       base + ARM_SMMU_CB_S1_TLBIASID);
593 594
	} else {
		base = ARM_SMMU_GR0(smmu);
595
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
596
			       base + ARM_SMMU_GR0_TLBIVMID);
597 598
	}

599 600 601 602
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
603
					  size_t granule, bool leaf, void *cookie)
604 605 606 607 608 609 610 611 612 613 614
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	void __iomem *reg;

	if (stage1) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;

615
		if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
616
			iova &= ~12UL;
617
			iova |= ARM_SMMU_CB_ASID(smmu, cfg);
618 619 620 621
			do {
				writel_relaxed(iova, reg);
				iova += granule;
			} while (size -= granule);
622 623
		} else {
			iova >>= 12;
624
			iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
625 626 627 628
			do {
				writeq_relaxed(iova, reg);
				iova += granule >> 12;
			} while (size -= granule);
629 630 631 632 633
		}
	} else if (smmu->version == ARM_SMMU_V2) {
		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
			      ARM_SMMU_CB_S2_TLBIIPAS2;
634 635
		iova >>= 12;
		do {
636
			smmu_write_atomic_lq(iova, reg);
637 638
			iova += granule >> 12;
		} while (size -= granule);
639 640
	} else {
		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
641
		writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
642 643 644 645 646 647 648 649 650
	}
}

static struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

651 652
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
653
	u32 fsr, fsynr;
654 655
	unsigned long iova;
	struct iommu_domain *domain = dev;
656
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
657 658
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
659 660
	void __iomem *cb_base;

661
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
662 663 664 665 666 667
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
668
	iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
669

670 671 672
	dev_err_ratelimited(smmu->dev,
	"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
			    fsr, iova, fsynr, cfg->cbndx);
673

674 675
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
	return IRQ_HANDLED;
676 677 678 679 680 681
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
682
	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
683 684 685 686 687 688

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

689 690 691
	if (!gfsr)
		return IRQ_NONE;

692 693 694 695 696 697 698
	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
699
	return IRQ_HANDLED;
700 701
}

702 703
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
704
{
705
	u32 reg, reg2;
706
	u64 reg64;
707
	bool stage1;
708 709
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
710
	void __iomem *cb_base, *gr1_base;
711 712

	gr1_base = ARM_SMMU_GR1(smmu);
713 714
	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
715

716
	if (smmu->version > ARM_SMMU_V1) {
717 718 719 720
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
			reg = CBA2R_RW64_64BIT;
		else
			reg = CBA2R_RW64_32BIT;
721 722
		/* 16-bit VMIDs live in CBA2R */
		if (smmu->features & ARM_SMMU_FEAT_VMID16)
723
			reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
724

725 726 727
		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
	}

728
	/* CBAR */
729
	reg = cfg->cbar;
730
	if (smmu->version < ARM_SMMU_V2)
731
		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
732

733 734 735 736 737 738 739
	/*
	 * Use the weakest shareability/memory types, so they are
	 * overridden by the ttbcr/pte.
	 */
	if (stage1) {
		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
740 741
	} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
		/* 8-bit VMIDs live in CBAR */
742
		reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
743
	}
744
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
745

746 747
	/* TTBRs */
	if (stage1) {
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);

		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
			reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
			writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
		} else {
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
			reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
			reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
			writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
		}
764
	} else {
765
		reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
766
		writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
767
	}
768

769 770
	/* TTBCR */
	if (stage1) {
771 772 773 774 775 776 777
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.tcr;
			reg2 = 0;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
			reg2 |= TTBCR2_SEP_UPSTREAM;
778
		}
779 780
		if (smmu->version > ARM_SMMU_V1)
			writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
781
	} else {
782
		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
783
	}
784
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
785

786
	/* MAIRs (stage-1 only) */
787
	if (stage1) {
788 789 790 791 792 793 794
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
			reg = pgtbl_cfg->arm_v7s_cfg.prrr;
			reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
		} else {
			reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
			reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
		}
795
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
796
		writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
797 798 799
	}

	/* SCTLR */
800
	reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
801 802 803 804 805
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
806
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
807 808 809
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
810
					struct arm_smmu_device *smmu)
811
{
812
	int irq, start, ret = 0;
813 814 815 816
	unsigned long ias, oas;
	struct io_pgtable_ops *pgtbl_ops;
	struct io_pgtable_cfg pgtbl_cfg;
	enum io_pgtable_fmt fmt;
817
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
818
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
819

820
	mutex_lock(&smmu_domain->init_mutex);
821 822 823
	if (smmu_domain->smmu)
		goto out_unlock;

824 825 826 827 828 829
	/* We're bypassing these SIDs, so don't allocate an actual context */
	if (domain->type == IOMMU_DOMAIN_DMA) {
		smmu_domain->smmu = smmu;
		goto out_unlock;
	}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	/*
	 * Mapping the requested stage onto what we support is surprisingly
	 * complicated, mainly because the spec allows S1+S2 SMMUs without
	 * support for nested translation. That means we end up with the
	 * following table:
	 *
	 * Requested        Supported        Actual
	 *     S1               N              S1
	 *     S1             S1+S2            S1
	 *     S1               S2             S2
	 *     S1               S1             S1
	 *     N                N              N
	 *     N              S1+S2            S2
	 *     N                S2             S2
	 *     N                S1             S1
	 *
	 * Note that you can't actually request stage-2 mappings.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

853 854 855 856 857 858 859 860 861 862
	/*
	 * Choosing a suitable context format is even more fiddly. Until we
	 * grow some way for the caller to express a preference, and/or move
	 * the decision into the io-pgtable code where it arguably belongs,
	 * just aim for the closest thing to the rest of the system, and hope
	 * that the hardware isn't esoteric enough that we can't assume AArch64
	 * support to be a superset of AArch32 support...
	 */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
863 864 865 866 867
	if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
	    !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
	    (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
	    (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
868 869 870 871 872 873 874 875 876 877 878
	if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
	    (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
			       ARM_SMMU_FEAT_FMT_AARCH64_16K |
			       ARM_SMMU_FEAT_FMT_AARCH64_4K)))
		cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;

	if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
		ret = -EINVAL;
		goto out_unlock;
	}

879 880 881 882
	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
883 884
		ias = smmu->va_size;
		oas = smmu->ipa_size;
885
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
886
			fmt = ARM_64_LPAE_S1;
887
		} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
888
			fmt = ARM_32_LPAE_S1;
889 890
			ias = min(ias, 32UL);
			oas = min(oas, 40UL);
891 892 893 894
		} else {
			fmt = ARM_V7S;
			ias = min(ias, 32UL);
			oas = min(oas, 32UL);
895
		}
896 897
		break;
	case ARM_SMMU_DOMAIN_NESTED:
898 899 900 901
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
902
	case ARM_SMMU_DOMAIN_S2:
903 904
		cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
905 906
		ias = smmu->ipa_size;
		oas = smmu->pa_size;
907
		if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
908
			fmt = ARM_64_LPAE_S2;
909
		} else {
910
			fmt = ARM_32_LPAE_S2;
911 912 913
			ias = min(ias, 40UL);
			oas = min(oas, 40UL);
		}
914 915 916 917
		break;
	default:
		ret = -EINVAL;
		goto out_unlock;
918 919 920 921
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
922
	if (ret < 0)
923
		goto out_unlock;
924

925
	cfg->cbndx = ret;
926
	if (smmu->version < ARM_SMMU_V2) {
927 928
		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		cfg->irptndx %= smmu->num_context_irqs;
929
	} else {
930
		cfg->irptndx = cfg->cbndx;
931 932
	}

933
	pgtbl_cfg = (struct io_pgtable_cfg) {
934
		.pgsize_bitmap	= smmu->pgsize_bitmap,
935 936 937
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
938
		.iommu_dev	= smmu->dev,
939 940 941 942 943 944 945 946 947
	};

	smmu_domain->smmu = smmu;
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops) {
		ret = -ENOMEM;
		goto out_clear_smmu;
	}

948 949
	/* Update the domain's page sizes to reflect the page table format */
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
950

951 952 953 954 955 956 957
	/* Initialise the context bank with our page table cfg */
	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);

	/*
	 * Request context fault interrupt. Do this last to avoid the
	 * handler seeing a half-initialised domain state.
	 */
958
	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
959 960
	ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
			       IRQF_SHARED, "arm-smmu-context-fault", domain);
961
	if (ret < 0) {
962
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
963 964
			cfg->irptndx, irq);
		cfg->irptndx = INVALID_IRPTNDX;
965 966
	}

967 968 969 970
	mutex_unlock(&smmu_domain->init_mutex);

	/* Publish page table ops for map/unmap */
	smmu_domain->pgtbl_ops = pgtbl_ops;
971
	return 0;
972

973 974
out_clear_smmu:
	smmu_domain->smmu = NULL;
975
out_unlock:
976
	mutex_unlock(&smmu_domain->init_mutex);
977 978 979 980 981
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
982
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
983 984
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
985
	void __iomem *cb_base;
986 987
	int irq;

988
	if (!smmu || domain->type == IOMMU_DOMAIN_DMA)
989 990
		return;

991 992 993 994
	/*
	 * Disable the context bank and free the page tables before freeing
	 * it.
	 */
995
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
996 997
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);

998 999
	if (cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1000
		devm_free_irq(smmu->dev, irq, domain);
1001 1002
	}

1003
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1004
	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1005 1006
}

1007
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1008 1009 1010
{
	struct arm_smmu_domain *smmu_domain;

1011
	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1012
		return NULL;
1013 1014 1015 1016 1017 1018 1019
	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
1020
		return NULL;
1021

1022 1023 1024 1025 1026 1027
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1028 1029
	mutex_init(&smmu_domain->init_mutex);
	spin_lock_init(&smmu_domain->pgtbl_lock);
1030 1031

	return &smmu_domain->domain;
1032 1033
}

1034
static void arm_smmu_domain_free(struct iommu_domain *domain)
1035
{
1036
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1037 1038 1039 1040 1041

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
1042
	iommu_put_dma_cookie(domain);
1043 1044 1045 1046
	arm_smmu_destroy_domain_context(domain);
	kfree(smmu_domain);
}

1047 1048 1049
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_smr *smr = smmu->smrs + idx;
1050
	u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1051 1052 1053 1054 1055 1056

	if (smr->valid)
		reg |= SMR_VALID;
	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
	struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
	u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
		  (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
		  (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;

	writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
}

static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
	arm_smmu_write_s2cr(smmu, idx);
	if (smmu->smrs)
		arm_smmu_write_smr(smmu, idx);
}

1074
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1075 1076
{
	struct arm_smmu_smr *smrs = smmu->smrs;
1077
	int i, free_idx = -ENOSPC;
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	/* Stream indexing is blissfully easy */
	if (!smrs)
		return id;

	/* Validating SMRs is... less so */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		if (!smrs[i].valid) {
			/*
			 * Note the first free entry we come across, which
			 * we'll claim in the end if nothing else matches.
			 */
			if (free_idx < 0)
				free_idx = i;
1092 1093
			continue;
		}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		/*
		 * If the new entry is _entirely_ matched by an existing entry,
		 * then reuse that, with the guarantee that there also cannot
		 * be any subsequent conflicting entries. In normal use we'd
		 * expect simply identical entries for this case, but there's
		 * no harm in accommodating the generalisation.
		 */
		if ((mask & smrs[i].mask) == mask &&
		    !((id ^ smrs[i].id) & ~smrs[i].mask))
			return i;
		/*
		 * If the new entry has any other overlap with an existing one,
		 * though, then there always exists at least one stream ID
		 * which would cause a conflict, and we can't allow that risk.
		 */
		if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
			return -EINVAL;
	}
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	return free_idx;
}

static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
	if (--smmu->s2crs[idx].count)
		return false;

	smmu->s2crs[idx] = s2cr_init_val;
	if (smmu->smrs)
		smmu->smrs[idx].valid = false;

	return true;
}

static int arm_smmu_master_alloc_smes(struct device *dev)
{
	struct arm_smmu_master_cfg *cfg = dev->archdata.iommu;
	struct arm_smmu_device *smmu = cfg->smmu;
	struct arm_smmu_smr *smrs = smmu->smrs;
	struct iommu_group *group;
	int i, idx, ret;

	mutex_lock(&smmu->stream_map_mutex);
	/* Figure out a viable stream map entry allocation */
	for_each_cfg_sme(cfg, i, idx) {
		if (idx != INVALID_SMENDX) {
			ret = -EEXIST;
			goto out_err;
1142 1143
		}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		ret = arm_smmu_find_sme(smmu, cfg->streamids[i], 0);
		if (ret < 0)
			goto out_err;

		idx = ret;
		if (smrs && smmu->s2crs[idx].count == 0) {
			smrs[idx].id = cfg->streamids[i];
			smrs[idx].mask = 0; /* We don't currently share SMRs */
			smrs[idx].valid = true;
		}
		smmu->s2crs[idx].count++;
		cfg->smendx[i] = (s16)idx;
1156 1157
	}

1158 1159 1160 1161 1162 1163 1164 1165
	group = iommu_group_get_for_dev(dev);
	if (!group)
		group = ERR_PTR(-ENOMEM);
	if (IS_ERR(group)) {
		ret = PTR_ERR(group);
		goto out_err;
	}
	iommu_group_put(group);
1166

1167
	/* It worked! Now, poke the actual hardware */
1168 1169 1170 1171
	for_each_cfg_sme(cfg, i, idx) {
		arm_smmu_write_sme(smmu, idx);
		smmu->s2crs[idx].group = group;
	}
1172

1173
	mutex_unlock(&smmu->stream_map_mutex);
1174 1175
	return 0;

1176
out_err:
1177
	while (i--) {
1178
		arm_smmu_free_sme(smmu, cfg->smendx[i]);
1179 1180
		cfg->smendx[i] = INVALID_SMENDX;
	}
1181 1182
	mutex_unlock(&smmu->stream_map_mutex);
	return ret;
1183 1184
}

1185
static void arm_smmu_master_free_smes(struct arm_smmu_master_cfg *cfg)
1186
{
1187
	struct arm_smmu_device *smmu = cfg->smmu;
1188
	int i, idx;
1189

1190
	mutex_lock(&smmu->stream_map_mutex);
1191
	for_each_cfg_sme(cfg, i, idx) {
1192 1193
		if (arm_smmu_free_sme(smmu, idx))
			arm_smmu_write_sme(smmu, idx);
1194
		cfg->smendx[i] = INVALID_SMENDX;
1195
	}
1196
	mutex_unlock(&smmu->stream_map_mutex);
1197 1198 1199
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1200
				      struct arm_smmu_master_cfg *cfg)
1201
{
1202
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1203 1204 1205
	struct arm_smmu_s2cr *s2cr = smmu->s2crs;
	enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
	u8 cbndx = smmu_domain->cfg.cbndx;
1206
	int i, idx;
1207

1208 1209
	/*
	 * FIXME: This won't be needed once we have IOMMU-backed DMA ops
1210 1211 1212
	 * for all devices behind the SMMU. Note that we need to take
	 * care configuring SMRs for devices both a platform_device and
	 * and a PCI device (i.e. a PCI host controller)
1213 1214
	 */
	if (smmu_domain->domain.type == IOMMU_DOMAIN_DMA)
1215
		type = S2CR_TYPE_BYPASS;
1216

1217
	for_each_cfg_sme(cfg, i, idx) {
1218
		if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1219
			continue;
1220

1221 1222 1223 1224
		s2cr[idx].type = type;
		s2cr[idx].privcfg = S2CR_PRIVCFG_UNPRIV;
		s2cr[idx].cbndx = cbndx;
		arm_smmu_write_s2cr(smmu, idx);
1225
	}
1226
	return 0;
1227 1228
}

1229 1230
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
1231
	int ret;
1232
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1233
	struct arm_smmu_master_cfg *cfg = dev->archdata.iommu;
1234

1235
	if (!cfg) {
1236 1237 1238 1239
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

1240
	/* Ensure that the domain is finalised */
1241
	ret = arm_smmu_init_domain_context(domain, cfg->smmu);
1242
	if (ret < 0)
1243 1244
		return ret;

1245
	/*
1246 1247
	 * Sanity check the domain. We don't support domains across
	 * different SMMUs.
1248
	 */
1249
	if (smmu_domain->smmu != cfg->smmu) {
1250 1251
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1252
			dev_name(smmu_domain->smmu->dev), dev_name(cfg->smmu->dev));
1253
		return -EINVAL;
1254 1255 1256
	}

	/* Looks ok, so add the device to the domain */
1257
	return arm_smmu_domain_add_master(smmu_domain, cfg);
1258 1259 1260
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1261
			phys_addr_t paddr, size_t size, int prot)
1262
{
1263 1264
	int ret;
	unsigned long flags;
1265
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1266
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1267

1268
	if (!ops)
1269 1270
		return -ENODEV;

1271 1272 1273 1274
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->map(ops, iova, paddr, size, prot);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1275 1276 1277 1278 1279
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
1280 1281
	size_t ret;
	unsigned long flags;
1282
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1283
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1284

1285 1286 1287 1288 1289 1290 1291
	if (!ops)
		return 0;

	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
	ret = ops->unmap(ops, iova, size);
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
	return ret;
1292 1293
}

1294 1295 1296
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
					      dma_addr_t iova)
{
1297
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1298 1299 1300 1301 1302 1303 1304
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
	struct device *dev = smmu->dev;
	void __iomem *cb_base;
	u32 tmp;
	u64 phys;
1305
	unsigned long va;
1306 1307 1308

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);

1309 1310 1311
	/* ATS1 registers can only be written atomically */
	va = iova & ~0xfffUL;
	if (smmu->version == ARM_SMMU_V2)
1312 1313
		smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
	else /* Register is only 32-bit in v1 */
1314
		writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1315 1316 1317 1318

	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
				      !(tmp & ATSR_ACTIVE), 5, 50)) {
		dev_err(dev,
1319
			"iova to phys timed out on %pad. Falling back to software table walk.\n",
1320 1321 1322 1323
			&iova);
		return ops->iova_to_phys(ops, iova);
	}

1324
	phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1325 1326 1327 1328 1329 1330 1331 1332 1333
	if (phys & CB_PAR_F) {
		dev_err(dev, "translation fault!\n");
		dev_err(dev, "PAR = 0x%llx\n", phys);
		return 0;
	}

	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
}

1334
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1335
					dma_addr_t iova)
1336
{
1337 1338
	phys_addr_t ret;
	unsigned long flags;
1339
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1340
	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1341

1342
	if (!ops)
1343
		return 0;
1344

1345
	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1346 1347
	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1348
		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1349
	} else {
1350
		ret = ops->iova_to_phys(ops, iova);
1351 1352
	}

1353
	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1354

1355
	return ret;
1356 1357
}

1358
static bool arm_smmu_capable(enum iommu_cap cap)
1359
{
1360 1361
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
1362 1363 1364 1365 1366
		/*
		 * Return true here as the SMMU can always send out coherent
		 * requests.
		 */
		return true;
1367
	case IOMMU_CAP_INTR_REMAP:
1368
		return true; /* MSIs are just memory writes */
1369 1370
	case IOMMU_CAP_NOEXEC:
		return true;
1371
	default:
1372
		return false;
1373
	}
1374 1375
}

1376
static int arm_smmu_add_device(struct device *dev)
1377
{
1378
	struct arm_smmu_master_cfg *cfg;
1379
	int i, ret;
1380

1381 1382 1383 1384
	ret = arm_smmu_register_legacy_master(dev);
	cfg = dev->archdata.iommu;
	if (ret)
		goto out_free;
1385

1386 1387 1388
	ret = -EINVAL;
	for (i = 0; i < cfg->num_streamids; i++) {
		u16 sid = cfg->streamids[i];
1389

1390 1391 1392 1393 1394
		if (sid & ~cfg->smmu->streamid_mask) {
			dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
				sid, cfg->smmu->streamid_mask);
			goto out_free;
		}
1395 1396
		cfg->smendx[i] = INVALID_SMENDX;
	}
1397

1398 1399 1400
	ret = arm_smmu_master_alloc_smes(dev);
	if (!ret)
		return ret;
1401 1402 1403 1404 1405

out_free:
	kfree(cfg);
	dev->archdata.iommu = NULL;
	return ret;
1406 1407
}

1408 1409
static void arm_smmu_remove_device(struct device *dev)
{
1410
	struct arm_smmu_master_cfg *cfg = dev->archdata.iommu;
1411

1412 1413
	if (!cfg)
		return;
1414

1415
	arm_smmu_master_free_smes(cfg);
1416
	iommu_group_remove_device(dev);
1417 1418
	kfree(cfg);
	dev->archdata.iommu = NULL;
1419 1420
}

1421 1422
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	struct arm_smmu_master_cfg *cfg = dev->archdata.iommu;
	struct arm_smmu_device *smmu = cfg->smmu;
	struct iommu_group *group = NULL;
	int i, idx;

	for_each_cfg_sme(cfg, i, idx) {
		if (group && smmu->s2crs[idx].group &&
		    group != smmu->s2crs[idx].group)
			return ERR_PTR(-EINVAL);

		group = smmu->s2crs[idx].group;
	}

	if (group)
		return group;
1438 1439 1440 1441 1442 1443 1444 1445 1446

	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

1447 1448 1449
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1450
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
1464
	int ret = 0;
1465
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1466

1467 1468
	mutex_lock(&smmu_domain->init_mutex);

1469 1470
	switch (attr) {
	case DOMAIN_ATTR_NESTING:
1471 1472 1473 1474 1475
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

1476 1477 1478 1479 1480
		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

1481
		break;
1482
	default:
1483
		ret = -ENODEV;
1484
	}
1485 1486 1487 1488

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
1489 1490
}

1491
static struct iommu_ops arm_smmu_ops = {
1492
	.capable		= arm_smmu_capable,
1493 1494
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
1495 1496 1497
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
1498
	.map_sg			= default_iommu_map_sg,
1499 1500 1501
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
1502
	.device_group		= arm_smmu_device_group,
1503 1504
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
1505
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1506 1507 1508 1509 1510
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1511
	void __iomem *cb_base;
1512
	int i;
1513
	u32 reg, major;
1514

1515 1516 1517
	/* clear global FSR */
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1518

1519 1520 1521 1522
	/*
	 * Reset stream mapping groups: Initial values mark all SMRn as
	 * invalid and all S2CRn as bypass unless overridden.
	 */
1523 1524
	for (i = 0; i < smmu->num_mapping_groups; ++i)
		arm_smmu_write_sme(smmu, i);
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	/*
	 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
	 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
	 * bit is only present in MMU-500r2 onwards.
	 */
	reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
	major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
	if ((smmu->model == ARM_MMU500) && (major >= 2)) {
		reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
		reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
	}

1539 1540 1541 1542 1543
	/* Make sure all context banks are disabled and clear CB_FSR  */
	for (i = 0; i < smmu->num_context_banks; ++i) {
		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1544 1545 1546 1547 1548 1549 1550 1551 1552
		/*
		 * Disable MMU-500's not-particularly-beneficial next-page
		 * prefetcher for the sake of errata #841119 and #826419.
		 */
		if (smmu->model == ARM_MMU500) {
			reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
			reg &= ~ARM_MMU500_ACTLR_CPRE;
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
		}
1553
	}
1554

1555 1556 1557 1558
	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

1559
	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1560

1561
	/* Enable fault reporting */
1562
	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1563 1564

	/* Disable TLB broadcasting. */
1565
	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1566

1567 1568 1569 1570 1571 1572
	/* Enable client access, handling unmatched streams as appropriate */
	reg &= ~sCR0_CLIENTPD;
	if (disable_bypass)
		reg |= sCR0_USFCFG;
	else
		reg &= ~sCR0_USFCFG;
1573 1574

	/* Disable forced broadcasting */
1575
	reg &= ~sCR0_FB;
1576 1577

	/* Don't upgrade barriers */
1578
	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1579

1580 1581 1582
	if (smmu->features & ARM_SMMU_FEAT_VMID16)
		reg |= sCR0_VMID16EN;

1583
	/* Push the button */
1584
	__arm_smmu_tlb_sync(smmu);
1585
	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;
1612
	bool cttw_dt, cttw_reg;
1613
	int i;
1614 1615

	dev_notice(smmu->dev, "probing hardware configuration...\n");
1616 1617
	dev_notice(smmu->dev, "SMMUv%d with:\n",
			smmu->version == ARM_SMMU_V2 ? 2 : 1);
1618 1619 1620

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1621 1622 1623 1624 1625 1626 1627

	/* Restrict available stages based on module parameter */
	if (force_stage == 1)
		id &= ~(ID0_S2TS | ID0_NTS);
	else if (force_stage == 2)
		id &= ~(ID0_S1TS | ID0_NTS);

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
1644
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1645 1646 1647 1648
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

1649 1650
	if ((id & ID0_S1TS) &&
		((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1651 1652 1653 1654
		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
		dev_notice(smmu->dev, "\taddress translation ops\n");
	}

1655 1656 1657 1658 1659 1660 1661 1662 1663
	/*
	 * In order for DMA API calls to work properly, we must defer to what
	 * the DT says about coherency, regardless of what the hardware claims.
	 * Fortunately, this also opens up a workaround for systems where the
	 * ID register value has ended up configured incorrectly.
	 */
	cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
	cttw_reg = !!(id & ID0_CTTW);
	if (cttw_dt)
1664
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1665 1666 1667 1668 1669 1670
	if (cttw_dt || cttw_reg)
		dev_notice(smmu->dev, "\t%scoherent table walk\n",
			   cttw_dt ? "" : "non-");
	if (cttw_dt != cttw_reg)
		dev_notice(smmu->dev,
			   "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1671

1672 1673 1674
	/* Max. number of entries we have for stream matching/indexing */
	size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
	smmu->streamid_mask = size - 1;
1675
	if (id & ID0_SMS) {
1676
		u32 smr;
1677 1678

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1679 1680
		size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
		if (size == 0) {
1681 1682 1683 1684 1685
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

1686 1687 1688 1689 1690 1691
		/*
		 * SMR.ID bits may not be preserved if the corresponding MASK
		 * bits are set, so check each one separately. We can reject
		 * masters later if they try to claim IDs outside these masks.
		 */
		smr = smmu->streamid_mask << SMR_ID_SHIFT;
1692 1693
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1694
		smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1695

1696 1697 1698 1699
		smr = smmu->streamid_mask << SMR_MASK_SHIFT;
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
		smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1700

1701 1702 1703 1704 1705 1706
		/* Zero-initialised to mark as invalid */
		smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
					  GFP_KERNEL);
		if (!smmu->smrs)
			return -ENOMEM;

1707
		dev_notice(smmu->dev,
1708 1709
			   "\tstream matching with %lu register groups, mask 0x%x",
			   size, smmu->smr_mask_mask);
1710
	}
1711 1712 1713 1714 1715 1716 1717 1718
	/* s2cr->type == 0 means translation, so initialise explicitly */
	smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
					 GFP_KERNEL);
	if (!smmu->s2crs)
		return -ENOMEM;
	for (i = 0; i < size; i++)
		smmu->s2crs[i] = s2cr_init_val;

1719
	smmu->num_mapping_groups = size;
1720
	mutex_init(&smmu->stream_map_mutex);
1721

1722 1723 1724 1725 1726 1727
	if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
		smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
		if (!(id & ID0_PTFS_NO_AARCH32S))
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
	}

1728 1729
	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1730
	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1731

1732
	/* Check for size mismatch of SMMU address space from mapped region */
1733
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1734
	size *= 2 << smmu->pgshift;
1735
	if (smmu->size != size)
1736 1737 1738
		dev_warn(smmu->dev,
			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
			size, smmu->size);
1739

1740
	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1741 1742 1743 1744 1745 1746 1747
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/*
	 * Cavium CN88xx erratum #27704.
	 * Ensure ASID and VMID allocation is unique across all SMMUs in
	 * the system.
	 */
	if (smmu->model == CAVIUM_SMMUV2) {
		smmu->cavium_id_base =
			atomic_add_return(smmu->num_context_banks,
					  &cavium_smmu_context_count);
		smmu->cavium_id_base -= smmu->num_context_banks;
	}
1759 1760 1761 1762

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1763
	smmu->ipa_size = size;
1764

1765
	/* The output mask is also applied for bypass */
1766
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1767
	smmu->pa_size = size;
1768

1769 1770 1771
	if (id & ID2_VMID16)
		smmu->features |= ARM_SMMU_FEAT_VMID16;

1772 1773 1774 1775 1776 1777 1778 1779 1780
	/*
	 * What the page table walker can address actually depends on which
	 * descriptor format is in use, but since a) we don't know that yet,
	 * and b) it can vary per context bank, this will have to do...
	 */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

1781
	if (smmu->version < ARM_SMMU_V2) {
1782
		smmu->va_size = smmu->ipa_size;
1783 1784
		if (smmu->version == ARM_SMMU_V1_64K)
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1785 1786
	} else {
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1787 1788
		smmu->va_size = arm_smmu_id_size_to_bits(size);
		if (id & ID2_PTFS_4K)
1789
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1790
		if (id & ID2_PTFS_16K)
1791
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1792
		if (id & ID2_PTFS_64K)
1793
			smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1794 1795
	}

1796 1797
	/* Now we've corralled the various formats, what'll it do? */
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1798
		smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1799 1800
	if (smmu->features &
	    (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1801
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1802
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1803
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1804
	if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1805 1806 1807 1808 1809 1810 1811 1812
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
		   smmu->pgsize_bitmap);
1813

1814

1815 1816
	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1817
			   smmu->va_size, smmu->ipa_size);
1818 1819 1820

	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1821
			   smmu->ipa_size, smmu->pa_size);
1822

1823 1824 1825
	return 0;
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
struct arm_smmu_match_data {
	enum arm_smmu_arch_version version;
	enum arm_smmu_implementation model;
};

#define ARM_SMMU_MATCH_DATA(name, ver, imp)	\
static struct arm_smmu_match_data name = { .version = ver, .model = imp }

ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1836
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1837
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1838
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1839

1840
static const struct of_device_id arm_smmu_of_match[] = {
1841 1842 1843
	{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
	{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
	{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1844
	{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1845
	{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1846
	{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1847 1848 1849 1850
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

1851 1852
static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
1853
	const struct arm_smmu_match_data *data;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

1866
	data = of_device_get_match_data(dev);
1867 1868
	smmu->version = data->version;
	smmu->model = data->model;
1869

1870
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1871 1872 1873
	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	smmu->size = resource_size(res);

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

1889 1890 1891 1892
	if (!smmu->num_context_irqs) {
		dev_err(dev, "found %d interrupts but expected at least %d\n",
			num_irqs, smmu->num_global_irqs + 1);
		return -ENODEV;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	}

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
1904

1905 1906 1907 1908 1909 1910 1911
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

1912 1913 1914 1915
	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		return err;

1916 1917
	parse_driver_options(smmu);

1918
	if (smmu->version == ARM_SMMU_V2 &&
1919 1920 1921 1922
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
1923
		return -ENODEV;
1924 1925 1926
	}

	for (i = 0; i < smmu->num_global_irqs; ++i) {
1927 1928 1929 1930 1931
		err = devm_request_irq(smmu->dev, smmu->irqs[i],
				       arm_smmu_global_fault,
				       IRQF_SHARED,
				       "arm-smmu global fault",
				       smmu);
1932 1933 1934
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
1935
			return err;
1936 1937 1938
		}
	}

1939
	platform_set_drvdata(pdev, smmu);
1940
	arm_smmu_device_reset(smmu);
1941 1942 1943 1944 1945
	return 0;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
1946
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
1947 1948 1949 1950

	if (!smmu)
		return -ENODEV;

1951
	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1952
		dev_err(&pdev->dev, "removing device with active domains!\n");
1953 1954

	/* Turn the thing off */
1955
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	return 0;
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
1970
	struct device_node *np;
1971 1972
	int ret;

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	/*
	 * Play nice with systems that don't have an ARM SMMU by checking that
	 * an ARM SMMU exists in the system before proceeding with the driver
	 * and IOMMU bus operation registration.
	 */
	np = of_find_matching_node(NULL, arm_smmu_of_match);
	if (!np)
		return 0;

	of_node_put(np);

1984 1985 1986 1987 1988
	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
1989
	if (!iommu_present(&platform_bus_type))
1990 1991
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

1992
#ifdef CONFIG_ARM_AMBA
1993
	if (!iommu_present(&amba_bustype))
1994
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1995
#endif
1996

1997
#ifdef CONFIG_PCI
1998 1999
	if (!iommu_present(&pci_bus_type)) {
		pci_request_acs();
2000
		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2001
	}
2002 2003
#endif

2004 2005 2006 2007 2008 2009 2010 2011
	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

2012
subsys_initcall(arm_smmu_init);
2013 2014 2015 2016 2017
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");